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Motivation
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Challenge 1: probability estimation (dimensionality, non-
Gaussianity, multiple failure domains, nonlinearities)
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Motivation
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Challenge 2: sensitivity
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Motivation
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Challenge 3: optimal
design
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Motivation

Challenge 1 & 2: probability
and sensitivity

Challenge 3: optimal
design

Pr(y)

Focus:
« Linear structural systems
« Gaussian stochastic loading
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Challenge 1: Failure Probability

» Stochastic loading modelled

as Gaussian process
(assumption: u = 0)
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Challenge 1: Failure Probability

« Stochastic loading: Clough-Penzien power spectrum
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Challenge 1: Failure Probability

« Structural response: convolution integral
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p(z) = Bz

Finite element model

)

Y (design variables)

n(t,y,z) = /0 h(y,t — 7)p(T, 2)dr

% n(y,z) = H(y) Bz = A(y)z
=

spectral properties loading
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Challenge 1: Failure Probability

 Geometry of the faillure domain* in stochastic linear
dynamics under Gaussian force
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Failure domain F iIs the union of several

t1 1o t3 . :
elementary failure domains F;

*Der Kiureghian, A. The geometry of random vibrations and solutions by FORM and SORM. Fy
Probabilistic Engineering Mechanics, 2000, 15, 81-90
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Challenge 1: Failure Probability /A\ /A
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*Der Kiureghian, A. The geometry of random vibrations and solutions by FORM and SORM. Fy
Probabilistic Engineering Mechanics, 2000, 15, 81-90
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Challenge 1: Failure Probability

« Coordinate change of the failure probability integral
and importance sampling density function
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Challenge 1: Failure Probability

* |mportance sampling density function
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*0. Ditlevsen, P. Bjerager, R. Olesen,
and A. M. Hasofer, “Directional
simulation in Gaussian processes,”
Probabilistic Engineering Mechanics,
vol. 3, Art. no. 4, 1988.
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Challenge 1: Failure Probability

 Interpretation of distances c; j

ni(t)
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to t1

Response Amplification

Directional Exploration
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Challenge 1: Failure Probability

Example:
— Bridge subjected to stochastic
ground acceleration, low vibration ool

level, linear elastic range. M"
FE model involves 10068 DOF’s : |

-0.21

0.4+

Response of interest: first excursion, 04)
column drift (8 responses of interest)

-0.6 ‘ ‘ ‘ :
0 2 4 6 8 10

Uncertainty:
— Stochastic acceleration comprises 1001 random variables

— Discrete time representation involves 8008 elementary failure
domains

Objective: Calculate first excursion probability
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Challenge 1: Failure Probability
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Challenge 2: Probabllity Sensitivity
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Challenge 2: Probabllity Sensitivity
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Challenge 2: Probabllity Sensitivity
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*|.-W. Lee and G.-H. Jung. An efficient algebraic method for the computation of natural frequency and mode
shape sensitivity — part I, Distinct natural frequencies. Computers & Structures, 63(3):429-435.1997
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Challenge 2: Probabllity Sensitivity

Perspective view

Elevation view
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Realization of stochastic load
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~ 30,000 DOFS, uncertain ground acceleration: discrete
filtered white noise, 1001-time instants

Failure criterion: Story drifts exceeds threshold in dir. x or y
Objective: Calculate first excursion probability sensitivities with

respect the thickness of the core shear walls
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Challenge 2: Probabllity Sensitivity

x1074
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Challenge 3: Optimal Design

» Failure probability
— Number between 0 and 1, quantifies level of safety
— What is the use of this?

« Reliability-based optimization (RBO)

— Minimizing costs of construction,
maintenance and eventual failure
considering uncertainties

A

Optimized

Design

\
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Challenge 3: Optimal Design

 Type of problem considered

— Minimization of failure probability subject to budget constraint

min,, C'(y)
subject to

pr(y) < ph

cly) <0,1l=1,...,n¢

Optimization  pejiability

 C(C(y): cost function

« pk: maximum allowable probability

* ¢;(y): deterministic constraints (e.qg.
geometry, bounds)

Challenges:

* Double loop

* High dimensional
probability integral

* Probability available
through simulation

Deterministic
model
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Challenge 3: Optimal Design

« RBO strateqy

— Gradient-based optimization X2
A Unfeasible
_ _ o _ _ domain
— Feasible-direction interior point Feasible
algorithm* domain
— Line search performed with (1)
Ve, (y?)
surrogate _VC(yW

— Sequence of feasible, improved
designs

VC(Y?) v, (y@)

> Xy

*J. Herskovits and G. Santos, “On the computer implementation of feasible direction interior point algorithms for
nonlinear optimization,” Structural Optimization, vol. 14, Art. no. 2-3, 1997.
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Challenge 3: Optimal Design

Perspective view

Elevation view
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Example: minimize thickness of walls (stories 1-8, 9-16) subject
to probability of exceeding interstory drift threshold below 1073
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Challenge 3: Optimal Design

Perspective view
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Conclusions
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Open challenges: non-
Gaussianity, non-linearity
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