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ABSTRACT: The assessment of deteriorating structural systems has been one of the major applications of
probabilistic analysis and structural reliability theory. Nevertheless, looking back on over 40 years of research
and development in this area, the outcome has been mixed. While a lot of progress has been made, important
questions and challenges still have not been answered. Structural reliability methods still play a minor role in the
management of existing deteriorating structures in practice. There are encouraging signs, e.g. the development
of standards and guidelines for existing structures that rely at least partly on structural reliability methods. But
there remain significant open challenges to the structural reliability community, some of which I discuss in this
contribution.

1 INTRODUCTION

The assessment of deteriorating structural systems
has been one of the major applications of probabilis-
tic analysis and structural reliability theory, for multi-
ple reasons. Firstly, with the exception of fatigue, the
quantitative assessment of deterioration is not consid-
ered in current codes based on the partial safety factor
format. Hence, it is challenging to demonstrate the re-
liability of deteriorating structural systems with stan-
dard (semi-probabilistic) safety concepts alone (Faber
2000, JCSS 2001, Melchers 2001, Ellingwood 2005).
Secondly, deterioration is often assessed for exist-
ing structures in which damages have been observed.
For such structures, data is typically available from
past inspections, monitoring or tests performed during
the construction and operation of the structure. These
data can be used to update the parameters of struc-
tural models, deterioration models or the reliability it-
self. Such an integration is best performed through a
probabilistic analysis. Thirdly, in addition to deterio-
ration, existing structures are often subject to changes
in demand or loss of capacity, which may cause non-
compliance of the structure with current code require-
ments. In some cases, a probabilistic assessment can
demonstrate that a structure is nevertheless safe for
future usage.

All these applications of structural reliability re-
quire a proper probabilistic description of the struc-
tural model and its parameters. A major challenge
thereby is that the data available from existing struc-
tures cannot be explained with the simple models as-

sumed in classical structural design and simple relia-
bility analysis. Instead, the data reflect the real behav-
ior of the structure and the spatial variability of the
parameters. For this reason, the assessment of existing
structures often necessitates more sophisticated struc-
tural and probabilistic models than the design of new
structures. Thereby, the proper modeling choices are
crucial, as overly simple models can lead to entirely
wrong results, whereas overly complicated models
lead to an unnecessary effort for analysis and – be-
cause of the difficulties in reliability analysis – are
also more error-prone.

The challenges associated with the modeling are re-
lated to:

• Deterioration modeling

• Structural system modeling

• Probabilistic modeling

• Dependence modeling

• Modeling of inspection and monitoring

In this contribution, I review these challenges and out-
line strategies for handling the modeling in Sections
3 to 6. The aim is to discuss when simple models
are sufficient, and when more advanced models of
the structural system and spatially variable parame-
ters are required. The selected modeling approach has
direct implications on the computational aspect of the



reliability analysis. I will highlight recent computa-
tional developments that facilitate the application of
advanced models in engineering practice.

Finally, main challenges in the assessment of de-
teriorating structures are associated with the manage-
ment and the organization of owners and operators.
These include data and model availability, develop-
ment of codes and standards as well as general orga-
nizational aspects. I will address these throughout the
manuscript.

The paper starts out with the presentation of an ide-
alized example and a review of the basic quantities in
the reliability assessment of structures over their ser-
vice life (Section 2). This example should allow the
reader to follow and – if desired – to replicate some
of the analyses presented in this paper.

2 RELIABILITY ANALYSIS OF
DETERIORATING STRUCTURES

2.1 An idealized structure

To illustrate the concepts, methods and challenges as-
sociated with the assessment of deteriorating struc-
tures, I introduce a highly idealized example, which
nevertheless features most of the relevant aspects of
a real-life structural system. The structural system,
shown in Figure 1, is a frame structure with ideal
plastic material behavior. It has been studied in mul-
tiple text books and papers previously, without con-
sidering deterioration (Madsen et al. 1986, Der Ki-
ureghian 2005). The frame is characterized by the
plastic moment capacities at locations 1−5. There are
two loads: the permanent load V and the time-variant
load H . The latter is described by the distribution of
its annual maxima Hj , with the index j denoting the
year.

The structure is subject to deterioration, which is
modeled at the element level i = 1, . . . ,5 as:

Di(t) = 1−Φ
(
t−Bi

0.2Bi

)
(1)

Φ is the cumulative distribution function (CDF) of the
standard normal distribution, Bi is the deterioration
model parameter.

The resulting moment capacity Ri(t) of element i
at time t is

Ri(t) = Mi ·Di(t) (2)

with Mi being the initial moment capacity.
The occurrence of the three failure mechanisms de-

picted in Figure 1 in year j is described by the follow-
ing limit state functions (Madsen et al. 1986):

ga,j(X) = R1(tj) +R2(tj) +R4(tj) +R5(tj)

−5Hj (3)

gb,j(X) = R2(tj) + 2R3(tj) +R4(tj)− 5V (4)

(3)
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Figure 1: Frame structure and its three main failure mechanisms.

gc,j(X) = R1(tj) + 2R3(tj) + 2R4(tj) +R5(tj)

−5Hj − 5V (5)

wherein tj is the time associated with the jth year. If
the structure is installed at time t= 0, then it is simply
tj = j.

The event of failure of the structural system dur-
ing year j is then described by the system limit state
function:

gj(X) = min[ga,j(X), gb,j(X), gc,j(X)] (6)

with failure in year j defined as:

Fj = {gj(X) ≤ 0} (7)

The probability of failure of the undamaged struc-
ture in the first year of service (with Ri ' Mi) is
Pr(F0) = 9.95× 10−4.

The event of failure up to time tj is defined as

F (tj) = F1 ∪ F2 ∪ . . .∪ Fj (8)

The corresponding probability of failure of the
structure up to time tj is

Pr[F (tj)] = Pr(F1 ∪ F2 ∪ . . .∪ Fj) (9)

Pr[F (tj)] is the quantity that should be utilized for
the assessment of the reliability. Unfortunately, this
corresponds to a system reliability problem among
the failure events in different years (in addition to the
system reliability problem describing failure in each



Table 1: Stochastic model of the example structure.
Parameter Unit Distribution Mean St. dev.
Hj (annual max.) kN Gumbel 50 20
V kN gamma 60 12
M1 – M5 kNm lognormal 200 30
B1 – B5 yr lognormal 100 50
ρM – det. 0.3
ρA – det. 0.6

year, Eq. 6). In many instances, therefore, the proba-
bility of Eq. 9 is approximated by one of the following
bounds:

Pr(Fj) ≤ Pr[F (tj)] ≤ 1−
j∏

i=1

[1−Pr(Fi)] (10)

Efficient solutions to computing the exact
Pr[F (tj)] are presented in (Straub et al. 2019).

2.2 Lifetime reliability

To assess the reliability of structures over their life-
time, the reliability is best expressed by the probabil-
ity of failure up to time t, which is equal to the CDF
of the time to failure TF (Barlow and Proschan 1996,
Rausand and Høyland 2004):

Pr[F (t)] = FTF
(t) = Pr(TF ≤ t) (11)

The reliability at time t is

Rel(t) = 1−Pr[F (t)] (12)

The probability density function (PDF) of the life-
time TF is

fTF
(t) =

dFTF
(t)

dt
= −dRel(t)

dt
(13)

The hazard function (failure rate) is defined as

hF (t) =
fTF

(t)

Rel(t)
(14)

The probability of failure of the example structure
is shown in Figure 2; the corresponding hazard func-
tion is shown in Figure 3. The effect of the deteri-
oration is evident. Without deterioration, the hazard
function of the structure is slightly decreasing over
time, from 10−3 at time t = 0 to 0.89 · 10−3 at time
t = 50yr. This is caused by a proof load effect: Sur-
vival at earlier years is an indication that the structure
has a certain minimum capacity and that the perma-
nent load V is not excessively large.

Note that the probability of failure of this structure
is artificially inflated; some effects are more clearly
visible at large probability values. Most real structures
have much smaller failure probabilities.

The risk associated with structural failure over the
lifetime of the structure is a function of the lifetime
PDF fTF

:

Risk =
∫ ∞
0
CF exp[−γt]fTF

(t)dt (15)
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Figure 2: Probability of failure of the example structure.

10 20 30 40 500
10-4

10-3

10-2

10-1

time [yr]

fa
ilu

re
 ra

te
 [y

r-1
]

with deterioration

without

Figure 3: Hazard function (failure rate) of the example structure.

wherein CF is the cost associated with a failure and γ
is the discount rate. Risk is the net present value of
the risk.

Eq. 15 assumes that the structure is utilized until
failure. If only a finite service lifetime TSL is consid-
ered, the upper limit of the integral is replaced by TSL.
Figure 4 shows the net present risk of the example
structure in function of the considered service life pe-
riod TSL, with γ = 2% andCF = 106. It is evident that
the possibility of failures beyond 100yr in the future
does not significantly affect the net present value of
the risk; in the case of the non-deteriorating structure
it is Risk(100yr) = 38 · 103 vs. Risk(∞) = 42 · 103.
The reason lies in the discounting of future failure
costs to t = 0.
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Figure 4: Lifetime risk (net present value) of the example struc-
ture in function of the intended service life.



A proper life-cycle costing should also consider ob-
solescence and replacement of the structure (Rack-
witz 2000). However, almost all studies on optimal
asset integrity management ignore the possibility of
obsolescence. Also, estimating the probability of ob-
solescence appears challenging, since it requires pre-
dictions on future technological progress and socioe-
conomic developments.

2.3 The example structure vs. real life structures

In the following sections, the various aspects of as-
sessing the system reliability of deteriorating struc-
tures will be discussed. The example structure will
be utilized to illustrate points made in the discussion.
The idealized example structure has multiple conve-
nient features not encountered in real-life applica-
tions, as every engineer who has worked on the as-
sessment of deteriorating structures can testify. I will
address these features in the subsequent sections. My
aim is to demonstrate that the reduction to an ide-
alized model can often provide the solution path for
more complex problems. But I will also show that to
some challenges no easy solutions are available.

3 DETERIORATION MODELING

3.1 Model availability and accuracy

There is a substantial amount of literature on stochas-
tic deterioration models for structures (Lin and Yang
1985, DuraCrete 1998, Stewart and Rosowsky 1998,
Melchers 1999a, Frangopol et al. 2004). Nevertheless,
good deterioration models exist only for few common
phenomena, in particular for fatigue in metallic struc-
tures and for reinforcement corrosion in RC struc-
tures. And even in these areas, the prediction abil-
ity of the models can be quite poor outside of labo-
ratory conditions. In one of the few examples of in-
service validation of deterioration models, Aker Off-
shore Partner (1999) compare predictions of fatigue
life with observed fatigue crack rates in offshore steel
structures. Their conclusions are rather discouraging,
indicating a limited predictive power of fatigue mod-
els. Figure 5 shows results from this study, in which
the observed frequencies of fatigue cracks are sum-
marized for groups of fatigue details with the same
predicted fatigue reliability at the time of inspection.
The data shown in Figure 5 is from older structures
built prior to 1975. Results from the same study indi-
cate that the observed frequency of fatigue cracks in
newer structures is significantly lower, yet the predic-
tive power of the fatigue model is not better.

For many deterioration phenomena, quantitative
predictive models are lacking entirely. For example,
in Germany significant resources are spent on ensur-
ing the reliability of prestressed concrete bridges built
mainly in the 1960s and 70s that are subject to stress
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Figure 5: Observed frequency of fatigue cracks in structural de-
tails in function of the calculated fatigue reliability of these de-
tails. The predicted frequency is the one according to theory, i.e.
Φ(−β). Figure adapted from (Aker Offshore Partner 1999).

corrosion cracking (SCC). Because no suitable pre-
dictive model for SCC exists, authorities are required
to take a highly conservative approach based on sub-
stantial inspection efforts (Lingemann et al. 2010).

Overall, stochastic modeling of deterioration for
the purpose of assessing the reliability of a structure is
challenging. The associated uncertainty signifies that
in most applications, models can give useful predic-
tions only if accompanied by data collection through
tests, inspections and monitoring. However, models
are necessary for making any kind of predictions, and
despite trials to do otherwise, it is doubtful a quantita-
tive demonstration of the reliability of a deteriorating
structure is possible without an underlying deteriora-
tion model. The increased availability and quality of
monitoring and other type of data provides an oppor-
tunity to develop more realistic deterioration models
in the future. For this to happen, it is however im-
portant that infrastructure owners and operators de-
fine and impose standards for the collection of such
data.

3.2 Deterioration modeling at the system level

With few exceptions, deterioration in structural sys-
tems is modeled at the element level, in analogy to
the example structure of Section 2.1. This is due to
the uniqueness of structures, which does not allow for
models to be easily transferred from one structure to
another. Exceptions to the rule are some empirically-
based models that are based on past inspection data,
e.g. models utilized in bridge management systems
(BMS) (Scherer and Glagola 1994, Thompson et al.
1998). A main limitation to developing such empir-
ical models has been the lack of high-quality data.
Existing data comes from traditional bridge inspec-
tions, which suffer from reporting standards that are
not aimed at developing deterioration models. For ex-
ample, in most cases, only the degree of damages in
a part of the structure is reported, often without sys-
tematically noting the type of damage nor the mech-
anism causing it. Furthermore, the assessment by in-



spectors has a substantial subjective component and
has also shown to be subject to significant uncertainty
and variability (Phares et al. 2001).

Nevertheless, empirical models both at the subsys-
tem and system level are likely to improve in the fu-
ture. In particular efforts of infrastructure owners and
operators to implement BIM (Building Information
Management) standards should substantially improve
the data collection, as is the progress in sensor, moni-
toring and communication technology.

4 STRUCTURAL SYSTEM MODELING

Since deterioration is typically modeled at the ele-
ment level, a model of the structural system is nec-
essary for understanding the effect of deterioration on
the structural reliability. In the following, different ap-
proaches to handle this challenge are presented, in the
order of increasing accuracy and complexity.

4.1 Limiting the analysis to element failure events

In Eurocode, and most other structural codes, the sys-
tem reliability is not modeled explicitly. Instead, it is
required that all structural elements comply with the
reliability requirement, by demonstrating compliance
with the design limit state for each cross section. In
many cases, this is a conservative approach, but for
new-built structures the approximation is often justi-
fied by the difficulty and cost of a more realistic sys-
tem model.

The example structure of Section 2.1 is ductile and
hence has significant reserves beyond yielding of the
first member, as demonstrated in the following. If fail-
ure at the element level is defined as reaching the plas-
tic limit (in accordance with a static equilibrium ap-
proach as used in Eurocode), the corresponding limit
state functions are:

ge,i,j(X) = Ri(tj)− |MS,i(X, j)| (16)

wherein MS,i,j is the maximum resulting moment at
location i in year j. The stiffness of the structure
is constant throughout the structure and is described
by the parameters E = 200GPa, A = 0.02m2 and
I = 10−4m4. With these parameters, a linear-elastic
structural analysis results in the moments as follows:

MS,1,j = 1.56m ·Hj − 0.5m · Vj (17)

MS,2,j = −0.94m ·Hj + 1m · Vj (18)

MS,3,j = 1.5m · Vj (19)

MS,4,j = −0.94m ·Hj − 1m · Vj (20)

MS,5,j = 1.56m ·Hj + 0.5m · Vj (21)
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Figure 6: Probability of system failure computed with an
element-based model in accordance with the classical design
methodology in Eurocode, compared to the probability of fail-
ure evaluated with a system-based model (the same as in Figure
2).

If failure of the structural system is defined as the
violation of any of the resulting 5 limit states, a cor-
responding system reliability estimate can be com-
puted. The limit state functions ge,i,j(X) give signif-
icantly lower values than the ones describing the fail-
ure mechanisms (Eqs. 3-5). Therefore, the static equi-
librium approach results in much higher probability
of failure estimates than the system analysis approach
of Section 2.1, which corresponds to a kinematic limit
analysis. Figure 6 compares the probabilities of fail-
ure as computed with these two approaches. Assess-
ing system performance through Eq. 16 can therefore
be highly conservative. Such a model is nevertheless
utilized in the assessment of existing and deteriorat-
ing structures because it complies with the safety for-
mat of common standards and is readily implemented
with standard software tools, e.g. (Mix 2016).

4.2 Full system reliability analysis

A system reliability analysis, as it is performed on the
example structure in Section 2.1, is not commonly
applied for the assessment of structures in practice.
In research, such analyses are performed and there
seems to be no fundamental difficulty in performing
them, even if some challenges remain. In practice,
these analyses have been hindered by the significant
computational demands and the practical difficulties
associated with the need of coupling a structural anal-
ysis model with a structural reliability code. Today’s
computer performance and the large number of avail-
able structural reliability software solutions alleviate
these problems.

Another hindrance in performing an integrated
system-wide analysis lies in the analysis workflow,
which is still mostly element-based. The deterioration
is evaluated at the element level (e.g. fatigue lives are
calculated for structural details), and it is often prefer-
able to assess the reliability element by element. In
principle, such an approach can also ensure the re-
liability of the system, but it necessitates that relia-
bility acceptance criteria at the element level are de-



Figure 7: System model of (Straub and Der Kiureghian 2011) for determining reliability acceptance criteria at the structural element
level based on the n− 1 redundancy.

rived, which are consistent with the requirements to
the structural system. This is outlined in the next sec-
tion.

4.3 Deriving reliability requirements at the element
level based on a simplified representation of
redundancy by an n− 1 analysis

For some types of deterioration in structures, e.g. fa-
tigue, it can be sufficiently accurate to consider an ele-
ment as either fully intact or completely failed. In this
case, the element performance can be modeled at the
system level by a Bernoulli random variable with bi-
nary outcome states. On this basis, it is possible to de-
rive reliability acceptance criteria at the element level
based on overall reliability levels at the system level
(Straub and Der Kiureghian 2011).

To this end, simplified system models were pro-
posed in the past for the analysis of offshore steel
structures (Moan 1999, Faber et al. 2000, Moan 2005,
Straub and Faber 2005a). They are based on evalu-
ating the reduction in overall system capacity upon
failure of individual elements and then estimating the
probability of system failure conditional on these fail-
ures. These analyses are in analogy to n− 1 contin-
gency analyses, which are commonly applied to test
system redundancy, in structures (e.g., Frangopol and
Curley 1987) as well as other engineering systems,
e.g. power grids (Stott et al. 1987).

A measure to assess the element importance in this
way is the probability of failure of the structure with
element i removed1: Pr(F0,−i). This quantity is com-
puted for the non-deteriorated structure, i.e. all mem-
bers other than i are intact.

To understand the redundancy, Pr(F0,−i) should
be compared to the intact reliability. This can be
achieved with the Single Element Importance (SEI)
measure, with Pr(F0) being the probability of fail-
ure of the intact structure (Straub and Der Kiureghian
2011):

SEIi = Pr(F0,−i)−Pr(F0) (22)

For the example system, the resulting SEI are given
in Table 2. Element 3 is the one with the highest SEI,

1Note that this is not identical to the conditional probability
of structural failure given failure of element i. In computing this
conditional failure probability, one has to consider the stochastic
dependence among the elements, which is not included in the
definition used here.

Table 2: Element importance in the example structure.

Element i 1 2 3 4 5
Pr(F0,−i) 0.010 0.009 0.128 0.051 0.010
Pr(F0,−i)/Pr(F0) 10 9.5 129 51 10
SEIi 0.009 0.008 0.127 0.050 0.009

hence it contributes most to the overall failure proba-
bility.

To address the effect of element failure on the sys-
tem reliability, the following model has been applied
frequently:

Pr[F (t)] ≈ Pr(F0) +
n∑

i=1

Pr(F0,−i) ·Pr[Fe,i(t)] (23)

Fe,i(t) is the event of fatigue failure of element i up to
time t. The advantage of this system model is its sim-
plicity, as it does not require to consider element in-
teractions. Hence the model allows a treatment of de-
terioration reliability at the element level. The model
has e.g. been used in the reassessment of offshore
steel platforms (Moan 1999, Faber et al. 2000, Moan
2005).

In (Straub and Der Kiureghian 2011) we showed
that the model of Eq. 23 can be oversimplifying in
structures with significant redundancy, because it ne-
glects the interactions and dependence among ele-
ments. Critically, it can lead to strong overestimation
of the reliability of a damaged structure.

To mitigate the problem, without losing modeling
and computational advantages, we proposed to extend
the model by construction of a conceptual structure,
in which the structural element is part of one or mul-
tiple Daniels systems that are connected in series, as
shown in Figure 7. The Daniels system is the sim-
plest instance of load sharing structures (Gollwitzer
and Rackwitz 1990). For each element, we estimate
the number of elements in the associated Daniels sys-
tem and the total number of Daniels systems in series,
based on the Pr(F0,−i) values and the reliability of the
undamaged structure. The model of Figure 7 can be
evaluated cheaply, hence it is suitable for determining
the reliability requirements for each element, which
ensure that the overall system has sufficient reliabil-
ity.

The model was examined in (Straub and Der Ki-
ureghian 2011) by considering example structures
with a target reliability of β = 4.2. When determining



the necessary element reliabilities based on the sim-
ple model of Eq. 23, the resulting structural system
reliability achieved is in the range of β = 2.5− 3.8,
well below the target of 4.2. With the model of Figure
7, the system reliability is β = 4.0− 4.1.

4.4 Research needs

In the 1980-90s, substantial research efforts were
made towards improving structural system reliabil-
ity models (an overview is provided in Melchers
1999b). Since the 2000s, this has pretty much seized
to be an active field of research, with a few ex-
ceptions (e.g., Lee and Song 2011). Solutions have
been found for specific applications, e.g. as discussed
above. But generally satisfactory solutions, in partic-
ular approaches that can be included in standard and
codes, are still lacking. Current design codes do not
rigorously address the topic. For example, Eurocode
0 is mostly based on demonstrating the reliability at
the cross-section level as in Section 4.1 above. Struc-
tural redundancy is addressed only qualitatively and
reliability targets are not consistent at the structural
system level. These considerations were explicitly ex-
cluded at the time of writing the code (DIN 1981).
However, the currently ongoing revision of the Eu-
rocode does not improve upon this situation, due to
the lack of suitable approaches that lend themselves
to codification. For deteriorating structures this is es-
pecially critical.

5 DEPENDENCE AND CORRELATION IN
STRUCTURAL CONDITION AND
PERFORMANCE

Deterioration processes at different locations in a
structure are mutually dependent. In particular, vari-
ably and uncertain common influencing factors cause
such dependence. For example, the same material and
execution quality is encountered throughout a struc-
ture; the system as a whole is subject to the same
load; and the same maintenance regime is applied for
the entire structure. Only a limited number of studies
have investigated these effects, but they show clear
evidence of such dependences (e.g., Vrouwenvelder
2004, Li et al. 2004, Malioka et al. 2006, Luque et al.
2017).

Dependence among deterioration effects at differ-
ent locations of the structure is relevant for two rea-
sons: (a) In redundant systems, stochastic dependence
among element capacities reduces the overall reliabil-
ity of the structural system. This is further discussed
in Section 5.2 below. (b) When managing the reliabil-
ity by means of inspections, dependence signifies that
an inspection of one element provides information on
the deterioration at other elements as well (Straub and
Faber 2005b). This is illustrated in Figure 8 and dis-
cussed in Section 6.
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Figure 8: Probability of deterioration failure of element 5 in the
example structure. The a-priori probability of failure is com-
pared to (a) the case where inspection results from element 1 are
available and (b) the case where inspection results are available
from elements 1–4. In both cases, inspections are performed in 5
year intervals and it is assumed that all inspections reveal intact
elements. The inspection is modeled following Section 6.1. This
illustrates the effect of information obtained from correlated el-
ements on the reliability of an un-inspected element.

5.1 Modeling dependence

Probabilistic deterioration models are developed
mainly at the structural element level, resulting in
a prediction of deterioration Di(t) at element i.
Stochastic dependence can then be modeled by intro-
ducing a correlation among the Di(t)s, or among the
parameters of the models describingDi(t), such asBi

in the example of Section 2.1. The two most common
classes of models to describe these correlations are
hierarchical models and random field models.

Because a (if not the) main source for dependence
are common influencing factors, a hierarchical model
is a natural model for representing stochastic depen-
dence. It is based on defining the deterioration Di(t)
or its parameters by means of conditional probabil-
ity distributions, which are conditioned on hyperpa-
rameters α that are common to a group of elements
(Maes et al. 2008). These hyperparameters can be
physical parameters (e.g. common environmental fac-
tors), joint model uncertainties or simply empirically
determined parameters. It is also possible to introduce
multiple hierarchies, as in the model of Figure 9 from
Luque et al. (2017). There are a large number of ap-
plications of the hierarchical model described in the
literature (e.g. Maes 2002, Straub et al. 2009, Qin and
Faber 2012).

The hierarchical model has computational advan-
tages. In particular, for fixed values of the hyperpa-
rameters, the Di(t)s are conditionally independent,
which can facilitate computation. For this reason,
the model can also be employed purely for com-
putational reasons. In particular, the case of equi-
correlation among the Di(t)s can be readily repre-
sented by a hierarchical model with a single hyper-
parameter α (Song and Kang 2009, Straub 2018).
This has been exploited when modeling deteriorating
structures through Bayesian networks (e.g., Schnei-
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Figure 9: Hierarchical model for corrosion in ship structures.
At each level of the hierarchy, common factors are introduced
to represent the dependence among elements belonging to the
same instance. At the lowest level (e.g. plates in a compartment),
the model allows for a random field. The model is learned from
thickness measurements in (Luque et al. 2017).

der et al. 2015, Luque and Straub 2016). For exam-
ple, the equi-correlation among the deterioration pa-
rameters Bi of the example structure can be modeled
by defining the Bis through conditional distributions
(see Chapter 9 of Straub 2018):

FBi|Uc(b|uc) = Φ

[
F−1Bi

(b)− uc
√
ρ

√
1− ρUc

]
(24)

wherein Uc is the hyperparameter with standard nor-
mal distribution, F−1Bi

is the inverse CDF of Bi and
ρUc is the equivalent correlation coefficient among the
normal-transformed Bi as used in the Nataf transfor-
mation (Der Kiureghian and Liu 1986). (In the exam-
ple of Section 2.1, ρB = 0.6 translates to ρUc = 0.626.)

For continuously spatially distributed deterioration,
e.g. corrosion on a surface, random field models are
utilized (Hergenröder and Rackwitz 1992, Ying and
Vrouwenvelder 2007, Stewart and Mullard 2007).
The main parameter of these models, besides the
marginal distributions, is the correlation length. Un-
fortunately, only few studies exist that measure cor-
relation lengths for relevant parameters in real struc-
tures (e.g., Malioka et al. 2006).

For computational purposes, random fields must be
discretized (e.g. Li and Der Kiureghian 1993, Betz
et al. 2014). The resulting models have a significant
number of input random variables, but this can be
handled by state of the art reliability methods (e.g.,
Papaioannou et al. 2015, Allaix and Carbone 2016).
A bigger challenge is the difficulty of lay engineers
to understand the concept of random fields and their
implications. One reason for this is the notorious dif-
ficulty in graphically representing 2D or 3D random
fields, because a single plot can only show marginal
information (e.g. a map of the mean or standard devi-
ation) or one realization of the random field. While it
is possible to show multiple realizations jointly, this
is often confusing to non-experts. Good solutions for
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Figure 10: Reliability of a frame structure whose elements are
subject to fatigue deterioration. The system reliability depends
strongly on the correlation among fatigue failures in the elements
(from Straub and Der Kiureghian 2011).

representing spatially dependent random variables are
still sought.

While dependence caused by common factors (rep-
resented by hierarchical models) should generally be
included in the assessment, spatial variability as mod-
eled by random fields can in some cases be repre-
sented by an equivalent random variable. However,
explicit consideration of random fields is necessary
if measurements are taken, in which case the corre-
lation between the measured locations cannot be ig-
nored (see Section 6). The random field must further-
more be included in the analysis when the dependence
has a pronounced effect on the reliability, as discussed
in the next section.

5.2 Effect of dependence on the reliability of the
structure

In redundant systems, dependence among compo-
nents can (severely) reduce the system reliability
(Grigoriu and Turkstra 1979, Gollwitzer and Rack-
witz 1990). Since most structural systems exhibit at
least some redundancy, neglecting dependency can
lead to a strong underestimation of the risk, as illus-
trated in Figure 10. This has been recognized, but in-
cluding the dependence in the assessment has been
hindered by the limited availability of models and
data on dependence of deterioration in the structure.

Without inspection results, spatially varying deteri-
oration is often modeled by means of a homogeneous
random field (i.e. the marginal statistics are the same
throughout the domain). In this case, a conservative
approximation for reliability analysis is to consider
the deterioration as identical throughout the domain
(i.e. model it by means of a single random variable)
with the marginal distribution of the random field.
In many instances, this gives sufficiently accurate re-
sults. If a more accurate description is necessary, it
might be possible to find an equivalent distribution of
the representative random variable that leads to the
same probability of failure estimate as a complete re-
liability analysis with the random field. This approach



is applied in geotechnics (e.g., Griffiths et al. 2009).
Finding similar approximations for non-homogenous
random fields is challenging (Papaioannou and Straub
2017). It therefore remains to be investigated how to
handle spatial variability in simplified reliability as-
sessments when inspection and measurement data are
available.

6 MAINTENANCE, INSPECTION AND
MONITORING

Maintenance, inspection and monitoring are an es-
sential part of the management of deteriorating struc-
tures. Maintenance regimes for technical systems can
be classified as in Figure 11. For structural systems,
which are almost always safety critical, corrective
maintenance is not typically an alternative. However,
for many structures, in particular smaller structures,
it is common to adopt a do-nothing policy and act
only upon the indication of a damage (which predom-
inantly is not a failure but an indication of a dam-
age). Such an approach can be interpreted as an ad-
hoc condition-based maintenance strategy.

In contrast, professional owners and operators of
infrastructure mostly have a systematic or condition-
based maintenance policy, whereby maintenance and
repairs are performed at regular intervals, combined
with inspections. Upon indication of a potentially crit-
ical damage or deterioration process, a predictive ap-
proach is typically implemented, in which structural
and deterioration models are utilized to predict the de-
velopment of the damage. These predictions are ide-
ally made with probabilistic models. In most cases,
inputs to these models are provided based on tests and
inspections on the structure.

As discussed earlier, deterioration models are of-
ten subject to large uncertainty. Hence a commonly
adopted strategy is to combine predictive models with
an inspection and monitoring plan. In a probabilistic
setting, the data from inspection and monitoring can
be directly included in the prediction using a Bayesian
analysis, as outlined in the following subsection.

6.1 The effect of inspection and monitoring on the
reliability

Arguably the most common approach to dealing with
structures for which a potential deterioration problem
has been identified is to perform inspections, possibly
combined with monitoring. The effect of inspection
on the reliability can be quantified consistently with
Bayesian analysis (Tang 1973, Madsen 1987, Sindel
and Rackwitz 1998, Faber 2000). Recent develop-
ments in Bayesian computation make the application
to structural reliability problems rather straightfor-
ward from a computational point of view (e.g., Jensen
et al. 2013, Straub and Papaioannou 2015). However,
the application of the method in practice is still lim-
ited. Besides the general aversion of many engineers

to probabilistic methods, there are a number of addi-
tional challenges. One is modeling the quality of the
inspection data, i.e. the likelihood function describing
the measurement data. Difficulties here involve the
understanding of dependence among measurement re-
sults (Simoen et al. 2013, Goulet and Smith 2013), as
well as the need for a model that connects the mea-
surements with the quantity of interest. For example,
a crack in a concrete structure can be an indication of
a damage, but a model connecting this observation to
the structural parameters is not necessarily available.

Another challenge in Bayesian updating is the need
for a prior model. Because often no or only crude de-
terioration models are available, engineers are reluc-
tant to employ a prior model. However, if the inspec-
tion is at all informative, then the inspection data will
eventually dominate the reliability if weakly informa-
tive priors are used. This is illustrated in the following
numerical example.

Consider the example structure. To reduce the
probability of failure, it is decided to perform regu-
lar inspections at a 5 year interval. If a critical degree
of damage is identified at the inspection, repair ac-
tion would be initiated. The identification of a critical
damage can be mathematically described by a prob-
ability of detection (PoD) function. For this applica-
tion, the PoD is

PoD(Di) = Φ
(

0.5−Di

0.2

)
(25)

At an inspection, all elements are checked. It is here
assumed that all inspections (i.e. at all elements at all
times) result in no-detection of a critical damage.

The conditional probability of failure given the in-
spection results can be computed with Bayesian up-
dating. Here, the BUS approach is utilized to perform
this updating (Straub and Papaioannou 2015, Straub
et al. 2016). Figure 12 shows the resulting conditional
probabilities of failure. Results are computed for the
original model of Section 2.1 and the same structure
with a modified deterioration model, mimicking a sit-
uation in which there is large uncertainty on the dete-
rioration model.

The results of Figure 12 nicely show that the ef-
fect of the prior model is only limited and the updated
reliability is ultimately dominated by the inspection
results. The reliability of the (pessimistic) alternative
model is initially low because of the large uncertainty
associated with the deterioration process. However,
the inspections, which reduce the uncertainty, ensure
a minimum reliability that is quite constant through-
out the service life. With increasing number of inspec-
tions the predicted reliability approaches that of the
original, more informative model. For that model, the
initial inspections have no effect because deteriora-
tion is not expected to have an effect before year 20
anyway.
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Figure 11: Summary of maintenance regimes (from Straub 2018).
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Figure 13: Locations (black dots) of thickness measurements in
an inspection campaign on a ship structure (from Luque et al
2017).

6.2 Spatially distributed inspection data

Inspection and monitoring data is typically available
at varying spatial locations. Exemplary, Figure 13
shows measurement locations in a ship structure. In
some structures, data is available in a spatially dis-
tributed form, e.g. for reinforcement corrosion in con-
crete structures where continuous measurements of
cover depth or half-cell potentials are made (Gehlen
and von Greve-Dierfeld 2010).

Bayesian updating of structural reliability with spa-
tially distributed inspection data has been considered
for some time (Hergenröder and Rackwitz 1992). By

modeling the correlation among deterioration at dif-
ferent locations, the effect of inspecting one compo-
nent on the condition estimate at other locations can
be computed, as illustrated in Figure 8. This effect is
well acknowledged by engineers, who make an as-
sessment of the entire structure by samples taken at
selected locations only, thus implying such a corre-
lation. However, it is still rarely evaluated quantita-
tively.

The large number of parameters arising from the
random field discretization combined with the large
amount of data arising from spatially distributed mea-
surement leads to computational challenges that still
have not been solved satisfactorily at the fundamen-
tal level. However, for most practical purposes, so-
lutions can be found. In some cases, analytical so-
lutions are available, notably for lognormal random
fields (Straub 2011). In other cases, partial solutions
can be found by using some of the data only to update
the marginal distributions, but not the joint distribu-
tion of the random field. This is e.g. employed for ob-
taining the spatially distributed estimate of corrosion
shown in Figure 14 (Straub et al. 2018).

As discussed in Section 5.2 above, an exact repre-
sentation of the spatial random field may not be neces-
sary for the reliability analysis, and the posterior ran-
dom field may be reduced to a single random variable.
However, for the purpose of assessing the durability
and planning maintenance actions, a spatially explicit
representation, such as shown in Figure 14, can be of
great value.

6.3 Planning and optimization of inspection and
monitoring actions

For many structures, inspections contribute signifi-
cantly to the total life-cycle cost. Hence there is an
interest in optimizing inspection efforts, by finding
the optimal trade-off between the cost of inspections
and the risk of failure (Figure 16). The effect of the
inspection lies in the reduction of uncertainty in the
structural condition. This in turn enables an improved
(condition-based or predictive) planning of repair and
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Figure 14: Probability of corrosion initiation (depassivation) in the reinforcement of a RC parking deck. Probabilities are evaluated
by Bayesian updating of the corrosion model with spatially distributed inspection data from half-cell potential measurements, cover
depth measurements and chloride profiles. From (Straub et al. 2018), based on data from (Gehlen and von Greve-Dierfeld 2010).

maintenance actions.
In fact, reliability- or risk-based inspection (RBI)

planning has been one of the successful applica-
tions of structural reliability assessment in practice.
Following the Alexander J Kieland disaster in 1980
(Almar-Naess et al. 1984), RBI planning has been de-
veloped and implemented for offshore structures sub-
ject to fatigue (Skjong 1985, Thoft-Christensen and
Sorensen 1987, Madsen et al. 1990, Goyet et al. 1994,
Faber et al. 2005). In RBI planning, Bayesian updat-
ing is utilized to quantify the effect of inspections on
the uncertainty in the structural condition and on the
reliability estimate (see Figures 8 and 12).

RBI planning is a special case of a sequential deci-
sion problem under uncertainty (Raı̈ffa and Schlaifer
1961, Kochenderfer 2015). When planning an inspec-
tion for the next time step, the entire past history as
well as all potential future decisions and outcomes
must be considered. The corresponding decision tree
is as shown in Figure 15. To facilitate practical solu-
tions, RBI planning was mostly based on a heuristic
solution to the sequential decision planning, whereby
inspections are planned following simple criteria. For
example, an element is inspected whenever its prob-
ability of failure exceeds a threshold. This threshold
is then optimized to find the balance between risk and
cost, as in Figure 16.

A challenge remains in the optimization of inspec-
tion efforts at the system level, which has been ad-
dressed explicitly only by a few publications (Straub
and Faber 2005b, Papakonstantinou and Shinozuka
2014, Memarzadeh and Pozzi 2016). In (Luque and
Straub 2018, Bismut and Straub 2018, Schneider et al.
2018) we propose an efficient framework based on a
direct policy search, in analogy to the heuristic ap-
proach applied in practice for optimizing inspections
at the structural element level.

Optimization of monitoring systems is conceptu-
ally simpler, as it is only necessary to compare the
expected lifetime cost with or without the monitor-
ing system. This difference corresponds to the value
of information (VOI) of the monitoring system (Pozzi
and Der Kiureghian 2011, Straub 2014, Thöns et al.

2015). However, the task also requires to quanti-
tatively (probabilistically) predict future monitoring
data, as well as the diagnostics based on these data.
For most monitoring systems, which provide data on
multiple parameters with high frequency, such mod-
els are not (yet) available. In the meantime, pragmatic
approaches to appraise the VOI based on a mixture
of expert judgment and simple models can be utilized
(e.g. Zonta et al. 2014).

7 DISCUSSION

Assessment of deteriorating and existing structures is
commonly seen as a major application area for struc-
tural reliability methods (Faber 2000, Ellingwood
2005). However, around 40 years after modern struc-
tural reliability analysis was invented, the number of
reported practical applications of the theory to the as-
sessment of deteriorating structures is still limited. In
many countries, the assessment of deteriorating struc-
tures is mostly based on simplified and conservative
engineering considerations. Among the applications
that have been reported, most deal with the reliabil-
ity of bridge structures (e.g. Faber et al. 2003, Strauss
et al. 2009, Maljaars and Vrouwenvelder 2014). In ad-
dition, as reported in Section 6, reliability methods
have to some degree found their place in the planning
and optimization of inspections, where deterministic
methods have difficulty in making any kind of quan-
titative statements.

It can be argued that the main role of reliability
analysis is to serve as the basis for modern codes
and standards. However, crucial aspects for the as-
sessments of deteriorating and existing structures are
not well developed in structural codes. As Elling-
wood (2005) puts it, ”current codes of practice pro-
vide little guidance for the proper evaluation of ex-
isting facilities for continued service, since their fo-
cus is on new construction.” One major issue is that
the simplified treatise of structural systems in semi-
probabilistic code formats is not suitable for assess-
ing existing structures (Ghosn et al. 2016). It does not
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enable a proper understanding of the effect of dete-
rioration on the structural reliability, as discussed in
Section 4. Furthermore, with the exception of fatigue,
in many design codes deterioration is not considered
by means of explicit limit state functions. Rather, Eu-
rocode requires structures to be in an as-new condi-
tion over its entire lifetime, which is reasonable for
most new designs, but is of little help when deteriora-
tion is already present.

Current efforts to develop specific codes and stan-
dards for existing structures are a step in the right di-
rection (Lüchinger et al. 2015). These standards will
be more closely linked to structural reliability meth-
ods than the design standards, they can include the ef-
fect of deterioration on the reliability and they should
aim at better addressing the need for more realistic
system modeling. However, as discussed in Section
4, it is not actually straightforward to do so in a cod-
ified format, and future research should address this
question. Standards for existing structures will also be
closer aligned with a risk-based philosophy, thus en-
abling a more optimal management of deteriorating
structures.

A main reason for the small role of reliability-based
methods in the assessment of deteriorating structures
lies in the fact that serviceability criteria often deter-
mine the need for intervention. This commonly in-
volves bringing the structure back to a state without
deterioration, and there is no need for a detailed as-
sessment of the effect of deterioration on the system
reliability. Another reason is that many structures be-
come obsolete before deterioration plays a major role.

Many engineers argue that current practice is doing
just fine without an increased utilization of structural
reliability analysis. In recent times, there have been
only a limited number of failures of structures caused
by deterioration. Current practice has evolved over a
long time period, and any aggregation of structural
failures has triggered investigations and eventually an
adjustment of the design and assessment rules. That
evolution has ensured that structures today are reli-
able.

While one can state with some degree of cer-
tainty that current practice for designing and manag-
ing structures for durability does indeed lead to ac-
ceptable reliability, it is unclear to what degree it is
optimal. Investigations into the optimality of possibly
conservative models and assessment procedures are
lacking. It is challenging to quantitatively investigate
the degree of conservatism contained in current stan-
dards (Teichgräber et al. 2018). But there is a need
for research in this direction, since regulating bodies
and standardization bodies will not support changes
towards more efficient assessment procedures without
thoroughly understanding their effect on the safety of
structures.

The good news is that the principles of structural
system reliability and risk-based decision making are
indeed applied in engineering design and manage-
ment on a daily basis. For example, designers will au-
tomatically direct more attention to critical elements
of a structure or rules for inspection planing distin-
guish between primary, secondary and tertiary mem-



bers. Yet all this is limited to what is intuitively un-
derstood by the engineers. In more complex situa-
tions, the intuition of the engineer can fail and as a
result possibly over-conservative solutions are imple-
mented. I have witnessed multiple instances of struc-
tural rehabilitation projects where a proper stochas-
tic modeling and reliability analysis might have saved
substantial financial resources, but where these were
not applied due to the lack of understanding or accep-
tance of these methods. In most, if not all, of these ex-
amples, a relatively simple model would have sufficed
to assess whether or not a structure is sufficiently safe.
However, to find the right simple model is challeng-
ing and requires insights into the topics discussed in
this article. Up to now, the structural reliability com-
munity has not been very successful in bringing these
messages across and increased efforts are needed to
achieve this.

8 CONCLUSIONS

Structural reliability assessment provides a solid
foundation for optimal management of deteriorating
structures. However, there is still a long way ahead
until reliability-informed planning and assessment be-
comes the norm rather than the exception. Research
efforts are needed in particular on an improved mod-
eling of system reliability that is compatible with
standard structural assessment approaches, and on the
understanding of the real reliability associated with
current conservative modeling assumptions. Opportu-
nities arise from improved IT, sensor and communi-
cation technology, which should be embraced to en-
hance our models. Most of all, we need to work on
changing the current prescriptive approach to man-
agement and assessment of structures, in order to pro-
vide incentives to the structural engineering commu-
nity for more realistic and optimal predictions in lieu
of conservative assumptions.
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