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What is FEM ?

• FEM = Restriction = Method of Projection
The space of possible deformations of the structure is restricted. The FEM-

Solution is the shadow of the real solution into the selected solution space.

• FEM = Method of equivalent loadings
The real loading is replaced by a loading which is equivalent with respect to 

the work.

• FEM = Method of Minimum of Energy
FE-Program has its roots and possibilities in work and energy. Forces which 

do not contribute to the total work do not existent for the method. 

• FEM = Method of approximate influence functions
An element and the mesh build with it is as precise as the influence function for 

a selected result may be modelled with the mesh. 
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FEM = Projection

Cable

-H w‘‘(x) = p(x)

Cable Force  Bending Stiffness

Vertical Force  Shear Force

Solution for uniform load: quadr. Parabola

Cable element
Linear geometry of cable between nodes

Solution space: polygon displacements

1 1 2 2 3 3( ) ( ) ( ) ( )hw x w x w x w x    
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FEM = Equivalent Loadings

• Nodal loads are not point loads
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FEM = Equivalent Loadings

• Resolution of a mesh for loads
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FEM – Loadings

are more precise 

than engineering 

loads !

• Isoparametric Elements

• Drilling Degrees of Freedom
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FEM = Minimum of Energy

• Error:

• Support (exact)

• Loadings (Nodal loads)

• Displacements (good)

• Forces (constant)

• Exact Equilibrium if the forces act only at the 

nodes! 

• A large error in the loads yields via integration 

a smaller error in the forces and an even 

smaller error in the displacements.
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FEM = Method of Influence functions

• There is a simple fundamental solution for a 

singular load (e.g. Point force or single Moment 

etc.). 

• Essential property of this fundamental solution 

G0(x,x0) is, that all boundary conditions of the 

displacements are fulfilled and that there are no 

other singularities besides the point x0 where 

the point load is located. 

• The function G0(x,x0) is called Greens Function 

and is the influence function for a displacement.
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Integration of Greens Function

• If the point load is replaced by a differential loading (e.g.

p(y)dy), the solution for any distributed loading is just an integral

of this fundamental function over an area or a line.

• As Greens function is symmetric, G0(y; x) = G0(x; y), (Law from

Maxwell ), it is of no importance if we integrate along x or y.
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FEM = Method of Influence functions

• Influence function for the displacement xi of a cable is the polygon 

cable representing the solution for a load P=1 at point i.

• Influence function for the moment of a beam is the deformation 

obtained by a unit bend of size 1 at point i.
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FEM = Method of Influence functions

• If the FE-system is able to represent the influence line 

exactly, the solution will be exact.

• In all other cases, if the influence function is only 

approximated, we get an approximate solution.

• The difference between the real and the approximate 

solution may be used to estimate the error with rather 

high precision.
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An easy principle!

• A FE-Program calculates approximate results, because it is 

using approximate Greens functions. 

• As a mesh consisting of linear, quadratic or even cubic 

elements may represent only a few selected displacements, 

these elements will not allow the structure to deform in the 

required correct shape of the true Greens function.

• A FE-Program thus is not able to achieve an exact result in 

most cases.
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An easy principle!
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Other Conclusions

• For all results having their influence functions within the solution space of

the FE-mesh, i.e. their Greens functions may be represented exactly, the

FE solution wh is exact.

• The total result value is obtained by integrating the deformation of the

influence function with the given loading p(y).

• All results are obtained just with that value as if they would have been

calculated with the above methodology.

• As the true Greens functions for stresses have always a singularity, it is

evident that stresses within a FE program may be only exact if the

singularity is reduced by the integration process of the load.
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Error of forces
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What are Beam Elements ?

• 3D Continua with Length >> width/height

• Simplification of possible deformations (Bernoulli-

Hypothesis and shape of section does not change)

• Some Simplification for manual analysis

(Elastic centre, principal axis, shear centre)

• Myth:

• Beam elements are simple

• Beam elements are exact
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Still using beam elements ?

• Contra Beam Elements

• Old fashioned

• FE-Model is more general

• Problems for D-Regions

• Pro Beam Elements 

• Engineering Concept 

• Advantage in Computing
Beam

../data/TRAGFER0.CDB


Other Limits for Beams 
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Frequency response beam / shell model
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Local eigenforms: not a beam structure
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Section of a beam element

• Planar section of deformation
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Sections

• A section is thus a substructure of the beam
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Differential equation system

• Bending with respect to principal axis,

EIyz=0

• Normal force referenced on gravity centre

Ay=Az=0

• Shear forces referenced to the shear centre ysc, zsc
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Sectional values

• Values may be calculated in advance:
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Remark on effective width

• For some cases where the Bernoulli-Hypothesis is 

not really fulfilled, people introduce effective widths

• For the sectional values i.e. stiffness

• For the design itself

• Very difficult for biaxial bending

• The treatment of prestress loadings is prone for many 

discussions, as the normal force is acting on another 

effective section than the bending stress
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A strange limit for Beam Theory

• Eccentric 

Moment creates 

Torsion
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How to get the matrix of a Beam Element

• Closed solution for a prismatic beam: 

• No shear deformations

• No warping

• No second order effects

• Closed solution also possible for some special cases

• Warping Torsion for prismatic beam

• Initial stress for constant axial forces

• Closed Solution possible but not easy for some potential 

series of properties
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Numerical Formulations

• Variational Method (FE-Method)

• Solution space based on deformations 

• Strains calculated from deformations

• Minimum of deformation energy

• Integration of differential equations

• System of differential equations

• Integration according Runge-Kutta
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Integration method

• We calculate a transfer matrix either by exact or numerical 

integration of the D.E.:
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• This matrix will be inverted yielding a stiffness matrix

• This element is a real substructure capable to deal 

with any type of loading or structural properties.
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Dealing with off diagonal Inertias

• Program knows only principal axis (?)

• Rotation of Solution into the system of principal axis

• Complete treatment of Integrals with EIyz

• The independent principal axis of shear 

deformations allow only the latter complete 

approach.
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Elastic Center (Gravity axis)

• Elastic centre is not a constructional element.

Beams are aligned with outer faces.

• Haunches create bends in the centre axis

• Haunches create skewed length of beams

• Centre changes with construction stages

(Cast in situ concrete)

• So what else ?
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Reference axis
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Reference axis

• Elastic centre axis with N + V

• Results are directly applicable for design

• General reference axis

• Not easy to control or understand

• Superposition of actions

• Elastic centre with D + T

• Similar to 2nd Order Theory

• Superposition of forces is possible
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Beam with a Haunch
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Variational Method
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• Eccentricity at the endpoints

• Interpolation u0 linear, v,w,x,y cubic

• Displacement in Section

Deformation Shape Functions
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Evaluation of Strains

• Location of elastic centre is NOT constant:
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Work of internal stress
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• Haunch creates normal force for a horizontal reference axis

• A haunch yields a variant moment for a constant axial force

• There is an additional coupling of primary and secondary 

bending if the inclination is not the same
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A Haunched Beam

h =100 cm

p = 10 kN/m

L = 10.0 m

h = 50 cm

h =100 cm



 w[mm] Ne[kN] Nm[kN] Mye[kNm] Mym[kNm] 

Inclined axis      

CLOSED (1 element) 0,397 -80,50 -78,00 -73.58 31,91 

CLOSED (8 elements) 0.208 -46,30 -43,80 -94,87 19,17 

VAR (1 elements) 0,172 -39,80 -37,30 -93,65 22,00 

VAR (8 elements) 0.206 -45,80 -43,30 -95,02 19,14 

Horiz. Reference axis      

VAR (1 element) 0.168 -37,90 -37,90 -93.01 22,52 

VAR (8 elements) 0.204 -44,20 -44,20 -94.85 19,10 
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Results
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Axial Force + Moments

-37.88 -37.88

-44.19 -44.19

-93.01

-94.85
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Shear Deformations

• Not contained in the prerequisites

• Reduction of the bending stiffness by a comparison of 

deformations

• Theory Timoshenko/Marguerre

separate deformation modes with a compatibility request 

V = dM/dx 

• Inversion of the flexibility

Most general approach

For prismatic beam possible with a closed form
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Non conforming element based

on the variational method

• Non-conforming Ansatz for   yields

• Concise Beam Element

• Including effects of haunches

• Including all shear deformations
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Winkler Assumption
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Disappointing Example

• FE-Beam element is a very powerful element, but it is 

a Finite Element. 

• Displacements are only cubic parabolas.

• Simple span beam with uniform loading

• cubic coefficients is zero (symmetric solution)

• Displacements in nodes are exact

• Displacements within beam are not correct
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Particular solution needed



Real World (Saragossa Bridge-Pavillon)

Computational Mechanics
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Nearly Everything can be designed today

• Is it possible to build it ?

• If we do an analysis at the total system, do we cover 

all details?

Computational Mechanics
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Sleipner A
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Effects of Warping Torsion

• Petersen Stabilität page. 757 b)

240 kN

2.625 kN/m

l = 16 m
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Effect of warping Torsion

• Bending stress  =   8.43 kN/cm2

• 2nd order Torsional Buckling  = 13.61 kN/cm2

• Warping stress  =   8.28 kN/cm2

caveat:

• Dischinger-Factor Mb = 69.47 kNm2

• Petersen with Formula 4 Mb = 38.03 kNm2

• Petersen with Formula 9 Mb = 55.04 kNm2

• FE-Element SOFiSTiK Mb = 54.77 kNm2
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A Question
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My

Look at the stresses



Two views for the stability problem

• The undeformed system is in an unstable equilibrium.

• Smallest deviations (imperfection) lead to a collapse.

• Two possible approaches:

• Eigen value or bifurcation problem:

Sudden failure from a differential deformed shape

• Deformation problem:

Non linear increase of deformations caused be the negative 

geometric (initial stress stiffness) Stiffness

„Elasticity + Stress*Geometry“

Computational Mechanics
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Stability - Buckling

Equilibrium:

Computational Mechanics
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Differential equation = 

check list of parameters

• Transverse Deformation vz & stress free imperfection vz0 

• Bending stiffness EI(x)

• Longitudinal force D(x)

• Bedding in transverse direction C

• Load in longitudinal direction px(x)

• Load in transverse direction pz(x)
Computational Mechanics
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Warping Torsion

• 7. Degree of freedom + Warping Moment Mb

• secondary torsional moment Mt2

• Hermitian Functions of 2nd Degree
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System behaviour

Computational Mechanics
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Displacements

P

Bifurcation

2nd Order Theorie
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Solution methods

• Inhomogeneous Equation

(2nd Order Theory, general nonlinear analysis)

• Homogeneous equation (Stability Eigen value)

Computational Mechanics
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Frequencies

• String of a Guitar

• Increase of tension increases the frequency

• Compressive Members

• Increase of compression decreases the freuqncy

• For a certain compressive force the frequency will become 

zero

• i.e. The structure will collapse once and will never recover 

(The period becomes infinity)

Computational Mechanics
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Asymptotic Behaviour ?

Computational Mechanics
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Eigenvalue: 1.65
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Asymptotic Behaviour ?

Computational Mechanics
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Ultimate load: 1.08
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Solution methods

• Closed Solutions for special cases

(using trigonometric or hyperbolic functions)

• FE-Ansatz with Ansatz functions and a variational 

principle

• Numerical Integration of the differential equation for 

beam elements

Computational Mechanics
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Variational Approach for 

Geometric Stiffness
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Same Ansatz problem with a single element 

for buckling  Eigenvalues
Euler case for

prismat. beam

Theoretical Eigenvalue

I (1 element) 3303 3328

I (2 elements) 3305

I (4 elements) 3303

I (8 elements) 3303

II (1 element) 13212 16065

II (2 elements) 13312

II (4 elements) 13219

II (8 elements) 13213



And here ?
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Combined Strategy

• Evaluation of the total stability with the total system 

and imperfections. 

• As we do not model every single beam with it’s own 

imperfection and at least two elements we do local 

checks based on the representative beam for

• Deformations / Buckling transverse to the structure

• Truss elements 

• Lateral torsional buckling

• But: Stiffness at start and end node is difficult to obtain!
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Imperfection or Equivalent Loads ?
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Quadratic Imperfection of 80 mm, P=2000kN
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uz Vz M

y
M 1 : 54X

YZ

104.8

Beam displacement in local z, nonlinear Loadcase

4   , 1 cm 3D = 100.0 mm (Max=104.8)

0.00 1.00 2.00 m

1.00

2.00

3.00

4.00

5.00

6.00

7.00

M 1 : 54X

YZ

Beam Elements , Shear force Vz, nonlinear

Loadcase 4   , 1 cm 3D = 10.0 kN (Max=

1.4211e-14)

-1.00 0.00 1.00 m

1.00

2.00

3.00

4.00

5.00

6.00

7.00

M 1 : 54X

YZ

-209.5

Beam Elements , Bending moment My, nonlinear

Loadcase 4   , 1 cm 3D = 200.0 kNm (Min=-209.5)

(Max=-5.3245e-05)

-2.00 -1.00 0.00 m

1.00

2.00

3.00

4.00

5.00

6.00

7.00
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M 1 : 54X

YZ

25.1

Beam displacement in local z, nonlinear Loadcase

2   , 1 cm 3D = 20.0 mm (Max=25.1)

0.00 1.00 2.00 m

1.00

2.00

3.00

4.00

5.00

6.00

7.00

M 1 : 54X

YZ

40.0

Beam Elements , Shear force Vz, nonlinear

Loadcase 2   , 1 cm 3D = 10.0 kN (Max=40.0)

-2.00 -1.00 0.00 m

1.00

2.00

3.00

4.00

5.00

6.00

7.00

M 1 : 54X

YZ

-210.3

Beam Elements , Bending moment My, nonlinear

Loadcase 2   , 1 cm 3D = 200.0 kNm (Min=-210.3)

(Max=-5.3996e-05)

-2.00 -1.00 0.00 m

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Equivalent forces according Design codes
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Cantilever L = 8 m, P = 2000 kN, eu = sk/200

• Imperfection

• Total deformation 104.8 = 80 + 24.8 mm

• Bending moment = 2000 * 0.1048 = 209.6 kNm

• Transversal force 0, shear force at top: 52.4 kN

• Equivalent force H = 20+20 kN + q = 5 kN

• Load deformation 25.1 mm

• Bending moment 210.3 kNm

• Shear at top = 40*cos(0.36)+2000*sin(0.36)= 52.5 kN

Computational Mechanics71
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Imperfections versus equivalent loadings

• Using the equivalent forces there is a transversal 

force of 40 kN at the top reduced to zero at the 

bottom.

• Using imperfections the transverse force is 0 kN

• Shear deformations are caused by shear forces, but 

have been calculated with the transverse force. For 

columns the effect is small in general.

• Geometric non linear (GMNAI is ok)
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Torsion 2nd Order Theory

• Torsional buckling load 1185 kN

• Rotation 265 mrad

• Primary torsional moment 292 kNcm

• Torsional moment N·ip
2·θ‘ -212 kNcm

Computational Mechanics
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Stresses from 2nd order Torsion ?

• No stresses like primary torsion

• No stresses like secondary torsion

• => Shear stresses distributed

similar to the normal stresses
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Components of drilling moments in 

FE-System 1st and 2nd order theory
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Higher Geometric Nonlinear Effects

• horizontal cable with a length of 10.0 m, a sectional area of 0.84 cm2

and a prestress of 1 kN with self weight.

Taking into account the sagging of approx. 8 o/oo will increase the 

normal force by a factor of 2 and has considerable influence on 

deformation and Frequency:

N [kN] u [mm]

Without slack 1.0 83.36

With slack 1.9 43.95

f1 f2 f3

Without slack 1.928 3.809 5.596 

With slack 2.374 / 3.468 4.690 6.890

Movement up and down different
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3rd order Theory

• Load excentricity will be reduced by geometric non 

linear effects and thus the bending stress is reduced 

by a factor of 2

• Only one participant taking part in that benchmark 

has recognized this effect !



Buckling Design on a representative beam

• Buckling curves
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Slendernes requires Buckling length

• Useful results are only obtained by using 2nd order Theory and imperfections.!

• e.g. EN 1993 : Buckling in transverse direction is handled with a slenderness 
ratio lopt

• But this is not always wanted, as the number of imperfection cases may 

increase dramatically for complex spatial structures. And the superposition is 

only possible for cases with the same normal force. 

• AISC and BS do not recommend to use 2nd order theory (there are also some 

differences to PI-delta-analysis) !

• => People want to do the design check on a single beam with a buckling length

K

Ki

EI
s

D






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Buckling length ?

• It is not a geometrical size ! And it is not 

related to any mesh density of a finite 

element structure !

• It is rather easy to get eigenvalues of the 

loading at the total system based on the 

geometric stiffness (there are more than one 

eigenvalue!)

• How to convert the global buckling factor to 

the local single beam ?

• General assumption:

If all local eigenvalues are above the global 

one, everything is ok. 
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Flag pole

 

500 mm 

 

8000 mm 

 

1.5*1150 kN 

 
1.5*35 kN 

 
HEB 500 - S 235 

N  = N/A  = 72.3 Mpa 

M  = M/W = 97.8 Mpa 

 

Theory II. Order (eu = 8000/250): 

   N + M
II
 = 72.3 + 134.9 = 207.4 

 

Centr. Buckling: 8339 kN, sk=16.331 m  

  = 77,  = 1.50 

    N + 0.9 M = 196.5 MPa 

Beam with 500 mm length has a b = 32.66 !
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First Eigenvalue not critical

 

8000 mm 

 

1150 kN 

 
35 kN 

 

HEB 500 - S 235 

Buckling without antenna: 8687 kN 

Classical from 1
st
 Eigenform 3019 kN 

Classical from 2
nd

 Eigenform 8762 kN 

 

Antenna tube 110/10 

Fully fixed reference:   128 kN 

Classical from 1
st
 Eigenform   126 kN 

Classical from 2
nd

 Eigenform   365 kN 

50 kN 

 
1 kN 

 

4000 mm 
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„Da haben wir den Salat“

• Buckling length is not a suitable design method in all 

cases !

• Thus it is not possible to write a program which may 

be used as a black box for that purpose !

• But: For any design with buckling curves we need 

some value !
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A Buckling Tensile Member



Katz_02 /‹Nr.› Computational Mechanics

85

Material Nonlinear Analysis

of reinforced concrete beam

• The reinforcement is not known a priori

• Reinforcement may be staggered or not

• There is more than one possible solution 

even for the case with a given 

reinforcement
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Basic Steps nonlinear

• Inner Iteration within section

• Choose a strain distribution

• Integration of stresses defined by the stress-strain law to forces and 

moments

• Corrective Residuas

• Differences bettween inner / outer forces

• Plastic Strains

• Secant or Tangential stiffness



Katz_02 /‹Nr.› Computational Mechanics

87

Strain or Residual based Evaluation ?

• Strain based approach

• Konsistent to FE-Method

• slow convergence

• i.g. stable method 

• Problems with hardening 

effects
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Strain or Residual based Evaluation ?

• Force based approach 

(NSTR SN)

• “fast” convergence

• Problems with saddle points  

• Problems with ultimate 

loadings

• Not applicable in all occasions
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Iteration Methods

• Incremental Strategy 

with/without Iteration

• High computational effort

• Unique solutions

• However: Precision not 

guaranteed

• Runge-Kutta-Method
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Iteration methods

• Newton-Method

• High computational effort

• optimum quadratic convergence

• Problems with limit values of 

Stiffness
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Iteration Methods

• Secant-Method

• Mean numerical effort

• Rather fast convergence

• No problems with limit values of 

stiffness
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Iteration Methods

 

• Quasi-Newton-Method

• Least numerical effort

• Problems with non local 

behaviour

• Crisfield + BFGS - Methods
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New Stiffness or strains ?

• 2 Equations – 5 unknowns

• Solutions:

• Calculate diagonal stiffness only

• Keep Stiffness, change plastic strains

• Select tangential stiffness, 

add corrective strains

,

,

y yz y y ply

yz z z z plz

EI EI k kM

EI EI k kM

    
           
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Torsion and Transverse Shear

• Reduction of deformation areas by some empirical 

method

• Real Energy equivalents



Katz_02 /‹Nr.› Computational Mechanics

Unexpected Effects

H = 35 kN

P = 500 kN

6
.0

0
6
.0

0
+

-

+250 kN

-250 kN

Normalforce

95



Katz_02 /‹Nr.› Computational Mechanics

96

Linear Analysis

Moment Normal force

+250 kN

-250 kN

210 kNm

105 kNm
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Non linear Analysis

Moment Normal force

373 kNm

-731 kN

-1231 kN

218 kNm
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Simple Example

1.00

M = 107 kNm

Concrete  C 20
Reinforcement   S 500

30

6
05
5

98
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Deformed System

ux

u
y

u

o
m

  dxu mx 
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Building Slab

Concrete  C 20
Reinforc.  S 500
Slab Thickness
h = 16 cm

5.00 5.00

gk/qk = 5.50 / 2.75 kN/m2

100
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obtained

deformation

allowed

deformation

uncracked 0.24 cm

fully cracked 1.79 1.0 cm

Analysis according to

1.07

Design for deflections

Incl. Tension stiffening cm

101
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Change support Condition

Concrete  C 20
Reinforc.  S 500
Slab thickness
h = 16 cm

5.00 5.00

gk/qk = 5.50 / 2.75 kN/m2

quasi permanent combination = 5.50 + 0.3 x 2.75 kN/m2

f = 0.51 cm
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Support of an Elastic Beam

• General assumption: support in the neutral center axis

• Real world is a support at the lower side

• The curvature induces deformations of the supports

• If the support is fixed a normal force is introduced 

F = q • l2 / 8 / h

reducing the sagging moment by a factor of 2 !



Flowchart of a non linear Analysis
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Safety factors

• Partial safety coefficients can not be applied at an 

arbitrary location in a non linear analysis. There is a 

significant difference if they are applied on the load F 

or the resistance R !
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Safety Factors  s on Stiffness ?

• In general, only mean values are known

• For stability problems a reduction is applied, sometimes.

• But for the stiffness there is no clear „on the safe side“ e.g. 

dynamics, settlements, thermal loadings, soil engineering.

• Thus, there is no generally accepted rule how to treat safety 

factors for the stiffness. 

• Special treatment in Germany with a unified safety factor r

Computational Mechanics
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Unique Solution ?

Computational Mechanics
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R = Internal Resistance

curvature k

M External Moment

(- - - Optimum design)

Stable equilibrium

dE/dk < dR/dk

Instable equilibrium

dE/dk > dR/dk
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A Slender Example

• EN 1992 5.2. (7) 

(o = l/200, ah=0.707,  am=1.0)

e = 14.1 mm

• h = 240 mm

As = 11.3 cm2

s = 0.0 o/oo

• h = 230 mm

As = 63,7 cm2

s = 1.56 o/oo

Computational Mechanics
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G = 1200 kN

Q =   350 kN

8
.0

0
 m

C 30/37

b/h = 1000/300

h’ = 40 mm

S 500

As = 10  12

= 11.31 cm2
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Creep effects neglected !

• EN 1992-2004, clause 5.8.4. (4) states three 

conditions to be fulfilled when creep may be 

neglected:

0 < 2

 < 75

M/N > h

• All three are violated in this case !
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Creep Effects included:

Case A (deform) Case B (complete)

h
[mm]

As
[cm2]

s

[o/oo]
Eeff

[Mpa]
As

[cm2]
s

[o/oo]
Eeff

[Mpa]

330 11,31 0,01 6517 11,31 -0,17 6517

320 11,31 0,61 4880 11,31 0,00 4880

310 27,80 2,50 3288 16,67 0,18 4941

300 34,08 2,26 3622 23,10 0,26 5433

290 40,41 2,10 3993 30,64 0,36 6054

280 48,04 2,00 4437 39,03 0,47 6829

270 56,33 1,92 4937 48,42 0,58 7763

260 66,25 1,85 5517 59,48 0,70 8909
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Stiffness depending on height
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Linear Buckling requires E = 6182 MPa for h=300 mm!
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Required Stiffness to prevent Buckling
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Sensitive High Strength Concrete !

Computational Mechanics

113

Katz_02 /‹Nr.›



A cause of the unsteady behaviour

• For an uncracked section the deformations and 2nd 

Order effects are small, a low reinforcement is 

sufficient

• If a crack occurs, the stiffness drops suddenly, the 

limit condition is not the strength of the 

reinforcements but the stiffness to prevent linear 

buckling.  

• Is that a problem for the reliability ?
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Conclusion / Remedies ?

• There are/were provisions in some codes to prevent 

such strain distributions.

• minimum excentricities including creep effects

• minimum tensile strain (e.g. OEN) 

• maximum height of compressive zone (SNIP)

• Higher safety factor for small strains 

(e.g. old DIN, ACI, AS)

• Include Tension stiffening effects

• What should we do ?
Computational Mechanics
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Conclusion

• Beam and Cable elements facilitate 

the engineering judgement

• However they are neither easy nor exact

• Beware of Systems where beam theory is not 

adequate 


