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Abstract  

The design storm approach with event-based rainfall-runoff models is a standard method for design 

flood estimation in ungauged catchments. The approach is conceptually simple and 

computationally inexpensive, but the underlying assumptions can lead to flawed design flood 

estimations. In particular, the implied average recurrence interval (ARI) neutrality between rainfall 

and runoff neglects uncertainty in other important parameters, leading to an underestimation of 

design floods. The selection of a single representative critical rainfall duration in the analysis leads 

to an additional underestimation of design floods. One way to overcome these non-conservative 

approximations is the use of a continuous rainfall-runoff model, which is associated with 

significant computational cost and requires rainfall input data that are often not readily available. 

As an alternative, we propose a novel Probabilistic Design Storm method that combines event-

based flood modelling with basic probabilistic models and concepts from reliability analysis, in 

particular the First-Order Reliability Method (FORM). The proposed methodology overcomes the 

limitations of the standard design storm approach, while utilizing the same input information and 

models without excessive computational effort. Additionally, the Probabilistic Design Storm 

method allows deriving so called Design Charts, which summarize representative design storm 

events (combinations of rainfall intensity and other relevant parameters) for floods with different 

return periods. These can be used to study the relationship between rainfall and runoff return 

periods. We demonstrate, investigate and validate the method by means of an example catchment 

located in the Bavarian Pre-Alps, in combination with a simple hydrological model commonly used 

in practice.  

 

Keywords: Design storm approach; First Order Reliability Method; Flood Frequency; Flood 

exceedance probability; Design flood; Probabilistic Design Storm method 

 

1 Introduction 

The estimation of a design flood, represented by an annual maximum peak discharge with a fixed 

return period (often the 100-year event), is an important task in engineering hydrology. Design 

flood estimates are used for flood risk management and for the design of structures such as dams, 

bridges, culverts or dykes. In many catchments, discharge measurements are not available as a 

basis for a statistical estimation of design floods. One class of methods to estimate design floods 

in these ungauged catchments utilizes regionalization of flood frequencies from gauged basins 

[Shaw et al., 2011]. More frequently, in ungauged basins, rainfall-runoff models are utilized to 

derive design floods from rainfall statistics. Among these, the design storm approach is the most 

commonly used method in ungauged basins for determining design floods in engineering practice 

[Pathiraja et al., 2012].  
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The broad use of the design storm approach is due to its simplicity and low computational cost, as 

well as the availability of input rainfall data in form of Intensity Duration Frequency (IDF) or Depth 

Duration Frequency (DDF) curves, which are provided by meteorological services in most 

countries. With this approach, a rainfall input of a specific return period is transformed to a peak 

discharge using event-based rainfall-runoff models [Viglione et al., 2009]. The two major 

assumptions underlying the classical design storm approach are [Rahman et al., 2002]: 1) the 

corresponding rainfall-runoff events fulfill average-recurrence-interval (ARI) neutrality, which 

signifies that the return periods of concurrent rainfall and peak discharge are assumed to be the 

same, and 2) the design flood of a given return period can be estimated based on a single critical 

rainfall duration, i.e. the rainfall duration that generates the highest peak discharge. The first 

assumption is only a rough approximation because a rainfall event with a given return period leads 

to different peak discharges in function of other random parameters, such as the temporal rainfall 

pattern, antecedent wetness or spatial rainfall variability [Shaw et al., 2011; Verhoest et al., 2010]. 

The second assumption neglects the possible contribution of rainfall events of different durations 

on flood exceedance probabilities. As a results of these approximations, the design storm approach 

tends to underestimate flood probabilities [Viglione et al., 2009; Grimaldi et al., 2012b; Li et al., 

2014; Awadallah et al., 2015].  

The use of continuous rainfall-runoff models allows avoiding both assumptions underlying the 

design-storm concept [Camici et al., 2011]. A continuous time series of rainfall data is used as the 

model input, and the resulting discharge time series is statistically analyzed to determine the design 

flood with the target return period. This approach has been widely used in the scientific literature 

[Calver and Lamb, 1995; Cameron et al., 1999; Cameron et al., 2000; Lamb and Kay, 2004; 

Haberlandt et al., 2008; Blazkova and Beven, 2009; Grimaldi et al., 2012a; Pathiraja et al., 2012; 

Rogger et al., 2012]. Its major drawbacks are the high computational costs to simulate long time 

series of discharges in high temporal resolution and the need for sophisticated stochastic rainfall 

models to generate the rainfall time series as model input. Approaches to reduce computational 

cost have been proposed [Paquet et al., 2013; Lawrence et al., 2014; Li et al., 2014]. Nevertheless, 

in data scarce regions, the discharge data required to calibrate some of the rainfall-runoff models 

as well as the rainfall data to calibrate and the know-how to implement stochastic rainfall 

generators are not readily available. The approach is thus rarely used in practice.  

Probabilistic extensions of the design storm approach have been proposed in the literature that 

allow overcoming the assumption of ARI neutrality. They mostly use Monte Carlo Simulation 

(MCS) to model the uncertainty in the event-based rainfall-runoff model parameters. [Loukas et 

al., 1996] and [Loukas, 2002] consider the uncertainty in the temporal rainfall distribution and the 

infiltration abstraction parameter; [Aronica and Candela, 2007] combine a random rainfall depth 

of the critical rainfall duration with uncertainty in antecedent moisture conditions and a semi-

distributed SCS-CN approach; [Rahman et al., 2002] use probabilistic rainfall duration, rainfall 

intensity, rainfall pattern and initial loss; [Svensson et al., 2013] include the uncertainty in the 

rainfall duration, intensity, temporal pattern, inter-event arrival time, the initial flow and soil 
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moisture. The SHYREG method [Arnaud et al., 2015] models the uncertainty in the number of 

relevant rainfall events per year and generates these with a stochastic hourly rainfall generator. 

Like the continuous models, these approaches therefore require either a joint probabilistic model 

of rainfall duration and intensity or the utilization of rainfall generators for obtaining the rainfall 

inputs. Additionally, MCS is inefficient for modeling of events with high return period, which 

might lead to prohibitively large computational costs if an advanced rainfall-runoff model is used.  

In this paper, we propose an alternative methodology, termed Probabilistic Design Storm method, 

which corresponds to a probabilistic extension of the design flood estimation with an event-based 

rainfall-runoff model. It uses as inputs the readily available IDF/DDF curves for describing extreme 

rainfall events, which should make it easily applicable in engineering practice. The methodology 

is based on formulating the design flood estimation problem within a reliability analysis 

framework. In particular, it uses FORM (First-Order Reliability Method) [Rackwitz, 2001; 

Der Kiureghian, 2005] for evaluating the design flood, which is computationally efficient and 

provides useful insights into the importance of the input uncertainties. 

Reliability analysis aims at estimating the probability of rare events, which classically correspond 

to failures of a structure or a system [Melchers, 1999; Straub, 2014]. In the context of the design 

flood estimation, the rare event is the exceedance of a design flood. The corresponding annual 

exceedance probability is fixed (e.g. at 10−2 for the 100-year event), and the corresponding rare 

event (i.e. the design flood) is sought. This corresponds to an inverse reliability problem 

[Winterstein et al., 1993]. A reliability-based formulation of the peak discharge estimation has been 

introduced by [Melching, 1992], who uses FORM for computations. The analysis was made for a 

given rainfall event; the rainfall magnitude was therefore not considered as uncertain. FORM was 

furthermore applied by [Awadallah et al., 2015] in combination with the SCS-CN hydrological 

model to account for the uncertain rainfall-runoff model parameters and evaluate their effect on 

flood exceedance probabilities; however, only a single rainfall duration was considered. 

A major issue in probabilistic extensions of the design storm approach, which has not been dealt 

with previously, is that rainfalls of different durations can lead to the same design flood. In the 

standard deterministic design storm approach, this is not an issue; it is sufficient to select the most 

critical rainfall duration. In a probabilistic context, this approach leads to an underestimation of the 

probability of exceeding a discharge level 𝑄. Every rainfall duration can lead to 𝑄, albeit with 

smaller probability than the critical one. Neglecting this possibility leads to an underestimation of 

the exceedance probability associated with 𝑄, and hence to an underestimation of the design flood. 

As we demonstrate in this paper, system reliability analysis provides a straightforward answer to 

this challenge. By conceptually considering different rainfall durations as different mechanisms 

that can lead to the same rare event (the exceedance of the discharge level 𝑄), the problem is 

equivalent to the reliability analysis of a series system, for which standard solutions are available 

[Der Kiureghian, 2005].  
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In contrast to continuous simulations, the proposed method is computationally sufficiently efficient 

to be used in standard engineering applications. However, it is conceptually more demanding than 

the classical design storm approach; direct practical implementation would thus be fostered by 

implementation in a software package. Alternatively, the proposed approach can be used for 

calibrating the parameters of the classical design storm approach, similarly to [Camici et al., 2011], 

who used a continuous model for this purpose. To facilitate such a calibration and easy 

implementation in practice, we propose the use of design charts for recommending the optimal 

combination of input parameters to the deterministic design storm approach. The design charts 

display the most likely input parameter combinations to produce a discharge of a given return 

period. They can thus be interpreted as representative design scenarios for the design storm method.  

To perform numerical investigations, we implement the proposed methodology to a case study at 

the Trauchgauer Ach in Bavaria, Germany. We evaluate the modeling choices and compare the 

obtained results to the classical design storm approach and a flood frequency analysis of measured 

stream flow data, which illustrates the effects of the ARI neutrality assumption and the use of a 

critical rainfall duration. 

2 Methodology 

We introduce a Probabilistic Design Storm (PDS) approach for design flood estimation using 

event-based rainfall runoff models. First, a reliability-based formulation of the design flood 

problem is presented in Section 2.1. This formulation allows to account for multiple uncertainties 

in input parameters in the rainfall-runoff model, additionally to the random rainfall intensity. The 

choice of uncertain input parameters depends on the applied rainfall-runoff model; examples are 

soil moisture, temporal rainfall pattern, time of concentration, infiltration, interception and 

catchment vegetation. In Section 2.2, the principles of deriving IDF and DDF curves are described, 

which are important for understanding the relevance of multiple rainfall durations in the analysis. 

In Section 2.3, we propose a framework for including multiple rainfall durations in the probabilistic 

model. Computational methods to analyze the model are outlined in Section 2.4, particularly 

FORM. Section 2.5 introduces design charts as a tool to make use of the results of the Probabilistic 

Design Storm method in the standard design storm approach. In Section 2.6 the hydrological model 

implemented in the case study is summarized. 

2.1 Interpreting the design flood in the context of reliability analysis  

The design flood problem consists of defining the discharge that corresponds to a given return 

period. The 100-year event 𝑞100 corresponds to the annual maximum discharge 𝑄 with exceedance 

probability 1/100, i.e. Pr(𝑄 > 𝑞100) = 10−2 in any year. In ungauged basins, 𝑄 is estimated in 

function of (random) input parameters 𝐗 using a hydrological model. 
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The design flood problem is formulated within the reliability analysis framework, which aims at 

estimating probabilities of rare events. Here, the extreme event is {𝑄(𝐗) > 𝑞}, exceedance of a 

discharge 𝑞. For fixed model input parameters 𝐗 = 𝐱, 𝑄 is evaluated with the hydrological model 

and the event either occurs or does not. Therefore, {𝑄(𝐗) > 𝑞} corresponds to a domain in the 

outcome space of the input random variables, as illustrated in Figure 1. Exemplarily, the shaded 

area is the domain of {𝑄(𝐗) > 30 m3/s}. In reliability analysis, this is known as the failure domain. 

The probability of the rare event is 

Pr(𝑄(𝐗) > 𝑞) = ∫ 𝑓𝐗(𝐱) d𝐱
𝑞−𝑄(𝐗)≤0 

 (1) 

where 𝑓𝐗(𝐱) is the joint Probability Density Function (PDF) of the input random variables 𝐗. The 

integral computes the probability of being in the failure domain (the shaded domain of Figure 1). 

The boundary between the failure domain and the remaining outcome space is termed the limit 

state surface (LSS). It is mathematically defined by 

𝑞 − 𝑄(𝐗) = 0 (2) 

In Figure 1, multiple limit state surfaces corresponding to different 𝑞’s are shown.  

A variety of methods have been developed in the structural reliability community to efficiently 

solve integrals of the form given in Eq. (1). These include FORM, tailored importance sampling 

schemes, subset simulation and other sequential Monte Carlo methods [Melchers, 1999; Straub, 

2014]. 
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Figure 1. Illustration of the reliability formulation of the design flood estimation for two 

uncertain input variables 𝐗 = [𝑅; 𝑊]: Rainfall depth 𝑅 and antecedent wetness W. The shaded 

area corresponds to the event of the annual maximum discharge exceeding 𝑞 = 30 m3/s. 

Additional limit state surfaces corresponding to different extreme discharges are also shown. As 

an example, a rainfall of 400 mm with an antecedent wetness of 50% will lead to a discharge in 

excess of 70 m3/s. The same rainfall with an antecedent wetness of 30% will lead to a discharge 

in excess of 30 m3/s but below 50 m3/s.  

To find a design flood 𝑞𝑇 with return period 𝑇, an inverse problem must be solved, in which the 

probability is fixed at 1/𝑇 and the threshold 𝑞𝑇 is found by the equality: 

Pr(𝑄(𝑿) > 𝑞𝑇) = 1/𝑇 (3) 

To avoid repeatedly solving the integral of Eq. (1), inverse FORM can be employed to determine 

𝑞𝑇. Details are provided in Section 2.4.4.  

2.2 Analysis of rainfall data (IDF/DDF analysis) 

Statistical analysis of rainfall data is performed for fixed rainfall durations by means of a moving 

window approach, which allows to derive IDF/DDF curves [Mays, 2005; Malitz, 2005; Viglione et 

al., 2009]. The analysis is briefly reviewed in the following because it is crucial for understanding 

the treatment of different rainfall durations in the probabilistic model introduced in Section 2.3. 

We focus here on DDF, but the analysis is analogous for IDF. 

The moving window approach proceeds as follows: from the rainfall data (typically available in 

hourly resolution), time series of 𝑑-hourly rainfall sums are extracted. This gives at each time the 
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total rainfall depth in the following 𝑑-hour interval. Then, in an Extreme Value (EV) analysis, the 

annual maximum rainfall depths associated with different durations are extracted from each time 

series. A probabilistic model is fitted to these extracted annual maxima. Rainfall depths associated 

with specific return periods in function of rainfall duration are determined from these curves by 

interpolation; these are displayed in the form of DDF curves. 

When analyzing rainfall data with the moving window approach, annual maximum rainfall depths 

associated with different durations can arise from the same storm event, i.e. the corresponding 

moving windows can overlap. As a consequence, it is to be expected that the annual maxima for 

different rainfall durations are correlated, in particular for similar durations. This correlation can 

be found empirically, as exemplarily illustrated in Figure 2. Annual maxima associated with a 1-

hour and a 3-hour duration are highly correlated, whereas those associated with a 1-hour and a 12-

hour duration exhibit only a mild correlation.  

 

Figure 2. Scatter plot of annual maxima for rainfall depths of durations: (a) 1-hour and 3-

hour; (b) 1-hour and 12-hour. (a) shows strong correlation, whereas (b) is only weakly correlated. 

The data has been recorded at rain gauge Hohenpeißenberg [DWD, 2015], see also Section 3.2.5.  

Because the moving window approach is central to the widely utilized rainfall statistics in form of 

IDF/DDF, all input parameters to an event-based hydrological model must be interpreted with the 

same underlying definition of the rainfall durations. For example, it has to be distinguished between 

a soil moisture parameter associated with a 1-hour duration and one associated with a 12-hour 

duration of the rainfall event.  

In the next section, we describe how the correlation in the different durations and input parameters 

can be accounted for in a Probabilistic Design Storm (PDS) approach. 

2.3 Modeling multiple rainfall durations 

An annual maximum discharge of value 𝑞 can be caused by rainfalls of different durations. Hence, 

also the discharges are associated with different moving time windows. In a probabilistic setting – 

unlike in the standard deterministic design storm approach – it is not possible to identify a single 
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critical rainfall duration. Instead, it is necessary to jointly consider multiple rainfall durations and 

the associated discharges. 

To formalize, let 𝑄𝑑(𝐗𝒅) denote the annual maximum discharge associated with duration 𝑑, 

computed with an event-based hydrological model with model input 𝐗𝒅 = [𝑋𝑑,1, … , 𝑋𝑑,𝑗, … , 𝑋𝑑,𝑚], 

with 𝑚 being the number of model parameters for a single duration. These parameters consist of 

the annual maximum rainfall depth or intensity of duration 𝑑 and the additional inputs to the 

hydrological model, which are associated with the same moving window duration. Common values 

for 𝑑 are 1 h, 3 h, 6 h, …, 72 h, but the choice may depend on catchment size and characteristics. 

The annual maximum discharge is  

𝑄(𝐗) = max
𝑑

𝑄𝑑 (𝐗𝒅) (4) 

with 𝐗 = [𝐗𝑑1
, … , 𝐗𝑑𝑛

]. 𝑛 is the number of durations considered. The corresponding probability 

of the annual maximum discharge exceeding a value 𝑞 is 

Pr(𝑄(𝐗) > 𝑞) = Pr[(𝑄𝑑1
(𝐗𝒅𝟏

) > 𝑞) ∪ (𝑄𝑑2
(𝐗𝒅𝟐

) > 𝑞) ∪ … ∪ (𝑄𝑑𝑛
(𝐗𝒅𝒏

) > 𝑞)] (5) 

In system reliability, this corresponds to a series system of 𝑛 components, whose failure events are 

{𝑄𝑑𝑖
(𝐗𝒅𝒊

) > 𝑞}. One can therefore make use of the available methods and results for such systems. 

As discussed in Section 2.2, the annual maximum rainfalls and additional input parameters 

associated with the different moving window durations are correlated. This correlation among the 

input parameters 𝐗 = [𝐗𝑑1
, … , 𝐗𝑑𝑛

] is described with the correlation matrix 𝐑𝐗 whose size is 

(𝑛 × 𝑚) × (𝑛 × 𝑚). Due to 𝐑𝐗, also the failure events {𝑄𝑑𝑖
(𝐗𝒅𝒊

) > 𝑞} and {𝑄𝑑𝑘
(𝐗𝒅𝒌

) > 𝑞} are 

correlated with an 𝑛 × 𝑛 correlation matrix 𝛒. The computation of Eq. (5) is described in Section 

2.4. 

Without any knowledge about the correlation 𝛒 of the different exceedance events {𝑄𝑑𝑖
(𝐗𝒅𝒊

) > 𝑞}, 

bounds on the probability Pr(𝑄(𝐗) > 𝑞) can be found as follows [Ditlevsen, 1979]: 

max
𝑖

[Pr(𝑄𝑑𝑖
(𝐗𝒅𝒊

) > 𝑞)]  ≤ Pr(𝑄(𝐗) > 𝑞) ≤ ∑ Pr(𝑄𝑑𝑖
(𝐗𝒅𝒊

) > 𝑞)

𝑛

𝑖=1

 (6) 

The lower bound is in analogy to the deterministic design storm approach: The probability is taken 

as the one associated with the moving window rainfall duration leading to the highest exceedance 

probability. This result would be exact if all exceedance events {𝑄𝑑𝑖
(𝐗𝒅𝒊

) > 𝑞} were fully 

dependent, i.e. if they were all associated with the same storm event. The upper bound occurs if 

the exceedances 𝑄𝑑𝑖
(𝐗𝒅𝒊

) > 𝑞 were mutually exclusive, i.e. if they would all occur in different 

years. This is clearly unrealistic. For practical purposes, an alternative upper bound could be used, 
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based on the (generally conservative) assumption of statistical independence among different 

exceedance events:  

Pr(𝑄(𝐗) > 𝑞) ≤ 1 − ∏[1 − Pr(𝑄𝑑𝑖
(𝐗𝒅𝒊

) > 𝑞)]

𝑛

𝑖=1

 (7) 

To keep the methodology as general as possible, we consider the wider bound of Eq. (6) in the 

following, but note that the narrower upper bound of Eq. (7) should be applicable in practice. In 

addition, in Section 2.4.3 we outline a method for (approximately) computing the probability 

according to Eq. (5) if the correlation 𝐑𝐗 among the input random variables 𝐗 = [𝐗𝑑1
, … , 𝐗𝑑𝑛

] is 

known. 

2.4 Computing exceedance probabilities 

We first present an efficient solution for computing the exceedance probability for a single rainfall 

duration 𝑑, Pr(𝑄𝑑(𝐗𝒅) > 𝑞), according to Eq. (1). By computing Pr(𝑄𝑑𝑖
(𝐗𝒅𝒊

) > 𝑞) for all 

relevant durations 𝑑𝑖, the overall exceedance probability can be estimated based on the bounds 

provided in the previous section. In Section 2.4.3, the solution for a single rainfall duration is 

extended to computing the Pr(𝑄(𝐗) > 𝑞) directly according to Eq. (5).  

2.4.1 First-order reliability method (FORM) 

FORM is applied for computing Pr(𝑄𝑑(𝐗𝒅) > 𝑞) according to Eq. (1). As its name implies, FORM 

is based on a first-order Taylor expansion of the model output [Rackwitz and Fiessler, 1978]. To 

achieve a good approximation, the first-order approximation is performed in a transformed space 

of independent standard normal random variables 𝐔𝒅. To this end, it is convenient to express the 

event of interest {𝑄𝑑(𝐗𝒅) > 𝑞} by means of a so-called limit state function: 

𝑔𝑑(𝐗𝒅) = 𝑞 − 𝑄𝑑(𝐗𝒅) (8) 

The limit state function 𝑔𝑑(𝐗𝒅) is defined such that occurrence of the event corresponds to 𝑔𝑑(𝐗𝒅) 

taking a negative value. It is {𝑔𝑑(𝐗𝒅) < 0} = {𝑞 − 𝑄𝑑(𝐗𝒅) < 0} = {𝑄𝑑(𝐗𝒅) > 𝑞}.  

An equivalent limit state function 𝐺𝑑 in standard normal space is obtained by a probability-

conserving transformation 𝐔𝒅 = 𝑇𝑈(𝐗𝒅). With 𝑇𝑈
−1 denoting the inverse transform, 𝐺𝑑 is obtained 

as:  

𝐺𝑑(𝐔𝒅) = 𝑔𝑑[𝑇𝑈
−1(𝐔𝒅)] = 𝑞 − 𝑄𝑑[𝑇𝑈

−1(𝐔𝒅)] (9) 
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Any joint distribution of 𝐗𝒅 can be transformed to independent standard normal 𝐔𝒅. In the simplest 

case, when all 𝐗𝒅 are independent, the random variables can be transformed individually by 

𝑇𝑈: 𝑈𝑑,𝑗 = Φ−1 [𝐹𝑋𝑑,𝑗
(𝑋𝑑,𝑗)] , 𝑗 = 1, … , 𝑚. (10) 

𝐹𝑋𝑑,𝑗
 is the cumulative distribution function (CDF) of 𝑋𝑑,𝑗; Φ is the standard normal CDF and Φ−1 

its inverse. The corresponding inverse transformation is 

𝑇𝑈
−1: 𝑋𝑑,𝑗 = 𝐹𝑋𝑑,𝑗

−1[Φ(𝑈𝑑,𝑗)], 𝑗 = 1, … , 𝑚. (11) 

If the 𝐗𝒅 are dependent and belong to the Gaussian copula class, the Nataf transformation is 

applicable, which is summarized in the appendix [Der Kiureghian and Liu, 1986]. For general 

dependence models, the Rosenblatt transformation can be applied, which transforms the random 

variables sequentially by utilizing the conditional distributions [Hohenbichler and Rackwitz, 1981]. 

While these transformations are essential to FORM, they are also beneficial for a multitude of other 

structural reliability methods [Rackwitz, 2001; Papaioannou et al., 2015]. Details on these 

transformations can be found in textbooks [Ditlevsen and Madsen, 1996; Melchers, 1999]. A 

Matlab routine for this transformation (ERADist) is available from www.era.bgu.tum.de/software. 

Because the transformation to U-space is probability conserving, the probability of the rare event 

can be computed by integrating over the corresponding failure domain in U-space, 𝐺(𝐔𝒅) ≤ 0. Eq. 

(1) is therefore rewritten to 

Pr(𝑄𝑑(𝐗𝒅) > 𝑞) = ∫ 𝑓𝐗𝒅
(𝐱𝒅) d𝐱𝒅 = ∫ φ𝑚(𝐮𝒅) d𝐮𝒅

𝐺𝑑(𝐔𝒅)≤0 𝑔𝑑(𝐗𝒅)≤0 

, (12) 

wherein φ𝑚 is the 𝑚-dimensional independent standard normal PDF. 

The limit state function 𝐺𝑑(𝐔𝒅) is approximated by a first-order Taylor expansion around the so-

called design point 𝐮𝑑
∗ . This is the value of 𝐮𝒅 in the failure domain (i.e. complying with  

𝐺𝑑(𝐮𝒅) ≤ 0) with the largest probability density, i.e. the mode of φ𝑚(𝐮𝒅) conditional on 

𝐺𝑑(𝐮𝒅) ≤ 0. Because φ𝑚 is rotation-symmetric around the origin, 𝐮𝑑
∗  can be found by a geometric 

optimization problem: 

𝐮𝑑
∗ = arg min‖𝐮𝒅‖    subject to   𝐺𝑑(𝐮𝒅) ≤ 0 (13) 

‖𝐮𝒅‖ = √𝐮𝒅
𝑇𝐮𝒅 is the Euclidean norm of 𝐮𝒅. 

http://www.era.bgu.tum.de/software
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The design point 𝐮𝑑
∗  has size 𝑚. The linear approximation of the limit state function around 𝐮𝑑

∗  is 

termed 𝐺𝑑
′  and illustrated in Figure 3. 𝛽𝑑

′  denotes the Euclidian distance from the origin to the 

design point: 

𝛽𝑑
′ = ‖𝐮𝑑

∗ ‖  (14) 

The marginal distribution of 𝐔𝒅 in the direction from the origin to the design point is the standard 

normal distribution. Therefore, the probability of 𝐺𝑑
′ (𝐔𝒅) ≤ 0 is equal to the probability of a 

standard normal random variable taking a value less than −𝛽𝑑
′ , as illustrated in Figure 3. 

 

Figure 3. Illustration of the FORM approximation in standard normal space with two 

random variables 𝑈𝑑,1 and 𝑈𝑑,2. The linear approximation is performed at the design point 𝐮𝑑
∗  at a 

distance 𝛽𝑑
′  from the origin. 𝑈𝑎 is the direction perpendicular to the linearized limit state surface 

𝐺𝑑
′ (𝐔𝒅) = 0. The probability of 𝐺𝑑

′ (𝐔𝒅) ≤ 0 is equal to the probability of 𝑈𝑎 ≤ −𝛽𝑑
′ . Since 𝑈𝑎, 

has the standard normal distribution, Pr(𝐺𝑑
′ (𝐔𝒅) ≤ 0) is given by Eq. (15).  

The FORM approximation of the probability Pr(𝑄𝑑(𝐗𝒅) > 𝑞) = Pr(𝐺𝑑(𝐔𝒅) ≤ 0) is thus 

Pr(𝑄𝑑(𝐗𝒅) > 𝑞) = Pr(𝐺𝑑(𝐔𝒅) ≤ 0) 

≈ Pr(𝐺𝑑
′ (𝐔𝒅) ≤ 0) 

= Φ(−𝛽𝑑
′ ). 

(15) 

In this relation lies the strength of FORM: Once the design point is identified, the FORM estimate 

of Pr(𝑄𝑑(𝐗𝒅) > 𝑞) is readily obtained. For this reason, 𝛽𝑑
′  is known as the FORM reliability index. 
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In most applications, the limit state function around the design point 𝐮𝑑
∗  is only mildly non-linear 

in standard normal space. Further away from the design point, the approximation may be poor, but 

as long as the number of relevant random variables in 𝐗𝒅 is not too large, the probability mass is 

concentrated near 𝐮𝑑
∗ ; the poor quality of the approximation away from 𝐮𝑑

∗  is thus not relevant. For 

this reason, the FORM approximation is surprisingly accurate for a wide range of problems 

[Rackwitz, 2001]. 

2.4.2 Sensitivity measures 

A major advantage of FORM is that it directly provides information about the sensitivity of the 

probability of flood exceedance to the input random variables. This information is contained in the 

normalized negative gradient row vector 𝛂𝑑 of the design point 𝐮𝑑
∗  [Der Kiureghian, 2005]: 

𝛂𝑑 = −
∇𝐺𝑑(𝐮𝑑

∗ )

‖∇𝐺(𝐮𝑑
∗ )‖

 (16) 

∇𝐺𝑑(𝐮𝑑
∗ ) is the gradient of 𝐺𝑑 at the design point. 𝛂𝑑 is a unit vector of dimension 𝑚, pointing 

from the origin to the design point (see Figure 3). Its components 𝛼𝑑,𝑗 can be computed directly 

from the components 𝑢𝑑,𝑗
∗  of the design point vector 𝐮𝑑

∗ : 

𝛼𝑑,𝑗 =
𝑢𝑑,𝑗

∗   

𝛽𝑑
′  (17) 

𝛼𝑑,𝑗 is an indicator for the influence of the random variable 𝑋𝑑,𝑗 on the probability of flood 

exceedance associated with duration 𝑑. The larger its absolute value |𝛼𝑑,𝑗|, the larger its influence 

on Pr(𝑄𝑑(𝐗𝒅) > 𝑞). It is ∑ 𝛼𝑑,𝑗
2

𝑗 = 1, so that the sensitivity is often expressed by 𝛼𝑑,𝑗
2 . Input 

random variables with small |𝛼𝑑,𝑗| can be replaced by a deterministic value with little loss of 

accuracy, e.g. the uncertainty of a random variable 𝑋𝑑,𝑗 with 𝛼𝑑,𝑗 = 0.1 contributes only 𝛼𝑑,𝑗
2 =

1% to the probability of failure.  

2.4.3 Combining multiple rainfall durations for computing flood exceedance probabilities 

For each considered rainfall duration 𝑑 = 𝑑𝑖, the corresponding FORM analysis is performed to 

compute Pr(𝑄𝑑𝑖
(𝐗𝑑𝑖

) > 𝑞) and the associated sensitivities 𝛼𝑑𝑖,𝑗. On this basis, bounds on the flood 

exceedance probability Pr(𝑄(𝐗) > 𝑞), which take all 𝑛 durations into account, can be evaluated 

following Eq. (6) or (7). 

As an alternative, system reliability analysis with FORM also enables the direct computation of 

Pr(𝑄(𝐗) > 𝑞) according to Eq. (5). Noting that the formulation in Eq. (5) corresponds to the 
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reliability analysis of a series system, the FORM approximation of Pr(𝑄(𝐗) > 𝑞) is, in analogy to 

[Hohenbichler and Rackwitz, 1982; Der Kiureghian, 2005], found as 

Pr(𝑄(𝐗) > 𝑞) ≈ 1 − Φ𝑛(𝐛; 𝛒). (18) 

Φ𝑛 is the multivariate standard normal CDF with correlation coefficient matrix 𝛒, evaluated at 𝐛. 

The vector 𝐛 consists of the 𝑛 individual FORM reliability indexes 𝐛 = [𝛽𝑑1

′ ; . . , 𝛽𝑑𝑖

′ ; … ; 𝛽𝑑𝑛

′ ] 

associated with the different durations. The elements of 𝛒, which describe the correlation between 

the flood exceedance events {𝑄𝑑𝑖
(X𝑑𝑖

) > 𝑞} and {𝑄𝑑𝑘
(X𝑑𝑘

) > 𝑞}, are calculated based on the 

random variables 𝛂𝑑𝑖
𝐔 as:  

𝜌𝑖𝑘 = 𝛂𝑑𝑖
𝛂𝑑𝑘

T (19) 

For implementation purposes, it is pointed out that Eqs. (18-19) require the different limit state 

functions 𝑔𝑑(𝐗𝒅) of the individual rainfall durations 𝑑 = 𝑑𝑖 to be defined in the joint space of all 

random variables, i.e. 𝑔𝑑𝑖
(𝐗), with 𝐗 = [𝐗𝑑1

, … , 𝐗𝑑𝑛
]. The reason lies in the correlation 𝐑𝐗, which 

is included in the transformation from 𝐗 to 𝐔 (see appendix). The limit state function 𝑔𝑑𝑖
 is still a 

function of 𝐗𝑑𝑖
 only, i.e. the flood exceedance in duration 𝑑𝑖 is fully determined by 𝐗𝑑𝑖

 and the 

hydrological model. However, due to the correlation, the corresponding limit state function 𝐺𝑑𝑖
 in 

standard normal space is a function of all variables in 𝐔, because the correlations among the 𝐗 are 

included in the transformation and hence in the 𝐺𝑑𝑖
’s (the 𝐔 are uncorrelated). 

2.4.4 Inverse FORM 

In many instances, the interest is in solving the inverse problem of determining the discharge 𝑞𝑇 

that is associated with a fixed return period 𝑇 or exceedance frequency 1/𝑇, Eq. (3). If there were 

only a single relevant rainfall duration 𝑑, the inverse problem could be solved in analogy to 

[Winterstein et al., 1993]. One first identifies the reliability index 𝛽𝑇 corresponding to the return 

period 𝑇 as 𝛽𝑇 = −Φ−1(1/𝑇), with Φ−1 being the inverse standard normal CDF. The discharge 

𝑞𝑇 is then found by solving the optimization problem 

𝑞𝑇 = arg max 𝑄𝑑[𝑇−1(𝐮𝒅)]    subject to   ‖𝐮𝒅‖ = 𝛽𝑇 . (20) 

In practice, multiple rainfall durations will be of relevance, but the solution of Eq. (20) nevertheless 

provides a first (non-conservative) indication of the design flood.  

To consider multiple rainfall durations, the FORM system problem is solved repeatedly for 

different values of 𝑞. The design flood is then found iteratively. Because of the small computational 

cost associated with a single FORM run, this is easily implemented. 
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2.5 Design charts  

To facilitate the implementation of the FORM system analysis in engineering practice, we propose 

the use of design charts. In a nutshell, a design chart specifies the representative design storm 

events, i.e. parameter combinations in function of the desired discharge return period 𝑇, which, if 

used with the traditional design storm approach, replicate the results of the Probabilistic Design 

Storm approach. A similar idea of calibrating the input parameters of the design storm approach to 

match the results of a more sophisticated approach has been proposed by [Camici et al., 2011] 

using continuous simulations. 

An exemplary design chart, based on the case study (Section 3.2.8), is shown in Figure 4. As an 

example, the most likely combination of model parameters that lead to a 100-year discharge are a 

90-year rainfall and an 87 quantil of CN. These charts are constructed such that one does not need 

to know the critical duration. Instead, the 90-year rainfall of different durations is applied to the 

hydrological model and the maximum peak discharge of the different durations is selected as 

representative, as is common in the standard design storm approach. 

 

Figure 4. Design chart for the Trauchgauer Ach: Representative design storm events (i.e. 

recommended combinations of rainfall return periods and CN quantiles) that reproduce the 

results of the Probabilistic Design Storm method.  

The design charts are developed based on the FORM design points 𝐮𝑑
∗ , since these are the most 

likely parameter combinations leading to a discharge 𝑞𝑇 of return period 𝑇. Hence they correspond 

to the best representative scenario for 𝑞𝑇. This philosophy is in analogy to the partial safety factor 

concept used in structural engineering [Sørensen et al., 1994]. However, because of the multiple 

rainfall durations, it is not possible to directly utilize the design points, which are always associated 

with a single rainfall duration. The following procedure is therefore applied to compute 

representative parameter combinations 𝐱𝑇.  

The basis of the procedure are the flood exceedance probabilities Pr(𝑄(𝐗) > 𝑞) for different 

values of 𝑞 computed under Section 2.4.4, which provide the discharges 𝑞𝑇 associated with a return 

period 𝑇. For a value of 𝑞𝑇, the rainfall duration 𝑑 with the highest exceedance probability 

Pr(𝑄𝑑(𝐗𝒅) > 𝑞𝑇) is identified (based on the available FORM computations). The corresponding 
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design point 𝐮𝑑
∗  is then taken as representative for this return period 𝑇. To obtain the representative 

parameter combinations 𝐱𝑇, 𝐮𝑑
∗  is transformed back to the original outcome space (following Eq. 

(11) for independent random variables). 

The design charts then specify quantiles or return periods of the representative parameter 

combinations 𝐱𝑇 which are to be used as inputs to the traditional design storm approach, as a 

function of the desired flood return period 𝑇. Regionalizing these charts could contribute to 

improved design flood estimations in engineering practice. 

2.6 Rainfall-runoff model utilized in the case study 

The proposed methodology can be combined with any event-based rainfall-runoff model. To model 

the rainfall-runoff relationship in the subsequent case study, the SCS Curve Number (CN) approach 

[US Department of Agriculture, 2004] is used for the runoff generation and an unit hydrograph 

after [Wackermann, 1981] for the runoff concentration. We use these conceptually simple models 

due to their widespread application in engineering practice for design flood estimations in 

ungauged basins. Additional details of these models can be found in the appendix. 

3 Numerical investigations 

3.1 Case Study 

The proposed methodology is applied in a case study of an alpine catchment in Germany. The 

Trauchgauer Ach catchment in southern Bavaria is part of the Lech watershed, it is depicted in 

Figure 5. Additionally shown are the CN values in the catchment based on the EGAR map 

(Einzugsgebiete Alpiner Regionen, engl. Catchments in Alpine Regions) [BLFU, 2014]. The 

EGAR map presents the 𝐶𝑁𝐼𝐼 for different hydrotopes in the alpine region, which were derived 

with irrigation experiments. The main hydrotopes of the Trauchgauer Ach are mixed alpine forests, 

alpine pastures and hay meadows [BLFU, 2014]. The catchment’s elevation ranges from 780 

m.a.s.l. to 1520 m.a.s.l.  
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Figure 5. The Trauchgauer Ach catchment [BLFU, 2017a]. Background map 

[OpenStreetMap contributors, 2017], contours based on [NASA, 2017], CN values from EGAR 

map [BLFU, 2014].  

 

A 90 year record of daily maximum discharges at the gauge Trauchgauer Ach is provided by 

[BLFU, 2017b]. The stream flow data enables a comparison of the proposed Probabilistic Design 

Storm method to a statistical flood frequency analysis. Additionally, 19 years of precipitation 

measurements in 1 h discretization at rain gauges Hohenpeißenberg and Bamberg [DWD, 2015] 

allow to estimate the correlation matrix 𝐑𝐗 of the input parameters. 

The catchment characteristics are summarized in Table 1 together with the parameters of the unit 

hydrograph after Wackermann (see appendix). 

Table 1.  Geomorphological characteristics of the Trauchgauer Ach and the parameters of 

the Wackermann unit hydrograph (UH) [Kokolsky, 2015; Mrowietz, 2017].  

Geomorphological 

characteristics 

 UH Parameters  

Area A 26.7 𝑘𝑚² 𝛽 0.20 

Flow length L 14.2 𝑘𝑚 𝐾1 0.25 

Channel density 3.7 𝑘𝑚/𝑘𝑚²  𝐾2 3.60 

Slope I  0.047 - - 

 

A sensitivity study was carried out to identify important random input parameters for the 

considered hydrological model [Berk, 2015]. It was found that, in addition to the rainfall depths 

𝑅𝑑, only uncertainties in CN have a considerable impact on the discharge probabilities. CN 
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represents the catchment conditions that influence the amount of total rainfall transformed to 

effective rainfall with Eq. (A7). The uncertainty in CN is associated with the variability in the 

antecedent runoff condition (ARC), which combines the effects of antecedent rainfall, soil moisture 

conditions, vegetation cover density and stage of growth, and temperature [US Department of 

Agriculture, 2004]. Additional parameter uncertainties that were examined in the sensitivity study 

are: The temporal rainfall pattern, a model error and statistical uncertainties in the rainfall 

distribution parameters. All of these input uncertainties had little impact on the discharge 

frequencies. Therefore, only the rainfall depth and the CN are considered as random variables in 

the following. 

The probabilistic model of annual extreme rainfall depths 𝑅𝑑 of different durations is derived from 

depth-duration-frequency (DDF) curves provided in the Kostra Atlas [DWD, 2009]. A shifted 

exponential distribution is used, whose CDF is 

𝐹𝑅𝑑
(𝑟𝑑) = 1 − 𝑒

−(
𝑟𝑑−𝑢𝑑

𝑤𝑑
)
, (21) 

where 𝑅𝑑 is the annual maximum rainfall depth of duration 𝑑 in mm, 𝑢𝑑 and 𝑤𝑑 are the location 

and scale parameter of the exponential distribution. The shifted exponential distribution is selected 

because it is the model underlying the DDF curves in the Kostra Atlas [Malitz, 2005]. Parameters 

of the probabilistic model for different durations are given in Table 2. All rainfall durations given 

in Table 2 are considered in the case study.  

Table 2.  Parameters of extreme rainfall depth distributions fitted to the Kostra data for 

different durations 𝑑𝑖. 
Duration 𝑑 [h] Location  

 𝑢𝑑 [mm] 

Scale 

 𝑤𝑑 [mm] 

Mean  

𝜇𝑟𝑑 [mm] 

Standard deviation 

 𝜎𝑟𝑑 [mm] 

1 21.00 8.47 29.46 8.47 

2 25.80 9.82 35.62 9.82 

3 29.10 10.68 39.78 10.68 

4 31.74 11.36 43.10 11.36 

6 35.80 12.38 48.17 12.38 

9 40.37 13.49 53.86 13.49 

12 44.01 14.33 58.34 14.33 

18 49.50 17.48 66.99 17.48 

24 55.00 20.63 75.63 20.63 

48 80.00 24.97 104.97 24.97 

72 90.00 27.14 117.15 27.14 

 

An area averaged curve number for normal antecedent runoff conditions 𝐶𝑁𝐼𝐼 = 65.8 is determined 

for the catchment from the EGAR map (see Figure 5) in [Kokolsky, 2015]. Next, as recommended 

in [US Department of Agriculture, 2004], 𝐶𝑁 is treated as a random variable, whose median is 𝐶𝑁𝐼𝐼 
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and whose 10 % and 90 %  quantiles are 𝐶𝑁𝐼 and 𝐶𝑁𝐼𝐼𝐼, respectively. For this purpose, 𝐶𝑁𝐼 =

45.2 and 𝐶𝑁𝐼𝐼𝐼 = 83.1 are derived with Eqs. (A8) and (A9). A Beta distribution is fitted to these 

CN values which are typically available in ungauged basins. The resulting distribution is presented 

in Figure 6a. For simplicity and to be applicable in ungauged basins, this distribution is assumed 

to be valid for all 𝐶𝑁𝑑 of the different moving window durations 𝑑 = 1 h, … , 72 h. 

In an ungauged basin, one cannot easily evaluate this modeling assumption, but here we can 

estimate empirical CN distributions by combining the data from discharge gauge Trauchgau with 

the rain gauge Hohenpeißenberg to obtain 19 years of concurrent rainfall-runoff events. The 

derived empirical CN-values are based on the storm events that cause the annual rainfall maxima 

of different moving window durations and are thus also associated with a duration, as explained in 

Section 2.2. Figure 6b shows that the beta-CDF fitted to 𝐶𝑁𝐼, 𝐶𝑁𝐼𝐼 and 𝐶𝑁𝐼𝐼𝐼 is centered among 

the empirical CN-value distributions of the different durations. Figure 6c shows that the fitted beta 

CDF matches the mean empirical CN distribution, which is obtained by averaging over all 

durations. This demonstrates that the simple probabilistic model of CN is appropriate in the 

investigated catchment. 

 

Figure 6. (a) Cumulative distribution function (CDF) of the beta distribution fitted to the 

𝐶𝑁𝐼 , 𝐶𝑁𝐼𝐼 and 𝐶𝑁𝐼𝐼𝐼 values. (b) Comparison of fitted-beta CDF with empirical CN-value 

distributions of different durations at the Trauchgauer Ach. (c) Empirical CDF of mean CN 

obtained by averaging the CNs of (b) over all durations. 

After transformation of the total rainfall into effective rainfall with the CN, the precipitation is 

distributed over time with the middle peaked rainfall pattern recommended in [DVWK, 1984]. The 

effect of uncertainty on the temporal rainfall pattern was found to be small [Berk, 2015], which 

justifies the use of a single pattern in the analysis. Due to the small catchment size of 26.9 km², no 

areal reduction of design storms has been taken into account. The base flow is assumed to be 

constant and is therefore neglected. 
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3.2 Results 

3.2.1 Design flood estimation with the standard design storm (SDS) method 

For comparison, the 10-, 100- and 1000-year discharges are calculated using the SDS. Rainfall 

depths are selected for all rainfall durations from the depth-duration-frequency relationships 

provided by the Kostra Atlas. The peak discharges are then calculated with the hydrological model 

for all durations, once using 𝐶𝑁𝐼𝐼 = 65.8 for normal conditions and once using 𝐶𝑁𝐼𝐼𝐼 = 83.1 for 

wet conditions. For each return period and CN value, the duration with the largest peak discharge 

is identified and selected as the representative critical duration. Table 3 shows the results of the 

analysis. The critical rainfall durations are 24 and 48 hours. 

Table 3. Results of the standard design storm method. 

Curve 

Number 

10-year 

discharge 

[m³/s] 

Critical 

duration [h] 

100-year 

discharge 

[m³/s] 

Critical 

duration [h] 

1000-year 

discharge 

[m³/s] 

Critical 

duration[h] 

𝐶𝑁𝐼𝐼 21.8 48 37.0 48 54.4 24 

𝐶𝑁𝐼𝐼𝐼 32.6 48 52.6 24 74.3 24 

 

3.2.2 Probabilistic Design Storm (PDS) method for a single rainfall duration (48 hours) 

This section presents the results of the design flood estimation for 𝑑 = 48 h. This duration is 

selected because it is the critical duration for the 100-year event in the analyzed catchment 

according to the standard design storm approach (see Section 3.2.1). The relevant uncertain input 

parameters are 𝐗48 = [𝐶𝑁48;  𝑅48], the 48-hours rainfall depth 𝑅48 and the corresponding 𝐶𝑁48. 

The following results are obtained using the procedure of Sections 2.1 and 2.4.1.  

The exceedance probability is evaluated for varying discharge values 𝑞. Exemplarily, Figure 7a 

shows the limit state surfaces (LSS) associated with = [1; 44; 90] m³/s. These LSS correspond to 

the combinations of values of 𝐶𝑁48 and 𝑅48 that lead to the discharge 𝑞. Figure 7b shows the LSS 

for 𝑞 = 44 m3/s in standard normal space, together with the design point and the linearized LSS 

used in FORM. Transforming this design point back to the space of the original random variables 

results in the design point on the 𝑞 = 44 m3/s LSS shown in Figure 7a. It is reminded that the 

design point represents the most likely combination of the input parameters that leads to the given 

discharge. For example, the discharge of 44 m³/s in duration 𝑑 = 48 h is most likely caused by a 

rainfall of 181 mm and 𝐶𝑁 equal to 80. 
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Figure 7. (a) Limit state surfaces (LSS) and design points for critical duration 𝑑 = 48 h for 

multiple flood magnitudes 𝑞 in original space. (b) LSS of 𝑞 = 44 m³/s in standard normal (U-) 

space with the linearization of the LSS at the design point. 

The estimated exceedance probabilities for all evaluated discharges are plotted in Figure 8a. To 

check the accuracy of the FORM approximation, additionally a Monte Carlo simulation (MCS) 

with 106 samples is performed. As evident from Figure 8a, FORM results in accurate exceedance 

probabilities. With two random variables 𝐗48 = [𝐶𝑁48;  𝑅48], FORM requires between 20-150 

model calls to find the design point with Eq. (13) and hence to obtain the exceedance probability 

for one value of 𝑞. 

 

Figure 8. (a) Flood exceedance probabilities for the critical duration 𝑑 = 48 h, comparison 

of solutions obtained with FORM and MCS. (b) Sensitivity measures 𝛼48,𝑅48

2  and 𝛼48,𝐶𝑁48

2  of the 

flood exceedance probability in function of the flood magnitude 𝑞. (c) Probabilistic Design Flood 

(PDS) bounds on flood exceedance probabilities. Results from the standard design storm (SDS) 

method utilizing 𝐶𝑁𝐼𝐼 and 𝐶𝑁𝐼𝐼𝐼 are shown for comparison. 

Besides its computational benefits, a major advantage of FORM is that it provides the location of 

the design points, i.e. the most likely combination of input parameters leading to a given discharge, 

as well as sensitivity measures 𝛼𝑑,𝑗. These sensitivity measures are plotted in Figure 8b as a 

function of the flood magnitude 𝑞. They indicate that low flood magnitudes 𝑞 < 20 m³/s are more 



An edited version of this paper was published by AGU. Copyright (2017) American Geophysical 

Union. 

  22/38 

sensitive to the uncertainty in the 𝐶𝑁48 value and large flood magnitudes 𝑞 > 20 m³/s are more 

sensitive to the rainfall depth 𝑅48. The same conclusion can be made by comparing the design 

points associated with different values of 𝑞 that are displayed by the solid line in Figure 7a: for low 

discharges, mostly the antecedent runoff conditions of the catchment determine the magnitude of 

the flood event. For larger floods, the catchment must be already wet, as indicated by a high 𝐶𝑁48 

value, and it is mostly the rainfall that determines the flood magnitude. 

3.2.3 Results for different durations 

The results of the previous section are here extended to multiple rainfall durations, to compare the 

flood exceedance probabilities Pr(𝑄𝑑𝑖
(𝐗𝑑𝑖

) > 𝑞) for different durations 𝑑𝑖. 

Table 4 summarizes the return periods 𝑇 = 1/ Pr(𝑄𝑑𝑖
(𝐗𝑑𝑖

) > 𝑞) associated with the discharge 

𝑞 = 44 m3/s in the different rainfall durations. Among the durations shown here, 𝑑 = 24 h leads 

to the lowest return period. However, also 6 h and 48 h rainfall durations lead to a non-negligible 

probability of a flood discharge in excess of 44 m3/s. The 100-yr flood levels associated with the 

different durations are also summarized in Table 4. The discharge 𝑞 = 44 m3/s is the 100-year 

discharge associated with duration 𝑑 =  24 h. In the full analysis presented later, additional rainfall 

durations are considered following Table 2.  

Table 4. Return periods of a flood magnitude 𝑞 = 44 m3/s associated with different 

rainfall durations and 100-year flood levels 𝑞𝑇=100𝑦𝑟 associated with different rainfall durations. 

Rainfall duration 1 h 4 h 6 h 12 h 24 h 48 h 72 h 

Return period of 

𝒒 = 𝟒𝟒 𝐦𝟑/𝐬 

225 yr 740 yr 150 yr 217 yr 100 yr 107 yr 340 yr 

100-year flood 

levels 𝒒𝑻=𝟏𝟎𝟎𝐲𝐫 

36 m³/s 30 m³/s 41 m³/s 35 m³/s 44 m³/s 43 m³/s 37 m³/s 

 

3.2.4 Probabilistic Design Storm (PDS) bounds accounting for the effect of different durations  

The results obtained for the individual rainfall durations are combined to determine the bounds on 

design floods following Section 2.3. In calculating these bounds, we model the input parameter 

𝐗𝑑 = [𝐶𝑁𝑑;  𝑅𝑑] of a single duration as independent, because information on the correlation 

between these variables is not commonly available in practice. This assumption is investigated in 

Section 3.2.6. 

Figure 8c presents the bounds on the exceedance probability for the Trauchgauer Ach catchment 

following Eq. (6). These limit Pr (𝑄(𝑿) > 𝑞) while accounting for all durations when the 

correlation 𝛒 of the different exceedance events {𝑄𝑑𝑖
(𝐗𝒅𝒊

) > 𝑞} is unknown. Exemplarily, the 

bounds for the 100-year flood discharge are 45 and 59 m³/s. To obtain these results with FORM, 
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between 20-150 model evaluations are required for each considered duration 𝑑𝑖 and discharge 

value 𝑞. 

Figure 8c additionally displays the results obtained with the standard design storm approach (SDS) 

following section 3.2.1. A comparison of the SDS with 𝐶𝑁𝐼𝐼 for normal antecedent conditions with 

the PDS bounds clearly shows that the SDS underestimates flood exceedance probabilities. The 

underestimation of the 100-year flood is between −18 % (relative to the lower bound) and −37 % 

(relative to the upper bound). If the design storm approach is applied with 𝐶𝑁𝐼𝐼𝐼 (representing wet 

antecedent conditions), both the 100-year and the 1000-year flood estimates for the Trauchgauer 

Ach lie within the PDS bounds.  

To understand the degree to which these results can be generalized, a sensitivity study was 

conducted, in which the area averaged CN value is modified [Berk, 2015]. Its main findings are 

that the underestimation of the design flood with the SDS approach becomes more severe as the 

average CN is reduced. This result is in line with [Viglione et al., 2009] and [Li et al., 2014], who 

found that for dry catchments (high rainfall abstractions, corresponding to a low 𝐶𝑁) the 

uncertainty in the runoff coefficient (here represented through 𝐶𝑁) has a larger influence than for 

wet catchments with generally low rainfall abstractions. In all cases, the standard design storm 

approach led to design floods below the lower bound when applying it with 𝐶𝑁𝐼𝐼, but gave values 

within the bounds when applying it with 𝐶𝑁𝐼𝐼𝐼. 

The upper and lower PDS bounds in Figure 8c give limits on design floods including parameter 

uncertainties and the effect of different rainfall durations when no information on the dependence 

between 𝐶𝑁𝑑 and 𝑅𝑑 are available (i.e. under the assumption of independent 𝐶𝑁𝑑 and 𝑅𝑑). The 

lower bound corresponds to the assumption of fully dependent exceedance events {𝑄𝑑𝑖
(𝐗𝒅𝒊

) > 𝑞} 

among different durations, so that the critical duration completely determines the exceedance 

probability, in analogy to the SDS approach. The difference between the lower bound and the 

results of the SDS approach therefore quantifies the effect of including the uncertainty in the 𝐶𝑁 

instead of using a fixed 𝐶𝑁 value. The effect of accounting for different rainfall durations and the 

full correlation structure 𝐑𝐗 of all input parameters 𝐗 is presented in the next section. 

3.2.5 Probabilistic Design Storm (PDS) estimation including correlation among different 

durations 

The PDS bounds shown in Figure 8c provide an initial estimate of design flood discharge 𝑞𝑇, but 

they remain quite wide. To compute a single estimate of 𝑞𝑇, the design flood problem is solved 

jointly for all durations. In this computation, the input parameter vector 𝐗 =

[𝐶𝑁1, … , 𝐶𝑁72, 𝑅1, … , 𝑅72] consists of all 𝐶𝑁𝑑 and 𝑅𝑑. The dependence among the input 

parameters of different durations, described by the correlation matrix 𝐑𝐗, must be included 

explicitly following Section 2.4.3. In this section, we first study the effect of the correlation among 

rainfalls of different durations. Thereafter, the cross-correlation in 𝐶𝑁𝑑 and the correlation in 𝐶𝑁𝑑 

and 𝑅𝑑 are included. 
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The correlations among annual maximum rainfall depths 𝑅𝑑𝑖
 and 𝑅𝑑𝑘

 associated with different 

durations 𝑑𝑖 and 𝑑𝑘 are estimated from rainfall data [DWD, 2015] at stations Hohenpeißenberg and 

Bamberg. Station Hohenpeißenberg is located in southern Bavaria with a distance of approximately 

25 km to the case study catchment Trauchgau. We here assume that the correlations at 

Hohenpeißenberg are valid for the case study due to the proximity. Bamberg is situated in northern 

Bavaria at a distance of 300 km to the Trauchgauer Ach. It is selected to study the effect of varying 

correlation patterns on the result. 

The annual maximum rainfall depths are extracted from the rainfall data with the moving window 

approach following Section 2.2. We then compute linear correlation coefficients between any two 

annual maximum rainfall series of varying durations. In Figure 9, the resulting correlation matrices 

between the annual maximum rainfall depths 𝑅𝑑 of different durations 𝑑 = 1, … ,72  ℎ are 

displayed for rain gauges Hohenpeißenberg and Bamberg. As expected (see Section 2.2), similar 

rainfall durations are strongly dependent. Overall, the correlation is larger at rain gauge Bamberg 

(Figure 9b) than at gauge Hohenpeißenberg (Figure 9a), which might be due to the alpine influence 

at the latter location. 

 

Figure 9. Empirical matrices of linear correlation coefficients of annual maximum rainfall 

depths 𝑅𝑑 of different durations 𝑑 = 1, … ,72  h at (a) Hohenpeißenberg and (b) Bamberg. The 

colormaps have different scales. 

To perform the FORM analysis according to Section 2.4.3, the corresponding correlation matrix 

has to be transformed to standard normal space (see appendix). As the transformation according to 

Eq. (A2) however depends on the marginal rainfall distributions, which are here derived from the 

Kostra Atlas and not based on the rainfall data, a rank-based transformation is utilized to obtain the 

corresponding correlation in standard normal space [Song, 2007].  

To study the effect of the rainfall correlation separately from the effect of correlations among other 

input variables, we first compute results based on a single 𝐶𝑁 random variable that is applied to 

all durations 𝑑 and that is modeled as being independent of rainfall depth 𝑅𝑑𝑖
. Rainfall correlations 
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are modelled according to Figure 9. In this computation, the full parameter vector is 𝐗𝑙𝑖𝑚 =

[𝐶𝑁, 𝑅1, … , 𝑅72]. This model is in analogy to the SDS, which utilizes the same 𝐶𝑁𝐼𝐼 for all 

durations. It also reflects the situation in many applications, where information is available neither 

on 𝐶𝑁 values for different durations nor on their correlations with rainfall depth. The resulting 

correlation matrices on 𝐗𝑙𝑖𝑚 based on Figure 9 are denoted with 𝐑𝐗,Hohenp. and 𝐑𝐗,Bamberg. 

In the FORM analysis, the transformation of the correlated inputs 𝐗𝑙𝑖𝑚 to uncorrelated standard 

normal space is performed with the Nataf transformation (see appendix). This requires the 

correlation matrices 𝐑𝐗,Hohenp. and 𝐑𝐗,Bamberg of the input random variables 𝐗𝑙𝑖𝑚 to be positive 

definite. Due to the randomness in the data, the obtained correlation matrices 𝐑𝐗,Hohenp. and 

𝐑𝐗,Bamberg including the rainfall correlation of Figure 9 are not positive definite. This is a common 

problem and solutions to find corresponding positive definite matrices are described in the 

literature [Rousseeuw and Molenberghs, 1993]; here we apply the Eigenvalue method. 

Figure 10 shows the resulting Probabilistic Design Storm (PDS) flood exceedance probabilities 

Pr(𝑄(𝐗) > 𝑞) for the Trauchgauer Ach. Despite the fact that the correlation matrices of the annual 

maximum rainfall depths 𝑅𝑑 associated with stations Bamberg and Hohenpeißenberg differ 

significantly, the resulting flood exceedance probabilities are fairly similar. Bamberg’s larger 

correlation coefficients lead to flood exceedance probabilities that are slightly closer to the lower 

design flood bound than those obtained with Hohenpeißenberg’s correlation matrix.  

 

Figure 10. Computed Probabilistic Design Storm (PDS) flood exceedance probabilities 

accounting for correlation in rainfalls of different durations together with the PDS bounds of 

Figure 8c. 

3.2.6 Probabilistic Design Storm (PDS) estimation including correlation among all input 

parameters 

For the full analysis, the correlation among all random variables 𝐗 = [𝐶𝑁1, … , 𝐶𝑁72, 𝑅1, … , 𝑅72] is 

needed as an input. In this case study, these include the cross-correlations among the 𝐶𝑁𝑑 as well 

as the correlation of 𝐶𝑁𝑑𝑗
 and rainfall depth 𝑅𝑑𝑘

 for all duration pairs 𝑗, 𝑘, in addition to the 
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correlation matrices of Figure 9. These correlations cannot be readily derived from the rainfall data 

alone. Either one needs a continuous simulation to estimate the wetness conditions in the 

catchment, or the correlation can be estimated based on empirical CN-values derived from 

concurrent rainfall-runoff events. We follow the latter approach, but point out that this would not 

be possible in an ungauged basin. The correlations are estimated with the 𝐶𝑁𝑑 values of different 

durations (see also Section 3.1, Figure 6) and the rainfall depths 𝑅𝑑 at gauge Hohenpeißenberg. 

Figure 11a shows the correlation between 𝐶𝑁𝑑 and 𝑅𝑑, Figure 11b the cross-correlation in 𝐶𝑁𝑑 of 

different durations. The cross-correlation exhibits a similar pattern as the rainfall correlations in 

Figure 9, which can be attributed to the fact that in some years the annual rainfall maxima with 

similar durations are due to the same storm event. It is found that the correlation between 𝐶𝑁𝑑 and 

𝑅𝑑 is mostly negative for low rainfall durations and becomes positive for large rainfall durations.  

 

Figure 11. Empirical matrices of linear correlation coefficients of different durations: (a) 𝐶𝑁𝑑 

and 𝑅𝑑 and (b) 𝐶𝑁𝑑 and 𝐶𝑁𝑑 of different durations 𝑑 = 1 h, … ,72 h at the Trauchgauer Ach. The 

colormaps have different scales. 

Combining the correlations of Figure 11 with the rainfall correlation of gauge Hohenpeißenberg 

(Figure 9a) gives the correlation matrix 𝐑𝐗,Complete of all inputs 𝐗 = [𝐶𝑁1, … , 𝐶𝑁72, 𝑅1, … , 𝑅72]. 

The results of the Probabilistic Design Storm (PDS) method according to Section 2.4.3 with this 

complete correlation matrix 𝐑𝐗,Complete are illustrated in Figure 12. These results required between 

200-2000 model evaluations for each duration 𝑑𝑖 (here 11 durations) and discharge value 𝑞. 
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Figure 12. Computed Probabilistic Design Storm (PDS) flood exceedance probabilities 

accounting for correlation in all input parameters (PDS 𝐑𝐗,Complete) together with the PDS 

bounds of Figure 8c and the results PDS 𝐑𝐗,Hohenp. of Figure 10. 

The results obtained with the complete dependence structure 𝐑𝐗,Complete stay within the PDS 

bounds that assume independence between 𝐶𝑁𝑑𝑖
 and 𝑅𝑑𝑘

, and they are close to the results obtained 

when accounting only for correlation in rainfall, i.e. with 𝐑𝐗,Hohenp.. For the Trauchgauer Ach 

catchment, the latter PDS results with 𝐑𝐗,Hohenp. accounting only for rainfall correlation are 

therefore deemed to be accurate enough given the uncertainties in an ungauged catchment. 

𝐑𝐗,Hohenp. is easily obtained in an ungauged catchment, because unlike 𝐑𝐗,𝐂𝐨𝐦𝐩𝐥𝐞𝐭𝐞, it does not 

require discharge data or a continuous simulation to estimate correlations involving CN values. 

3.2.7 Comparison with flood frequencies of measured discharges 

With 90 years of discharge records [BLFU, 2017b] at the gauge of the Trauchgauer Ach, a flood 

frequency analysis is conducted. The generalized extreme value (GEV) distribution is selected 

among different distribution models. The fitted GEV distribution with its 95 % credible intervals 

is presented in Figure 13a together with the empirical annual exceedance probabilities at the gauge.  
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Figure 13. a) Comparison of the empirical flood exceedance probabilities with a GEV 

distribution fitted to the stream flow data of the Trauchgauer Ach. b) Comparison of the 

Probabilistic Design Storm method (PDS) and the standard design storm method (SDS) with the 

GEV distribution.  

Figure 13b) compares the Probabilistic Design Storm (PDS) and the standard design storm method 

(SDS) with the fitted GEV distribution. The results with the PDS method are calculated with the 

correlation matrix of rainfalls of different durations at gauge Hohenpeißenberg 𝐑𝐗,Hohenp. (see 

section 3.2.5).  

For large annual exceedance probabilities, the PDS matches well with the statistics derived from 

stream flow data. For exceedance probabilities below 10−2, the uncertainties in the flood frequency 

analysis are too large to allow clear conclusions. However, the PDS is within the 95 % credible 

interval of the flood frequency analysis for the full range of probabilities. The SDS underestimates 

the design flood, unless 𝐶𝑁𝐼𝐼𝐼 is utilized in the computation.  

3.2.8 Design Charts: Recommended parameter values for the standard design flood method 

The resulting design chart for the Trauchgauer Ach is shown in Figure 4, depicting the 

representative design storm events. For example, to obtain a flood of return period 100 years with 

the design storm approach, the 90-year rainfall of the critical duration and the 87% quantile of 𝐶𝑁 

are the most likely parameter combinations causing such a flood event. Similarly, for the 1000-

year event it is a 730-year rainfall and a 89% quantile of 𝐶𝑁 that are most likely to cause such a 

flood event. 

In the range of interest between the 30 and 1000-year flood, the representative CN value is between 

the 80% - 90% quantile. This is consistent with results shown above, in which the standard design 

storm approach with 𝐶𝑁𝐼𝐼𝐼 (defined as the 90% quantile) leads to design floods that are within the 

bounds of the Probabilistic Design Storm method. For flood return periods higher than 50 years, 

the representative value of the rainfall depth is smaller than the 1 −
1

𝑇
 quantile. A small 
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discontinuity can be observed at a flood return period of around 30 years. This is due to a change 

of the critical rainfall duration at this point from 48 h to 24 h. 

4 Discussion 

We have proposed a probabilistic extension of the standard design storm (SDS) method, called 

Probabilistic Design Storm (PDS) approach, that overcomes the simplification of the SDS while 

using the same rainfall input data and keeping the computational costs reasonable. The application 

of the proposed method was demonstrated on a case study using a simple SCS hydrological model. 

The PDS method can, however, be utilized in combination with any event-based hydrological 

model and the number of considered uncertain parameters is not limited.  

It is well known that the SDS approach tends to underestimate design flood discharges [Viglione 

et al., 2009; Grimaldi et al., 2012b; Li et al., 2014; Awadallah et al., 2015]. Two reasons can be 

identified: Firstly, other parameters than the rainfall are also random or uncertain; extreme 

discharges are associated with large rainfall, but typically also with unfavorable values of other 

influencing parameters. For this reason, the assumption of ARI neutrality underlying the standard 

design storm approach does not hold. This is confirmed by the results of the presented case study, 

which show that the representative design storm event is associated with an 80-90% quantile value 

of the curve number. This reflects that an extreme discharge event is likely to occur during a period 

of high antecedent soil moisture. Despite yielding better estimates according to the results 

presented here, no evidence is found that the 𝐶𝑁𝐼𝐼𝐼 (i.e. the 90 % CN-quantile) is used in practice 

for design flood estimation with the standard design storm method. Instead, [Pilgrim and Cordery, 

1993] explicitly recommend the use of median values (such as 𝐶𝑁𝐼𝐼 ) in the design storm approach 

to transform the rainfall return period to runoff return period. Also the [DVWK, 1984] in Germany 

recommends the use of 𝐶𝑁𝐼𝐼  for design purposes. 

The second reason for the underestimation by the SDS approach is its focus on a single critical 

rainfall duration, which neglects that, with smaller probability, extreme flood events may be caused 

by rainfalls of other durations as well. This effect can be appreciated by comparing the result from 

the analysis considering rainfall correlation with the lower bound in Figure 10. The bounds in 

Figure 10 do not represent a measure of uncertainty such as a credible or confidence interval. 

Instead, they represent the two extreme cases of dependence in the exceedance events of different 

rainfall durations, as explained in Section 2.3. Future work could extend the PDS approach to 

generate uncertainty intervals on its design flood estimates. 

The effect of the different rainfall durations on flood exceedance probabilities depends on the 

dependence structure of all model input parameters. In most instances, it is possible to obtain data 

on rainfall, which enables the computation of the correlation among annual maximum rainfalls of 

different duration, as in Figure 9. In such cases, it is possible to obtain a single estimate of the flood 

exceedance probability, which neglects statistical dependence associated with the remaining model 
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parameters (Section 3.2.5). In our numerical investigation, this assumption gave result that are 

sufficiently accurate for most practical applications (Figure 12).  

As we demonstrate in Section 3.2.6, the FORM approach enables accounting for the full 

dependence structure among all input parameters. However, for ungauged catchments, it is 

generally difficult or impossible to determine the correlations among some of the model parameters 

(here: CN). Besides the assumptions made in Section 3.2.5, one could also employ correlation 

structures of catchments with similar characteristics. It is pointed out that, even if some 

assumptions on correlation structures are necessary in the PDS, the results obtained will still be 

closer to reality than under the assumption of a single critical duration, as currently utilized in SDS, 

which is analogue to the lower bound of the PDS estimate. 

For the investigated catchment, the underestimation of the SDS compared to the PDS with the 

complete dependence model is in the order of 28% of the design flood for the 100yr and 22% for 

1000yr event. The PDS with simplified dependence structure overestimates the 100yr event by 4% 

and the 1000yr event by 7%, compared to the full solution (see Figure 12). 

For validation purposes, the results of the proposed PDS were compared with a flood frequency 

analysis of stream flow records. The PDS results closely match the flood frequency analysis while 

the SDS with 𝐶𝑁𝐼𝐼 is not within the credible interval of the flood frequency analysis. We point out 

that this is not a proper validation of the method, as the results depend also on the quality of the 

input probability distributions and the hydrological model. If the probabilistic rainfall input is 

biased or if the hydrological model does not accurately represent the catchment, errors are 

introduced that affect both the SDS and PDS. However, we tested the employed hydrological model 

and the rainfall data, and are confident that they represent a good choice among the simple models 

available for use in practice for the considered catchment. 

The FORM methodology proposed for solving the probabilistic formulation of the design storm 

problem has two benefits over a Monte Carlo sampling (MCS) approach. Firstly, it is 

computationally more efficient; however, in combination with simple hydrological models, even a 

MCS analysis is feasible in practice. Secondly, through identification of the so called design points 

and calculation of sensitivity indices, the FORM analysis provides additional insights into the 

parameter combinations that lead to the extreme discharge event, as discussed above. In analogy 

to semi-probabilistic design concepts used in structural reliability, it allows the identification of 

representative design storm events, which, if inserted into a deterministic model (here, the SDS 

method) are representative for design floods of required exceedance probability.  

We derived design charts, which summarize these representative design storm events, as a 

pragmatic tool to utilize the results in practice. An example is shown in Figure 4. These results are 

strictly valid only for the investigated catchment, but similar results are expected for other 

catchments. Through investigations of other case studies, it would be possible to find design charts 

for a specific hydrological model (such as the SCS curve number approach in combination with a 

unit hydrograph as used here) and for different catchment types. The design charts can help to 
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avoid the error made through the ARI neutrality assumption and consideration of single rainfall 

duration in the SDS approach. However, it would be better to avoid the SDS approach, and directly 

employ the PDS approach, which does not require additional input data (unlike e.g. a continuous 

simulation). The PDS is computationally efficient and it can output the representative design storm 

events, which facilitate the interpretation of the results by hydrologists that are not experts in 

probabilistic assessment. 

5 Conclusion 

We introduced the Probabilistic Design Storm method, which overcomes major limitations of the 

standard design storm method, namely the assumption of ARI-neutrality and the use of a single 

critical rainfall duration. The Probabilistic Design Storm method accounts for uncertainty in input 

parameters other than rainfall, e.g. antecedent wetness, and for multiple rainfall durations. In 

contrast to continuous hydrological models or probabilistic event-based approaches, the proposed 

approach only requires the readily available depth-duration-frequency or intensity-duration-

frequency (DDF/IDF) curves as input characterizing the extreme rainfall events, which facilitates 

its implementation to engineering practice. Besides providing an improved design flood estimate, 

the method also provides sensitivity measures and identifies the most likely combination of input 

parameters (e.g. of rainfall intensity and antecedent wetness) that cause a design flood with given 

return period. Such representative design storm events can then be summarized in design charts 

that can be combined with existing methods for simplified use in engineering practice. The 

application of the Probabilistic Design Storm method to a small catchment showed that the standard 

design storm approach significantly underestimates extreme flood discharges. 

Acknowledgments, Samples, and Data 

We acknowledge insightful discussions and input from Wolfgang Rieger from the Chair of 

Hydrology at TUM and Simon Mrowietz.  

The discharge data as well as EGAR maps for the derivation of the CN-value were kindly provided 

by Peter Wagner and Andreas Rimböck from the Bavarian Environment Agency (Bayerisches 

Landesamt für Umwelt). The hourly precipitation data at stations Hohenpeißenberg and Bamberg 

have been downloaded from Germany's National Meteorological Service (Deutscher Wetterdienst, 

http://www.dwd.de/). The depth duration frequency information of the rainfall were extracted from 

KOSTRA-DWD-2000, a service provided by Germany's National Meteorological Service 

(Deutscher Wetterdienst). Further information on the sources of the data can be found in the 

reference section.  

Olga Spackova acknowledges support by the German Science Foundation (DFG) through the 

TUM International Graduate School of Science and Engineering (IGSSE). 

 



An edited version of this paper was published by AGU. Copyright (2017) American Geophysical 

Union. 

  32/38 

Appendix  

 

Nataf Transformation 

The Nataf transformation is summarized based on [Der Kiureghian and Liu, 1986; Melchers, 

1999]. First, the correlated random variables 𝐗 are marginally transformed to correlated standard 

normal random variables 𝐙: 

𝑍𝑗 = Φ−1[𝐹𝑋𝑗 (𝑋𝑗)] (A1) 

where 𝐹𝑋𝑗  is the CDF of the random variable 𝑋𝑗 and Φ−1 is the inverse standard normal CDF.  

Next, the correlation 𝜌̇𝑗,𝑙 of the standard normal random variables 𝑍𝑗 and 𝑍𝑙 can be obtained from 

the correlation matrix 𝐑𝐗 of the random variables 𝐗 through the following equality: 

𝜌𝑗,𝑙 = ∫ ∫
(𝑥𝑗 − 𝜇𝑗)

𝜎𝑗
∙

(𝑥𝑙 − 𝜇𝑙)

𝜎𝑙
∗ φ2(𝑧𝑗, 𝑧𝑙 , 𝜌̇𝑗,𝑙)𝑑𝑧𝑗𝑑𝑧𝑙

∞

−∞

∞

−∞

 (A2) 

where 𝜌𝑗,𝑙 is the correlation of 𝑋𝑗 and 𝑋𝑙, φ2 the bivariate normal PDF, 𝜇𝑖 and 𝜇𝑗 are the means of 

𝑋𝑗 and 𝑋𝑙, 𝜎𝑗 and 𝜎𝑙 are the corresponding standard deviations. The result is 𝐑𝒁, the correlation 

matrix of the correlated standard normal random variables 𝐙. To avoid evaluating 𝜌̇𝑗,𝑙 through Eq. 

(A2), approximation formulas have been developed in function of the marginal distribution type 

[Der Kiureghian and Liu, 1986; Ditlevsen and Madsen, 1996]. 

The final step is the transformation of 𝐙 to uncorrelated standard normal random variables 𝐔: 

𝑇𝑁𝑎𝑡𝑎𝑓: 𝐔 = 𝑳𝒛
−𝟏 ∙ 𝐙 (A3) 

with 𝑳𝒛 the lower triangle matrix of a Choleski decomposition of 𝐑𝒁:  

𝐑𝒁 = 𝑳𝒛 ∙ 𝑳𝒛
𝑻 (A4) 

For FORM, the inverse Nataf transformation is required: 

𝒁 = 𝑳𝒛 ∙ 𝑼 (A5) 

𝑇𝑁𝑎𝑡𝑎𝑓
−1 (𝐔, 𝐑𝐗): 𝑋𝑗 = 𝐹𝑋𝑗

−1 (Φ(𝑍𝑗)) (A6) 
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𝐹𝑋𝑗

−1 is the inverse CDF of random variable 𝑋𝑗 and Φ the standard normal CDF. 

 

SCS Curve Number (CN) approach 

For the background on the SCS-CN approach we refer to [US Department of Agriculture, 2004; 

Mays, 2005; Maniak, 2010]. The relationship between total and effective rainfall in [mm] utilized 

in this paper is [DVWK, 1990, 1991]: 

𝑅𝑒𝑓𝑓 =
(

𝑅
25.4

−
50
𝐶𝑁

+ 0.5)
2

𝑅
25.4

+
950
𝐶𝑁 − 9.5

∙ 25.4 (A7) 

with 𝑅 the total rainfall, 𝑅𝑒𝑓𝑓 the effective rainfall and 𝐶𝑁 the Curve Number. As recommended 

in [DVWK, 1991] for southern Germany, Eq. (A7) assumes an initial loss of 5 % instead of the 

original 20 %. It is typically distinguished between 𝐶𝑁𝐼𝐼 for average conditions, 𝐶𝑁𝐼 for dry 

conditions and 𝐶𝑁𝐼𝐼𝐼 wet conditions in the catchment [US Department of Agriculture, 2004]. The 

following relation [Maniak, 2010] between 𝐶𝑁𝐼𝐼 and 𝐶𝑁𝐼 

𝐶𝑁𝐼 =
𝐶𝑁𝐼𝐼

2.334 − 0.01334 ∙ 𝐶𝑁𝐼𝐼
 (A8) 

and 𝐶𝑁𝐼𝐼 and 𝐶𝑁𝐼𝐼𝐼  

𝐶𝑁𝐼𝐼𝐼 =
𝐶𝑁𝐼𝐼

0.4036 + 0.0059 ∙ 𝐶𝑁𝐼𝐼
 (A9) 

is applied. 

 

Unit hydrograph after Wackermann 

The unit hydrograph ℎ(𝜏) after Wackermann is based on two parallel storage cascades, one for 

overland flow and one for interflow [Wackermann, 1981]: 

ℎ(𝜏) = 𝛽 ∙
𝜏 ∙ exp (−

𝜏
𝐾1

)

𝐾1
2 + (1 − 𝛽) ∙

𝜏 ∙ exp (−
𝜏

𝐾2
)

𝐾2
2  (A10) 

The parameters 𝛽, 𝐾1 and 𝐾2 are related to the geomorphological characteristics of the catchment 

[Wackermann, 1981; Harms, 1986]:  
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𝛽 = {
0.323 ∙ exp (−0.00765 ∙ 𝐿/√𝐼), 𝑓𝑜𝑟 𝐿/√𝐼 ≤ 454

0.01, 𝑓𝑜𝑟 𝐿/√𝐼 > 454
 (A11) 

with 𝐿 the length of the main flow path from water divide to the gauge in 𝑘𝑚 and 𝐼 the slope of the 

main flow path; 

𝐾1 = {
4.375 − 2.247 ∙ 𝛾, 𝑓𝑜𝑟 𝛾 ≤ 1.836

0.25, 𝑓𝑜𝑟 𝛾 > 1.836
 (A12) 

with 𝛾 the flow path network density defined by the length of the streams displayed in a 1:25000 

topography map in relationship to the catchment area 𝐴 in 𝑘𝑚/𝑘𝑚²; 

𝐾2 = {
0.067 ∙ 𝐿/√𝐼, 𝑓𝑜𝑟 𝐿/√𝐼 ≤ 50

0.0168 ∙ 𝐿/√𝐼 + 2.5, 𝑓𝑜𝑟 𝐿/√𝐼 > 50
 (A13) 
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