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Exploring Bloch Waves in Periodic Media
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Wave Propagation in Periodic Media — Background and Motivation

In structures with a periodically repeating geometry or material distribution, wave propagation
is no longer governed by a single speed of sound: The periodicity fundamentally alters how waves
propagate through the structure. The pivotal element to reveal the wave propagation features
is the dispersion relation, which links the frequency and wavenumber and describes how the
eigenfrequencies of the system evolve as a function of their spatial wavelength. [1]

From the dispersion relation, one can directly infer whether waves at a given frequency propagate
freely, are slowed down, or are completely attenuated in certain frequency bands (so-called
band gaps). These wave filtering properties render periodic structures particularly attractive for
vibroacoustic applications as they can provide adjustable mitigation of vibrations without relying
solely on heavy damping or added mass. By carefully tailoring the geometry and material layout
of the repeating unit, one may shape the dispersion relation and thereby tune the wave filtering
properties of the periodic structure. Numerical prediction of dispersion relations is, therefore, a
central step in the design of structures for wave control. [2]

There exists a variety of computational techniques for numerically studying the dispersion relation
of a periodic structure. As an example, consider the longitudinal motion of a one-dimensional
periodic rod with a spatially varying YOUNG’S modulus E(z) and material density p(z). The
governing equation for time-harmonic waves is
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Figure 1: Illustrative examples of periodic structures: (a) one-dimensional periodic media with
material (top) and geometric periodicity (bottom), (b) a representative dispersion
relation showing a band gap (gray area), and (c¢) an additively manufactured structure
designed for wave-control applications.



where E(x) and p(x) are periodic functions with period a. A fundamental consequence of
periodicity is that the solutions to this equation take the form of BLOCH waves

up(x) = d(z)e™,  dp(z+a) = dx(). (2)

Here, k denotes the wavenumber and 4y (z) are the BLOCH functions that modulate the plane
wave solutions with the periodicity a of the underlying structure [3]. A conventional way to
solve such problems is to employ finite element methods: The domain is spatially discretized, the
wave field u(z) is approximated using suitable shape functions, and the BLOCH-type character of
the waves is enforced through periodic boundary conditions. This approach leads to a large but
sparse matrix eigenvalue problem

[M - wQK(k)} fiy = 0, (3)

whose eigensolutions w(k) encode the dispersion relation, also called band structure.

In contrast, the Plane Wave Ezanpsion method approaches the same problem in the spectral
domain and exploits the periodicity by expanding both the sought-after solution field and the
material coefficients into FOURIER series. Given the rod example, the material coeflicients are
expanded by
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while the periodic part of the BLOCH solution is likewise expanded by
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Substituting these expansions into the wave equation (1) yields the Plane Wave Expansion
System
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which is the FOURIER-domain representation of the dispersion eigenvalue problem. By truncating
the expansions to a finite number of FOURIER harmonics, one obtains the dispersion relation w(k)
by solving the eigenvalue problem for a sequence of wavenumbers k.

Compared to conventional finite element (FE) simulations, the PWE method does not rely
on meshing the physical domain and inherently satisfies BLOCH’s theorem without the need
for periodic boundary conditions. Moreover, they offer a more intuitive approach of how the
dispersion relation is shaped by coupling of the FOURIER components, which offers a physically
meaningful interpretation of various dispersion phenomena. At the same time, PWE methods
require careful implementation and convergence studies, and are restricted to ideal, infinite
periodic media. [4]

Key Research Questions

e How can the PWE method be derived, implemented and validated for 1D periodic structures?
e What are the advantages, limitations, and convergence properties of PWE compared to FE?

o How do symmetries (translation, reflection, glide/screw) manifest in the Fourier-domain?

Can locally resonant inclusions be included in the PWE framework?



Project Tasks and Stages

1. Analytical foundation: Mass-Spring Chains
Derive dispersion relations for monoatomic and diatomic chains, visualize Brillouin zones,
and interpret band structures.

2. Literature study on PWE and Bloch waves
Study Bloch’s theorem, Fourier expansions, and numerical methods for periodic media.

3. Implementation of a PWE solver
Implement PWE for a 1D periodic rod (MATLAB/Python), verify against analytical models,
and perform convergence studies.

4. Validation and Comparison
Compute band structures using PWE and FE (COMSOL Multiphysics) and compare results
for accuracy and efficiency.

5. Optional Extensions
Investigate effects of symmetries, add local resonances, and extend the PWE formulation
for complex-valued wavenumbers.

Recommended Background and Skills

The topic of this thesis is most suitable for students who
¢ have a solid background in structural dynamics,
o are familiar with finite element and integral transform methods,
¢ have strong programming skills in MATLAB or Python,

e and enjoy working very independently and systematically, including carefully studying
the relevant scientific literature

Students with a keen interest in vibroacoustics, solid state physics, and computational methods
will find this topic particularly interesting.
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