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Time-invariant reliability problems

• The failure criterion is cast as a limit state function (performance function) g : ξ ∈ DΞ 7→ R such that:

g (ξ, M(ξ)) ≤ 0 Failure domain Df

g (ξ, M(ξ)) > 0 Safety domain Ds

g (ξ, M(ξ)) = 0 Limit state surface

e.g. g(ξ) = yadm − M(ξ) when Failure ⇔ QoI = M(ξ) ≥ yadm

Failure domain Df

Safe domain Ds

x1

x2

Probability of failure

Pf = P
({

Ξ ∈ Df

})
= P
(

g

(
Ξ, M(Ξ)

)
≤ 0
)

=
∫

Df ={ξ∈DΞ: g(ξ,M(ξ))≤0}
fΞ(ξ) dξ ≤ 0

• Multidimensional integral (d = 10 − 100+), implicit domain of integration

• Failures are (usually) rare events: sought probability in the range 10−2 to 10−8
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Time-dependent computational models

Problem statement

• Consider a computational model of a dynamical system:

DΞ × [0, T ] : (ξ, t) 7→ M(ξ, t)

where Ξ is a random vector of uncertain parameters with given PDF fΞ

• Uncertainties may be in:

- The excitation, denoted by x(ξx, t)

- And/or in the system’s characteristics (ξs):

i.e.:

M(ξ, t) ≡ M(x(ξx, t), ξs)
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Time-variant reliability problems

Limit-state function
g(ξ, t) = yadm − M(x(ξx, t), ξs)

Cumulative probability of failure
• Defined over a time interval [0, T ]

Pf,c = P (∃ t ∈ [0, T ], g(Ξ, t) ≤ 0)

• After time discretization: T = {0, δt, 2δt, . . . , (N − 1)δt}:

Pf,c ≈ P

( ⋃
i=1,...,N

{g(Ξ, ti) ≤ 0}

)
, with ti = (i − 1)δt

= P
([

min
i=1,...,N

g(Ξ, ti)
]

≤ 0
)

= P
(

yadm − max
i=1,...,N

M(Ξ, ti) ≤ 0
)
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Monte Carlo estimation

Procedure

• Sample a large number of scenarios {ξk, k = 1, . . . , nMCS}
• Estimate Pf,c as

P̂f,c =
#
{

yadm − max
i=1,...,N

M(ξk, ti) ≤ 0
}

nMCS

Challenges

• Feasible for extremely fast-to-evaluate models

• ... or using surrogate models
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Outline

Introduction

Surrogate models for time-variant models
mNARX models
Application: quarter-car model

Feature-based NARX models
From mNARX to F -NARX
Application: Bouc-Wen oscillator
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Surrogate modelling for dynamical systems

Setup

• Computational model M with time-dependent exogenous input x and
output y:

x : T → RM , y : T → R
• Discrete time axis T = {0, δt, 2δt, . . . , (N − 1)δt}

Objectives

• Replace the computational model with a fast-to-evaluate surrogate M̂
y(t) = M(x(T ≤ t), ) ≈ M̂(x(T ≤ t))

• Surrogate is built on a limited number of model runs (≈ O(101−2))
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Modelling time-dependence

Nonlinear AutoRegressive with eXogenous inputs (NARX) model

• Autoregressive: uses its own past predictions to predict a future time step

• Exogenous input: excitation that governs the system response

ŷ(t) = M̂(φ(t); c)

• φ(t) ∈ RMφ : gathers the exogenous inputs and system output at different time steps

• c: finite set of NARX coefficients

• M̂ can be Gaussian process, polynomials, neural networks, etc.
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NARX calibration

The lagged vector φ(t) ∈ Rn for each trace reads:

φ(t) = {y(t − δt), y(t − 2δt), . . . , y(t − nyδt),
x1(t), x1(t − δt), . . . , x1(t − nx1 δt),
. . . ,

xM (t), xM (t − δt), . . . , xM (t − nxM δt)}

Calibrating a NARX model can be cast into a regression problem with regression matrix Φ ∈ RÑ×n and
output vector y ∈ RÑ :

Φ =


φ(t0)

φ(t0 + δt)
...

φ(t0 + (N − 1)δt)

 y =


y(t0)

y(t0 + δt)
...

y(t0 + (N − 1)δt)


where t0 = max(ny, nx1 , . . . , nxM )δt
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NARX calibration (cont.)

Regression matrices and output vector from multiple traces can be concatenated:

ΦED =


Φ(1)

...

Φ(NED)

 yED =


y(1)

...

y(NED)


If the number of total time steps becomes too large, subsampling can be used:

ΦS =


ΦED,r1

ΦED,r2

...

ΦED,rk

 yS =


yED,r1

yED,r2
...

yED,rk


where ri ∈ {1, 2, . . . , |yED|} are randomly or deterministically drawn
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NARX calibration (cont.)

Polynomial NARX model

Pα(φ(t)) =
n∏

i=1

φi(t)αi

Computation of the coefficients

• The NARX coefficients c are estimated by minimizing the loss function L:

ĉ = arg min
c

L
(
yED, M̂(ΦED; c)

)
• Ordinary least-squares minimization:

ĉ = arg min
c

∥yED − Pα(ΦED)c∥2

• Sparse solvers like least angle regression (LARS):

ĉ = arg min
c

∥yED − Pα(ΦED)c∥2
2 + γ||c||1
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Challenges with dynamical systems

• Direct mapping from the exogenous input to the system response can be highly nonlinear

• Control systems can cause the response to be non-smooth

• Exogenous input can be high-dimensional (e.g. spatial field at each time instant)

Pang et al. (2017). Shock and Vibration 2017:6573567 Perez-Becker et al. (2021). Energies 14(3):783. Rivard et al. (2022). Earthquake Spectra 38(2):875529302110533

Classical NARX modelling often fails under these conditions
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Multistep surrogate modelling

Rationale

• Using the original input can result in a complex nonlinear mapping

• Constructing the surrogate on a more informative manifold ζ ∈ RN×Mζ can simplify the mapping:

M̂ : ζ(T ≤ t) → y(t) where ζ = F(x)
Our approach

Manifold Nonlinear AutoRegressive with eXogenous input (mNARX) modelling - A multistep surrogate
modelling approach

1) Input preprocessing

• Dealing with high
dimensionality in x

• Upsampling, scaling, etc.

2) Manifold construction

• Incremental process

• Incorporate prior knowledge of
the system

3) Surrogate training

• Built on the manifold

• Use of autoregressive
surrogate

Schär et al. (2024). Emulating the dynamics of complex systems using autoregressive models on manifolds (mNARX), MSSP.
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Input preprocessing (optional)

Goal

Reduce dimensionality of the system excitation x

along non-temporal coordinates:

x̃ = G(x)

where x ∈ RN×M and x̃ ∈ RN×m such that m ≪ M

• Data compression using principal component
analysis, N-dimensional discrete cosine
transform (DCT), etc.

• Original time scale T preserved
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Manifold construction

• The manifold ζ includes a set of features zi called auxiliary
quantities:

ζ = {x, z1, . . . , zn}

• Auxiliary quantities are constructed incrementally as a
function of the information already available:

z1(t) = F1(x(T ≤ t), z1(T < t))
z2(t) = F2(z1(T ≤ t), x(T ≤ t), z2(T < t))

...

zn(t) = Fn(z1(T ≤ t), . . . , zn−1(T ≤ t), x(T ≤ t), zn(T < t))

Example (wind turbine)

• x: Mean wind speed

• z1: Blade pitch

• z2: Rotor speed

• y: Generator power

All details in Schär et al. (2024). Emulating the dynamics of complex systems using autoregressive models on manifolds (mNARX), MSSP.
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Surrogate models for time-variant models
mNARX models
Application: quarter-car model

Feature-based NARX models
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Quarter-car model

Governing equations{
m2 ÿ2(t) = −k2 (y2(t) − y1(t))3 − c (ẏ2(t) − ẏ1(t))
m1 ÿ1(t) = k2 (y2(t) − y1(t))3 + c (ẏ2(t) − ẏ1(t)) + k1 (x(t) − y1(t))

Parameter Unit Value

Spring stiffness k1 N/mm 5,000
Spring stiffness k2 N/mm 1,000
Mass m1 kg 50
Mass m2 kg 10
Damping ratio c Ns/mm 50
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Quarter-car model (cont.)

Random excitation

x(t) = 1
Nω

Nω∑
i=1

Ai sin (2πBit + Ci)

• Nω ∼ U with P(Nω = i)i=1,...,5 = 1
5

• Ai ∼ U(−1, 1)
• Bi ∼ U(−1, 1)
• Ci ∼ U(−π, π)

Time-variant reliability using surrogates JCSS Workshop, December 02, 2024 B. Sudret et al. 16 / 37



Quarter-car model – Experimental designs

Problem setup

• Exogenous input x(t)
• Auxiliary quantity y1(t)
• Quantity of interest y2(t)

Random experimental design

• NED = {10, 50, 100}
• Selected randomly from dataset

Biased experimental design

• NED = {10, 50, 100}
• Sampled uniformly between |x(t)|min and |x(t)|max

Validation dataset

• Nval = 100,000

Random experimental design

Biased experimental design
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Selection of the best mNARX model
Mai, C. V., Polynomial chaos expansions for uncertain dynamical systems - Applications in earthquake engineering

• Select a reference training trace, e.g. the one with the maximal |ymax| over the whole experimental
design

• For each candidate polynomial mNARX model (lags, max. degree, max . interaction, etc.):
1. Compute the best sparse mNARX basis and related coefficients using LARS
2. Recompute the coefficients of the sparse mNARX model using the whole experimental design by OLS
3. Compute the mean forecast error over the whole experimental design:

ε =
1

NED

NED∑
i=1

ε(i) with ε(i) =
1
N

N−1∑
j=0

(
y(i)(jδt) − ŷ(i)(jδt)

)2

Var(y(i)) + γ
,

where γ is a regularization term to avoid division by zero

• Select the mNARX model that minimizes the mean forecast error
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Quarter-car model – mNARX configuration

NARX model for y1(t)
• Exogenous inputs: x(t)
• Exogenous input lags: {0}
• Autoregressive lags: {δt, 2δt}
• Maximum polynomial degree: 1
• Interaction order: 1

NARX model for y2(t)
• Exogenous inputs: x(t), ŷ1(t)
• Exogenous input lags: {0}, {0}
• Autoregressive lags: {δt, 2δt}
• Maximum polynomial degree: 3
• Interaction order: 2

Time-variant reliability using surrogates JCSS Workshop, December 02, 2024 B. Sudret et al. 19 / 37



Quarter-Car model – Predicted traces

Surrogate built from random experimental design and NED = 50

Time-variant reliability using surrogates JCSS Workshop, December 02, 2024 B. Sudret et al. 20 / 37



Quarter-Car model – Validation plots for |ymax|
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Quarter-Car model – Histograms of |ymax|
bi

as
ed

sa
m

pl
in

g
ra

nd
om

sa
m

pl
in

g
NED = 10 NED = 50 NED = 100

Time-variant reliability using surrogates JCSS Workshop, December 02, 2024 B. Sudret et al. 22 / 37



Quarter-Car model – First passage probability
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Challenges with NARX Models

Lag selection

• Difficulty in selecting relevant time lags, especially with high sampling rate or long memory

• Having many lags increases model complexity and computational demands

Discrete-time-centric limitations

• Over-reliance on recent lags at high sampling rates

• Numerical instability due to high correlation between adjacent time steps

• Decimating the data is not always possible

Missed opportunities

• Do not fully utilize the continuous nature of real-world processes

• Fail to exploit temporal smoothness and compressibility
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Our new proposal: Feature-centric autoregressive modelling

Rationale

• Mitigate challenges of lag selection and long system
memories

• Exploit temporal smoothness and regularity

Our approach

• Functional Nonlinear AutoRegressive with
eXogenous input (F -NARX) modelling

• Extend classical NARX by leveraging features
instead of time lags

• Captures the dynamics of a system using a
time-feature representation:

ŷ(t) = M̂(ξ(t); c)
Schär et al. (2024). Feature-centric nonlinear autoregressive models, arXiv.
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Principal component analysis over the memory window

Starting from the lagged matrix Φi of the ith variable ∈ {x1, . . . , xM , y}):

1. Standardize Φi:

Zi = Φi − µi

σi

2. Compute covariance matrix:

Ci = 1
Ñ − 1

Z⊤
i Zi

3. Compute eigenvalue decomposition:
Civij = λijvij

4. The first ñi eigenvectors are retained (e.g. through cumulated explained variance):

Λi = {vi1, vi2, . . . , viñi }

5. The new features Ξi are obtained by projection:

Ξi = KPCA
i (Φi) = ΦiΛi
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F -NARX calibration

• The obtained matrix of the temporal features for the ith variable reads:

Ξi = KPCA
i (Φi) =


ξi(t0)

ξi(t0 + δt)
...

ξi((N − 1)δt)


• By concatenating horizontally, the full feature matrix Ξ reads:

Ξ = {Ξx1 , . . . , ΞxM , Ξy}

• Multiple traces are handle similarly to the classical NARX case for (sparse) regression:

ΞED =

 Ξ(1)

...

Ξ(NED)

 , yED =

 y(1)

...

y(NED)
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Number of features for each input / output

Truncation of the PCA

• Select a fixed number ñi of eigenvectors corresponding to the largest eigenvalues, or

• Select ñi out of ni eigenvectors according to explained variance (e.g. 99%)

νi =
∑ñi

k=1 λik∑ni

ℓ=1 λiℓ

.

Advantages of using PCA features

• Features are related to the memory time window and the smoothness of trajectories, not to time lags

(For classical NARX models, the shortest lags are not always the most important ones)

• Even long memories can be represented by only a few features instead of many time lags
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Bouc-Wen oscillator case study

Governing equation {
ÿ(t) + 2ζωẏ(t) + ω2(ρy(t) + (1 − ρ)z(t)) = −x(t)
ż(t) = γẏ(t) − α|ẏ(t)||z(t)|n−1z(t) − βẏ(t)|z(t)|n

Nonlinear behavior
Parameter Unit Value

ζ - 0.02

ω rad/s 10

ρ - 0.2

γ - 0.5

α 1/m 25

β - 25

n - 1
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Bouc-Wen oscillator case study (cont.)

Stochastic excitation
• Ground-motion acceleration ẍ(t)
• Der Kiureghian ground motion model

Rezaeian, S. and Der Kiureghian, A. Simulation of synthetic ground motions for specified earthquake and site characteristics.

• Estimated from component 090 of the Northridge earthquake recorded at the LA 00 station
Mai, C. V., Polynomial chaos expansions for uncertain dynamical systems - Applications in earthquake engineering.

Parameter Unit Value

Ia s.g 0.109
D5−95 s 7.96
tmid s 7.78
ωmid/2π Hz 4.66 × 2π

ω′/2π Hz −0.09 × 2π

ζf - 0.24
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Bouc-Wen oscillator – Experimental designs

Problem setup

• Exogenous inputs x(t), ẋ(t) and ẍ(t)
• Auxiliary quantity z(t)
• Quantity of interest y(t)

Random experimental design

• NED = 100 realizations

• Selected randomly from dataset

Biased experimental design

• NED = 100 realizations

• Sampled uniformly between |ẍ(t)|min and |ẍ(t)|max

Validation dataset: Nval = 10,000

Random experimental design

Biased experimental design
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Bouc-Wen oscillator – NARX configuration

{
ÿ(t) + 2ζωẏ(t) + ω2(ρy(t) + (1 − ρ)z(t)) = −x(t)
ż(t) = γẏ(t) − α|ẏ(t)||z(t)|n−1z(t) − βẏ(t)|z(t)|n

Biased sampling Random sampling

Output quantity z(t) y(t) z(t) y(t)
Exogenous inputs ẍ(t), ẋ(t), x(t) ẍ(t), ẋ(t), x(t), ẑ(t) ẍ(t), ẋ(t), x(t) ẍ(t), ẋ(t), x(t), ẑ(t)
Exogenous memories 1 sec. / 100 lags 1 sec. / 100 lags 1 sec. / 100 lags 1 sec. / 100 lags

Autoregressive memory 1 sec. / 100 lags 1 sec. / 100 lags 1 sec. / 100 lags 1 sec. / 100 lags

Explained variance 85 % 85 % 90 % 85 %

Maximum polynomial degree 3 3 3 3

Interaction order 2 2 2 2
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Bouc-Wen results – Predicted traces

Surrogate built from biased experimental design
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Bouc-Wen oscillator – Validation plots for |ymax|
Random sampling (NED = 100) Biased sampling (NED = 100)
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Bouc-Wen oscillator – Histograms of |ymax|
Random sampling (NED = 100) Biased sampling (NED = 100)

Time-variant reliability using surrogates JCSS Workshop, December 02, 2024 B. Sudret et al. 35 / 37



Bouc-Wen oscillator results – First-passage probabilities

Random sampling (NED = 100) Biased sampling (NED = 100)
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Conclusions

• Time-variant reliability for dynamical systems requires numerous, possibly costly, transient simulations

• Surrogate models for dynamical systems based on nonlinear auto-regressive models with exogenous inputs
(NARX) are proposed

• For better accuracy, NARX models can be build on time-variant features which are extracted on-the-fly from the
data (so-called mNARX, manifold-based NARX)

• A functional version of NARX allows us to consider a time-window instead of number of time steps, and use
principal component analysis (or other extraction techniques, e.g. moving averages, Fourier coefficients, etc.) to
define the features

• The obtained surrogates can be post-process at low cost for reliability analysis ... but also for other purposes
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Questions ?

Chair of Risk, Safety & Uncertainty Quantification
www.rsuq.ethz.ch

Thank you very much for your attention !

The Uncertainty Quantification
Software

www.uqlab.com

www.uqpylab.uq-cloud.io

The Uncertainty Quantification
Community

www.uqworld.org
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