Industrial Applications of Computational Mechanics Shear Walls and Fluids

Г

Prof. Dr.-Ing. Casimir Katz SOFiSTiK AG

Γ

FEM - Reminder

- A mathematical method
- The real (continuous) world is mapped on to a discrete (finite) one.
- We restrict the space of solutions.
- We calculate the optimal solution within that space on a global minimum principle
- Don't expect local precision

2

Г

Plates (Slabs and shear walls)

- Classical plate bending solution (Kirchhoff) K $\Delta\Delta$ w = p
- Classical solution for shear walls (Airy stress function F) $\Delta\Delta$ F = 0
- FE / Variational approach for bending plates $\Pi = \frac{1}{2} \int \kappa D \kappa dV = Minimum$
- FE / Variational approach for shear walls $\Pi = \frac{1}{2} \int \varepsilon D \varepsilon dV = Minimum$

3

Г

Shear Walls

- Unknowns:
 - Displacements $u=u_x$ and $v=u_y$ Rotation ϕ_z is not defined (see Cosserat)

Strains

$$\varepsilon_{x} = \partial u / \partial x ; \quad \varepsilon_{y} = \partial v / \partial y$$

2 $\varepsilon_{xy} = \gamma_{xy} = \partial v / \partial x + \partial u / \partial y$

stresses

 σ_x , σ_y , τ_{xy} [, σ_z]

- Plane Strain Condition $\varepsilon_z = 0$
- Plane Stress Condition $\sigma_z = 0$

4

Г

Plane Stress Condition

$$\begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{bmatrix} = \frac{E}{1 - \mu^2} \begin{bmatrix} 1 & \mu & 0 \\ \mu & 1 & 0 \\ 0 & 0 & (1 - \mu)/2 \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{bmatrix}$$

$$\begin{bmatrix} n_x \\ n_y \\ n_{xy} \end{bmatrix} = \frac{E \cdot t}{1 - \mu^2} \begin{bmatrix} 1 & \mu & 0 \\ \mu & 1 & 0 \\ 0 & 0 & (1 - \mu)/2 \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{bmatrix}$$

5

Г

L

Extended Formulation

$$\begin{bmatrix} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \\ \sigma_{z} \end{bmatrix} = \frac{E}{(1+\mu)(1-2\mu)} \begin{bmatrix} 1-\mu & \mu & 0 & \mu \\ \mu & 1-\mu & 0 & \mu \\ 0 & 0 & (1-2\mu)/2 & 0 \\ \mu & \mu & 0 & 1-\mu \end{bmatrix} \begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \\ \varepsilon_{z} \end{bmatrix}$$

- Shear modulus $G = E/(2^*(1+m))$ at Position 3,3
- Plane Strain $\varepsilon_z = 0$
- Axisymmetric condition

 $\varepsilon_z = 0$ $\varepsilon_z = u/r$

6

Г

Remarks

 $\begin{array}{cccc}
-\mu & \mu \\
\mu & 1-\mu & 0 \\
0 & 0 & (1-2\mu)/2 \\
\mu & 0
\end{array}$ \mathcal{E}_{n} σ μ σ $\frac{E}{1-2\mu}$ 0 γ_{xv}

- Incompressible limit
 - For $\mu = 0.5$ the matrix becomes singular
- Extensions for anisotropic behaviour via inverse matrix
 - E-Modulus in fibre direction $\varepsilon_x = \sigma_x/E_x + \mu_{xy} \cdot \sigma_y/E_y$
 - E-Modulus transverse to fibre direction (E₉₀) analogue
 - Poisson ratio for off diagonal term is not uniquely defined
 - Rotation of axis of Isotropy creates a fully populated matrix
 - Special effects for foams possible

7

Г

Membrane element

- constant strain triangular elements CST
 - Linear displacements
 - Constant stress

8

Г

L

Enhanced triangular elements

- LST Element with 6 nodes
 - Complete quadratic function space

- Drilling-Degrees of Freedom
 - The displacements of the mid nodes are calculated from the end nodes including the rotation

9

Г

Membrane Elements

- Quadrilateral bilinear elements
 - Linear
 Displacements
 - Constant stress
 - Shear stress may become spurious

10

Enhancements

- Quadratic Shape functions
 - Lagrange Elements (nine noded)
 - Serendipity (without central node)
 - "Isoparametric"
 - "Isogeometric"

11

Г

Disadvantages

Uniform loadings creates nodal loads as:

1/6 , 2/3 , 1/6

- Thus coupling with beam elements is difficult,
 i.e. we need also isoparametric beam elements
- Special coupling conditions (friction, no tension etc.) also difficult, i.e. we need isoparametric interface elements

12

Drilling Degrees I

- Same principle as with the triangular element
- Further mathematical tricks required to reduce the space of the shape functions compared to the Serendipity-Element
- Moments as nodal loads not easy to understand / handle
- Advantages for folded structures or shells expected
- My own benchmarks showed poor quality of results.

13

Enhancements

• Bilinear non conforming (Wilson)

 $u = ... + (1-s^2) q1 + (1-t^2) q2$ $v = ... + (1-s^2) q1 + (1-t^2) q2$

- May model constant curvatures exactly
- Static Condensation
- Patch-Test fulfilled with a trick (Jacobi-Determinant is treated as constant)
- Newer approach: Assumed strains

14

L

Patchtest

٦

Patchtest (σ**)**

Moment	cons	stant	lin	ear	qua	dratic
Mesh	x=0	x=I/2	x=0	x=I/2	x=0	x=I/2
Reference	1500	1500	1200	600	1200	300
R Q4+2	1500	1500	1051	600	940	337
V Q4+2	1322	1422	1422	701	773	452
R Q4	1072	1072	1072	428	659	240
V Q4	687	578	578	187	393	172

16

Г

L

Patchtest (τ**)**

Moment	con	stant	lin	ear	qua	dratic
Mesh	x=0	x=I/2	x=0	x=I/2	x=0	x=I/2
Reference	0	0	50	50	100	50
R Q4+2	0	0	50	50	87.5	50
V Q4+2	58	28	65	80	130	73
R Q4	438	0	364	8	376	8
V Q4	502	220	380	294	366	11

Computational Mechanics

17

Г

L

Convergence of displacements

Mesh	u (Q4)	u (Q4+2)
1 x 8	0.715	1.035
2 x 16	0.939	1.036
4 x 32	1.010	1.038
8 x 80	1.021	1.039

18

Г

L

Drilling Degrees II

• Better approach with a strain field (Hughes/Brezzi)

$$\Pi = \int (symm \, grad \, v) \cdot c \cdot (symm \, grad \, v) d\Omega + \gamma \cdot \int |skew \, grad \, v - \omega|^2 d\Omega$$

- Constraint about the rigid body rotations
- Adding deformation energy makes the element stiffer
- Combination with nonconforming modes is recommended

19

Г

20

Г

L

• Nodal loads are no point loads

L

Loads

• Resolution of a mesh for loads

Moments

- There is no degree for that !
- Possibilities
 - Use more than one node
 - Kinematic Constraints, EST-Conditions
 - Drilling degrees of freedom

٦

22

Г

Result-Evaluation

- Direct solution: Displacements u
- Support Forces (Residuals) (exact for all degrees of freedom!)
- Stresses in elements
 - Centre (Mean value = Super convergent Point)
 - Gauss-Points
 - Nodes of elements (Extrapolation!)
- Mean values in nodes
- Error estimates

f = K u - p

23

Equilibrium

- As it is the base for our solution it should be fulfilled for the residual forces even if system and loadings are completely garbage.
- It is not fulfilled within the elements
- It is not fulfilled at the edges of the elements
- It is not fulfilled within general cuts across the elements

25

Nodal stresses

• Stresses are discontinuous between elements

• The jump value of the stresses is a measure for the quality (e.g. error) of the solution for that mesh

26

Г

Nodal stresses

- Mean value of stresses in nodes to obtain "nicer" pictures
 - Discontinuity of Thickness
 - Discontinuity of E-Modulus
 - Discontinuity of Geometry

27

Г

L

Colours do not show all

Computational Mechanics

Singularities

29

Г

Singularities

Re-Entrant Corners

30

Г

L

Adaptive Mesh Refinement

- At those locations where we have a large error estimate we refine the mesh either geometrically (h-Version) or we increase the Polynomial degree (p_Version) or both (hp-Version).
- Strong advantages compared to a uniform refinement
- Loads are not allowed to be defined for nodes or elements, but are required in a more general geometric way.
- For any design purpose we need results for all load cases at the same location.

=> a mesh for every load case makes life not easier.

31

Detail of supports

32

Г

L

Detail of supports

- Element stress is discontinuous
- Nodal stresses as mean values are not correct at this point
- Separate the nodal stresses in groups

33

Remarks

- Axissymmetric case
 - The strains are neither constant nor linear nor quadratic
 - None of the classical elements may describe this exactly
 - Integral of loads has to include the radius
 - But not the nodal loads !
- 3D case
 - Most of the plain strain issues are also valid
 - Two more shear stresses
 - Elements as Hexahedra or Tetrahedra or something in between
 - Mesh generation is a complex topic !

34

Construction Stages

- Classical Approach: We build and then we switch gravity on ?
- There are many cases, especially with non linearity where the simulation of the construction process becomes essential
 - Dam construction
 - Tunnelling
 - Bridges
- Effects to consider:
 - Stress path
 - Change of forces due to creep
 - Adding or removing parts of the structure

L

A simple beam example

Two single span beams

- Connected to a continuous beam => Creep will change the forces towards the continuous case
- Changed to a single span beam
 Moment distribution will be different

36

Removal of central support

37

Г

L

Computational Mechanics
How is this done best ?

- First Principle: Strain increments!
- Consider each load case not in total but as difference to the primary state before
- New stresses are old stresses + tangential stiffness times strain increments

$$\sigma_{new} = \sigma_{old} + E_t \cdot \Delta \varepsilon$$

38

Г

Incremental loads

- The stresses of the primary load case are in equilibrium with the loadings and support forces of the primary estate
- The load vector of the new case is the difference between the total load vector and the residual load vector of the primary stresses.

$$\Delta P = P_{total} - \int B^T \sigma_{primary} dV$$

39

How it works

40

Г

L

Last not least

- Partially removed or activated systems
 - Shotcreet hardening
 - Tunnelling
 - Loss of strength due to many effects
 - Icing and deicing a soil
- The full set of tools
 - Factor for Stiffness
 - Factor for primary stress
 - Factor for primary loading

41

Г

Enlargement of Metro Station Marienplatz Munich

42

Г

Computational Mechanics

"New" Austrian Tunneling Method

- Stress differences exceeding the strength yield plastic deformations
- A small outward pressure of the lining will inhibit this
- This pressure is obtained if the lining is in place before deformation starts

43

Analytical Model

- Analysis at a set of representative crosssection slices under plane strain conditions
- Incorporating 3D stress redistribution effects by ⇒ stiffness reduction method (α-Method)

Stiffness reduction method (a-Method)

Primary Estate

L

45

Stiffness reduction method (a-Method)

Г

46

Г

Stiffness reduction method (a-Method)

Г

47

Г

Finite element model

48

Г

L

Simulation 1st stage: primary stress state

Simulating the historic construction process

⇒ generating a model loading state that reflects the situation prior to construction activity

Katz_03 /

Simulation 2nd stage: preparatory steps

٦

50

Г

Simulation 3rd stage: tunnelling process

Computational Mechanics

51

Simulation 3rd stage: tunnelling process

Simulation 3rd stage: tunnelling process

53

Soil freezing

Katz_03 /

54

Г

Simulating the 3D cross cutting process

• There are some more phases in 3D

56

Г

Design

57

Г

L

- Finite Element Analysis is linear in general
- Design is based on ultimate loads and plasticity
- The real ultimate loading depends on all elements within the structure.
- Thus, you may be either
 - Not economical
 - Not save

٦

5 "membrane" elements Each obtaining its individual reinforcement

Classical beam element

58

Г

$\mathbf{M} = \mathbf{250} \ \mathbf{kN}$

	Stress		Reinforcement	
Element	Theoret.	FE	Classical	FE
1	-11.11	-11.03		485
2	-5.56	-5.51		106
3	0.00	0.00		0
4	5.55	5.51		694
5	11.11	11.03	1973	1391
Sum			1973	2676
Beam design with distribution				
from FE-Results				2658

Computational Mechanics

59

Г

L

M=250 kNm, N= -500 kN

	Stress		Reinforcement	
Element	Theoret.	FE	Classical	FE
1	-13.89	-13.81	540	985
2	-8.33	-8.29		160
3	-2.79	-2.78		54
4	2.79	2.73		344
5	8.33	8.29	1262	1040
Sum			1802	2583
Beam design with				
distribution from FE-Results				2244

60

Г

L

M=250 kN, N= -1000 kN

	Stress		Reinforcement	
Element	Theoret.	FE	Classical	FE
1	-16.67	-16.58	1359	1486
2	-11.11	-11.06		492
3	-5.56	-5.56		107
4	0.00	0.05		0
5	5.56	5.48	1359	691
Sum			2718	2776
Beam design with distribution				
from FE-Results				2260

61

Г

L

Design of Shear Walls

- Direction of principal stresses
- Direction of reinforcements
- Direction of cracks
- Models available from Baumann / Leonhardt or Stiglat/Wippel
- Analysis based on minimum of deformation work
- A bunch of detailed problems be careful e.g. inclined compressive reinforcement

62

Structured shear walls

63

Г

L

Structured Shear Walls

		Mod. Stiff.	Rigid	FE
	Beams	in nodes	Nodes	Solution
N (left)	25.6	133.2	133.2	117.8
V (left)	200.1	187.7	195.2	191.8
M (left)	-2818	-2216	-2251	-2316
N (right)	-25.6	-133.2	-133.2	-117.8
V (right)	137.4	149.8	142.3	145.5
M (right)	-2612	-2146	-2112	-2199

64

Г

L

L

Computational Mechanics

Problem

- Stability of a barrage (height 32,50 m / width 21 m)
- Load cases to be considered:
 - Seepage
 - Temperature
 - Ice pressure
 - Earthquake
- On the water side there is an additional brickwork and a so called "Intze-Keil" to ensure water tightness
- Non linear material for rock and dam

66

Friction between Soil and Dam

67

Г

Seepage through dam

Computational Mechanics

Stresses including seepage

Computational Mechanics

Transient Temperatures

70

Г

Computational Mechanics

Earthquake

- There is a fluid structure interaction problem
- A simple approach just adds some mass to the barrage according to the distribution of Westergard
- You have to add a mass value depending on the distance of the nodes and their depth.
- How ?
 - Excel sheet (if you know the coordinates)
 - With a cubic load distribution (if you have good software)

71

Г

Stresses including Earthquake

L

Near Collapse with 7 x Earthquake forces

73

Г

Fluid-Elements - Eulerian Approach

Differential equation connecting velocity of non viscous fluid to pressure:

$$\nabla p = -\rho_f u^{\bullet}$$

- The density of the fluid is constant
- Velocities are so small that higher order effects may be neglected, (Convection, Cavitation etc.).
- Shear stresses (viscous effects) are neglected

74

Г
Fluid Structure Interaction

- Flow is described by velocities (Eulerian-Approach)
- Structure is described by displacements (Lagrangian Approach)
- Coupling quite complex

75

L

Lagrange Approach for Fluids

• Stresses with Compression and Shear modulus:

$$\begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \\ \sigma_z \end{bmatrix} = \begin{bmatrix} K + \frac{4}{3}G & K - \frac{2}{3}G & 0 & K - \frac{2}{3}G \\ K - \frac{2}{3}G & K + \frac{4}{3}G & 0 & K - \frac{2}{3}G \\ 0 & 0 & G & 0 \\ K - \frac{2}{3}G & K - \frac{2}{3}G & 0 & K + \frac{4}{3}G \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \\ \varepsilon_z \end{bmatrix}$$

 $K = \frac{1}{3(1-2\mu)}$

- Quite Common in Soil Mechanics
- Limit State G => 0, μ => 0.5
- Some viscous effects possible

L

Water

77

Г

L

Compression modulus

K = 2000 N/mm2

• dynamic Viscosity

 $h = 0.0000000165 \text{ Ns/mm}^2$

Shear Modulus very small

$$\tau = G * \gamma = G * \frac{\gamma^{\bullet}}{\omega} = \eta * \gamma^{\bullet}$$
$$\Rightarrow \quad G = \eta * \omega$$

Г

L

First Test

HEAD WATERTANK NODE 1 0.00 0.0 ; 10 = 1.905 301 5.08 0.0 ; 310 = 1.905

MAT 1 K 2E6 G 2E3 GAM 10.0

1st Eigen frequency

G-Modulus	Plane	K+G	Plane
	Strain	plane strain	Stress
200 000	70.61	70.45	69.18
2000	8.19	7.08	6.94
20	3.55	0.71	0.69
0.2	4.50	0.07	0.069
Reference	0.36	0.36	0.36

Flaws

82

Г

L

- Locking of incompressible media
 => Three field approximation
- Potential of free surface is missing BOUN 1 TITLE 'Free Surface' BOUN 1 301 10 CY 10.0
 => Frequencies become bounded

84

Г

L

- Stiffness of surface now larger then fluid stiffness
- Rotational deformations have no stiffness
 - => Introduce Penalty function

٦

WINGRAF 3197 31.03.99

Г

L

Flaws

- "spurious modes"
- Mass matrix has still modes which are suppressed in the stiffness matrix
 Projection by Kim/Yeng
 - => Projection by Kim/Yong

٦

Eigenfrequencies

G-Modulus	f1	f2	f3
200 000	70.455	101.210	
2000	7.101	10.246	13.254
20	0.951	1.846	2.730
0.2	0.371	0.582	0.730
0.02	0.361	0.557	0.689
Reference	0.357	0.555	

87

Г

L

Computational Mechanics

Spannungsmittelwert (1.Invariante) im Knoten, Lastfall 85, von -0.0080 bis 0.0081 Stufen 4.0254e-04 MPa

Katz_03 /

Three Gorges Dam China

91

L

Computational Mechanics

Problem of Water in trough

- Ship elevator investigated by Krebs & Kiefer Karlsruhe with SOFiSTiK
- Seismic response of sloshing water in trough
- CFD Model with ca 1 Million cells
- 3D model of water with ca 1000 lagrange elements

92

L

Comparison CFD / FEM

L