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Challenge 1: probability estimation (dimensionality, non-

Gaussianity, multiple failure domains, nonlinearities)

Motivation
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Challenge 2: sensitivity

Motivation
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Challenge 3: optimal 

design

Motivation
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Motivation

Focus:

• Linear structural systems

• Gaussian stochastic loading

Challenge 3: optimal 

design

Challenge 1 & 2: probability 

and sensitivity



Challenge 1: Failure Probability

• Stochastic loading modelled 

as Gaussian process 

(assumption: 𝝁 = 𝟎)
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Challenge 1: Failure Probability
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• Stochastic loading: Clough-Penzien power spectrum



Challenge 1: Failure Probability

• Structural response: convolution integral
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Finite element model

(design variables)

loadingspectral properties



Challenge 1: Failure Probability

• Geometry of the failure domain* in stochastic linear 

dynamics under Gaussian force
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*Der Kiureghian, A. The geometry of random vibrations and solutions by FORM and SORM. 
Probabilistic Engineering Mechanics, 2000 , 15 , 81-90

Threshold

Safe Domain

Failure Domain

Failure Domain

Failure domain 𝐹 is the union of several 

elementary failure domains 𝐹𝑘



Challenge 1: Failure Probability

• Geometry of the failure domain in stochastic 

linear dynamics under Gaussian force

– Reliability for elementary failure domain 

known in closed form

– Bounds for failure probability*
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Upper bound, ignores interactions

time

time

*Der Kiureghian, A. The geometry of random vibrations and solutions by FORM and SORM. 
Probabilistic Engineering Mechanics, 2000 , 15 , 81-90



Challenge 1: Failure Probability

• Coordinate change of the failure probability integral 

and importance sampling density function
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Challenge 1: Failure Probability

• Importance sampling density function
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*O. Ditlevsen, P. Bjerager, R. Olesen, 
and A. M. Hasofer, “Directional 
simulation in Gaussian processes,” 
Probabilistic Engineering Mechanics, 
vol. 3, Art. no. 4, 1988.



Challenge 1: Failure Probability

• Interpretation of distances 𝑐𝑖,𝑘
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Response Amplification Directional Exploration

Value between 0 

and 1, overlap

Upper 

bound



Challenge 1: Failure Probability
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• Example: 

– Bridge subjected to stochastic 

ground acceleration, low vibration 

level, linear elastic range. 

– FE model involves 𝟏𝟎𝟎𝟔𝟖 DOF’s

• Response of interest: first excursion, 

column drift (8 responses of interest)

• Uncertainty:

– Stochastic acceleration comprises 1001 random variables

– Discrete time representation involves 8008 elementary failure 

domains

• Objective: Calculate first excursion probability



Challenge 1: Failure Probability
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Challenge 2: Probability Sensitivity
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Challenge 2: Probability Sensitivity
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Not Perturbed Perturbed



Challenge 2: Probability Sensitivity
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• Sensitivity of spectral properties*

*I.-W. Lee and G.-H. Jung. An efficient algebraic method for the computation of natural frequency and mode 

shape sensitivity – part I, Distinct natural frequencies. Computers & Structures, 63(3):429-435.1997

Mode Shape
Mode Shape with 

Perturbed Stiffness
Shear beam model

Mode Shape 

Derivative
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Challenge 2: Probability Sensitivity

Perspective view

• ~ 30,000 DOFS, uncertain ground acceleration: discrete 

filtered white noise, 1001-time instants

• Failure criterion: Story drifts exceeds threshold in dir. 𝑥 or 𝑦
• Objective: Calculate first excursion probability sensitivities with 

respect the thickness of the core shear walls

Realization of stochastic load 

𝑥

𝑧
𝑦

Elevation view

𝑥

𝑧
Stories 1-2

Stories 3-4

Stories 5-6

Stories 7-8

Stories 9-10

Stories 11-12

Stories 13-14

Stories 15-16
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Challenge 2: Probability Sensitivity

Elevation view
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Challenge 3: Optimal Design
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• Failure probability

– Number between 0 and 1, quantifies level of safety

– What is the use of this?

• Reliability-based optimization (RBO)

– Minimizing costs of construction, 

maintenance and eventual failure 

considering uncertainties
Initial 
Design

Optimized 
Design



Challenge 3: Optimal Design
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• Type of problem considered

– Minimization of failure probability subject to budget constraint

• 𝐶(𝒚): cost function

• 𝑝𝐹
𝑡 : maximum allowable probability

• 𝑐𝑙(𝒚): deterministic constraints (e.g. 

geometry, bounds)

Optimization Reliability Deterministic 
model

Challenges:
• Double loop
• High dimensional 

probability integral
• Probability available 

through simulation



Challenge 3: Optimal Design
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x1

x2
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y(2)

y(3)

Feasible 
domain

Unfeasible 
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−C(y(1))

−C(y(2))

c1(y(1))

c2(y(2))

d(1)

d(2)

• RBO strategy

– Gradient-based optimization

– Feasible-direction interior point 

algorithm*

– Line search performed with 

surrogate

– Sequence of feasible, improved 

designs

*J. Herskovits and G. Santos, “On the computer implementation of feasible direction interior point algorithms for 

nonlinear optimization,” Structural Optimization, vol. 14, Art. no. 2–3, 1997.



Challenge 3: Optimal Design
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Perspective view

• Example: minimize thickness of walls (stories 1-8, 9-16) subject 

to probability of exceeding interstory drift threshold below 10−3

Realization of stochastic load 

𝑥

𝑧
𝑦

Elevation view

𝑥

𝑧
Stories 1-8

Stories 9-16



Challenge 3: Optimal Design
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Perspective view
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Conclusions

Stochastic 
linear 

dynamics

Sensitivity 
analysis

Open challenges: non-

Gaussianity, non-linearity

Advanced 
simulation

Decoupling 
strategies
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