

# Adaptive Model Compliance Checking

## Task

This project aims at developing geometrical and spatial constraints oriented rulesets with the SMC API, which will later provide effective automatic checking for early building designs.

## **GENERAL INSTRUCTIONS:**

- Get to know the Rules API (Java) of the Solibri Model checker (SMC);
- Develop geometrical and spatial constraints oriented rulesets with the SMC API;
- Verify the functionality and effectiveness of the developed rulesets on parametrized building model;
- Develop post-processing methods focused on localizing checking results back to related components in the BIM model.

### References

[1] Solihin, W., & Eastman, C. (2015). Classification of rules for automated bim rule checking development. Automation in Construction, 53, 69–82. <u>https://doi.org/10.1016/j.autcon.2015.03.003</u>

[2] Patlakas, P., Livingstone, A., Hairstans, R., & Neighbour, G. (2018). Automatic code compliance with multi-dimensional data fitting in a bim context. Advanced Engineering Informatics, 38 (July), 216–231. <u>https://doi.org/10.1016/j.aei.2018.07.002</u>
[3] Sydora, C., & Stroulia, E. (2020). Rule-based compliance checking and generative design for building interiors using bim. Automation in Construction, 120, 103368. <u>https://doi.org/10.1016/j.autcon.2020.103368</u>

### Supervisor

Jiabin Wu, Chair of Computational Modeling and Simulation, j.wu@tum.de Jimmy Abualdenien, Chair of Computational Modelling and Simulation, jimmy.abualdenien@tum.de

| Project Chara | acteristics |
|---------------|-------------|
| Modeling:     |             |
| Mathematics:  |             |
| Programming:  |             |
| Science:      |             |



| t - Checked N   | lodel                                                    | Ś | Ľ | ▦ | Δ | Δ                       |
|-----------------|----------------------------------------------------------|---|---|---|---|-------------------------|
| Egress Analysis |                                                          |   |   |   |   |                         |
| § Fire Com      | partment Area Must Be within Limits                      |   |   |   |   | ${\boldsymbol{\Delta}}$ |
| § Fire Walls    | Must Have Correct Wall, Door, and Window Types           |   |   |   |   | Δ                       |
| § Spaces M      | ust Be Included in Fire Compartments                     |   |   |   |   |                         |
| § Model Sh      | ould Have Stairs                                         |   |   |   |   | Δ                       |
| § Model Sh      | ould Have Exits                                          |   |   |   |   | ${\boldsymbol{\Delta}}$ |
| § Door Min      | mum Dimensions                                           |   |   |   |   | ${\boldsymbol{\Delta}}$ |
| § Spaces M      | ust Be Connected to Doors                                |   |   |   |   |                         |
| § If Space Is   | Set to Be Fire Exit Space, It Has to Have Fire Exit Door |   |   |   |   |                         |
| § Escape Ro     | ute Analysis                                             |   | Z |   |   |                         |