
Cost-benefit analysis for optimization of risk protection (Špačková & Straub) 1/29 

To appear in Risk Analysis 

Version August 2014 

 

 

Cost-benefit analysis for optimization of risk protection under 

budget constraints 

 

Olga Špačková & Daniel Straub 

Engineering Risk Analysis Group, Technische Universität München, Germany 

 

Abstract  

Cost-benefit analysis (CBA) is commonly applied as a tool for deciding on risk protection. 

With CBA, one can identify risk mitigation strategies that lead to an optimal trade-off 

between the costs of the mitigation measures and the achieved risk reduction. In practical 

applications of CBA, the strategies are typically evaluated through efficiency indicators such 

as the benefit-cost ratio (BCR) and the marginal cost (MC) criterion. In many of these 

applications, the BCR is not consistently defined, which, as we demonstrate in this paper, can 

lead to the identification of sub-optimal solutions. This is of particular relevance when the 

overall budget for risk reduction measures is limited and an optimal allocation of resources 

among different subsystems is necessary. We show that this problem can be formulated as a 

hierarchical decision problem, where the general rules and decisions on the available budget 

are made at a central level (e.g. central government agency, top management), whereas the 

decisions on the specific measures are made at the subsystem level (e.g. local communities, 

company division). It is shown that the MC criterion provides optimal solutions in such 

hierarchical optimization. Since most practical applications only include a discrete set of 

possible risk protection measures, the MC criterion is extended to this situation. The findings 

are illustrated through a hypothetical numerical example. This study was prepared as part of 

our work on the optimal management of natural hazard risks, but its conclusions also apply to 

other fields of risk management. 
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1 Introduction 

Cost-benefit analysis (CBA) can be used for the identification of risk mitigation strategies that 

provide an optimal trade-off between the cost of the implemented measures and the achieved 

risk reduction. It is widely applied in various fields of engineering, health management and 

policy making. Exemplarily, CBA is used for economic evaluation of natural hazard 

mitigation projects in the USA (Rose et al. 2007), Great Britain (Defra, 2009), Switzerland 

(Bründl, 2009; Bründl et al., 2009), Austria (lebensministerium.at, 2009) and in developing 

countries (United Nations, 2011; Hochrainer-Stigler et al., 2011). Other examples of 

engineering applications of CBA include risk-based optimization of climate change 

adaptation of offshore structures (Garré and Friis-Hansen, 2013) or the management of man-

made risks such as the risk of fire related to transport of hazardous material (Paltrinieri et al., 

2012). CBA is also applied to assess the effect of policies and regulations, e.g. on terrorist 

prevention measures in aviation (Willis and LaTourrette, 2008; Stewart and Mueller, 2012), 

on retrofitting of buildings to reduce the impact of earthquakes (Li et al., 2009), on air 

pollution (Nemet et al., 2010; Fann et al., 2011) or on testing and use of pharmaceutics 

(Meckley et al., 2010).  

CBA is limited by its focus on the economic efficiency of risk protection measures. Many 

aspects, such as the value of human life or environmental and social impacts of measures, 

cannot be easily quantified in monetary terms for inclusion in CBA (Ramsberg, 2000). 

Alternatives have therefore been proposed, such as multi-criteria analysis (MCA) that allows 

considering different attributes without monetizing them (Mysiak et al., 2005; ECA, 2009). 

However, in spite of its limitations, CBA supports the fair distribution of resources for risk 

protection in society (Paté-Cornell, 2002; Cox, 2012; Michel-Kerjan et al., 2012). This will 

remain essential for society in the future, as the frequency of natural and man-made hazards, 

as well as their potential consequences, are likely to increase (Johnson et al., 2007; Bonstrom 

et al., 2011) and the resources that can be invested into risk protection remain limited.  

This paper presents an overview on CBA for the economic optimization of risk protection, 

with special focus on engineering applications. The study is motivated by our work on 

development of a methodology for planning and optimization of flood risk measures in the 

Bavarian Alps (Špačková et al., 2014). A majority of the methods and examples presented in 

this paper thus relate to risk posed by floods and related natural hazards. The findings of this 

paper are nevertheless general and are valid for many fields of risk management.  

The paper considers both continuous and discrete optimization. The former is applied when 

cost and risk can be expressed as continuous functions of the optimization parameters. This 

situation is often discussed in the literature and in textbooks, but in engineering practice it is 

typically limited to subsidiary decision problems. In most real-life applications, only a 

countable number of risk mitigation strategies can be analysed. For example, when planning 

flood protection of a town, a first strategy can correspond to building an 800 m long dike and 

a flood storage reservoir with capacity of 2 × 105 m3 and a second strategy can correspond to 

building no dike but a larger reservoir with capacity of 3 × 105  m3. Many additional 

strategies with other measures and/or other parameter values are feasible, and the analysis of 

each strategy implies computationally demanding model evaluations.  The space of possible 

solutions is high-dimensional. The engineers will therefore preselect a set of discrete 

strategies based on experience. Each of these strategies is associated with specific values of 

(residual) risk and expected costs. 

In the field of natural hazard protection, CBA is often implemented through the calculation of 

efficiency measures, such as the benefit-cost ratio (BCR) and the marginal cost (MC) criterion, 

which are reviewed in Section 3. These measures allow prioritizing the risk protection 
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strategies when the overall available budget is limited. BCR and MC are not commonly 

formulated in a rigorous manner, neither in practical guidelines nor in the scientific literature, 

which gives rise to inconstancies in their application. Particularly the BCR is defined 

differently from one country to another and from one area of application to another. For 

example, the benefits and costs are in some instances compared against the current level of 

protection, and in other instances against a hypothetical do-nothing option. This impedes the 

use of BCR as a measure for comparing the efficiency of mitigation strategies in different 

areas of risk protection.  

The differences and inconsistencies in the application of CBA stem not least from the fact that 

risk assessment experts have different backgrounds: Experts in structural reliability use 

different methods than those dealing with natural hazard protection and those are again 

different to those used by health risk analysts. In a CBA carried out by engineers or life 

scientists, the economic optimization is typically perceived as a minor part of the analysis. 

The analysts focus on the detailed quantitative analysis of the hazard processes, while only 

limited efforts are devoted to the estimation of the damage, the quantification of the risk and 

the interpretation of the results for the actual decision (Messner and Meyer, 2005; Merz et al., 

2010). As a result, the way CBA is used in engineering assessments is often in contradiction 

to the economic theory.  

In this paper, we first discuss the optimization of risk protection in a single subsystem 

(Section 2.1) and thereafter extend the problem to the selection of a set of strategies in a 

system (Section 2.2). The subsystems can be, for example, individual municipalities or river 

catchments that are administered by the same state agency, or different plants owned by a 

company. The problem is treated as a hierarchical optimization, where the individual 

subsystems compete for the resources distributed from a common budget. The aim of the 

optimization is finding optimal risk levels in the individual subsystems from the point of view 

of the owner/administrator. As demonstrated in Section 3, the commonly applied efficiency 

measures BCR and MC can be utilized as coordination parameters in the hierarchical system 

optimization. However, only the MC leads to a theoretically optimal selection of risk 

mitigation strategies at the system level. The effect of different choices of efficiency measures 

on the resulting overall risk and cost at the system level is illustrated through a numerical 

example in Section 4. Finally, the limitations of the proposed approach and the challenges for 

future research are discussed in Section 5. 

2 Risk optimization with cost-benefit analysis 

The cost-benefit analysis (CBA) concept is commonly used for the purpose of optimizing risk 

protection measures. The optimal strategy is then defined as the one that maximizes the 

difference between expected benefits and expected costs. The risk, which is defined as 

expected damage, can be considered as an additional expected cost, and the objective function 

becomes: 

max
𝐚

 [𝐵(𝐚) − 𝐶(𝐚) − 𝑅(𝐚)] (1) 

where  𝐚  is a set of optimization parameters, 𝐵(𝐚)  and 𝐶(𝐚)  are the expected net present 

values of benefits and costs, and 𝑅(𝐚) is the net present value of risk. The net present values 

aggregate the benefits, costs and risks over the planning horizon. The discounting procedure 

and selection of discount rate is not explicitly described in this paper, for a more detailed 
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discussion of this topic we refer to (Brent, 1996; Just et al., 2004; Rackwitz, 2004; Groom et 

al., 2005;  Nishijima et al., 2007; Gollier and Weitzman, 2010).  

The risk 𝑅(𝐚) is defined as the expected value of the damages caused by the analysed hazards, 

and costs 𝐶(𝐚) are the expected value of the cost for construction (establishment), operation 

and maintenance of the mitigation measures. These two types of expenses are commonly paid 

from different sources. In case of natural hazards, the costs of mitigation measures are 

commonly included in government investment expenditures, while the risk is typically 

covered by special governmental funds, insurance companies and the private sector. In such 

cases it is useful to clearly distinguish the risk and costs throughout the analysis.  

The benefit 𝐵  of the activity is often assumed to be independent of the risk protection 

measures described by optimization parameters 𝐚 and is outside of the scope of the analysis. 

𝐵(𝐚) is thus considered as constant with 𝐚 and is neglected. The optimization problem is then 

formulated as 

min
𝐚

 [𝐶(𝐚) + 𝑅(𝐚)] (2) 

CBA assumes that both the risks and costs are expressed in monetary units. Alternatively, the 

optimization can be formulated within the framework of the expected utility principle 

(Neumann and Morgenstern, 1944; Keeney and Raiffa, 1993). This facilitates accounting for 

the risk attitude of the decision-maker, in particular risk aversion (Paté-Cornell, 2002; 

Jonkman et al., 2003; Ditlevsen, 2003). It also enables the inclusion of alternative criteria, e.g. 

environmental and societal objectives, into a single objective function (Li et al., 2009). The 

approaches and findings presented in this paper are also applicable if risk and costs are 

expressed as expected utility and not in monetary units.  

In many instances, the decisions on risk protection are made in a hierarchical manner, 

whereby the decisions on the available budget are taken at a higher/central level (central 

government agency, top management), whereas the decisions on the specific measures are 

taken at a lower/local level. In this case, the optimal allocation of resources for risk protection 

can be considered as a hierarchical optimization problem, where the objectives are formulated 

at the system level, but the actual decisions are made at the level of sub-systems, possibly at 

different times. Because of this distributed decision process, it is not possible to optimize all 

risk protection measures described by parameters 𝐚 jointly. Instead, the aim is to find a set of 

criteria, defined at the system level and applied in the sub-systems, which ensure optimal risk 

protection in the entire system. 

In the following Section 2.1, the optimization problem is first described at the level of 

subsystems, since this is the formulation that is typically used in the field of risk protection 

optimization. Thereafter, Section 2.2 presents the formulation of the optimization problem at 

the system level.  

2.1 Optimization at the level of a subsystem 

A subsystem is here understood as a part of a system, where the risk mitigation measures can 

be planned separately from other parts of the system. The risk protection measures applied in 

a subsystem do not influence the level of risk in other subsystems. The only connection 

between the subsystems is the financial budget that they share, which introduces dependence 

among them. In the case of flood risk, subsystems are e.g. individual municipalities or river 

catchments that are administered by the same state agency; in the case of risks to an oil and 

gas operator, individual offshore oil fields can represent such subsystems. Since both costs 𝐶 
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and risks 𝑅 are expected values, the framework is also valid if there is stochastic dependence 

among the hazards in different subsystems. 

2.1.1 Continuous formulation 

The optimization of risk protection at the subsystem level is formulated first for the case of a 

continuous optimization parameter representing the protection level 𝑙, which is the case that is 

mostly described in the literature and textbooks. Examples of continuous optimization 

problems include the selection of an optimal height of a coastal dyke (Danzig, 1956), the 

decision on the optimal raise of an offshore platform deck as an adaptation measure to climate 

change (Garré and Friis-Hansen, 2013) or the selection of an optimal bridge maintenance 

frequency (Fischer et al., 2013). These applications all have only one optimization parameter 

defining the protection level.  

In accordance with Eq. (2) the optimal level of risk protection can be identified by minimizing 

the sum of the net present values of risk 𝑅(𝑙) and of expected costs 𝐶(𝑙): 

min
𝑙

[𝑅(𝑙) + 𝐶(𝑙)] (3) 

The optimization problem can be constrained by a maximal available budget 𝐶𝑚𝑎𝑥. Then the 

optimization of Eq. (3) is subject to 𝐶(𝑙) ≤ 𝐶𝑚𝑎𝑥. 

Two alternative graphical representations of the continuous optimization are shown in Figure 

1. In Figure 1(a), risk and cost are plotted against the protection level; in Figure 1(b), risk is 

plotted against cost. The black dots in both figures represent the unconstrained optimum, Eq. 

(3), and the constrained optimum, which is subject to the budget constraint 𝐶𝑚𝑎𝑥. 

 

 

Figure 1. Alternative illustrations of the continuous risk optimization problem.  

In Figure 1(a), the dependence of risk and cost on the protection level 𝑙 is explicitly illustrated 

and the solid line represents their sum that is to be minimized. This representation requires an 

unambiguous definition of the protection level and it is thus applicable if only one 

optimization parameter is considered (e.g. dyke height, air-gap in an offshore platform) or if 

the protection level can be related to a single parameter describing the safety of the optimized 

system (e.g. safety factor, design return period, probability of failure). In many cases, 
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however, it is not straightforward to define a protection level as a scalar variable, because 

different elements of the subsystem can have different protection levels. Additionally, even if 

the protection level is applicable, it often does not unambiguously determine the risk and cost 

of the protection measures. For example, the protection against a design flood defined by its 

return period (the so-called N-year flood) can be achieved with different types of measures. 

These will exhibit different costs and typically lead to different residual risks, because their 

failure mechanisms in case of a flood with higher return period will differ. If flood protection 

is ensured by a dam, a failure of the dam associated with erosion will lead to significant 

consequences immediately following the failure. If, on the other hand, the protection is 

ensured by a sufficiently wide river bed, the consequences of exceeding the design flood will 

be increasing only slowly with the flood level. 

If the introduction of the protection level is not possible and helpful, the alternative 

representation of Figure 1(b) is more appropriate. This illustration depicts directly the residual 

risk as a function of cost. The set of Pareto optimal solutions represented by the solid line 

delineates the domain of feasible optimization alternatives. Note that the solid line in Figure 

1(b) represents the same set of solutions as the solid line in Figure 1(a), because in the 

illustration of Figure 1(a) it is implicitly assumed that the costs (and risk) associated with each 

protection level are minimal. 

The set of Pareto optimal solutions is here defined as all mitigation options for which there 

are no other options that have simultaneously lower costs and lower risks. Note that this is the 

definition of Pareto optimality found in engineering applications (Misra, 2008; Reed et al., 

2013), which relaxes the rigorous conditions commonly used in the socio-economic theory. 

Following the socio-economic definition, a Pareto optimal solution corresponds to a state 

where nobody is ultimately made worse off. In engineering applications, one typically does 

not test the change on the level of individuals and it is not assured that all individuals are 

compensated for their potential loses. Strictly, one should thus speak of the Kaldor-Hicks 

efficiency (Corkindale, 2007), but this term is not well known in the engineering field. Hence 

we continue to use the term Pareto optimality. 

In the unconstrained case, the optimal solution corresponds to the point in the domain of the 

feasible solutions that minimizes the sum of risk and costs. Graphically this can be illustrated 

by plotting a line through this optimum with 𝑅 + 𝐶 = 𝑐𝑜𝑛𝑠𝑡 (the dashed line in Figure 1b). 

There is no feasible solution to the left of this line. If the optimization is constrained by the 

available budget, the feasible space in Figure 1(b) is restricted by the vertical line at 𝐶𝑚𝑎𝑥 . 

The solutions that are to the right of this line are not feasible because their costs exceed the 

available budget.  

2.1.2 Discrete formulation 

In the scientific literature, it is commonly assumed that explicit functions for cost 𝐶(𝑙) and 

risk 𝑅(𝑙) as a function of the protection level 𝑙 can be established. However, as discussed in 

Section 2.1.1, it is often not possible or reasonable to define such a protection level. 

Furthermore, determining the Pareto optimal set depicted in Figure 1(b) is too demanding in 

most practical applications. This is because a large variety of different protection measures, 

and combinations thereof, can be implemented (e.g. dykes combined with retention areas, 

mobile flood barriers, warning systems) and each measure has one or more parameters to be 

optimized (height of a dyke, volume of the retention, type of the mobile barriers etc.). In such 

cases it is only realistic to evaluate risk and cost for a countable number of protection 

strategies, each one consisting of a set of measures. Therefore, the continuous optimization is 

replaced by a discrete optimization, which is illustrated in Figure 2.  
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Let 𝑆1, 𝑆2 … 𝑆𝑚  denote the possible strategies. We are searching for a strategy, which 

minimizes the value of future expenses (sum of risk and costs). The optimization problem is 

then formulated as 

min
𝑗

[𝑅(𝑆𝑗) + 𝐶(𝑆𝑗)] ,        𝑗 = 1,2, … 𝑚 (4) 

where 𝑅(𝑆𝑗) and 𝐶(𝑆𝑗) are the net present values of the risk and expected costs of the 𝑗th 

strategy. If the optimization is constrained by a maximal available budget 𝐶𝑚𝑎𝑥 , the 

optimization of Eq. (4) is subject to 𝐶(𝑆𝑗) < 𝐶𝑚𝑎𝑥. 

 

 

Figure 2. Illustration of the discrete risk optimization problem.  

The strategies displayed in Figure 2 with the black crosses are Pareto optimal solutions. The 

gray strategy 𝑆3 is not Pareto optimal, because it has both higher risk and higher cost than 

strategy 𝑆4. The unconstrained optimum is strategy 𝑆5, which minimizes the sum of risk and 

costs. The dashed line shown in Figure 2, for which 𝑅 + 𝐶 = 𝑐𝑜𝑛𝑠𝑡 = 𝑅(𝑆5) + 𝐶(𝑆5) , 

illustrates this fact. It can be observed that all other strategies are to the right of this line, 

indicating that their sum of risk and costs is higher than the one of strategy 𝑆5 . If the 

optimization is constrained by the budget 𝐶𝑚𝑎𝑥, strategy 𝑆5 lies in the infeasible space and 

strategy 𝑆4 becomes the constrained optimum.  

2.2 Hierarchical optimization for the system  

Optimization of risk protection in a system is considered, where the risk mitigation measures 

are planned at the level of the subsystems, which, however, share a common budget. The 

situation is illustrated in Figure 3 for the discrete formulation.  
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Figure 3. Illustration of the risk optimization problem for a portfolio of subsystems. 

 

2.2.1 Continuous formulation 

We first consider the situation where the risk and expected cost in the 𝑖th subsystem can be 

obtained as a function of the protection level 𝑙𝑖 . In this case, the optimization problem in a 

system with 𝑁 subsystems can be formulated as: 

min
𝑙1,𝑙2,…,𝑙𝑁

[∑ (𝐶𝑖(𝑙𝑖) + 𝑅𝑖(𝑙𝑖))
𝑁

𝑖=1
] (5) 

𝑅𝑖(𝑙𝑖) and 𝐶𝑖(𝑙𝑖) are the net present values of risk and costs in the 𝑖th subsystem.   

If the budget is unlimited, i.e. if the optimization problem of Eq. (5) is unconstrained, then it 

holds: 

min
𝑙1,𝑙2,…,𝑙𝑁

[∑ (𝐶𝑖(𝑙𝑖) + 𝑅𝑖(𝑙𝑖))
𝑁

𝑖=1
] = ∑ min

𝑙𝑖

[𝐶𝑖(𝑙𝑖) + 𝑅𝑖(𝑙𝑖)]

𝑁

𝑖=1

 (6) 

Therefore, with unlimited budget, the optimal solution at the system level can be found by 

finding the optimum in each of the subsystems individually. 

If the budget is limited to 𝐶𝑚𝑎𝑥, we must solve 

min
𝑙1,𝑙2,…,𝑙𝑁

[∑ (𝐶𝑖(𝑙𝑖) + 𝑅𝑖(𝑙𝑖))
𝑁

𝑖=1
] 

s.t.  ∑ 𝐶𝑖(𝑙𝑖) ≤𝑁
𝑖=1  𝐶𝑚𝑎𝑥 

(7) 

In this case, Eq. (6) does not hold and the risk mitigation measures cannot be optimized 

independently in the individual subsystems. Additionally, because the protection strategies in 

the subsystems are often not planned at the same time or by the same engineers, it is generally 

impossible to optimize the risk protection measures in the whole system at once.  
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A solution to this problem is provided by hierarchical optimization (Stoilov and Stoilova, 

2008). In hierarchical optimization, the coordinator sets criteria, so called coordination 

parameters, at the system level for the optimization in the subsystems. The optimization can 

then be performed at the individual subsystems for given values of the coordination 

parameters. At the system level, only these coordination parameters must be optimized. If 

these are chosen correctly, this procedure may lead to the same solution as the direct 

optimization of Eq. (7). The optimization can furthermore be carried out iteratively: The 

coordinator can adjust the coordination parameters depending on the results of optimizations 

in individual subsystems and with changing constraints such as availability of resources. 

In current practice, the efficiency of risk mitigation in subsystems is commonly quantified 

through the benefit-cost ratio (BCR) or the marginal cost (MC) criterion. As we will show in 

Section 3.2, the MC criterion can be applied as a coordination parameter and leads to an 

optimal solution at the system level, ensuring an optimal allocation of resources among the 

subsystems. However, the more commonly used average BCR is not a correct coordination 

parameter and can therefore lead to suboptimal solutions. 

2.2.2 Discrete formulation 

As discussed in Sec. 2.1.2, in practice one typically selects a risk mitigation strategy from a 

countable number of options.  In each of 𝑁 subsystems one can identify a number of risk 

protection strategies denoted as 𝑆𝑖𝑗𝑖
, where 𝑖 ∈ {1, … , 𝑁} is the index of the subsystem and 

𝑗𝑖 ∈ {1, … , 𝑚𝑖}  is the index of the strategy in subsystem 𝑖 and 𝑚𝑖 is the number of strategies 

in subsystem 𝑖. The optimization can now be formulated as  

min
𝑗1,𝑗2,…𝑗𝑁

∑[𝑅𝑖(𝑆𝑖𝑗𝑖
) + 𝐶𝑖(𝑆𝑖𝑗𝑖

)]

𝑁

𝑖=1

 (8) 

where 𝑅𝑖(𝑆𝑖𝑗𝑖
) and 𝐶𝑖(𝑆𝑖𝑗𝑖

) are the net present values of risk and cost of the 𝑗𝑖th strategy in 

the 𝑖th subsystem. In accordance with Eq. (6), for an unconstrained problem it holds  

min
𝑗1,𝑗2,…𝑗𝑁

∑[𝑅𝑖(𝑆𝑖𝑗𝑖
) + 𝐶𝑖(𝑆𝑖𝑗𝑖

)]

𝑁

𝑖=1

= ∑ min
𝑗𝑖

[𝑅𝑖(𝑆𝑖𝑗𝑖
) + 𝐶𝑖(𝑆𝑖𝑗𝑖

)]

𝑁

𝑖=1

 (9) 

If the budget is constrained, it is 

min
𝑗1,𝑗2,…𝑗𝑁

∑[𝑅𝑖(𝑆𝑖𝑗𝑖
) + 𝐶𝑖(𝑆𝑖𝑗𝑖

)]

𝑁

𝑖=1

 

s. t. ∑ 𝐶𝑖(𝑆𝑖𝑗𝑖
) ≤𝑁

𝑖=1  𝐶𝑚𝑎𝑥  

(10) 

In this case, the equality (9) cannot be invoked and the hierarchical optimization is applied, as 

described in the next section. 
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3 Measures of efficiency/coordination criteria 

When selecting risk protection strategies, the efficiency of the investment should be assessed. 

For this purpose, measures such as benefit-cost Ratio (BCR) or marginal costs (MC) are 

commonly used in the practice. Their advantages and limitations are discussed in the 

following.  

3.1 Benefit-cost ratio (BCR) 

BCR 1  is a commonly used criterion in the field of economic project appraisal; it was 

originally developed for evaluating projects where uncertainties are not explicitly considered. 

BCR is defined as ratio of benefits over costs. The criterion examines if the benefits of a 

project are high enough to justify the costs; the project is only acceptable if 𝐵𝐶𝑅 ≥ 1.  Two 

types of BCR can be distinguished: the average BCR and the incremental BCR (sometimes 

called marginal BCR) (Lee and Jones, 2004; Corkindale, 2007).   

The average BCR is calculated as the total benefits over total cost associated with each project. 

The average BCR criterion can be applied to select from projects that are not mutually 

exclusive, i.e. where several projects can be implemented in parallel. If projects are 

independent, the optimal combination of projects can be found by ranking the projects 

according to their average BCRs and selecting those with the highest BCRs until either the 

budget is exhausted or all projects with 𝐵𝐶𝑅 ≥ 1 are implemented (Vinod, 1988).  

The incremental BCR should be used for selection from mutually exclusive projects, i.e. in 

situations where one selects only one project from available options (Irvin, 1978; 

Hendrickson and Matthews, 2011). To calculate the incremental BCR, the projects are first 

ordered from the cheapest to the most expensive. Project 1 is set as the initial reference 

project; the incremental BCR of project 2 is calculated as the ratio of increment of benefits 

over increment of costs compared to project 1. Project 2 is preferable if its incremental BCR 

is larger than one (or some minimum required value 𝐵𝐶𝑅𝑟𝑒𝑞 > 1). If project 2 is preferable, it 

becomes the new reference project, otherwise project 1 is kept as reference. Then the 

incremental BCR of project 3 with respect to the reference is calculated, and if it is larger than 

one (or 𝐵𝐶𝑅𝑟𝑒𝑞), project 3 becomes the reference. This process is repeated until all projects 

are checked. The final reference project is the optimal one.  

In the field of risk protection optimization, the BCR is used in many countries, see e.g. (Defra, 

2009; lebensministerium.at, 2009; Bründl, 2009; United Nations, 2011). The application of 

the average BCR and the incremental BCR to the optimization of risk protection is illustrated 

in Figure 4. In the context of risk protection, the benefit is the risk reduction −∆𝑅 and the cost 

is the increase in expected cost ∆𝐶. The average BCRs for both strategies 𝑆1 and 𝑆2, denoted 

as 𝐵𝐶𝑅1,𝐴𝑣𝑒𝑟 and 𝐵𝐶𝑅2,𝐴𝑣𝑒𝑟, are calculated with respect to strategy 𝑆0, which is here used as 

the reference. In contrast, when calculating the incremental BCR, the reference strategy is 

changing. For strategy 𝑆1, the 𝐵𝐶𝑅1,𝐼𝑛𝑐𝑟 is calculated with respect to 𝑆0 and it is thus equal to 

𝐵𝐶𝑅1,𝐴𝑣𝑒𝑟 .  Because 𝐵𝐶𝑅1,𝐼𝑛𝑐𝑟  is here larger than 1 (the angle 𝛽 is larger than 45°), 𝑆1  is 

superior to 𝑆0 and is thus selected as the new reference for calculating 𝐵𝐶𝑅2,𝐼𝑛𝑐𝑟 of strategy 

𝑆2.  

                                                 

1 The BCR is sometimes referred to as the present value to capital (PV/C) ratio, if it is assumed that all the costs 

(capital investment) are spent at the beginning of the project. 
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Figure 4. Illustration of incremental and average BCR.  

When selecting the optimal risk protection strategy in a subsystem among a set of potential 

strategies, one deals with mutually exclusive options. Therefore, the incremental BCR should 

be applied, as recommended in (Riddell and Green, 1999; Defra, 2010). However, in practice 

it is mostly the average BCR that is used (e.g. Lucarelli et al., 2011; Scottish Executive, 2011; 

United Nations, 2011). In the rest of this chapter we thus limit ourselves to the average BCR. 

We will return to the incremental BCR in Section 3.2, as it is equivalent to the MC criterion 

for the discrete case.  

The optimal strategy is commonly defined as the one maximizing the average BCR: 

max 𝐵𝐶𝑅 = max [
−∆𝑅

∆𝐶
] 

s. t.  
−∆𝑅

∆𝐶
≥ 𝐵𝐶𝑅𝑟𝑒𝑞 

(11) 

The minimal required value 𝐵𝐶𝑅𝑟𝑒𝑞  should be larger or equal to one. 𝐵𝐶𝑅𝑟𝑒𝑞  could be 

perceived as a coordination parameter that is used to efficiently distribute resources at the 

system level. Only subsystems in which the minimum 𝐵𝐶𝑅𝑟𝑒𝑞 can be reached will receive 

funding for increased risk protection. However, despite its common use, the BCR utilized in 

this way does not generally lead to optimal solutions at the system level, as we demonstrate 

later in the numerical example.  

The definition of the reference state, which is required in computing the average BCR, differs 

among countries and areas of application. It is often defined as maintaining the current level 

of protection or as a so-called “Do-nothing option”, aka “Null option”, which corresponds to 

no active intervention in the area and no maintenance of existing measures (Defra, 2009). The 

effect of the reference state is illustrated in Figure 5. The two figures (a) and (b) show an 

identical situation evaluated in two ways.  

In Figure 5(a) the reference state corresponds to the current state, the BCR is thus defined as: 

𝐵𝐶𝑅𝐼 =
𝑅𝐶 − 𝑅

𝐶 − 𝐶𝐶
 (12) 



Cost-benefit analysis for optimization of risk protection (Špačková & Straub) 12/29 

where 𝑅𝐶 and 𝐶𝐶 are the risk and costs corresponding to the current state of protection.  

In Figure 5(b) the reference state corresponds to the Null (Do-nothing) option, which is 

associated with the maximal level of risk 𝑅𝑂  and zero cost 𝐶0 = 0 (United Nations, 2011; 

Keenan and Oldfield, 2012; Woodward et al., 2013). The BCR then equals: 

𝐵𝐶𝑅𝐼𝐼 =
𝑅0 − 𝑅

𝐶 − 𝐶0
=

𝑅0 − 𝑅

𝐶
 (13) 

Additionally, in practice one often encounters a mixed approach, where the reference point for 

risk is the current state, while the costs of maintaining the current state of protection are 

disregarded (e.g. Lucarelli et al., 2011; Krummenacher et al., 2011; Zahno et al., 2012). The 

BCR then equals: 

𝐵𝐶𝑅𝐼𝐼𝐼 =
𝑅𝐶 − 𝑅

𝐶
 (14) 

For 𝐵𝐶𝑅𝐼𝐼𝐼, the coordination system shown in Figure 5(a) is shifted to the left.  

 

Figure 5. The effect of reference state on the average benefit-cost ratio: (a) the current protection 
level considered as reference state, (b) the do-nothing option considered as a reference state. The set 
of identified Pareto optimal strategies is the same in (a) and (b). 

It can be observed from Figure 5(a) and (b) that maximizing the BCR according to Eq. (11) 

may not lead to the optimal solution: Assuming that the Pareto optimal border has the shape 

displayed in Figure 5, the solutions with the maximum BCR are the solutions with the 

smallest cost increase Δ𝐶 - they are marked as crosses in squares in the Figure 5 (a) and (b). 

The unconstrained optimum, depicted as crosses in circles, would not be identified with 

neither 𝐵𝐶𝑅𝐼 nor 𝐵𝐶𝑅𝐼𝐼. Additionally, the definition of 𝐵𝐶𝑅𝐼 with respect to the current state 

can lead to negative values for some of the possible solutions, as can be observed in Figure 
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5(a). These include solutions that are superior to current state, i.e. have lower risk and costs 

than the current state. 𝐵𝐶𝑅𝐼𝐼, defined with respect to the do-nothing option (in Figure 5b) can 

be associated with significant uncertainty, because estimating the risk associated with the null 

option 𝑅𝑂 is often difficult. If  𝐵𝐶𝑅𝐼𝐼𝐼 would be applied in this example, i.e. the coordinate 

system in Figure 5(a) would be shifted to the left, none of the identified solutions would have 

a BCR higher than one and none of them would thus be acceptable.   

Note: The BCR was defined as the ratio between risk reduction and the increase in expected 

cost. Following (Baecher et al., 1980), instead the expected value of the ratio between damage 

reduction Δ𝐷 and cost Δ𝐶 should be used. If the cost is deterministic, the two definitions are 

identical, since we have 𝐵𝐶𝑅 = E[(−Δ𝐷)/Δ𝐶] = E[(−Δ𝐷)]/Δ𝐶 = −Δ𝑅/Δ𝐶 , where E[∙] 
denotes the expectation operator and the risk reduction is Δ𝑅 = E[(−Δ𝐷)]. In case the costs 

are uncertain, the two definitions differ; in practice, however, the uncertainty in the cost will 

be significantly lower than in the damages and we thus have 𝐵𝐶𝑅 = E[(−Δ𝐷)/Δ𝐶] ≈
−Δ𝑅/Δ𝐶. 

3.2 Marginal costs (MC) 

An alternative approach to risk protection optimization is the marginal cost criterion. It has 

been applied in the field of natural hazard protection in Switzerland (Bohnenblust and Troxler, 

1987; Bohnenblust and Slovic, 1998; Bründl, 2009). In other fields of risk mitigation the 

utilization of MC criterion appears not to be common (Li et al., 2009).  

The marginal costs 𝛿𝐶  are the costs for reducing the risk by an additional unit 𝛿𝑅 . This 

definition is only meaningful in the continuous case, e.g. when both 𝐶 and 𝑅 are differentiable 

functions of the protection level 𝑙 . The marginal cost criterion for the continuous case is 

illustrated in Figure 6. If the cost of risk reduction is higher than the value of the risk 

reduction, i.e. 𝛿𝐶 > −𝛿𝑅, the strategy is inefficient. If the risk is a differentiable function of 𝐶 

and the budget is unlimited, the optimal solution is one for which it holds:  

𝛿𝑅

𝛿𝐶
= −1 (15) 

If the budget is limited and the unconstrained optimum is not feasible, the optimal strategy 

will have 𝛿𝐶 ≤ −𝛿𝑅. For the optimization at the system level, it is convenient to introduce a 

parameter 𝛼 ≥ 1 , which represents the required minimum efficiency of the investment. 

Assuming differentiability, the optimal protection level for given 𝛼 is one for which it holds: 

𝛿𝑅

𝛿𝐶
= −𝛼 (16) 

Eq. (16) reduces to Eq. (15) with 𝛼 = 1. The parameter 𝛼 determines how many units of risk 

must be reduced with an investment of one unit of costs, i.e. the required marginal risk 

reduction. In other words, 1/𝛼 is the maximal acceptable marginal cost of reducing risk by 

one unit. Higher values of 𝛼 will lead to smaller investments in risk protection.  

The parameter 𝛼 is a coordination criterion, which can be set at the system level to optimize 

the distribution of resources among subsystems. As we will show in Section 3.2.1, it leads to 

optimal solutions at the system level. 



Cost-benefit analysis for optimization of risk protection (Špačková & Straub) 14/29 

The criteria of Eq. (15) and Eq. (16) uniquely define an optimal solution when 𝑅  is a 

differentiable, convex function of 𝐶 (Figure 6a). When the function is not convex, multiple 

local optima may exist, and the global optimum has to be identified among these local 

maxima. The same applies if the function is not differentiable and in the discrete case. In the 

unconstrained case, i.e. with 𝛼 = 1, the global optimum is the local optimum that minimizes 

𝑅 − 𝐶. This solution can be found graphically. When plotting the line −𝛿𝑅 = 𝛿𝐶 through the 

global maxima, no other feasible solution can be to the left of this line, as illustrated in Figure 

6b. By extending this graphical solution to the case with 𝛼 > 1 (Figure 6a), we obtain a more 

general marginal cost criterion that is applicable in all cases. 

 

 

Figure 6. Illustration of the marginal cost criterion for the continuous case; (a) with 𝑅 being a convex, 
differentiable function of 𝐶 for 𝛼 = 1 and 𝛼 = 3; (b) with 𝑅 being a general function of 𝐶 for 𝛼 = 1. 

In the discrete case (and for non-differentiable continuous functions), the marginal cost is not 

defined. However, we extend the marginal cost criterion to these situations, based on the 

graphical solution discussed above. We identify the optimal strategy for a required efficiency 

𝛼 graphically, by shifting the line with gradient −𝛼 from the origin to the right (see Figure 7). 

The optimal solution is the one that is first reached by this line. For the example of Figure 7, 

the optimal solution for 𝛼 = 2  corresponds to strategy 𝑆2 . Computationally this can be 

implemented by finding the strategy whose distance 𝑑𝛼  in the direction perpendicular to this 

line (see Figure 7) is minimal for given 𝛼. The distance 𝑑𝑗
𝛼 associated with the pair 𝐶(𝑆𝑗) and 

𝑅(𝑆𝑗) is 𝑑𝑗
𝛼 = 𝐶(𝑆𝑗)

𝛼

√𝛼2+1
+ 𝑅(𝑆𝑗)

1

√𝛼2+1
. The optimal strategy is thus the one found by the 

following minimization: 

min
𝑗

𝑑𝑗
𝛼 =

1

√𝛼2 + 1
min

𝑗
[𝛼𝐶(𝑆𝑗) + 𝑅(𝑆𝑗)] (17) 

Since the constant 1 / √𝛼2 + 1  is irrelevant, the optimal solution is the one minimizing 

𝛼𝐶(𝑆𝑗) + 𝑅(𝑆𝑗). 

The approach is general, i.e. it can also be applied in the continuous case, when it is necessary 

to select among different local optima or when the relation between risk and cost is described 
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by a non-differentiable function. For convex differentiable functions, it will identify the 

solution in accordance with Eq. (16).  

 

 

Figure 7. Illustration of the generalized marginal cost criterion for the discrete case. 𝑆2 is the optimal 
strategy for a marginal cost criterion 𝛼 = 2. 

While the marginal cost is not defined for discrete strategies, it is possible to provide an 

interval of the efficiency parameter 𝛼 for which a strategy is optimal, as illustrated in Figure 8. 

From this figure it can also be observed that the MC criterion only identifies those strategies, 

which lie on the convex envelope of the set of all Pareto optimal strategies. The strategy 𝑆3 in 

Figure 8 is not optimal for any value of 𝛼, even though it is a Pareto optimal solution. 

 

 

Figure 8. Intervals of the efficiency parameter 𝛼 for which specific solutions are optimal.  

For the discrete case, the generalized marginal cost criterion following Eq. (17) leads to the 

same solution as the incremental BCR algorithm described in Section 3.1. That algorithm also 

identifies only solutions that lie on the convex envelope of the set of all Pareto optimal 

strategies, and for required values of 𝐵𝐶𝑅𝑟𝑒𝑞 equal to 𝛼, the optimal strategy identified with 
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the two methods is the same. This can be observed when applying the incremental BCR 

algorithm to the example of Figure 8. For 𝐵𝐶𝑅𝑟𝑒𝑞 > 3, 𝑆1 will be optimal because none of the 

other solutions has 𝐵𝐶𝑅𝑖𝑛𝑐𝑟 > 3 with respect to 𝑆1. Analogously, for 3 > 𝐵𝐶𝑅𝑟𝑒𝑞 > 1.5, 𝑆2 

will be optimal because 𝑆3  and 𝑆4  do not have 𝐵𝐶𝑅𝑖𝑛𝑐𝑟 > 1.5  with respect to 𝑆2  and for 

𝐵𝐶𝑅𝑟𝑒𝑞 < 1.5, 𝑆4 will be optimal. For 𝐵𝐶𝑅𝑟𝑒𝑞 = 1.5 and 𝐵𝐶𝑅𝑟𝑒𝑞 = 3, the two strategies 𝑆2 

and 𝑆4, resp. 𝑆1 and 𝑆2, are equivalent. The solutions are thus equal to those identified with 

the proposed generalized marginal cost criterion.  

3.2.1 Derivation of the MC criterion for system optimization  

We show that the application of the MC criterion at the subsystem level leads to the optimal 

solution at the system level for the continuous differentiable case. The system optimization 

problem for a continuous case was stated in Eq. (7). By changing the minimization to a 

maximization problem and by reformulating the constraint to an equality constraint by the use 

of a so-called slack variable 𝑏 (Jordaan, 2005; Nocedal and Wright, 2006), the optimization is 

formulated as follows: 

max
𝑙1,𝑙2…𝑙𝑁

[− ∑ (𝐶𝑖(𝑙𝑖) + 𝑅𝑖(𝑙𝑖))
𝑁

𝑖=1
] 

s. t.  ∑ 𝐶𝑖(𝑙𝑖) + 𝑏2 =

𝑁

𝑖=1

 𝐶𝑚𝑎𝑥 

(18) 

where 𝑅𝑖(𝑙𝑖) and 𝐶𝑖(𝑙𝑖) are the net present values of risk and cost in the 𝑖th region.  

We formulate the Lagrangian function:  

𝐿(𝑙1, 𝑙2, … , 𝑙𝑁, 𝜆, 𝑏) = − ∑ (𝐶𝑖(𝑙𝑖) + 𝑅𝑖(𝑙𝑖))
𝑁

𝑖=1
− 𝜆 [ ∑ 𝐶𝑖(𝑙𝑖)

𝑁

𝑖=1
+ 𝑏2 − 𝐶𝑚𝑎𝑥] (19) 

By differentiating the Lagrangian function with respect to each variable, the following 

conditions for optimality are obtained: 

𝜕𝐿

𝜕𝑙𝑖
= −

𝜕𝑅𝑖(𝑙𝑖)

𝜕𝑙𝑖
−

𝜕𝐶𝑖(𝑙𝑖)

𝜕𝑙𝑖
− 𝜆

𝜕𝐶𝑖(𝑙𝑖)

𝜕𝑙𝑖
= 0,     𝑖 = 1, … , 𝑁 (20) 

𝜕𝐿

𝜕𝜆
= − ∑ 𝐶𝑖(𝑙𝑖)

𝑁

𝑖=1
− 𝑏2 + 𝐶𝑚𝑎𝑥 = 0 

(21) 

𝜕𝐿

𝜕𝑏
= −2𝜆𝑏 = 0 

(22) 

Eq. (20) can be rewritten to 

𝜕𝑅𝑖(𝑙𝑖)

𝜕𝐶𝑖(𝑙𝑖)
= −(1 + 𝜆),     𝑖 = 1, … , 𝑁 (23) 
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We note that (1 + 𝜆) is equal to the required efficiency 𝛼 of Eq. (16). 

Eq. (21) corresponds to the initial constraint. Eq. (22) holds if  

𝜆 = 0 ∪  𝑏 = 0 (24) 

We can thus distinguish two cases: (a) When 𝜆 = 0 , sufficient budget is available to 

implement the optimal risk protection in all subsystems. The condition of Eq. (23) is equal to 

Eq. (15), i.e. the optimal protection in all subsystems has marginal cost equal to one. (b) 

When 𝑏 = 0, the full budget is used. In this case it is 𝜆 ≥ 0 and the required efficiency in all 

subsystems is  𝛼 = (1 + 𝜆) ≥ 1. This shows that the optimal solution at the system level is 

found as one where the required efficiency 𝛼 in Eq. (16) is the same in all subsystems.  

Unfortunately, this derivation cannot be extended to the proposed generalized marginal cost 

criterion, which is applicable to discrete sets of risk protection strategies and to non-

differentiable continuous functions. In fact, as we show in the numerical example of Section 4, 

in the discrete case the marginal cost criterion (and thus the incremental BCR) is not able to 

identify the optimal solution at the system level for all budget levels. However, from the 

generalized marginal cost criterion, Eq. (17), it follows that the total cost 𝐶 = ∑ 𝐶(𝑆𝑖)𝑖  and 

total risk 𝑅 = ∑ 𝑅(𝑆𝑖)𝑖  of the identified solution minimize 𝛼𝐶 + 𝑅. Therefore, there is no 

other solution with simultaneously lower total cost 𝐶 and lower total risk 𝑅. Any solution 

identified with the marginal cost criterion is thus a Pareto optimal solution at the system level. 

In other words, the generalized MC criterion is not able to identify all Pareto optimal 

solutions on the system level, but the solutions that are identified with this criterion are Pareto 

optimal at the system level. 

4 Numerical investigation 

This numerical study is motivated by our work on defining procedures for optimizing flood 

protection measures in multiple regions that are managed by one government agency 

(Špačková et al., 2014). We consider a set of 6 regions (subsystems), in which optimal risk 

mitigation strategies should be identified. The identification of possible strategies and the 

assessment of the risks and costs associated with these strategies take place at the regional 

level, but the budget is administered by the agency. The utilized input data are hypothetical, 

but they are based on real case studies and they thus reflect an achievable ratio between risk 

reduction and costs.   

In each region, a set of candidate strategies have been identified, including a Null option 𝑛 

(no measures are taken), the option of maintaining the current level of protection 𝑐 and two to 

three alternative protection strategies 𝑥, 𝑦, 𝑧. For all strategies, the net present value of risk 

and cost are evaluated. These values are summarized in Table 1. Exemplarily, the risks and 

costs of strategies identified for regions 1 and 3 are shown in Figure 9. The risk protection in 

all regions is financed from a common budget 𝐶𝑚𝑎𝑥. We aim to select one strategy in each 

region to minimize the sum of the net present value of risk and costs over all regions, so that 

the total costs do not exceed 𝐶𝑚𝑎𝑥, following Eq. (10).  
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Table 1. Net present value of risk and cost of alternative strategies in the six analyzed regions [x106 
Euro]. 

Strategy   Region: i=1 i=2 i=3 i=4 i=5 i=6 

Null opt. (n) j=1 Risk, 𝑅𝑖(𝑆𝑖𝑗) 34.50  0.90 92.40 8.75 3.50 17.20 
  Cost, 𝐶𝑖(𝑆𝑖𝑗) 0 0 0 0 0 0 
Current state (c) j=2 Risk, 𝑅𝑖(𝑆𝑖𝑗) 11.50 0.50 44.00 2.50 1.40 8.60 
  Cost, 𝐶𝑖(𝑆𝑖𝑗) 10.00 0.01 10.00 3.10 0.90 8.00 
Option x j=3 Risk, 𝑅𝑖(𝑆𝑖𝑗) 0.35 0.76 50.00 0.03 0.01 4.30 
  Cost, 𝐶𝑖(𝑆𝑖𝑗) 17.00 0.002 8.00 6.00 1.12 10.00 
Option y j=4 Risk, 𝑅𝑖(𝑆𝑖𝑗) 0.05 0.03 0.69 0.025 0.01 0.10 
  Cost, 𝐶𝑖(𝑆𝑖𝑗) 18.80 0.009 19.00 7.00 1.2 15.00 
Option z j=5 Risk, 𝑅𝑖(𝑆𝑖𝑗) - 0.01 0.45 - - 0.005 
  Cost, 𝐶𝑖(𝑆𝑖𝑗) - 0.02 23.00 - - 30.00 

 

 

Figure 9. Net present value of risk and cost for identified strategies in regions 1 and 3.  

The optimization of the risk protection strategies is carried out with five different evaluation 

methods: 

1) 𝐵𝐶𝑅𝐼, which is defined with respect to the current state according to Eq. (12). The 

Null option is not considered a feasible strategy in this case.   

2) 𝐵𝐶𝑅𝐼𝐼, which is defined with respect to the Null option following Eq. (13). 

3) 𝐵𝐶𝑅𝐼𝐼𝐼 , which is defined with respect to the current state, but the cost for 

maintaining the current level of protection is neglected as shown in Eq. (14). 

In methods 1-3, the optimum is found by maximizing the BCR following Eq. (11). 

4) 𝑀𝐶, the marginal cost criterion following Eq. (17). 

5) Complete search, which is obtained by evaluating all possible combinations of 

strategies in all regions.  

It is noted that the complete search is not applicable in practice, where the strategies in 

different regions are not evaluated jointly. It is included here to provide the reference solution, 

which allows assessing the other methods.  
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Section 4.1 presents results of an unconstrained optimization with these five evaluation 

methods. Sections 4.2 and 4.3 compare the results of an optimization constrained with 

maximum budget 𝐶𝑚𝑎𝑥.  

4.1 Results of unconstrained optimization 

The results of the unconstrained optimization are summarized in Table 2. It shows for each 

method the total cost 𝐶 = ∑ 𝐶𝑖(𝑆𝑖)𝑖  and the total residual risk 𝑅 = ∑ 𝑅𝑖(𝑆𝑖)𝑖  of the 

identified optimal solution and the sum of total risk and costs 𝑅 + 𝐶. In the unconstrained 

optimization, 𝐵𝐶𝑅𝑟𝑒𝑞 and 𝛼 are equal to 1. 

Table 2. Portfolios selected with different methods for unconstrained optimization. [x106 Euro]. 

Method Criterion Strategies 𝐶 𝑅 𝑅 + C 

1. 𝐵𝐶𝑅𝐼 – Current state 𝐵𝐶𝑅𝑟𝑒𝑞 = 1 x,z,y,c,x,x 50.32 7.86 58.18 
2. 𝐵𝐶𝑅𝐼𝐼 – Null option 𝐵𝐶𝑅𝑟𝑒𝑞 = 1 c,y,x,c,x,x 32.31 68.34 100.65 
3. 𝐵𝐶𝑅𝐼𝐼𝐼 – Current st.excl.cost 𝐵𝐶𝑅𝑟𝑒𝑞 = 1 x,y,y,x,x,y 58.21 1.21 59.42 
4. MC 𝛼 = 1 x,z,y,c,x,x 50.32 7.86 58.18 
5. Complete search  x,z,y,c,x,x 50.32 7.86 58.18 

 

As expected, the MC criterion identifies the optimal solution (as found by a complete search). 

The 𝐵𝐶𝑅𝐼 also identifies this optimal solution, whereas 𝐵𝐶𝑅𝐼𝐼 and 𝐵𝐶𝑅𝐼𝐼𝐼 do not. Clearly, the 

definition of the reference option has a significant influence on the solutions identified with 

the BCR criterion. With the Null option as a reference (𝐵𝐶𝑅𝐼𝐼), inexpensive strategies are 

identified, which lead to a strongly sub-optimal solution with high residual risks. In contrast, 

𝐵𝐶𝑅𝐼𝐼𝐼 leads to a more expensive and conservative solution, which however is close to the 

optimal solution in terms of 𝐶 + 𝑅.   

4.2 Results of optimization with a limited budget 𝑪𝒎𝒂𝒙 = 𝟑𝟓 × 𝟏𝟎𝟔 Euro. 

Table 3 summarizes the results of the optimization constrained by a limited budget of 𝐶𝑚𝑎𝑥 =
35 × 106 Euro. The coordination parameters BCR or 𝛼 are varied to find those whose total 

cost 𝐶 most closely comply with the budget constraint.  

None of the methods 1–3 using the BCR identifies the optimal solution (complete search), 

only the marginal cost criterion does (method 4). This solution is obtained with the MC 

criterion set to 𝛼 = 1.9.  

All three methods based on the BCR identify suboptimal solutions that have similar costs, but 

imply a risk that is more than double that of the optimal solution. The corresponding 

minimum required BCR values differ substantially among the different BCR definitions, from 

1.2 to 4.9.  
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Table 3. Portfolios selected with different methods. Optimization constrained with a budget 𝐶𝑚𝑎𝑥 =
35 × 106 Euro. All values in [x106 Euro]. 

Method Criterion Strategies 𝐶 𝑅 𝑅 + C 

1. 𝐵𝐶𝑅𝐼 – Current state 𝐵𝐶𝑅𝑟𝑒𝑞 = 4.9 c,z,c,c,c,c 32.02 68.01 100.03  
2. 𝐵𝐶𝑅𝐼𝐼 – Null option 𝐵𝐶𝑅𝑟𝑒𝑞 = 1.2 c,y,x,c,x,x 32.31 68.34 100.65 
3. 𝐵𝐶𝑅𝐼𝐼𝐼 – Current st.excl.cost 𝐵𝐶𝑅𝑟𝑒𝑞 = 2.3 c,y,c,c,c,c 32.01 68.03 100.04 
4. MC 𝛼 = 1.9 c,z,y,c,x,n 33.32 31.91 65.23 
5. Complete search  c,z,y,c,x,n 33.32 31.91 65.23 

 

The solutions identified with the BCR perform poorly mainly because of the suboptimal 

strategies identified in region 3 (see Figure 9). By applying the BCR as a coordination 

parameter and requiring the same minimum BCR in all regions, the optimal strategy 𝑦 in 

region 3 is rejected since its BCR is less than the minimum or, in case of 𝐵𝐶𝑅𝐼𝐼, is less than 

that of strategy 𝑥.  

4.3 Results of optimization for different levels of budget 𝑪𝒎𝒂𝒙 

Extending the results of section 4.2, the constrained optimization is carried out for varying 

budget constraints 𝐶𝑚𝑎𝑥 = {1,2, … ,51} × 106 Euro. Figure 10 shows the total residual risk for 

all analysed regions that is achieved with different budget constraints, with the strategies 

identified using methods 1–5. In Table 4–Table 8, the selected strategies are listed separately 

for the five different methods, together with the corresponding total cost 𝐶 = ∑ 𝐶𝑖(𝑆𝑖)𝑖  and 

total residual risk 𝑅 = ∑ 𝑅𝑖(𝑆𝑖)𝑖  of the identified optimal solution and the sum of risk and 

cost 𝑅 + C.  

For the complete search (Table 4), not all possible solutions are listed, because these were 

evaluated by varying the available budget 𝐶𝑚𝑎𝑥 in increments of 106€. For example, there are 

multiple solutions with total costs 𝐶  in the interval (8,9]. With the selection of smaller 

increments, more solutions could have been found. On the other hand, for some levels of 

budget there is no solution that utilizes the entire available budget. For example, there is no 

combination of strategies that costs exactly 1x106 Euro; the optimal solution for an available 

budget of 𝐶𝑚𝑎𝑥 = 106 Euro costs 0.92x106 Euro. 
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Figure 10. Total residual risk R versus cost C in all six regions, obtained by varying the available 
budget 𝐶𝑚𝑎𝑥 . Comparison of the four investigated methods and the reference solution provided by the 
complete search.   

When applying any of the four investigated methods with coordination parameters, the total 

number of solutions is reduced significantly relative to the complete search. With 𝐵𝐶𝑅𝐼 five 

solutions are identified (Table 5) and with the MC approach nine solutions are found (Table 

8). For most budget levels, the methods do not allow to fully exploit the available budget. For 

example, they are unable to identify a combination of strategies with total cost between 

10x106 Euro and 19x106 Euro, even if these exist as seen from the complete search.  

All solutions identified with the MC criterion are also solutions that can be found with the 

complete search. (Note that this is not evident from comparing Table 8 with Table 4, because 

Table 4 does not contain all solutions of the complete search but only those that are found for 

budget levels that are multiples of 103 Euro.) As discussed in Section 3.2.1, the solutions 

found with the MC criterion are a subset of the Pareto optimal solutions at the system level. 

Comparison of Table 4 with Table 8 shows which of the solutions are omitted with the MC 

criterion: With increasing budget, the protection level of the strategies identified in the 

individual regions with the MC criterion always rises. For example, in region 5, the Null 

option 𝑛 is selected for budgets up to 20x106 Euro (for 𝛼 ≥ 3) and strategy 𝑥 for budgets of 

21x106 Euro and higher (for 𝛼 ≤ 2.9). In contrast, with the complete search, the protection 

level of the selected strategies varies with increasing budget. In region 5, the Null option 𝑛 is 

selected for a budget of 1x106 Euro, the current state 𝑐 for a budget of 2x106 Euro, strategy 𝑥 

for a budget of 3x106 Euro, and the current state is again selected for a budget of 4x106 Euro. 

In this region, strategies with higher protection level are selected to utilize the remaining 

budget. The solutions that are identified with the complete search but not with the MC 

criterion are thus rather unstable. In some regions (here regions 2, 4 and 5), a higher 

protection level is often selected to fully use the given budget, but if a slightly higher budget 

was available, the money should optimally be invested in other regions where measures are 

more expensive. In practice it might thus be beneficial not to implement such solutions found 

with the complete search. Instead, the non-allocated part of the budget may be saved for 

increasing the protection level through more efficient yet more expensive strategies in other 

regions when additional resources becomes available. The MC criterion allows identifying 
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such solutions and the fact that it not always exploits the available budget completely may 

therefore be beneficial in practice.  

In Figure 10 it can further be observed that all three BCR criteria partially identify suboptimal 

solutions, i.e. they find solutions for which there exist alternative solutions with 

simultaneously lower cost and lower risk. This is most evident for a maximum budget close to 

35 × 106€, which is the case already presented in Section 4.2. 

Table 4. Results of the parametric study – complete search: strategies selected in individual regions 
for different levels of budget. All values in [x106 Euro]. 

Budget Strategies     𝐶 𝑅 𝑅 + C 

0 n,  n, n, n, n, n 0 157.25 157.25 
1 n, z, n, n, c, n  0.92 154.26 155.18 
2-3 n, z, n, n, x, n 1.22 152.87 154.09 
4 n, n, n, c, c, n 4 148.9 152.90 
5-7 n, z, n, c, x, n 4.32 146.62 150.94 
8 n, n, x, n, n, n 8 114.85 122.85 
9 n, z, x, n, c, n 8.92 111.86 120.78 
10 n, n, c, n, n, n 10 108.85 118.85 
11 n, z, c, n, c, n 10.92 105.86 116.78 
12-13 n, z, c, n, x, n 11.22 104.47 115.69 
14 n, n, c, c, c, n 14 100.5 114.50 
15-17 n, z, c, c, x, n 14.32 98.22 112.54 
18 c, n, x, n, n, n 18 91.85 109.85 
19 n, n, y, n, n, n 19 65.54 84.54 
20 n, z, y, n, c, n 19.92 62.55 82.47 
21-22 n, z, y, n, x, n 20.22 61.16 81.38 
23 n, n, y, c, c, n 23 57.19 80.19 
24-28 n, z, y, c, x, n 23.32 54.91 78.23 
29 c, n, y, n, n, n 29 42.54 71.54 
30 c, z, y, n, c, n 29.92 39.55 69.47 
31-32 c, z, y, n, x, n 30.22 38.16 68.38 
33 c, n, y, c, c, n 33 34.19 67.19 
34-37 c, z, y, c, x, n 33.32 31.91 65.23 
38-39 x, z, y, n, x, n 37.22 27.01 64.23 
40 x, n, y, c, c, n 40 23.04 63.04 
41-48 x, z, y, c, x, n 40.32 20.76 61.08 
49 x, z, y, c, x, c 48.32 12.16 60.48 
50 x, n, y, c, c, x 50 10.14 60.14 
51 x, z, y, c, x, x 50.32 7.861 58.18 

Table 5. Results of the parametric study – 𝐵𝐶𝑅𝐼 ≥ 𝐵𝐶𝑅𝑟𝑒𝑞 criterion (BCR calculated with respect to 
the current state): strategies selected in individual regions for different values of 𝐵𝐶𝑅𝑟𝑒𝑞. All values 
in [x106 Euro]. 

𝐵𝐶𝑅𝑟𝑒𝑞 Budget Strategies  𝐶 𝑅 𝑅 + C 

≥4.9 33-41 c, z, c, c, c, c 32.02 68.01 100.03  
4.7-4.8 - c,  z, y, c, c, c 41.02 24.70 65.72 
2.2-4.6 42-43 c,  z, y, c, x, c 41.32 23.31 64.63 
1.6-2.1 44-50 c,  z, y, c, x, x 43.32 19.01 62.33 
1.0-1.5 ≥51 x,  z, y, c, x, x 50.32 7.86 58.18 
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Table 6. Results of the parametric study – 𝐵𝐶𝑅𝐼𝐼 ≥ 𝐵𝐶𝑅𝑟𝑒𝑞 criterion (BCR calculated with respect to 
the Null option): strategies selected in individual regions for different values of 𝐵𝐶𝑅𝑟𝑒𝑞, All values in 
[x106 Euro]. 

𝐵𝐶𝑅𝑟𝑒𝑞 Budget Strategies  𝐶 𝑅 𝑅 + C 

≥5.3 1-8 n,  y, n, n, n, n 0.01 156.38 156.39 
3.0-5.2 9 n,  y, x, n, n, n 8.01 113.98 121.99 
2.4-2.9 10-19 n,  y, x, n, x, n 9.21 110.49 119.70 
2.1-2.3 20-22 n,  y, x, n, x, n 19.21 87.49 106.70 
1.3-2.0 23-32 c,  y, x, c, x, n 22.31 81.24 103.55 
1.0-1.2 ≥33 c, y, x, c, x, x 32.31 68.34 100.65  

 

Table 7. Results of the parametric study – 𝐵𝐶𝑅𝐼𝐼𝐼 ≥ 𝐵𝐶𝑅𝑟𝑒𝑞 criterion (BCR calculated with respect to 
the current state excluding the cost of the current state): strategies selected in individual regions for 
different values of 𝐵𝐶𝑅𝑟𝑒𝑞, All values in [x106 Euro]. 

𝐵𝐶𝑅𝑟𝑒𝑞 Budget Strategies   𝐶 𝑅 𝑅 + C 

≥2.3 33-41 c, y, c, c, c, c 32.01 68.03 100.04  
1.2-2.2 - c, y, y, c, c, c 41.01 24.72 65.73 
1.0-1.1 ≥42 c, y, y, c, x, c 41.31 23.33 64.64 

Table 8. Results of the parametric study – MC criterion: strategies selected in individual regions for 
different required 𝛼. All values in [x106 Euro]. 

α Budget Strategies  𝐶 𝑅 𝑅 + C 

≥5.3 1-8 n,  y, n, n, n, n 0.01 156.38 156.39 
4.5-5.2 9-19 n,  y, x, n, n, n 8.01 113.98 121.99 
3.0-4.4 20 n,  y, y, n, n, n 19.01 64.67 83.68 
2.3-2.9 21-30 n,  y, y, n, x, n 20.21 61.18 81.39 
2.1-2.2 31-33 c,  y, y, n, x, n 30.21 38.18 68.39 
2.0 - c, y, y, c, x, n 33.31 31.93 65.24 
1.6-1.9 34-40 c, z, y, c, x, n 33.32 31.91 65.23 
1.3-1.5 41-50 x, z, y, c, x, n 40.32 20.76 61.08 
1.0-1.2 ≥51 x, z, y, c, x, x 50.32 7.86 58.18 

5 Discussion 

We have described a quantitative framework for optimal allocation of resources for risk 

protection in a system where the actual measures are planned at the subsystem level, but the 

budget is limited at the system level (Figure 3). Using concepts from hierarchical optimization, 

we showed that Pareto optimal solutions can be obtained by selecting in each subsystem a 

strategy that complies with a required marginal cost (MC) criterion 𝛼  (Section 3.2.1). Its 

value must be prescribed at the system level by a coordinator, prior to selecting the strategies 

in individual subsystems. However, determining the required α is not possible without prior 

knowledge of situation in the subsystems (i.e. the costs of protection measures and residual 

risk) and the available budget. In the classical theory of hierarchical optimization, the 

optimization is carried out iteratively (see Section 2.1.1): the coordinator prescribes an initial 

value of the coordination parameter, the optimizations in individual subsystems are carried 

out and the results are returned to the coordinator who then adjusts the coordination parameter; 

this process is repeated until an optimum at the system level is achieved. However, when 

planning risk protection strategies in practice, such an iterative process is typically infeasible, 

and decision criteria must be prescribed a-priori. Therefore, basic data on the system 
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(approximate risk in individual subsystems, approximate cost of potential protection measures) 

must be gathered and an initial value of α should be selected based on these prior information. 

If results of risk analyses from at least some subsystems are available, they may be 

extrapolated to the whole system. Otherwise, representative subsystems should be selected 

and analysed prior to making any decision on α. Once the method is implemented, the value 

of α should be regularly adjusted based on the available results from risk analyses, accounting 

additionally for political and organizational constraints.  

As discussed in Section 2.1.2, in practice only a limited number of strategies can be evaluated 

for most applications. This is because the identification of options and the assessment of their 

effects on the risk are typically time-consuming. They often require extensive modelling and 

numerical analysis efforts. Moreover, cost estimates for all proposed measures are required. 

One has therefore strong incentives for keeping the number of evaluated strategies low. 

Conversely, if only few strategies are considered, or if they are not selected appropriately, it is 

likely that the optimal one is not included in the set of investigated strategies. To deal with 

these contradicting goals, it is recommendable to use a two-phase process for identifying risk 

protection strategies in subsystems (Špačková et al., 2014). In a first phase, the strategies are 

evaluated in a less detailed, approximate manner and an optimal protection level is selected. 

In the second phase, a detailed assessment of the risk protection strategies around the optimal 

protection level is carried out.   

In this paper the optimization is carried out based on expected values of risk (and cost). The 

attitude of the decision-maker to risk (e.g. risk aversion) should ideally be taken into account 

by means of the expected utility concept (see Section 2). The generalized marginal cost 

criterion should then be extended to a marginal utility criterion. In practice, however, utility 

functions for multiple decision-makers, societies and for varying types of decisions are not 

readily available, and may be difficult to obtain also in the long run. Societies preferences 

towards risk beyond the expected monetary costs may thus be better dealt by risk acceptance 

criteria, which may be added as additional constraints to the optimization. 

In engineering risk assessments, commonly only tangible damages are taken into account and 

other consequences of hazard and failures events are disregarded. The risk reduction achieved 

with the protection strategies is thus likely to be underestimated (Messner and Meyer, 2005). 

Additionally, the dependence of benefits on the protection level is neglected in most analyses 

(see Section 2); a pioneering study taking into account this aspect for flood risk management 

has been published by Mori and Perrings (2012). The assumption of constant benefits can be 

unrealistic; e.g. the protection of a region against natural hazards entails benefits to society or 

the owner, because it enables societal and economic activity that would not be possible 

without the protection. Neglecting the dependence of benefits on the protection level can thus 

lead to an underestimation of the efficiency of the risk protection. The methodology for 

damage assessment and for including benefits of the risk protection beyond the risk reduction 

should be further investigated, especially for the field of public decisions.  

In this paper, we considered the risk optimization problem from a global perspective of an 

overarching authority (state agency, company management). The problem of conflicting 

objectives of different stakeholders has not been discussed. This aspect can be addressed by 

the formulation of the objective function or it can be reflected in the way the damages, costs 

and benefits are estimated. What is considered as damage/cost by one stakeholder may not be 

relevant for other stakeholders. Additionally, the problem of equity, i.e. the fair distribution of 

resources and risks within the system, has not been considered in the presented solution. The 

equity issue is an important and relevant topic for public investments, where the solutions 

based on monetized costs and benefits tend to be advantageous for richer groups of the society. 
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Solutions for including equity considerations into the optimization of risk protection have 

been discussed for example in Shan and Zhuang (2013) and Zhou et al. (2012). 

We considered risk protection measures in general terms, without distinguishing their specific 

types. Engineers typically design structural measures; exemplarily, for flood hazards these 

include flood barriers, reservoirs or enhanced protection of the elements at risk. 

Simultaneously, governments attempt to influence the development in the flood prone areas 

by zoning restrictions and land use planning (Surminski, 2009; Paudel et al., 2013). To 

stimulate an optimal land use, different economic instruments such as insurance schemes, 

taxes and compensations have been developed (Bräuninger et al., 2011). Engineering 

measures and land use policies relate closely to each other and they should be optimized 

jointly, but this is not commonly done in practice and has rarely been considered in research. 

6 Conclusion 

The problem of selection of optimal risk protection strategies under budget constraints was 

formulated as a discrete hierarchical optimization. The aim is to find an optimal combination 

of protection strategies in individual subsystems (e.g. administrative units) minimizing the 

sum of risk and cost at the system level (e.g. state agency). It was considered that the system 

cannot be optimized as a whole, because the planning of the protection measures is carried out 

independently in the individual subsystems (by different analysts and/or at different times). 

The problem is furthermore constrained by the limited budget available for risk protection that 

can be distributed amongst the subsystems.  

It was shown that the optimal allocation of resources can be achieved by using the marginal 

cost (MC) criterion as the coordination criterion in the hierarchical optimization. By selecting 

strategies that have the same marginal cost in all subsystems, the optimum on the system level 

is ensured. We generalized the MC criterion to discrete problems, where it corresponds to the 

incremental benefit-cost ratio (BCR).  

The average BCR criterion, which is broadly used in practice, was shown to be inappropriate 

as an optimization parameter. This was also demonstrated by a numerical example of six 

subsystems, representing individual catchments endangered by floods. The results of the 

optimization obtained using the BCR and MC criteria were compared to a reference solution. 

The results showed that the solutions obtained with the BCR criteria were suboptimal for 

some budget constraints, while all solutions identified with MC criterion corresponded to the 

reference solution. Additionally, the BCR is not defined uniquely in different studies, because 

the selected reference option utilized in BCR is not always the same. As a consequence, 

utilization of BCR for comparing the efficiency of investments against different risks (e.g. 

earthquake vs. flood protection) can be misleading, whereas the generalized MC criterion 

enables a consistent comparison of risk mitigation efficiency among different domains. 
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