

- This presentation is not about the use of the standardized probabilistic influence coefficients itself, but about the effect of time-dependence.
- We know that standardized α -factors can lead to oversimplified, suboptimal designs:
 - Hingorani, Ramon and Jochen Köhler. 2023. Towards optimised decisions for resource and carbonefficient structural design, Civil Engineering and Environmental Systems, DOI: 10.1080/10286608.2023.2198767
 - Hingorani, R., Köhler, J., Sustainability potential of risk-informed decisions in structural design, 14th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP14), Dublin, Ireland, 2023
 - N.E. Meinen, R.D.J.M. Steenbergen, Reliability levels obtained by Eurocode partial factor design A discussion on current and future reliability levels, Heron, Vol. 63 (2018) No. 3, pp. 243-301.

TNO innovation for life

miroq	uction				
	. Hosser, D.: Tragfähigkeit und Zuverlässigkeit von Stahl- betondruckgliedern. Mitt. Inst. Massivbau TH Darmstadt, Heft 28. Berlin. Düsseldorf. München: Ernst & Sohn 1978				
	In den "Grundlagen" wurden nach [5] die globalen Wich- tungsfaktoren α_R und α_S wie folgt festgelegt:				
	$\begin{aligned} \tilde{\alpha}_R &= 0,8 \\ \tilde{\alpha}_S &= -0,7 \end{aligned}$	(20)			
_	his make sense if we look to an existing structure?				
 Does t 					
 Does 1 Which Which 	influence factors to use when assessing the last ye factors to use for the lifetime extension?	ar of the design life?			

3-Dec-2024 TUM-JCSS workshop time-variant reliability analysis

Typical heavy (concrete) bridge

- Assuming RC2: $\beta = 3.8$ over 50 years
- Limit state function:

 $Z = R - (m_G G + m_T T)$

- Large contribution of self-weight to total load effect (70%)
- Parameters expressed as equivalent uniformly distributed load, per lane

Symbol	Description	Distribution	Mean [kN/m]	Coeff. of variation [-]
R	Resistance (capacity)	Lognormal	304	0.10
m_{G}	Model uncertainty G	Normal	1.0	0.07
G	Self-weight	Normal	120 (70%)	0.07
m_T	Model uncertainty T	Normal	1.04	0.17
<i>T</i> ₁	Traffic load, max. 1 year	Gumbel	51.5 (30%)	0.067
<i>T</i> ₅₀	Traffic load, max. 50 years	Gumbel	62.0	0.056
	·	-		

7

3-Dec-2024 TUM-JCSS workshop time-variant reliability analysis

Typical lightweight bridge

- Assuming RC2: $\beta = 3.8$ over 50 years
- Limit state function:

 $Z = R - (m_G G + m_T T)$

- Small contribution of self-weight to total load effect (30%)
- Parameters expressed as equivalent uniformly distributed load, per lane

Symbol	Description	Distribution	Mean [kN/m]	Coeff. of variation [-]
R	Resistance (capacity)	Lognormal	177	0.14
m_G	Model uncertainty G	Normal	1.0	0.07
G	Self-weight	Normal	22.0 (30%)	0.07
m_T	Model uncertainty T	Normal	1.04	0.17
<i>T</i> ₁	Traffic load, max. 1 year	Gumbel	51.5 (70%)	0.067
<i>T</i> ₅₀	Traffic load, max. 50 years	Gumbel	62.0	0.056

TNO innovation for life

