Industrial Applications of Computational Mechanics Plates and Shells – Mesh generation – static SSI

Г

Prof. Dr.-Ing. Casimir Katz SOFiSTiK AG

FEM - Reminder

- A mathematical method
- The real (continuous) world is mapped on to a discrete (finite) one.
- We restrict the space of solutions
- We calculate the optimal solution within that space on a global minimum principle

Г

Plates (Slabs and shear walls)

- Classical solution for shear walls (Airy stress function F) $\Delta\Delta$ F = 0
- Classical Plate bending solution (Kirchhoff) $\Delta\Delta w = p$
- FE / Variational approach for shear walls $\Pi = \frac{1}{2} \int \epsilon D \epsilon dV = Minimum$
- FE / Variational approach for bending plates $\Pi = \frac{1}{2} \int \kappa D \kappa dV = Minimum$

Г

Plate elements

- Kirchhoff Theory
 - Introducing equivalent shearing force
 - Shear force is calculated from 3rd derivative Precision of those values are not acceptable
 - Better elements quite complex
 - Hybrid elements mixed functional of strains and stresses
 - = quite good but rather complex
 - = difficult for non linear effects

Г

Equivalent shear force

Г

L

Condition at the corner

Katz_04 / ‹Nr.›

Г

L

Computational Mechanics

μ= 0 / plate without torsion

$$\begin{bmatrix} m_{xx} \\ m_{yy} \\ m_{xy} \end{bmatrix} = \frac{E \cdot t^3}{12(1-\mu^2)} \begin{bmatrix} 1 & \mu & 0 \\ \mu & 1 & 0 \\ 0 & 0 & 1-\mu \end{bmatrix} \cdot \begin{bmatrix} k_{xx} \\ k_{yy} \\ k_{xy} \end{bmatrix}$$

For simpler analysis set μ = 0
 => Minimum transverse reinforcement of a plate 20 % (DIN)

- Torsion-free-Plate sets the 3rd diagonal term = 0
 - More reinforcement in the mid span
 - Less reinforcements in the corners
- General Rule
 - It is difficult to save reinforcements by a nonlinear analysis

Г

Kinematic of plates without shear deformations

• Problem of skewed supported edges

Г

Plate elements

- Mindlin/Reissner Theory
 - Introducing shear deformations
 - Two coupled differential equations
 - Shear force is calculated from the 1st derivative !
 - Elements very simple
 - Problem for thin plates (shear locking)
 - Problem with spurious modes (under integrated Elements)

Г

Mindlin/Reissner Theory

$$\Theta_{x} = \varphi_{x} - \frac{\partial w}{\partial x}; \quad \Theta_{y} = \varphi_{y} - \frac{\partial w}{\partial y}$$
$$k_{x} = \frac{\partial \varphi_{x}}{\partial x}; \quad k_{y} = \frac{\partial \varphi_{y}}{\partial y}; \quad k_{xy} = \frac{\partial \varphi_{x}}{\partial y} + \frac{\partial \varphi_{y}}{\partial x}$$

$$\begin{bmatrix} m_{xx} \\ m_{yy} \\ m_{xy} \end{bmatrix} = \frac{E \cdot t^{3}}{12(1-\mu^{2})} \begin{bmatrix} 1 & \mu & 0 \\ \mu & 1 & 0 \\ 0 & 0 & 1-\mu \end{bmatrix} \cdot \begin{bmatrix} k_{xx} \\ k_{yy} \\ k_{xy} \end{bmatrix}$$

$$\begin{bmatrix} q_x \\ q_y \end{bmatrix} = \frac{G \cdot t}{1.2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \Theta_x \\ \Theta_y \end{bmatrix}$$

٦

Г

Kinematic of plates including shear deformations

• build in

Г

L

$$w = 0$$
; $\phi_n = 0$; $\phi_t = 0$

hard support

$$w=0 \hspace{0.2cm} ; \hspace{0.2cm} \phi_t=0$$

• soft support

W = 0

• sliding edge

 $w=0 \hspace{0.2cm} ; \hspace{0.2cm} \phi_n=0$

Circular plates

• Be careful when modelling support AND geometry !

Smallest errors in the geometry may create a "build in" effect

Г

Boundary Layer

• Boundary region is critical for shear force

Edge either build in | hard support | soft support

٦

Г

Shear force in longitudinal direction

Soft support

Build in

Hard support

Katz_04 / ‹Nr.›

Г

Computational Mechanics

Shear force in transverse direction

$\frac{18.1}{17.2}$	16.3	 15.4 15.4 14.5	14.5 13.6	13.6 12.7	12.7 11.8	11.8 10.9	10.9	9.9	8.2	7.3	7.3 6.4	5.4	4.5	3.6	2.7	1.8	0.9	0.0	-0.9	-1.8	-2.7	-2.7	-3.6	-5.4	-5.4	-7.3	-7.3	-8.2	10.0	-10.9	-10.9	-11.8	-12.7 -13.6	-13.6	-14.5	-15.4	-17.2	-18.1

Soft support

Hard support

Г

L

Computational Mechanics

SOFiSTiK-elements

- Based on Hughes / Bathe-Dvorkin (discrete Kirchhoff-Modes enforce dM/dx=V)
- Quadrilateral enhanced with non conforming modes
- Properties:
 - Shear deformations without "locking"
 - Linear moment distribution
 - Constant shear force

Г

No Problem:

- Locking
- spurious modes
- Thick Plates
- Shear forces
- Skewed meshes

Problems:

- Loading
- Support Condition
- Design

٦

Г

Г

L

• There are no point loads !

Г

Nodal Loads

- Nodal loads are no point loads
- There are no nodal moments for the Mindlin-Plate

Г

L

Г

Computational Mechanics

Non conservative loading (water ponds)

Г

L

Computational Mechanics

Verification Example

Circular plate with point load

w =	$=r^2\cdot\ln(r)$	r)
Ma	oment	$m = \ln(r)$
Sh	ear	$v = \frac{1}{r}$

Г

Load definitions

Katz_04 / ‹Nr.›

Г

L

Computational Mechanics

Results for the centre

- Point load
 - Deformations are finite for Kirchhoff
 but infinite for Mindlin/Reissner
 - Moments singular of logarithmic order
 - Shear is singular of order 1/r
- Area loading
 - Deformation always finite
 - Moments always finite !
 - Shear is 0.0 at center !

Г

Sign of the shear in a plate $v_r > 0$

Г

L

Sign of the shear

• Resultant shear stress is always positive

$$\sigma_v = \sqrt{\sigma_x^2 + 3\tau^2}$$

• To allow superposition of results we have to work on the components with the correct sign

Г

Deflections at the centre

	Point Loa	d	Area loading					
h/t	Theoret.	FE	Theoret.	FE				
0.00	3.318							
0.44		3.298	3.256	3.281				
0.88		3.307	3.248	3.275				
1.76		3.307	3.222	3.226				

h = mesh size

t = element thickness

Shear at centre

	Point Loa	d	Area loading					
h/t	Theoret.	FE	Theoret.	FE				
0.00	∞		0.0					
0.44	289.37	247.2	72.34	74.5				
0.88	144.69	120.9	36.17	36.2				
1.76	72.34	57.7	18.09	18.0				

(Element has constant shear)

Moment at centre

	Point Loa	d	Area loading					
h/t	Theoret.	FE	Theoret.	FE				
0.00	∞							
0.44		56.7	44.40	43.3				
0.88		49.7	37.78	36.7				
1.76		43.4	31.15	30.6				

Moment for design

Integral of theoretical forces along the element / length compared to values in

centre of element

Point Load Area Loading h/t Theoret. FE Theoret. FE 0.00 ∞ 0.44 43.17 43.1 42.08 39.2 0.88 36.55 35.33 32.9 36.6 1.76 29.93 30.5 28.61 26.6

Recommendations

- A reasonable mesh size is not smaller than the thickness of the plate,
- but we need at least 3 to 5 elements for every span.
- Point loads on meshes finer than that limit have to be avoided.
- Distributed loadings will not cope with the full value of the moments if only one single element is loaded.
- So there is a best fit of the loadings for any given mesh size !
- Design should be based on integral values (centre)

Г

Supports

Г

- Similar to the load problem
- Point Support, Build in effects
- Elastic Bedding (Winkler Assumption)
 - Problematic, if other supports are rigid
 - Unwanted build in effects are possible
- Kinematic Constrained Support
 - Simple, not so easy for automatic mesh generation
 - EST (equivalent stresses) as a general method

Point Support

٦

Г

Elastic support (Winkler)

Г

L

Elastic support (Winkler)

Г

Kinematic Constraint

Г
Variations of Support

٦

Katz_04 / ‹Nr.›

Г

L

Slab-Designer Support

- Select mesh size based on dimension of column Use 4 elements to model the column region
- Point Support with optional elastic rotational support (springs)
- Enhance the central thickness for the design (haunch 1:3)

Katz 04 / ‹Nr.›

Г

EST – Equivalent Stress Transformation (Werkle, 2002, 2004)

- Original name was equivalent stiffness transformation
- If the support is done by a beam section, the stresses in the beam caused by normal force and moments are always linear
- If we integrate this stress with the shape functions we get nodal forces for the finite element mesh: $F_{pl} = T^T \cdot F_b$
- We may us this distribution equation as a kinematic constraint

$$u_b = u_{pl} \cdot T$$

Works for any mesh topology and any shape of the section!

Г

Example from Werkle

Г

L

A more general example

Katz_04 / ‹Nr.›

Resolving equations

• The T-Matrix $u_{12k} =$

$$u_{12b} = 0.607 \cdot u_{12} + 0.089 \cdot (u_{18} + u_{45} + u_{46} + u_{74}) + 0.013 \cdot (u_{19} + u_{73}) + 0.0053 \cdot (u_{17} + u_{75})$$

• If nodes 12b and 12 are identical:

$$0.393 \cdot u_{12b} = 0.089 \cdot (u_{18} + u_{45} + u_{46} + u_{74}) + 0.013 \cdot (u_{19} + u_{73}) + 0.0053 \cdot (u_{17} + u_{75})$$

$$u_{12} = 0.227 \cdot \left(u_{18} + u_{45} + u_{46} + u_{74}\right) + 0.0326 \cdot \left(u_{19} + u_{73}\right) + 0.0136 \cdot \left(u_{17} + u_{75}\right)$$

Г

L

Computational Mechanics

Slab Example with different Meshing

Katz_04 / ‹Nr.›

Slab Example: Moment m-xx

In the second se

Katz_04 / ‹Nr.›

Г

Remarks to the EST

- The EST technique is a general tool to solve nearly all connecting problems.
- It may be used to combine shear walls with beam elements
- It could be used to describe a shear distribution as well
- The shape of the column has always an effect, but if the size of the column is smaller than the mesh size, the missing resolution will generate rather similar results.

Г

General Recommendations

- Use EST technique whenever possible.
- Columns with a width less than the plate thickness may be modelled as point loads, as long as the element mesh size is selected sufficiently large.
- Elastic supports will smooth singularities introduced by rigid supports (especially useful for walls)
- Extreme care is required if elastic and rigid supports are used within the same system!

Г

Г

L

Г

Katz_04 / ‹Nr.›

Possible Models

- Shell elements (SH)
- Shell elements and eccentric beam (SEB)
- Plate and eccentric Beam (PEB)
- Plate and assigned T-Beam (PB)

Г

Assigned T-Beam

- Bending Stiffness of beam adjusted on total system
 I_{yy}(beam) = I_{yy} (P+B) A_{yy} (plate)
- Transformation of forces during post processing
 (△N is calculated based on the stiffness difference)
 F (P+B) := F (beam) + F(plate)
 F (plate) := F (plate) △N(P+B)

Г

High Web

Г

L

	Ref.	SH	SEB	PEB	PB
Deflection	0.841	0.899	0.860	0.588	0.843
m – Plate	3.23	3.06	2.98	1.94	2.88
n – Plate	-181.6	-170.3	-179.3	(-201)	(-162)
M – Beam	30.99	(44.50)	32.00	22.10	122.11
N – Beam	+181.6	+170.3	+179.3	201.5	(162)
As – Beam	4.69	6.56	6.28	7.05	4.58
As – Plate	0	0	0	0.43	0.59
As – Links	0.65	2.04	0.84	0.85	0.63

Г

Г

L

	Ref.	SH	SEB	PEB	PB
Deflection	11.989	11.426	12.145	11.122	12.103
m – Plate	46.04	43.70	46.73	42.86	46.38
n – Plate	-360.3	-353.8	-356.9	(379.4)	(363)
M – Beam	6.91	(21.98)	7.14	6.57	79.69
N – Beam	+360.3	+353.8	+356.9	+379.4	(363)
As – Beam	13.17	12.44	12.50	13.28	8.30
As – Plate	0	3.53	4.14	9.46	9.58
As – Links	1.90	4.16	8.38	8.78	1.17

Rearrangement of the plate reinforcements

Г

L

٦

A small benchmark

Г

L

Hogging transverse moments of plate / Moments of beam:

Katz_04 / ‹Nr.›

Г

L

Moments m-xx of the plate

Katz_04 / ‹Nr.›

Г

Modelling in 3D with shells and beams

Г

Katz_04 / ‹Nr.›

Computational Mechanics

Modelling as 3D Continua

Katz_04 / ‹Nr.›

Г

Influence of horizontal support a) N / M for free supports

٦

Katz_04 / ‹Nr.›

Г

Influence of horizontal support b) N / M for fixed supports

Computational Mechanics

Г

Recommendations

- It is possible to deal with the T-Beam-Problem with a simple plate bending program
- If the height of the beam is small compared to the plate, results may differ to what you expect for classical analysis methods.
- Special considerations are required for the design process

Г

Shell elements

- Combination planar plate and membrane elements
 - 6th "Drilling Degree of Freedom"
 - Twist of elements
- Degenerated 3D-Continua elements
- Special curved shell elements
- Rotational symmetric elements
- textile membranes, Form finding

Г

Example cantilever with single moment

- Vertical displacements are precise within 2.4 o/oo
- Local rotation is higher by a factor of 3.7

Г

Channel Shape Cantilever with self weight

Modelling	u-z [mm]	u-yy[mrad]	u-xx[mrad]
Classical beam theory	74.483	-11.814	-62.025
Beam theory & warping torsion	74.071	-11.814	-54.296
FE-Model conform	59.711	-9.629*	-43.935
FE-Model with assumed strains	74.119	-11.835*	-63.151
FE-Model with drilling degrees	74.825	-11.877	-63.796

The FE-System is too soft!

٦

Г

Drilling Stiffness

• Factor 2, or do not forget the edge terms!

$$beam \quad M_{t} = G \cdot I_{t} \cdot \theta' = \frac{G \cdot b \cdot t^{3}}{3} \cdot \theta' \quad ; \quad \tau_{\max} = \frac{M_{t}}{I_{t}} \cdot t = \frac{3M_{t}}{b \cdot t^{2}}$$

$$plate \quad m_{t} = K \cdot (1-\mu) \cdot \frac{\partial^{2}w}{\partial x \partial y} = \frac{E \cdot t^{3}}{12(1+\mu)} \cdot \frac{\partial^{2}w}{\partial x \partial y} = \frac{G \cdot t^{3}}{12} \cdot \left[\frac{\partial \phi_{x}}{\partial y} - \frac{\partial \phi_{y}}{\partial x}\right] = \frac{G \cdot t^{3}}{6} \cdot \theta'$$

$$M_{t} = \int m_{t} ds + \frac{b}{2} \cdot \left[m_{t}(0) + m_{t}(b)\right] = 2b \cdot m_{t}$$

Г

L

Not everything looking like torsion is torsion

• Analytic solution: $w = a \cdot x \cdot y => m_t = a \cdot K \cdot (1 - \mu)$

Г

Pure Torsion for a cantilever

- Rotation beam system:
- Rotation FE-System:
- Beam system with warping torsion
- FE system with free warping support

72.4 mrad 37.2 mrad 33.6 mrad 75.7 mrad

Г

Primary & Secondary Torsional Moment

Katz_04 / ‹Nr.›

Г

Build-In Support conditions for FE

Г

Loaddefinition

- Distributed Drilling moments (Saint-Venant)
- Opposite directed warping shear in the flanges

Г

Stresses within section ($m_t \& \tau_s$)

Katz_04 / ‹Nr.›

Г

Longitudinal stress and plate shear

Katz_04 / ‹Nr.›

Computational Mechanics

Shear in 3D Volume model (τ_{xy} / τ_{xz})

٦

Katz_04 / ‹Nr.›

Г

L
Twist = out of plane effects

Г

L

FEM-Meshes for a cooling tower

Г

L

Computational Mechanics

Deformations

٦

Katz_04 / ‹Nr.›

Г

L

And the reason is:

Katz_04 / ‹Nr.›

Computational Mechanics

L

Triangular mesh is always possible

Delauney triangularisation / Voronoi Diagrams

Г

L

Mesh Quality

• Quadrilateral is better than two triangles

 $w = a \cdot x \cdot y$

• Even if distorted

Г

Mesh quality

- Ratio of sides
 - Optimal 1:1
 - Tolerable 1:5, Special cases (1:100)
- Interior Angle
 - Triangle 60 degree
 - Quadrilateral 90 degree
 - Error increases for smaller angles
 - Angles > 180 degrees are impossible

Г

L

QUAD Meshes are better

- But not always possible ?
- Every Triangular mesh may be converted to a QUAD mesh:

Г

Every QUAD mesh has an even number of bounding edges

Katz_04 / ‹Nr.›

Г

L

If the number of edges is even, a QUAD mesh is nearly always possible

For triangular regions, every stepping has to be less than the sum of the other two

Г

Coons-Patches 2D and 3D

- Idea: Interpolation between opposite edges
- Quadrilateral topology: Two interpolations, thus a bilinear interpolation is subtracted:

Г

Mesh division of a sphere ?

Katz_04 / ‹Nr.›

Г

L

Computational Mechanics

Stresses for Coons Patch / Exact Geometry

Katz_04 / ‹Nr.›

Г

L

Intersection of shells

NURBS-modelling with Rhinoceros®

Г

Mapped mesh with a hole

Katz_04 / ‹Nr.›

Г

Example

Г

NURBS-modelling with Rhinoceros[®]

Katz_04 / ‹Nr.›

Problems

Г

- The description of the surface allows meshes with singular geometry (spheres)
- For the FE-Mesh this is a very bad idea!
 A mapping of the Jacobian is then required.
- Be careful about approximating geometries!
- Water-Tightness of meshes (purify the CAD meshes)
- Ignore tiny details of a CAD structure irrelevant for the analysis.

3D Extrusions-Mesh Generator

Katz_04 / ‹Nr.›

Г

3D extrusion / sweep along circle

Г

L

Computational Mechanics

The 2D Start Faces

Katz_04 / ‹Nr.›

Г

L

Computational Mechanics

3D Tetraeder Mesh Generation

Г

Possibilities for 3D FEM

- Hexahedral Elements by Extrusion etc.
- Tetrahedral Mesh
 - Constant strain elements not acceptable
 - High order Elements need high order interfaces
 - Virtual polyhedral elements •
- Finite Cell Approach

Г

The SOFiSTiK System

Katz 04 / ‹Nr.›

Г

L

Geometric / Structural Elements

- Points (Supports, column heads, Monitorpoints)
- Lines and curves
 - Lines, Arcs, Klothoids, Splines, Nurbs
 - Assigned properties: Sections, elastic or rigid supports, Interface-conditions
- Surfaces
 - Planar, Rotation, Extrusion / Sweep / Lofts Coons-Patches, B-Splines, Nurbs
- Automatic Intersections of all elements
 - = geometric definition independent to inherited structural elements

Г

Effective Communication of data

- CDBASE Database
 - clear Interface
 - Data structures
 - Performance
 - locking
 - merging
 - systemindependent

Г

Database

Г

L

- Contains all data which might become important
- Example: Sections and Materials
 - Constants not directly bound to elements
 - Element has a pointer to the section / material
 - Section / material have tables with other data
- Material is not just a name or a constant
 - Elasticity constants
 - Strength
 - Weight / weight class / prices
 - Thermal properties etc.

Soil-Structure-Interaction

- Method 0
 - Foundations are rigid for the analysis of the structure
 - Loadings on foundations are compared against admissible stresses
- Method 1
 - Foundations are rigid for the analysis of the structure
 - Loadings on foundations are compared against a soil rupture analysis and a settlement analysis

Г

Soil-Structure-Interaction

- Method 2
 - Foundations are rigid for the analysis of the structure
 - Loadings on foundations are compared against a soil rupture analysis and a settlement analysis
 - Settlements are applied as inforced deformations on the structure

Г

Soil-Structure-Interaction

- Method 3 = real Interaction
 - Winkler Assumption (3a) (Bettungsmodulverfahren)
 - Elastic Half-Space (3b) (Steifemodulverfahren)
 - Soil as a non linear Continua (3c)
- Extend of Model
 - Only the foundation itself (e.g. plate)
 - Total structure
 - All construction stages

Г

Winkler Assumption

- Bedding modulus C [kN/m³]
 - = soil pressure / settlement
- Neglecting shear stresses
- Depending on the load pattern / load level
- Depending on the size of the structure
- Depending on the material, but NOT a material constant
- Constant loading creates constant settlements

Г

Г

L

For a circular disc we get

For a circular hole in an infinite disc holds

$$C_n = C_t = \frac{E}{R} \frac{1}{(1+\mu)}$$
 (plane strain and stress).

Г

L

Computational Mechanics

In three dimensions we get for a sphere

and for a spherical cavity (internal pressure)

$$C_n = \frac{E}{R} \frac{2}{(1+\mu)}$$

Г

L

If the loaded area is restricted, better values can be calculated using a uniform pressure or displacement only for that area. This is especially important if we have a semi-infinite body. In this case it is possible to use the displacements under a rigid circular die for example (Timoshenko[1]) to get

$$C_n = \frac{E}{R} \frac{2}{(1-\mu)(1+\mu)\pi}$$

where R is the radius of an approximate circular area which equals the loaded area.

Г

Stiffness Approach

- All methods where the shape of the settlements is accounted for
- Analytic Description of Half Space
 - Stress distribution based on elastic model
 - Deformations are calculated based on non linear properties of soil
 - Inversion of the flexibility matrix
- Modelling Half Space with Finite Elements
- Modelling Half Space with Boundary Elements
- Modelling Half Space with connected springs

Г

Example

Г

Katz_04 / ‹Nr.›
Winkler Assumption

Katz_04 / ‹Nr.›

Computational Mechanics

L

Stiffness Approach

Г

L

Computational Mechanics

Winkler Assumption - pressure

Katz_04 / ‹Nr.›

Г

Stiffness Approach

Katz_04 / ‹Nr.›

Г

L

Comparison

- The Winkler assumption yields more negative moments in the foundation plate
- The stiffness approach yields more positive moments in the foundation plate
- Effort for stiffness based methods considerably higher
- Simple enhancement for the Winkler assumption with increased coefficients at the edges

Г

L

Combined Frame / Slab / Soil

Katz_04 / ‹Nr.›

Г

Example of combined slab/pile foundation

Mesh defines only the surface of the soil and the foundation plate

Settlements on Surface

 A small gap between the soil mesh and the slab mesh shows differences in settlements

Г

L

Stresses in different depths

Г

L

And a more detailed view on stresses

Computational Mechanics

Katz_04 / ‹Nr.›

Г

L

Г