

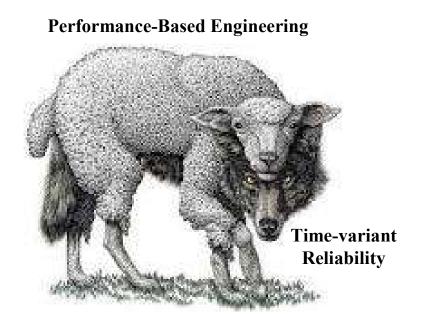
UNIVERSITY OF SÃO PAULO SÃO CARLOS SCHOOL OF ENGINEERING DEPARTMENT OF STRUCTURAL ENGINEERING

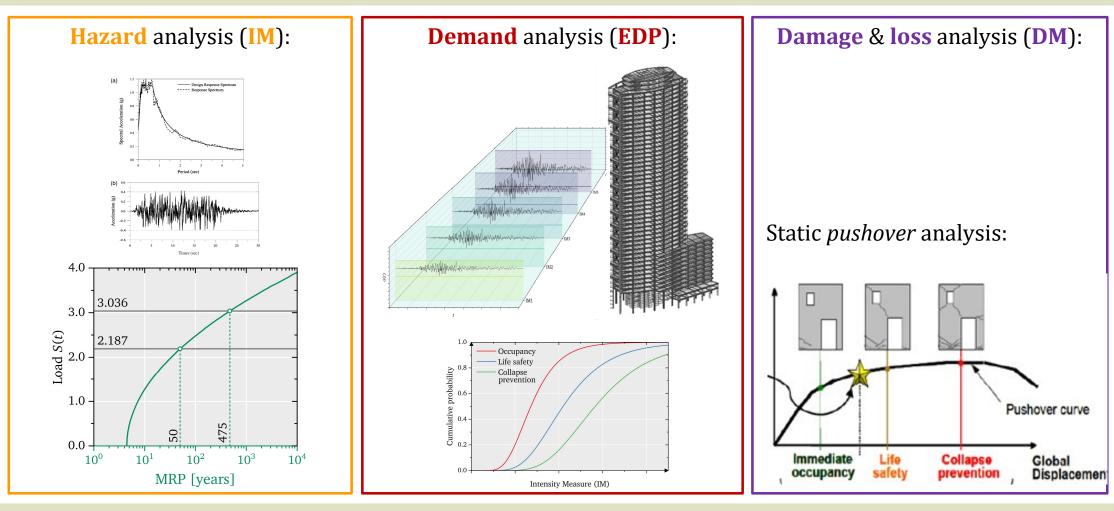
THE ERGODICITY ASSUMPTION IN PERFORMANCE-BASED ENGINEERING

Prof. André Teófilo Beck, Ph.D. Dr. Rubia M. Bose, M. Isabela D. Rodrigues

Motivation

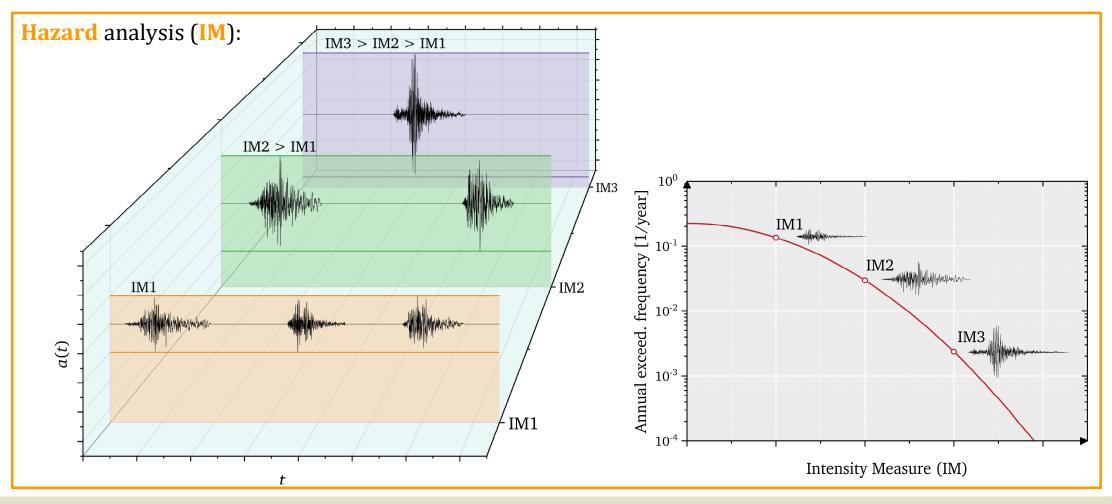
Study of Time-variant Reliability.

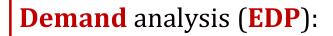

Motivation


Time-variant Reliability is **dead**!

Motivation

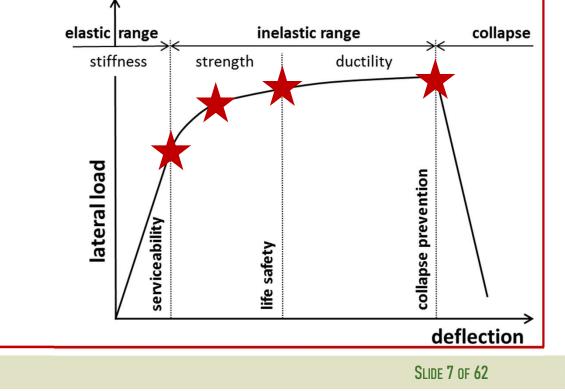
Time-variant Reliability analysis is **dead**!

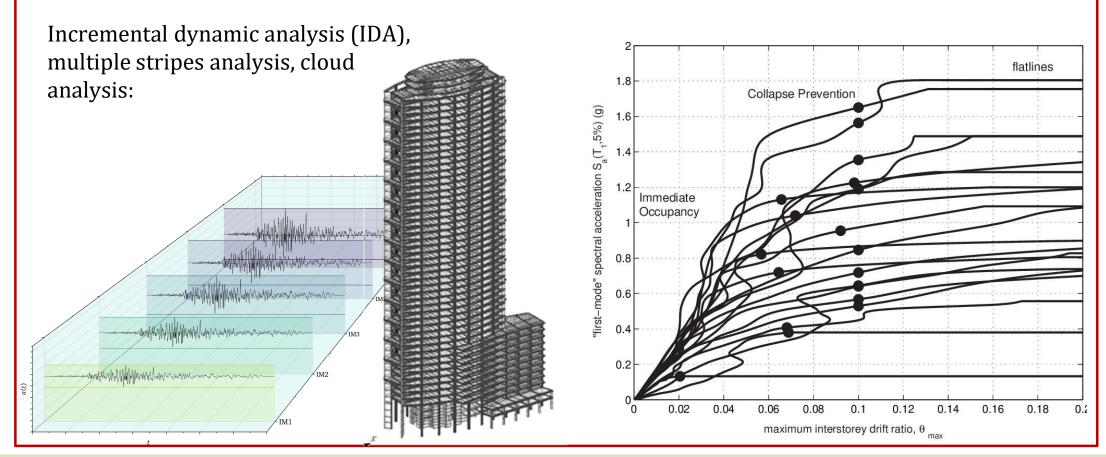

It has been updated to: *Performance Based Engineering*.



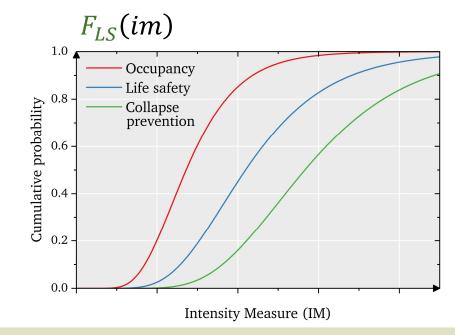
BECK AT: THE ERGODICITY ASSUMPTION IN PERFORMANCE-BASED ENGINEERING

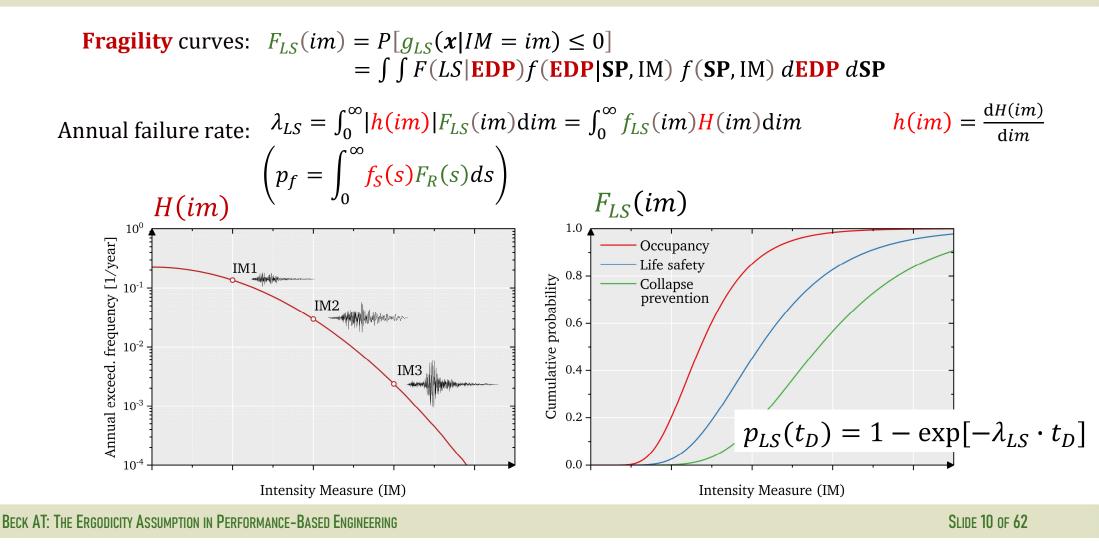
SLIDE 5 OF 62




Limit states:

LS(EDP) ={Operational, damage control, life safety, collapse prevention}


EDP = Engineering demand parameter Displacements; acccelerations; interstory drift ratios, etc.



Demand analysis (EDP):

Fragility curves: $F_{LS}(im) = P[g_{LS}(\mathbf{x}|IM = im) \le 0]$ = $\int \int F(LS|\mathbf{EDP})f(\mathbf{EDP}|\mathbf{SP}, \mathbf{IM}) f(\mathbf{SP}, \mathbf{IM}) d\mathbf{EDP} d\mathbf{SP}$

Time-variant Reliability

$$p_f(\boldsymbol{r}, t_D) = p_{f0} + (1 - p_{f0}) \left(1 - exp \left[-\int_0^{t_D} \eta(\boldsymbol{r}, t) dt \right] \right)$$
$$\geq 1 - exp \left[-\int_0^{t_D} \eta(\boldsymbol{r}, t) dt \right]$$

- $\eta(\mathbf{r}, t)$ Rate of a non-homogeneous Poisson process;
- *r* Vector of system parameters;
- $E_{R}[.]$ Expectation over R.

$$p_f(t_D) = E_{\mathbf{R}} \left[p_f(\mathbf{r}, t_D) \right] = \int_{\mathbf{R}} \left(1 - exp \left[-\int_0^{t_D} \eta(\mathbf{r}, t) dt \right] \right) f_{\mathbf{R}}(\mathbf{r}) d\mathbf{r}$$

Time-variant Reliability in PBE

$$p_f(\boldsymbol{r}, t_D) = p_{f0} + \left(1 - p_{f0}\right) \left(1 - exp\left[-\int_0^{t_D} \eta(\boldsymbol{r}, t) dt\right]\right)$$
$$\geq 1 - exp\left[-\int_0^{t_D} \eta(\boldsymbol{r}, t) dt\right]$$

- $\eta(\mathbf{r}, t)$ Rate of a non-homogeneous Poisson process;
- *r* Vector of system parameters;
- $E_R[.]$ Expectation over **R**.

$$p_f(t_D) = \frac{E_R}{P_f(r, t_D)} = \int_R \left(1 - exp \left[-\int_0^{t_D} \eta(r, t) dt \right] \right) f_R(r) dr$$

$$p_f(t_D) = \mathbf{E}_{\mathbf{R}} \left[1 - \exp\left(-\int_0^{t_D} E_{\mathbf{RTR}}[\eta(\mathbf{r}, im, t)] dt\right) \right]$$

E_{RTR}[.] Expectation over variables with Record-to-Record variability: intensity, time-history, spectral shape;

Ergodic variables: value changes from one load application to the next! Non-ergodic variables: value is the same for all load applications!

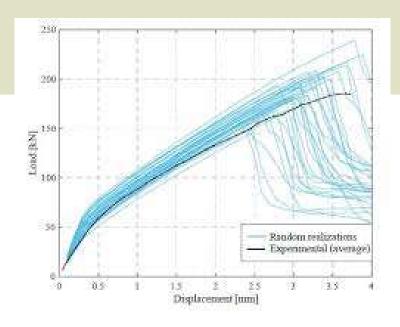
$$p_f(t_D) = \int_{\mathbf{R}} \left[1 - exp\left(-\int_0^{t_D} \int_{IM} \lambda(\mathbf{r}, im, t)h(im) \mathrm{d}im \, \mathrm{d}t \right) \right] f_{\mathbf{R}}(\mathbf{r}) \mathrm{d}\mathbf{r}$$

BECK AT: THE ERGODICITY ASSUMPTION IN PERFORMANCE-BASED ENGINEERING

SLIDE 12 OF 62

Time-variant Reliability in PBE

Integration over *im* leads to the annual failure rate:


$$\lambda(\mathbf{r}, t) = \int_{IM} \lambda(\mathbf{r}, im, t) h(im) dim$$
$$p_f(t_D) = \int_{\mathbf{R}} \left[1 - exp\left(-\int_0^{t_D} \lambda(\mathbf{r}, t) dt \right) \right] f_{\mathbf{R}}(\mathbf{r}) d\mathbf{r}$$

Each sample of random system parameters should be exposed to the whole suit of ground motions: $N \times N_m$ non-linear structural dynamics time-history computations;

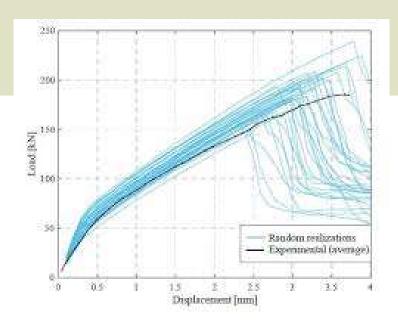
N is the number of ground motion records; N_m is the number of system parameter samples.

Instead:

$$\lambda_E(t) = \int_{IM} \int_{\mathbf{R}} \lambda(\mathbf{r}, im, t) f_{\mathbf{R}}(\mathbf{r}) d\mathbf{r} h(im) dim$$

Time-variant Reliability in PBE

Integration over *im* leads to the annual failure rate:


$$\lambda(\mathbf{r}, t) = \int_{IM} \lambda(\mathbf{r}, im, t) h(im) dim$$
$$p_f(t_D) = \int_{\mathbf{R}} \left[1 - exp\left(-\int_0^{t_D} \lambda(\mathbf{r}, t) dt \right) \right] f_{\mathbf{R}}(\mathbf{r}) d\mathbf{r}$$

Each sample of random system parameters should be exposed to the whole suit of ground motions: $N \times N_m$ non-linear structural dynamics time-history computations;

N is the number of ground motion records; N_m is the number of system parameter samples.

Instead:

$$\lambda_E(t) = \int_{IM} \int_{\mathbf{R}} \lambda(\mathbf{r}, im, t) f_{\mathbf{R}}(\mathbf{r}) d\mathbf{r} h(im) dim$$

Offends the Poisson assumption of independent crossings!

Der Kiureghian, 2005: Non-ergodicity and PEER's framework formula, Earthq. Eng. Struct. Dyn. 34. **Jalayer & Ebrahimian, 2020:** Seismic reliability assessment and the nonergodicity in the modelling parameter uncertainties," *Earthq. Eng. Struct. Dyn.* 49.

BECK AT: THE ERGODICITY ASSUMPTION IN PERFORMANCE-BASED ENGINEERING

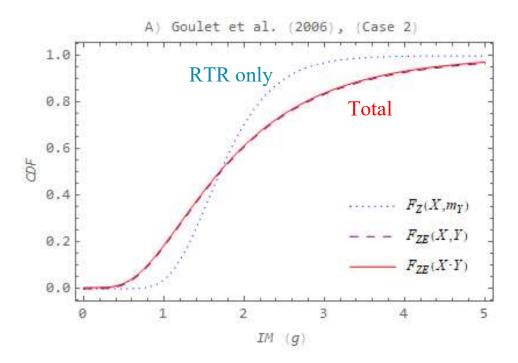
Fragility function as a product of lognormals

$$\lambda_{LS} = \int_0^\infty F_Z(IM_C|im)h(im)dim$$

 $Z = g(X, Y) = X \cdot Y$

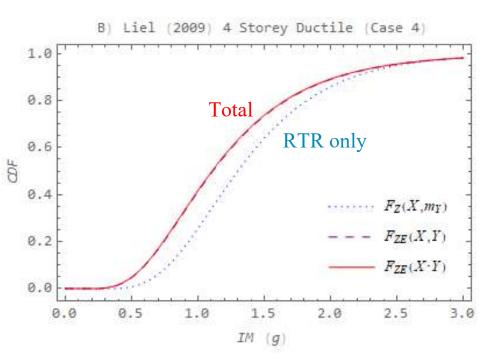
Beck et al. 2022: On the ergodicity assumption in Performance-Based engineering, Structural Safety 97.

X effect of all ergodic variables, but the hazard intensity
(RTR variability)Y is the effect of random system parameters: $Y = w(\mathbf{R})$.


 $E[\ln(Z)] = E[\ln(X)] + E[\ln(Y)] = \widehat{m}_X + \widehat{m}_Y$

 $Var[\ln(Z)] = Var[\ln(X)] + Var[\ln(Y)] = \sigma_{lnX}^2 + \sigma_{lnY}^2$

F_Z(IM_C|im)


Intensity Measure (IM)

Realistic fragility curves

4-story frame from:

Goulet et al. 2006: Evaluation of the seismic performance of a code-conforming reinforced-concrete frame building - Part I: Ground motion selection and structural collapse simulation.

4-story frame from:

Liel et al. 2009: Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings, Structural Safety 31.

Evaluation of the "ensemble crossing rate" error:

$$Z = g(X,Y) = X \cdot Y \qquad x = g^{-1}(z,y) = z/y$$

$$\partial g^{-1}/\partial z = 1/y$$

$$F_Z(z) = \int_0^\infty \int_0^{g^{-1}} f_{XY}(x,y) dx dy = \int_0^\infty \int_0^z \frac{1}{y} f_{XY}\left(\frac{z}{y},y\right) dz dy$$

$$F_Z(z) = \int_0^\infty \int_0^z \frac{1}{y} f_X\left(\frac{z}{y}\right) f_Y(y) dz dy$$

Beck & Melchers, 2004: On the ensemble crossing rate approach to time variant reliability analysis of uncertain structures, *Probabilistic Eng. Mech.* 19.
Beck & Melchers, 2005: Barrier failure dominance in time variant reliability analysis, Prob. Eng. Mech. 20.
Beck, 2008: The random barrier-crossing problem, Probabilistic Eng. Mech., vol. 23

Evaluation of the "ensemble crossing rate" error:

dy

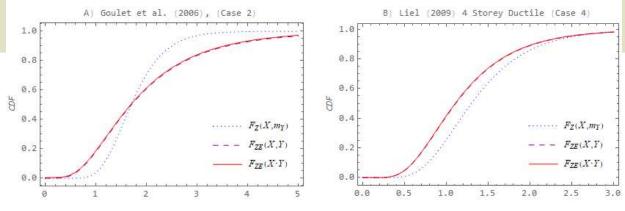
$$Z = g(X,Y) = X \cdot Y \qquad x = g^{-1}(z,y) = z/y \\ \partial g^{-1}/\partial z = 1/y$$

$$F_{Z}(z) = \int_{0}^{\infty} \int_{0}^{g^{-1}} f_{XY}(x,y) dx dy = \int_{0}^{\infty} \int_{0}^{z} \frac{1}{y} f_{XY}\left(\frac{z}{y},y\right) dz$$

$$F_{Z}(z) = \int_{0}^{\infty} \int_{0}^{z} \frac{1}{y} f_{X}\left(\frac{z}{y}\right) f_{Y}(y) dz dy$$

$$\int_{0}^{z} \frac{1}{y} f_{X}\left(\frac{z}{y}\right) f_{Y}(y) dz dy$$

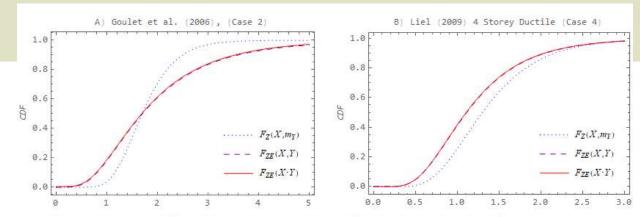
BECK AT: THE ERGODICITY ASSUMPTION IN PERFORMANCE-BASED ENGINEERING


Beck & Melchers, 2004: On the ensemble crossing rate approach to time variant reliability analysis of uncertain structures, *Probabilistic Eng. Mech.* 19.
Beck & Melchers, 2005: Barrier failure dominance in time variant reliability analysis, Prob. Eng. Mech. 20.
Beck, 2008: The random barrier-crossing problem, Probabilistic Eng. Mech., vol. 23

$$Z(y) = X \cdot y$$
 Record-to-Record variability only!

$$\lambda_{LS}(y) = \int_0^\infty F_X(IM_C|im, y)h(im)dim$$
$$p_f(t_D) = \int_0^\infty \left[1 - exp\left(-\int_0^{t_D} \lambda_{LS}(y)dt\right)\right] f_y(y)dy$$

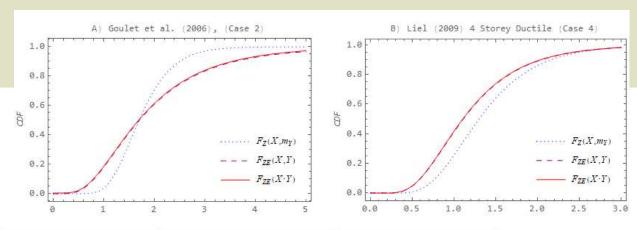
SLIDE 18 OF 62


Realistic fragility curves:

Ref.	Case	Stories	<i>T</i> ₁ (s)	Margin w.r.t. $S_a(T_1)_{2/50}$	RTR (X)		Total (Z)		System only (Y)	
					\widehat{m}	σ_{ln}	\widehat{m}	σ_{ln}	\widehat{m}	σ_{ln}
	1		1.00	2.11	1.7	0.30	1.7	0.58	1	0.5
[8]	2	4	1.00	2.61	2.1	0.29	2.1	0.578	1	0.5
	3		1.00	3.48	2.8	0.34	2.8	0.605	1	0.5
	4	4	1.12	1.52	1.3	0.40	1.10	0.48	0.85	0.26533
[0]	5	12	2.01	1.23	0.61	0.473	0.56	0.52	0.918	0.21603
[9]	6	12	1.98	0.63	0.3	0.45	0.28	0.50	0.933	0.21795
	7	12	2.26	0.73	0.35	0.415	0.38	0.49	1.086	0.26053

BECK AT: THE ERGODICITY ASSUMPTION IN PERFORMANCE-BASED ENGINEERING

Error evaluation


Annual collapse rates $\lambda_{LS} \times 10^4$:

Frame	a) RTR only	b) Total, (exact)	c) Total, with ER error	Ratio b/a (effect of system uncertainty)	% Error λ100(c-b)/b
1	0.215	2.564	2.569	11.92	0.17
2	0.049	1.087	1.088	22.20	0.11
3	0.013	0.422	0.422	31.55	0.07
4	2.413	6.743	6.746	2.80	0.04
5	6.790	11.086	11.089	1.63	0.03
6	51.168	67.903	67.969	1.33	0.10
7	30.937	30.565	30.592	0.99	0.09

BECK AT: THE ERGODICITY ASSUMPTION IN PERFORMANCE-BASED ENGINEERING

SLIDE 20 OF 62

Error evaluation

Fifty-year $p_f(t_D = 50) \times 10^4$:

Frame	a) RTR only	b) Total, (exact)	c) Total, with ER error	Ratio b/a (effect of system uncertainty)	% Error λ100(c-b)/b
1	0.0011	0.0119	0.0128	11.03	7.62
2	0.0002	0.0052	0.0054	21.05	5.27
3	0.0001	0.0020	0.0021	30.60	3.05
4	0.0120	0.0326	0.0332	2.72	1.79
5	0.0334	0.0532	0.0539	1.59	1.40
6	0.2257	0.2772	0.2881	1.23	3.94
7	0.1433	0.1363	0.1418	0.95	4.07

Concluding remarks

Offending the **Poisson** assumption of independent crossings can be avoided in PBE by a *product-of-lognormals* scheme;

Results are particularly relevant for service limit states in *Performance Based Wind Engineering*, since the average number of load cycles is much larger (to be investigated);

Details in Beck et al. 2022: On the ergodicity assumption in Performance-Based engineering, Structural Safety 97.

Acknowledgements:

Thanks to:

for funding of this research.

The colleagues for your attention.

Contact: Prof. André T. Beck, atbeck@sc.usp.br

BECK AT: THE ERGODICITY ASSUMPTION IN PERFORMANCE-BASED ENGINEERING