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Abstract

Optimizing inspection and maintenance (I&M) plans for large deteriorating structures is a computationally chal-
lenging task. This is due to the sheer number of possible decision alternatives over the lifetime of the structure and
the uncertainty surrounding the deterioration processes, the structural performance and the outcomes of inspection
and maintenance actions. To address this challenge, Luque and Straub (2019) proposed a heuristic approach in which
I&M plans for structural systems are defined through a set of simple decision rules. Here, we formalize the opti-
mization of these decision rules and extend the approach to enable adaptive planning. The initially optimal I&M plan
is successively adapted throughout the service life, based on past inspection and monitoring results. The proposed
methodology uses stochastic deterioration models and accounts for the interdependence among structural components.
The heuristic-based adaptive planning is illustrated for a structural frame subjected to fatigue.
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1. Introduction

Civil and structural assets naturally deteriorate due to mechanisms such as corrosion or fatigue. These can de-
crease the structural performance and potentially lead to structural failure. Timely interventions on the structure, such
as maintenance, repair or replacement of structural components, can offset the effects of deterioration and ageing, at a
cost to the operator. These intervention costs can represent a significant part of the operation and maintenance budget,
especially if not properly planned. As an example, for wind turbines, (Nielsen and Sørensen, 2010b; Röckmann et al.,
2017) report that up to 30% of the cost of energy is spent on operation and maintenance. These interventions have
traditionally been based on industry standards, expert knowledge and empirical studies of the underlying mechanisms
of deterioration. The optimal planning is hindered by the large uncertainty associated with deterioration processes.
While the scientific literature abounds with stochastic models of deterioration, from corrosion to fatigue (e.g. South-
well et al., 1979; Yang, 1994; Newman Jr, 1998; Melchers, 2003), in engineering practice deterioration can only be
predicted to a limited extent. The main reasons are the variable and uncertain production and environmental factors
and material properties (Irving and McCartney, 1977; Wirsching and Chen, 1988; King, 1998; Newman Jr, 1998;
Melchers, 2003). I&M data can reduce this uncertainty and inform future maintenance decisions (Thoft-Christensen
and Sørensen, 1987; Enright and Frangopol, 1999; Straub, 2004; Straub and Faber, 2005, 2006; Nielsen and Sørensen,
2015). Hence, I&M is an essential part of the structural integrity management.

From the perspective of an operator, a good I&M plan should balance the expected rewards (e.g. increase in system
reliability) with the expected I&M cost over the lifetime of the asset. The identification of the optimal I&M strategy
for a deteriorating structure, also referred to as risk-based inspection (RBI) planning, belongs to the class of stochastic
sequential decision problems (Howard, 1960; Raiffa and Schlaifer, 1961; Straub, 2004). The problem is illustrated
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Figure 1: Detail of a decision tree for a deteriorating system which can be inspected and repaired. Random events and outcomes are represented
by round nodes, and decisions by square nodes. The deterioration process includes all possible states of damage that the system components can
take. Similarly, the inspection outcomes and repair decisions collect all the data and actions for all system components.

by the decision tree in Figure 1. Each path in this tree corresponds to a sequence of decisions and events, which are
associated with a total life-cycle cost and a probability of occurrence. The sequential decision problem consists in
finding a set of rules (a policy) at each decision node, which minimizes the expected total life-cycle cost. The decision
tree grows exponentially with the considered number of time steps and with the number of system components, and it
grows polynomially with the number of available actions and with the number of deterioration states and observations.

Numerous algorithms have been proposed towards the solution of this general optimization problem. The founding
algorithms were developed in the 1950s in the field of operations research (OR) to tackle a large variety of problems,
from optimizing the location of warehouses in order to minimize transportation costs, to the management of a baseball
team (Howard, 1960). Bellman and Howard described solution strategies for fully observable Markovian decision
processes (MDPs), based on Bellman’s Dynamic Programming tool (Bellman, 1957a,b; Howard, 1960). (Raiffa
and Schlaifer, 1961) formally included the uncertainty associated with the information acquired during the decision
process, paving the way to the study of partially observable MDPs (POMDPs) (Åström, 1965; Kaelbling et al., 1998).

The POMDP approach attempts to provide a universal plan for decision problems where the process is Markovian,
and, in theory, accounts for all possible scenarios (Kochenderfer, 2015). (Papadimitriou and Tsitsiklis, 1987) showed
that the exact solution of the finite-horizon POMDP cannot be found in polynomial time and is indeed PSPACE-
complete. (Bellman, 1957a) coined the term curse of dimensionality and Pineau et al. (2006) added the term curse
of history to describe this complexity. Approximate and tractable offline and online solutions for POMDPs are avail-
able and have been applied to selected I&M planning problems (Durango and Madanat, 2002; Papakonstantinou and
Shinozuka, 2014; Nielsen and Sørensen, 2014; Memarzadeh and Pozzi, 2016; Schöbi and Chatzi, 2016; Papakon-
stantinou et al., 2018). These approaches perform well when the dynamics of the problem are smooth, and where
the dimensionality of the problem remains moderate. However, they scale poorly for large multi-component systems
reliability problems, since this latter assumption cannot be ensured for real-life structural reliability problems where
the state-space can be larger than 10100 (Bismut et al., 2017).

An alternative to POMDP is a direct policy search, in which one aims at identifying directly the optimal set of rules
for each decision. This is analogous to the normal form of the decision analysis described by (Raiffa and Schlaifer,
1961). (Sutton et al., 2000) have shown that this approach has algorithmic advantages over value-iteration-based
POMDP solvers. Additionally, direct policy search does not require Markovian assumptions on the model, nor the
explicit computation of the belief states. Direct policy search is the basis for policy search algorithms for deep neural
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network training, in particular in the field of robotics and motion planning (e.g. Deisenroth et al., 2013; Montgomery
and Levine, 2016).

In the context of I&M planning, the engineering understanding allows the identification of suitable functional
forms of the policies. We call these heuristics. For example, a simple heuristic is to perform an inspection campaign
whenever the reliability of the structure falls below a threshold. Through such heuristics, the implementation of a
direct policy search is straightforward. The optimization is performed over a few heuristic parameters to search the
space of policies (Section 2.2.1 expands on this methodology). In the context of optimizing inspections for structural
components, it has been found that heuristics lead to solutions that are very close to the optimum POMDP solutions
in terms of the resulting expected total life-cycle costs (Nielsen and Sørensen, 2011; Luque and Straub, 2013).

Most RBI planning methodologies are based on such heuristic strategies, mostly in an ad-hoc manner (e.g. Thoft-
Christensen and Sørensen, 1987; Lam and Yeh, 1994; Faber et al., 2000; Straub, 2004; Moan, 2005; Nielsen and
Sørensen, 2014). These methodologies perform the optimization component-by-component, without considering the
interaction among components. Hence it cannot be ensured that the resulting plans are optimal at the system level. In
fact, (Luque and Straub, 2019) show that component-based optimization can lead to strongly sub-optimal I&M plans.
(Straub, 2004; Straub and Faber, 2005) consider an extension to address system effects in a simplified manner.

(Luque and Straub, 2019) extend the heuristic approach to a system-level I&M planning, which accounts for the
interdependence among components. The methodology relies on the computation of the system reliability by means
of a dynamic Bayesian network (DBN) model developed in (Straub, 2009; Luque and Straub, 2016). They evaluate
the expected cost of selected system-level I&M plans without performing a formal optimization. Here, we extend the
methodology by optimizing the plans by means of the cross entropy method (Rubinstein and Kroese, 2017). The I&M
plans are evaluated in terms of expected total life-cycle I&M cost and failure risk. Heuristic parameters are proposed
that prescribe inspection times and locations.

The main contribution of this paper is the introduction of adaptive planning, whereby the heuristic I&M plan is
modified as new information through inspections and monitoring becomes available. We show that re-optimizing the
heuristic parameters once new information is available leads to better I&M plans.

Section 2 summarizes the general methodology for heuristic optimization and introduces the adaptive approach.
In Section 3, we first address the computation of the expected total life-cycle cost and then propose the use of the
cross-entropy method for solving the optimization problem. In Section 4, we discuss the choice of heuristics for I&M
planning in structural systems. Section 5 presents the application of the methodology to a steel structure subjected to
fatigue that includes correlation among components. It is followed by results and discussion in Sections 6 and 7.

2. Optimal adaptive heuristic planning

2.1. The generic strategy optimization problem
The premises of the problem are summarized in the following.

(a) We assume that a model describing the dynamics of the system (deterioration, loads, structural response),
including a prior probabilistic model of uncertain paramaters, is available to the analyst.

(b) We consider a discrete-time model with finite-horizon T , which is typically the anticipated service life of the
system. A finite service life is a reasonable assumption since the durability of materials, technological ad-
vances, changing user demands and requirements are likely to make the structure obsolete eventually. Time is
discretized; i indicates the ith time step between times ti−1 and ti, where t0 = 0 is the beginning of the system’s
service life. nT denotes the last time step between times tnT−1 and tnT = T .

(c) A policy πi is the set of rules adopted at time step i guiding the decision process based on the information
available at that time (Jensen et al., 2007). When considering a deteriorating multi-component system, the
policy takes as input all or part of the current knowledge on the state of the system, and gives the answer to
the questions ‘Inspect?’ {yes, no}, ‘Where?’ {component j, k, ...},‘What to look for?’ {corrosion, fatigue,...}
,‘How?’ {visually, ultrasonic inspection, thickness measurements, ...}, ‘Repair?’ {yes, no, how}. The system
knowledge includes the history of inspection outcomes, monitoring data, repairs and component failures. A
policy is stochastic if it assigns an action following a probability distribution; it is otherwise deterministic. Here
we consider deterministic policies, but the general methodology is applicable to either type of policies.
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(d) A strategy S= {π1,π2, ...πnT } is the set of policies for all time steps. S is the space of all strategies. A strategy
is stationary if its policies are identical for all time steps, i.e. π1 = π2 = ...= πnT = π .

(e) A heuristic parametrizes a strategy. A heuristic strategy is denoted by Sw and is governed by heuristic parame-
ters w = {w1,w2, ...wh}.

(f) Z = {Z1, ...,ZnT } are random vectors describing inspection and monitoring outcomes collected during the ser-
vice life of the structure. Z1:i denotes the vector of outcomes collected up to time step i.

(g) N is the number of system components considered for inspection. The components are typically indexed by k.

The optimization of the sequential decision process aims to identify the decision strategy S∗ that minimizes the ex-
pected total life-cycle cost:

S∗ = argmin
S∈S

(E[Ctot|S]), (1)

where Ctot, also written as Ctot,1:nT , is the discounted total life-cycle cost, including inspections, repairs, and possible
failures of the system occurring within the time horizon T . E[Ctot|S] is the expected total life-cycle cost when strategy
S is implemented. Its computation is described in Section 3. The next section summarizes the heuristic approach to
solving the optimization problem of Equation 1 and thereafter introduces the adaptive heuristic planning.

2.2. Direct policy search and adaptive search

2.2.1. Direct policy search with heuristic parameters w
First consider a system with N components that can be inspected, then potentially repaired, at every time step i.

These actions {‘do nothing’; ‘inspect and do not repair’; ‘inspect and repair’} are typical in asset management. The
total number of possible actions at each time step is nactions = 3N . All observations from inspection and monitoring
during a time step i are summarized in Zi, which has a discrete outcome space of size nobs.

A deterministic policy πi at time step i chooses an action among the 3N options, in function of the observation
history, which can take ni

obs distinct realizations. Hence, the total number of potential policies at time step i is 3Nni
obs.

It follows that there are ∏
nT
i=1 3Nni

obs = 3NnT n
n2
T +nT

2
obs distinct strategies. This illustrates how the space of strategies S

increases exponentially with the number of time steps nT and the number N of system components.

Inspecting each of the 3NnT n
n2
T +nT

2
obs strategies is clearly impossible. Instead, the solution space S is reduced by

choosing a suitable heuristic, parametrized by w = {w1,w2, ...wh}. A simple (although likely suboptimal) example
of a heuristic is: Inspect all components of the structure whenever the reliability estimate is below a threshold, then
repair all components at which defects are found. In this case, the only heuristic parameter is the reliability threshold.
The strategies Sw resulting from such a heuristic form a subspace of S .

The solution S∗ to the optimization problem in Equation 1 is therefore approximated by Sw∗0 , where

w∗0 = argmin
w

(E [Ctot|Sw]) . (2)

From this point forward, we use E[·|w] to denote E[·|Sw] for the sake of simplicity in the notation.
Restricting the optimization of Equation 1 to the heuristic space of strategies has two effects: firstly, it reduces

the solution space; secondly, the heuristic parameters, such as a reliability threshold, can take continuous values.This
effectively relaxes the optimization.

One challenge is the selection of the heuristic, so that the strategies explored are close enough to the exact solution
of Equation 1. In machine learning, this selection is controlled by hyperparameters that can in turn be optimized,
or "tuned". For optimal training of neural networks, (Diaz et al., 2017) propose a derivative-free algorithm for the
optimization of these hyperparameters. This tuning aspect is not investigated further in the paper.

For I&M problems, the choice of heuristics is often driven by operational constraints, such as the need for regular
inspection intervals. The heuristic can also include reliability criteria that need to be fulfilled (Tsang, 1995; Nielsen
and Sørensen, 2014). The heuristics are also not required to incorporate information about the system. For instance,
a valid strategy is one that prescribes to replace a system every 10 years, regardless of its actual state of deterioration
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or of any prior collected information. Such systematic plans are typically adopted for non-crucial components of a
system (e.g. air filters of an air handling unit); they are rarely based on a quantitative optimization, however. We
introduce heuristics for I&M planning in deteriorating structures in Section 4.

2.2.2. Adaptive policy search
Following Equation 2, the optimal heuristic is found initially and kept throughout the system lifetime T . However,

as new observations Z1:i become available, the initially optimal strategy may no longer be optimal. Therefore, we
suggest to adapt the strategy during the lifetime of the structure by adding an on-line computation that accounts for
the new observations Z1:i.

Initially, one performs the optimization with the prior model following Equation 2 to obtain the optimal parameters
w∗0 . To make this explicit, the actions (e.g. inspections and eventual repairs) are performed as dictated by w∗0 until a
time step j1, typically when new information is available. At t j1 , the decision maker has the opportunity to improve
the strategy.

By updating the prior model with information obtained up to time t j1 , Z1: j1 , a heuristic strategy optimization is
again performed for the rest of the service life of the structure, and a new parameter value w∗1 and its associated
strategy are obtained (Equation 3).

w∗1 = argmin
w

(
E|Z1: j1

[
Ctot, j1:nT |w,Z1: j1

])
. (3)

Ctot, j1:nT is the total cost evaluated from time step j1 onwards, as opposed to Ctot,1:nT , evaluated from time step 1
onwards. E|Z1: j1

[·] is the expectation operator conditional on the observation and repair history up to time step j1.
It follows from Equation 3 that

E|Z1: j1

[
Ctot, j1:nT |w

∗
0,Z1: j1

]
≥ E|Z1: j1

[
Ctot, j1:nT |w

∗
1,Z1: j1

]
. (4)

Our aim is to show that the adaptive planning decreases the expected total life-cycle cost. For this purpose, we
decompose the expected total life-cycle cost of strategy w∗0 into

E [Ctot,1:nT |w
∗
0] = E

[
Ctot,1: j1 |w

∗
0
]
+EZ1: j1

[
E|Z1: j1

[
Ctot, j1:nT |w

∗
0,Z1: j1

]]
, (5)

where Ctot,1:τ1 |w∗0 is the cost incurred until time t j1 following strategy Sw∗0 . The expectation EZ1: j1
[·] operates on the

observation and repair history up to time step j1. This operator preserves the inequality in Equation 4, hence by
combining Equations 4 and 5, we obtain that

E [Ctot,1:nT |w
∗
0]≥ E

[
Ctot,1: j1 |w

∗
0
]
+EZ1: j1

[
E|Z1: j1

[Ctot, j1:nT |w
∗
1,Z1: j1 ]

]
. (6)

The difference between the left and right hand side of Equation 6 quantifies the expected gain by adapting the strategy
at time t j1 . Figure 2 retraces the steps of this strategy improvement.

In the context of production and supply optimization, a similar approach is known as model predictive control
(MPC) (Pooya and Pakdaman, 2018). The principle is also adopted to improve reinforcement learning algorithms
(Kahn et al., 2017), and is key to the Monte Carlo Tree Search POMCP algorithm presented in (Silver and Veness,
2010).

The strategy adaptation can be repeated every time new information is collected. The arrayW ∗ stores the succes-
sively adapted heuristic parameters values:

W ∗ = {w∗0,w∗1,w∗2, . . . ,w∗nADAPT
}, (7)

Algorithm 1 summarizes the adaptive planning method.
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Figure 2: One-step adaptive I&M planning with heuristic search

Algorithm 1: Procedure for adaptive I&M planning
input : heuristic, number of times steps nT for time horizon T ,

adaptation times j = { j1, . . . , jnADAPT }, prior_model
output:W ∗

l← 0;
model← prior_model;
repeat

w∗l ← argmin
w

(E[Ctot, jl+1:nT |w,model]) ; .
find optimal heuristic parameters,
e.g. with Algorithm 2

l← l +1;
if no system failure before t jl then

Perform inspections and repairs following w∗l−1 until t jl
model← update_model(model,z1: jl ); . update deterioration model with z1: jl

end
until l > nADAPT ;
returnW ∗ = {w∗0, ...,w∗nADAPT

}

The proposed adaptive planning is an on-line optimization at the level of arrayW ∗ and is greedy since the strategy
optimization is always performed assuming that it is the last opportunity to optimize the strategy. Multi-step-based
improvement greedy techniques have demonstrated to perform much better than a single initial optimization, as shown
empirically with a number of algorithms (Silver and Veness, 2010; Pooya and Pakdaman, 2018; Efroni et al., 2018).

3. Stochastic computation and optimization

3.1. Expected total cost of a strategy

3.1.1. Cost breakdown
The heuristic approach requires the computation of the objective function E[Ctot|w] in Equation 2. The influence

diagram of Figure 3 shows all costs incurred during the service life of the structure.
The expectation E[Ctot|w] of the total cost of a strategy operates on the state of the system Θ, which includes the

time varying system capacity and the applied loads, and on the observation outcomes Z ∈ΩZ .

E[Ctot|w] = EΘ,Z [Ctot|w] =
∫

ΩΘ

∫
ΩZ

Ctot(w,z,θ) fΘ,Z|w(θ,z|w)dθdz. (8)

This expectation can be approximated with crude Monte Carlo simulation (MCS). However, when the expected
costs involve the risk of failure, and if the underlying probability of failure is small, then the Monte Carlo sampling
over both Θ and Z is computationally expensive because a large number of samples is necessary to achieve an
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Figure 3: Influence diagram for the decision process. The square nodes indicate the inspection and repair decisions, and the diamond shaped nodes
the inspection, repair and failure costs.

acceptable accuracy. Therefore, following (Luque and Straub, 2019) we propose to first evaluate the expected costs
conditional on Z (Equation 10), and then perform a MCS over the observation history Z. To this end, Equation 8 is
rewritten as

E[Ctot|w] =
∫

ΩZ

EΘ|z[Ctot(w,z,Θ)|w,z] fZ|w(z|w)dz. (9)

The corresponding Monte Carlo estimate is detailed in Section 3.1.4.
The total life-cycle cost Ctot(w,Z,Θ) is the sum of the inspection campaign costs CC(w,Z,Θ), component

inspection costs CI(w,Z,Θ), repair costs CR(w,Z,Θ) and failure costs CF(w,Z,Θ) over the lifetime of the struc-
ture. All these costs are present values, i.e., they are discounted to time 0. Hence the expected total life-cycle cost
conditional on the observation outcomes Z for given heuristic parameters w is

EΘ|Z [Ctot|w,Z] = EΘ|Z [CI |w,Z]+EΘ|Z [CC|w,Z]+EΘ|Z [CR|w,Z]+EΘ|Z [CF |w,Z]. (10)

The following sections detail how the individual terms in Equation 10 are evaluated.

3.1.2. Computing the conditional risk of failure
Failure is here considered a terminal event. This means that if failure of the system occurs before the end of the

service life, no further inspection and repair actions are explicitly considered from that point on. This simplifying
assumption does not significantly affect the estimate of the expected total life-cycle cost, due to the high reliability of
infrastructure systems (Kübler and Faber, 2004). The fixed cost cF in case of failure includes replacement costs and
future life-cycle costs of the new structure. When failure occurs at time t, the associated cost expressed as present
value is γ(t) · cF , where γ(t) is the discount factor.

The conditional risk of failure over the lifetime of the structure EΘ|Z [CF |w,Z] can be defined in terms of TF ,
the time to failure of the system. TF is a random variable, and is dependent on the implemented strategy Sw and the
system history Z. Its probability distribution function (pdf) is denoted by fTF |w,Z(t). It is

EΘ|Z [CF |w,Z] = ETF |Z [CF |w,Z] =
∫ T

0
cF · γ(t) · fTF |w,Z(t)dt. (11)
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As time is discretized in nT time steps (years), the integration in Equation 11 is approximated by

EΘ|Z [CF |w,Z]' cF ·
nT

∑
i=1

γ(ti) ·
[
FTF |w,Z(ti)−FTF |w,Z(ti−1)

]
, (12)

where FTF |w,Z is the cumulative distribution function (CDF) of the conditional TF . In particular, [FTF |w,Z(ti)−
FTF |w,Z(ti−1)] is the annual probability of failure for year i. We compute this annual probability of failure condi-
tional on the observation outcomes with the DBN model described in Section 3.2.

3.1.3. Computing the conditional expected inspection and repair costs
Since failure is a terminal event, the evaluations of expectations EΘ|Z [CI |w,Z], EΘ|Z [CC|w,Z] and EΘ|Z [CR|w,Z]

consider that an observation or repair action at a time ti can occur only if the system has survived until that time. For
instance, the conditional expected life-cycle inspection campaign costs are calculated as

EΘ|Z [CI |w,Z] =
nT

∑
i=1

γ(ti) · cI(ti,w,Z) ·
[
1−FTF |w,Z(ti)

]
, (13)

where cI(ti,w,Z) is the inspection campaign cost incurred at time ti as prescribed by strategyw and inspection history
Z, and 1−FTF |w,Z(ti) is the probability of survival of the system up to time ti.

Similarly, the conditional expected life-cycle component inspection cost and life-cycle repair cost are evaluated as

EΘ|Z [CC|w,Z] =
nT

∑
i=1

γ(ti) · cC(ti,w,Z) ·
[
1−FTF |w,Z(ti)

]
, (14)

EΘ|Z [CR|w,Z] =
nT

∑
i=1

γ(ti) · cR(ti,w,Z) ·
[
1−FTF |w,Z(ti)

]
, (15)

3.1.4. Monte Carlo simulation over inspection history Z
In Equation 8, the conditional expectation EΘ|Z [Ctot|w,Z] must be integrated over all possible outcomes Z. The

integral over Z cannot be easily computed analytically, as the probability density of all possible inspection outcomes
fZ|w(z) is not readily available.

However, sampling from this distribution is possible, by first generating deterioration histories from the model,
and then generating inspection outcomes z(q) conditional on the deterioration and the adopted strategy. In the case of
the adaptive optimization presented in Section 2.2.2, the deterioration histories have to be generated conditional on
the past inspection outcomes. It is then necessary to resort to a Bayesian sampling method. Here we employ the BUS
methodology with SuS (Straub and Papaioannou, 2015). Equation 8 can then be approximated by MCS:

E[Ctot|w]' 1
nMC

nMC

∑
q=1

EΘ|z(q) [Ctot|w,z(q)]. (16)

Notably, this MCS over Z, conditional on a strategy Sw, does not need to generate samples that lead to the failure
of the system. The probability of failure is included in the risk of failure EΘ|z(q) [CF |w,z(q)], which is calculated

directly conditional on each sample history z(q) as per Equation 12. Appendix B discusses the accuracy of MCS to
evaluate the risk of failure. In numerical investigations, it was found that a quite small number of samples is sufficient
to obtain a good approximation of the expected total life-cycle cost, in the order of 200 samples.

One can break down the expected costs into annual values. Figure 4a shows this breakdown for a selected strategy
from the numerical application presented in Section 5, evaluated with nMC = 200 samples. Figure 4b shows the effect
of the discount factor γ(t) on the distribution of the costs for the same strategy.
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(a) undiscounted (b) discounted

Figure 4: Expected annual costs for strategy Sw∗0
, evaluated with 200 samples, undiscounted (a), and discounted (b) with annually compounded

discount rate r = 0.02.

3.2. Conditional reliability of a deteriorating multi-component system

The computation of the expected cost of failure EΘ|Z [CF |w,Z] in Equation 12 requires the evaluation of the CDF
FTF |w,Z of the time to system failure, TF .

In this paper, failure of the system originates from the deterioration processes, which gradually decrease the
system capacity. Deterioration has been modelled by stochastic processes (e.g Lin and Yang, 1985; van Noortwijk,
2009; Shafiee et al., 2015), or by physics-based equations with uncertain model parameters (e.g. Madsen et al., 1987).

The evaluation of expected costs of I&M strategies requires many reliability evaluations conditional on inspection
results. This calls for methods that can efficiently compute conditional reliabilities and can handle a large number of
random variables.

Such efficient computation can be available when using Markov chain models for representing deterioration. In
general, deterioration processes are non-Markovian, in that the damaged state is not independent of the past states.
However, non-Markovian deterioration processes can be transformed into Markovian processes by state-space aug-
mentation (Straub, 2009). The Markov chain model has been extensively used in I&M research (e.g. Rosenfield, 1976;
Rausand and Arnljot, 2004; Bocchini et al., 2013; Faddoul et al., 2013; Zhu et al., 2013).

In the majority of real multi-component structural systems, components’ deterioration processes are correlated
due to common manufacturing conditions and similar environmental and load conditions. To represent deteriorating
multi-component systems with interdependent components, standard Markov chain models are not suitable. Instead,
we employ the hierarchical dynamic Bayesian network (DBN) of Figure 5. This is a variant of the DBN model of
(Luque and Straub, 2019).

In the model of Figure 5, each component is represented by its own DBN. These are connected by the hyperpa-
rameters α, which represent the dependence among component deterioration, and the common system performance
nodes, which here take states ‘survival’ or ‘failure’. Observations of deterioration state Dk,i of component 0≤ k ≤ N
from inspections or monitoring are represented by Zk,i. The states of all random variables are discretized according
to (Straub, 2009). Exact inference algorithms are implemented to evaluate the probability distributions of all random
variables conditional on the observations. For details on the modeling and computation in this hierarchical DBN
model we refer to (Luque and Straub, 2016).

The evaluation of this DBN results in the conditional probability of the interval failure event F∗i given the obser-
vation from all components. F∗i is defined as the event of a failure within (ti−1, ti] (Straub et al., 2020). By introducing
the event Fi as ‘failure of the system up to time ti’, we note that Fi = F∗1 ∪F∗2 ∪ . . . ∪F∗i . One can express the CDF
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Figure 5: DBN for a deteriorating multi-component system. The correlations between components are explicitly modeled through hyperparameters
α. The state of the system is described by nodes ES,i, conditionally on the state of each component, EC,N,i, through a function relating components
to system state, e.g. a pushover analysis. Evidence is set on the observation nodes Zk,i when the chosen I&M strategy prescribes it.

FTF |w,Z(ti), as
FTF |w,Z(ti) = Pr(Fi|w,Z) = Pr(F∗1 ∪F∗2 ∪ . . . ∪F∗i |w,Z). (17)

The annual probability of system failure for time step i conditional on the observations Z is

Pr(Fi|w,Z)−Pr(Fi−1|w,Z). (18)

In some systems, the events F∗i can be assumed to be independent for different i. In this case, Pr(Fi|w,Z) can be
evaluated as

Pr(Fi|w,Z) = 1− ∏
1≤ j≤i

1−Pr(F∗j |w,Z) (19)

The DBN model is flexible with respect to the choice of a-priori probability distributions and transition probabil-
ities. The DBN framework, however, has limitations with respect to the number of parameters in the deterioration
models, but work-around strategies exist as discussed in Luque and Straub (2016).

The interval probabilities of failure (Pr(F∗i |w,Z))0≤i≤T are computed with Bayesian inference in the DBN, in-
volving Bayesian filtering, prediction and smoothing algorithms (Askar and Derin, 1981, 1983; Straub, 2009; Särkkä,
2013; Luque and Straub, 2016). The computational cost of this algorithm increases only linearly with the number
of components, which makes it suitable for large systems (Luque and Straub, 2016). The cumulative probability of
failure (Pr(Fi|w,Z) and the annual probability of failure are then evaluated with Equations 18 and 19.

It should be noted that alternative methods exist for computing Pr(Fi|w,Z). For example, Schneider et al. (2017)
applied BUS with SUS with good computational performance.

3.3. Stochastic optimization method
Equation 16 provides a noisy approximation of the expected total life-cycle cost for given heuristic parameters

defining a strategy. Stochastic optimization methods are well suited to handle noisy objective functions of the form
of Equation 16 (Spall, 2012; Hill, 2013). Here, we consider the cross entropy (CE) method (De Boer et al., 2005)
combined with a Gaussian process regression (GPR) (Rasmussen, 2004) to approximate the solution of Equation 2
and to find the heuristic parameters values that minimize the exact expected total life-cycle cost.

Algorithm 2 summarizes the steps of the CE method, inspired by (Kochenderfer, 2015). It generates nCE samples
w(m) of heuristic parameter from a distribution with parameters λ∗. For each sample w(m), nMC observation and
monitoring histories are generated and the expected total life-cycle cost is calculated through Equation 16. The
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Algorithm 2: Pseudo-code for the stochastic optimization
in : CE sampling distribution P(·|λ∗), initial parameters λ∗, number of CE samples nCE , number of elite

samples nE , number of observation history samples nMC, maximum number of objective function
evaluations nmax.

out: optimal heuristic parameters w∗, minimum total life-cycle cost C∗, surrogate cost function f
l← 0;
while l ·nCE < nmax do

for m← 1 to nCE do
w(m) ∼ P(·|λ∗); . generate random heuristic parameter values
cost← 0;
for q← 1 to nMC do

generate an inspection and repair history z(q) following strategy Sw(m) ;
cost← cost +E

Θ|z(q)1:nT

[Ctot|w(m),z(q)]; . Eq. 10 to 15

end
qm← cost/nMC; . expected total life-cycle cost (Eq. 16)

end
Store w(m), qm;
ŵ(1), ..ŵ(nCE )←Sort (w(1), ..w(nCE )) in increasing order of qm;
λ∗← argmaxλ∑

nE
m=1 logP(ŵ(m)|λ); . update λ∗ with the elite samples

l← l +1;
end
f ← GPR(w(m),qm); . build the surrogate function
w∗← argmin f ;
C∗←min f ;
return w∗, C∗, f

samplesw(m) are then ranked in ascending order of their estimated expected life-cycle cost. The nE best-rankedw(m),
also called elite samples, are used to update the CE sampling distribution parameter λ∗ by cross entropy minimization.
This step is repeated until a convergence criterion has been verified, or until a sufficient number of strategies have been
explored. The convergence speed of the CE method can be optimized by choosing nMC adequately. In particular, the
CE method can work with a single sample evaluation in Equation 16, i.e. nMC = 1, and still converge towards the
heuristic parameter values that minimize the exact expected total life-cycle cost (Rubinstein and Kroese, 2004). In
addition to the CE method, GPR is applied to all the estimated expected costs calculated during the CE loop. The
surrogate function thus obtained is used to approximate E[Ctot|Sw] in Equation 2, and the optimal heuristic parameter
values w∗ are obtained by minimizing this surrogate function.

Coupling the CE method with GPR presents the advantage that the surrogate mean and standard error of the mean
can be extracted for any point in the heuristic parameter space. This can be used to evaluate the sensitivity of the
expected total life-cycle cost to the heuristic parameters. Furthermore, due to the CE sampling method, the standard
error of the mean decreases towards the surrogate minimum. This methodology can handle both continuous or discrete
heuristic parameters, as illustrated in Section 5.

3.4. Summary

The methodology is summarized in Figure 6. The methods for the optimization or for the evaluation of the
expected cost of a strategy can be chosen freely, as they will not affect the underlying principles of the methodology.
For instance, the CE method can be upgraded to include optimal computing budget allocation (OCBA) (He et al., 2010;
Chen and Lee, 2011), which identifies the strategies for which nMC should be increased, to increase the confidence in
the selection of the elite parameters. The computational effort is thereby optimized, as is the efficiency of the chosen
optimization method.
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Figure 6: Steps of optimal heuristic planning.

4. Heuristics for I&M planning in structural systems

The proposed approach requires the definition of appropriate heuristics. The heuristic should be sufficiently flexi-
ble to ensure that a sufficiently high number of strategies can be explored and that it can define a near-optimal strategy.

As an example, an overly simplistic heuristic is to never inspect and repair systematically at fixed time intervals
∆T . Finding the solution of Equation 2 is then equivalent to an optimization over one heuristic parameter w =
∆T ∈ {1, ..,T}. It is very likely that a heuristic strategy, which conditions the repair decision on observation outcomes,
has a lower expected total life-cycle cost.

4.1. Choosing I&M heuristics

For I&M planning of a multi-component deteriorating system, the possible decisions must answer the elementary
questions of ‘when’, ‘where’, ‘what’ and ‘how’ to inspect, and ‘when’, ‘where’, ‘what’ and ‘how’ to repair.

The questions ‘what’ and ‘how’ to inspect and repair are dependent on the deterioration mechanism and are in
general determined by expert knowledge of the system, and the availability of repair and inspection techniques. They
are not within the scope of this study and are not further discussed.

The questions ‘when’ and ‘where’ to repair can be answered in different ways; in corrective maintenance, repair
or replacement occurs upon failure of the system; in systematic preventive maintenance, repair or replacement occurs
at times fixed in advance, irrespective of any observation on the state of the system (Barlow and Hunter, 1960; Nielsen
and Sørensen, 2010b). The heuristic strategies investigated in this paper are relevant for a condition-based preventive
maintenance, where repair actions are decided based on the current condition of the system using inspection and
monitoring data. In this approach, a component repair is triggered by an inspection result. With some generality,
this repair decision can be parametrized by a threshold Drep: Whenever the identified defect exceeds Drep, a repair is
triggered.

The inspection-related questions are more complex to parametrize and are discussed in the following paragraphs.
They are treated sequentially, choosing first ‘when’ and then ‘where’ to inspect.
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4.2. ‘When’ to inspect
An inspection can be planned to take place at specific times during the service life of the structure. It can also

be triggered by exceeding a threshold pth, for instance on the failure rate. This rate can usually be approximated by
the annual probability of failure due to the high reliability of the structure. When a monitoring system is in place, an
inspection might be triggered by the exceedance of a monitoring data threshold.

A number of scientific studies have focused on I&M planning for a single component, answering the question
‘when’ to inspect (e.g. Thoft-Christensen and Sørensen, 1987; Grall et al., 2002; Straub and Faber, 2006; Nielsen
and Sørensen, 2010b). By prescribing regular inspection times, or triggering inspections with a fixed threshold on
the probability of failure of the component (Faber et al., 2000), these single-parameter heuristics have proven to yield
a strategy that performs similarly in terms of cost and prescribed times of inspection as an optimal strategy found
through POMDP or LIMID methods (Nielsen and Sørensen, 2010a; Luque and Straub, 2013).

The choice of a heuristic parameter prescribing an inspection campaign might be based on operational constraints,
for instance inspections might have to be planned at regular time intervals ∆T . In other instances, they may arise from
established practices.

The use of heuristics in prescribing inspection times is common in RBI planning and has been demonstrated to
approximate the optimal strategy efficiently for individual structural elements (Nielsen and Sørensen, 2010b).]

4.3. ‘Where’ to inspect: component prioritization and value of information
This question is specific to multi-component systems, where inspecting the entire system at every inspection cam-

paign is suboptimal or not even feasible. Rather, one would typically inspect only a subset of all components during
an inspection campaign. In order to identify the best components to inspect, we propose a heuristic prioritization rule
described by two parameters.

The first heuristic parameter is the number of components nI to inspect at each inspection campaign. A second
heuristic parameter η is introduced to prioritize the components for inspection at each campaign, as described in the
following.

Because of the correlation in the deterioration among the components, inspecting one component can provide
information about the condition of other components. The value of this information can in theory be quantified, as
demonstrated in (Straub and Faber, 2005). It seems reasonable to perform the component inspections with the highest
value of information (VoI). However, the calculation of the VoI is computationally challenging for multi-component
systems.

We introduce instead a Prioritization Index, PIk, to serve as a proxy for the VoI and prioritize the components for
inspection. This index is calculated for each component k whenever an inspection campaign is launched, based on the
information Z1:i−1 collected up to the last inspection time.

The PIk considers two fundamental contributions to the VoI: the reduction of the uncertainty on the condition of
the inspected component and the corresponding effect on the system reliability; and the reduction of the uncertainty
on the condition of other components, through the components’ interdependence.

These reductions are related to two quantities. The first is the probability of failure of component k, Pr(Fck |Z1:i−1),
given all components’ inspection outcomes up to that point. RBI planning revealed in particular that inspecting
components with a higher probability of failure provide more information on the deterioration of other components
and at the system level than inspecting components with a lower probability of failure (Straub and Faber, 2005).

The second quantity is the Single Element Importance measure for component k (SEIk), defined as the difference
between the probability of failure of the intact system and the probability of failure of the system when only component
k has failed (Straub and Der Kiureghian, 2011):

SEIk = Pr(Fs|Fc1 , ...,Fck−1 ,Fck ,Fck+1 , ...,FcN )−Pr(Fs|Fc1 , ...,FcN ) (20)

The VoI of inspection component k is linked to the reduction of the probability of system failure. This probability
can be expressed approximately as a linear function of SEIk and Pr(Fck |Z1:i−1) (Bismut et al., 2017), as detailed in
Appendix C. Hence, the VoI increases with increasing (SEIk) and increasing Pr(Fck |Z1:i−1).

With an adjustable exponent η that serves as a heuristic parameter, the Prioritization Index PIk combines the two
effects described above,

PIk = (SEIk)
η ·Pr(Fck |Z1:i−1), with η ≥ 0. (21)
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Other factors should be considered for the prioritization, such as the effect of varying component correlations,
inspection quality, and cost of inspection. For instance, an underwater part of an offshore structure is more difficult
and costly to inspect with the same accuracy as a part of the superstructure. Here, we limit the study to equi-correlated
components, with equal inspection quality and cost. Additional factors with corresponding exponents (i.e. additional
heuristic parameters) could however be introduced into Equation 21.

5. Numerical application: structural frame subject to fatigue

5.1. Structural model and deterioration model
The Zayas frame is a steel frame composed of two vertical legs, braced by 13 tubular members. 22 fatigue hotspots

located at the welds are identified as per Figure 7 and constitute the model components. The frame is loaded laterally
with a time-varying load, and failure is determined by the system components deterioration states and the response of
the damage structure to the applied load. The pushover analysis for the frame is from Schneider et al. (2017).

For each component k, Dk,i indicates the crack depth at time ti. The transition from Dk,i to Dk,i+1 is obtained from
Equation 22, which models the fatigue crack growth by Paris’ law,

dD
dt

=C[∆SM
e π

M
2 ] ·D(t)

M
2 , (22)

where C and M are empirical material parameters. They are correlated with a correlation coefficient close to −1,
hence C is here expressed as a linear function of M (Straub, 2004). The initial crack depth is noted Dk,0 and failure of
a component is defined as the fatigue crack size exceeding a critical depth dcr.

The fatigue stress range ∆S is described by a Weibull distribution with scale and shape parameters K and λ . The
distribution of the equivalent fatigue stress range ∆Se = (E[∆SM])

1
M is defined by Equation 23 (Straub, 2004), as

∆Se = K ·Γ
(

1+
M
λ

) 1
M

. (23)

K and M are unknown parameters and are assumed constant during the deterioration process. In order to preserve the
Markovian assumption, the random variables Kk,0≤i≤nT and Mk,0≤i≤nT are introduced in the Bayesian network, such
that Kk,i+1 = Kk,i = Kk and Mk,i+1 = Mk,i = Mk. The corresponding DBN is shown in Figure 5.

The distribution of Kk for each component k is lognormal, and the mean values are calibrated to a chosen fatigue
design factor (FDF). The FDFs represent the ratio between the fatigue life of a component and the service life of the
structure. The calibration procedure is explained in Appendix A.2. Table A.2 lists the components, their FDFs, and
the corresponding means of Kk.

Additionally, the initial crack depths of all components Dk,0 are equi-correlated with factor ρD0 , as are the stress
and material parameters, Kk and Mk with factors ρK and ρM respectively. The correlation is reflected in the compu-
tation of the probability tables conditional on the hyperparameters α of the DBN, following the procedure of (Luque
and Straub, 2016).

The model parameters and correlations are summarized in Appendix A.1.

5.2. Inspection and repair model
The observation outcome Zk,i is a random variable defined conditionally on Dt . Zk,i can take the value {Zk,i = 0},

indicating {‘no crack detected’}, or values larger than 0, reflecting a measured crack size. Here, the probability of
detection (PoD) Pr(Zk,i > 0|Dt = d) is:

PoD(d) = 1− exp
(
− d

ξ

)
(24)

In case of detection, the measurement Zk,i is normally distributed with mean Dk,i and standard error σε . The
corresponding hybrid distribution is defined in Equation 25, where φ(.) is the standard normal probability density
function, and Φ(.) is the standard normal cumulative distribution function:Pr(Zk,i = 0|Dk,i = d) = 1−PoD(d)

fZk,i|Dk,i=d(Zk,i = z) = PoD(d) · 1
1−Φ(−d

σε
)
·φ
(

z−d
σε

)
if z > 0.

(25)
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Figure 7: Zayas frame, from Schneider et al. (2017)

If the damage exceeds a threshold Drep, the component is repaired immediately and completely. This corresponds
to restoring it to its initial state, i.e. the probability distribution of the damage after a repair is the one of Dk,0. The
repaired state is assumed to be uncorrelated with the initial state.

5.3. Costs of I&M actions
I&M actions incur mobilization costs, repair costs, costs for material supply, workmanship, inspection techniques,

and sometimes downtime. Here, all components are attributed the same cost of inspection and repair, which are con-
stant over time. This choice simplifies the problem specification; alternative cost models do not affect the computation
efforts or the accuracy of the method.

The following costs are considered:
· cC: cost of launching an inspection campaign. It includes the cost of transporting inspection operators to site,

and potentially the cost of impairing the operation of the system.
· cI : cost of inspection per component. It accounts for the time spent to inspect one component during an

inspection campaign.
· cR: cost of repairing one component. It also includes the associated downtime.
· cF : cost incurred if the structure fails, including full replacement costs and life-cycle costs of the new structure.

All costs are discounted to their present value by the discount factor γ(t) = 1
(1+r)t , where r is the annually compounded

discount rate. The parameters of the cost function and discount factor are provided in Table 1.

Table 1: Cost parameters

Parameter cC cI cR cF r
Value 1 0.1 0.3 3 ·103 0.02

5.4. Heuristic parameter choice
The investigated heuristic includes the following parameters w = {∆T, pth,nI ,η}:

(a) Inspection campaigns are carried out at fixed inspection intervals ∆T ∈ {1,2, . . .40}.

(b) Additionally, when the annual probability of failure of the system exceeds the probability threshold pth ∈]0,1],
an inspection campaign is carried out.
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(c) The number of hotspots to be inspected at every inspection campaign is nI ∈ {1,2, . . . ,22}.

(d) The hotspots are prioritized for inspection following Section 4.3 with parameter η ∈ [0,5].

For the purpose of this study, a component is repaired if the deterioration exceeds a threshold value Drep = 0 at the
inspection. This implies that every identified defect is repaired.

5.5. Optimization set up and computation
The CE sampling algorithm is run with MATLAB on a 2.6GHz computer with 24 quad-core processors. The

algorithm is optimized for the computation of the conditional probability of system failure. One history life-cycle cost
is computed in about 20 CPU minutes, but these computations can be run in parallel.

For the CE optimization method of Algorithm 2, lognormal sampling distributions are employed for the heuristic
parameters pth and η . For the discrete parameters ∆T and nI , a truncated normal distribution is selected, so that the
sampled values are within the acceptable bounds; the sampled values are then rounded to the nearest integer. In this
numerical application, all sampling distributions are kept uncorrelated and the heuristic parameters are optimized one
after the other in a recursive manner. This was mainly for ease of graphical representation of the results. Correlating
the distributions might lead to more efficient sampling during the optimization and faster convergence towards the
optimal parameter values.

About 1600 samples of total life-cycle costs for different strategies are drawn as per Equation 10. To obtain a
surrogate of the total life-cycle costs, a GPR is performed on the logarithm of the sample costs. This guarantees
that the surrogate function stays positive in the original space. The GPR is implemented with the MATLAB2018
function fitrgp.m and a squared-exponential kernel. The minimum of this surrogate cost function is calculated with
the MATLAB2018 function surrogateopt.m.

GPR can also be performed on all four cost components separately: inspection campaign, component inspection,
repair and failure risk. However, it was found that the total cost predictions obtained by summing up the four resulting
Gaussian processes are not as stable as the predictions obtained by the GPR on the total life-cycle cost, and are
therefore not used to find the optimal heuristic parameter values. Figure 9 compares the prediction of the expected
total life-cycle cost with the two methods, for selected strategies.

We consider one adaptation of the I&M plan after the first inspection campaign. For the adaptation, the de-
terioration model is updated with the inspection outcomes at the time prescribed by the initial strategy. Then, 1600
deterioration histories are simulated from the posterior distributions, using BUS SUS (Straub and Papaioannou, 2015).
Based on these samples, total life-cycle costs are calculated for different strategies, and the strategy optimization is
performed as outlined in Section 2.2.2.

6. Results

6.1. Conditional annual risk computed with DBN
Figure 8a depicts an example of the evolution of the computed probabilities for a sample observation history,

following the strategy described by heuristic parameters {∆T = 10, pth = 1 ·10−2, nI = 4, η = 1}. The corresponding
probability of failure of a selected hotspot is plotted in Figure 8b. It should be noted that the discretization scheme
influences the accuracy of these computations, notably when performing Bayesian smoothing. The associated error is
investigated in (Zhu et al., 2015) and is mainly due to the rough discretization in the failure domain of the component.
However, we have found that it does not significantly impact the evaluation of Pr(F∗i |w,Z).

6.2. Optimal heuristic strategy at time t = 0
First, we investigate how the expected cost varies in function of the different heuristic parameters. Figure 9 shows

the total life-cycle cost in function of nI and ∆T for sample strategies from the CE method. The GPR surrogate
estimate is also shown.

As expected, the total life-cycle risk of failure decreases with increasing number nI of hotspots inspected at every
inspection campaign. Similarly, strategies with small inspection intervals ∆T are costly because of the frequency of
the inspections; in contrast, strategies with large ∆T suffer from a larger uncertainty and thus an increased risk of
failure. Samples drawn in a similar way for varying pth and η show a less clear trend, as can be seen in Figure 10.
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Filtered interval probability of system failure
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Smoothed interval probability of system failure ,

(a) (b)

Figure 8: (a) Evolution of the interval probability and cumulative probability of system failure for a sample observation history following strategy
Sw , withw= {∆T = 10, pth = 1 ·10−2, nI = 4, η = 1}. The discontinuities indicate that an inspection is performed and the reliability is updated.
The dotted blue lines represent the smoothed probabilities Pr(F∗j |Z1:i), for j ≤ i, updated with the current system information; (b) corresponding
evolution of the probability of failure for hotspot ]16. The discontinuities at years {10, 30} are due to inspections on other components in the
system. Hotspot ]16 is inspected at year 20, and is never repaired in this simulation.

Figure 9: Sample total life-cycle cost with corresponding estimated mean value and standard deviation of the prediction (a-b). The prediction for
the cost breakdown is shown in (c-d). There is a slight difference in the prediction of the total cost between (a-b) and (c-d), which comes from the
GPR. (a) and (c): varying nI with fixed values {∆T = 10, pth = 1 ·10−2, η = 1}; (b) and (d): varying ∆T with fixed values {pth = 1 ·10−2, nI = 10,
η = 1}.

The minimum of the (continuous) surrogate cost function is achieved for the values {∆T = 7.0, pth = 1.9 ·
10−3, nI = 9.4, η = 1.3}. The values for ∆T and nI are rounded to the nearest integer.

Figure 11a depicts the contours of the GPR surrogate function, in function of pth and η , for fixed ∆T = 7[years]
and nI = 9. Within a large domain of parameters pth and η , the surrogate cost varies between 19 and 21. Hence the
total life-cycle cost is not sensitive to pth and η when the values ∆T = 7[years] and nI = 9 are set.
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Figure 10: Sample total life-cycle costs, for varying probability threshold pth and prioritization parameter η . The risk of failure decreases with
the probability threshold. However for some values of pth (here lower than 10−4), the inspection and repair costs needed to satisfy the threshold
requirement increase strongly. Probability thresholds that are too small to meet are assigned an arbitrary cost of 1000. (a): ∆T = 7, nI = 9, η = 1.3
(b): ∆T = 7, nI = 10, pth = 5.2 ·10−3.

(a) (b)

Figure 11: (a): Surrogate cost function around the optimum for the prior optimization at t = 0 for varying heuristic parameters pth (logarithmic
scale) and η , with ∆T = 7[years] and nI = 9. (b): Surrogate cost function around the optimum for the prior optimization at t = 0 for varying
(integer) heuristic parameters nI and ∆T , with pth = 2 ·10−2 and η = 1.3.

The GPR only provides an approximation of the underlying function; it reports a standard error of 5% on the
estimated expected life-cycle cost at the point minimizing the surrogate. To account for this error, we computed 200
additional Monte Carlo samples of deterioration histories and inspection outcomes for the minimizing the surrogate,
which yields an expected total life-cycle cost of 21.4. We also evaluated 200 Monte Carlo samples for a second
strategy, increasing the value of pth by an order of magnitude, i.e. {∆T = 7, pth = 2 · 10−2, nI = 9, η = 1.3}. For
this we obtain an expected total life-cycle cost of 20.1. Both costs are similar, which confirms that the parameter pth
does not considerably affect the expected life-cycle cost of a strategy. Nevertheless, we adopt the latter strategy as the
best strategy, Sw∗0 , for the prior model, since it gives the smaller expected cost. We highlight the result in Table 2.

The corresponding breakdown of the expected total life-cycle cost into its four components is illustrated in Fig-
ure 12.

The Monte Carlo samples also give an estimation of the annual repartition of the cost. Figure 4 shows the expected

18



Table 2: Parametersw∗0 and expected total life-cycle cost of the optimal strategy at time t0 = 0.

∆T pth nI η E[Ctot|w∗0]
7 2 ·10−2 9 1.3 20.1

Figure 12: Breakdown of the expected total life-cycle cost for strategy Sw∗0
.

costs associated with the optimal I&M plan. Notably, the annual risk increases in the years before the first inspection
and is progressively reduced with each additional inspection campaign, until it reaches a stationary value.

6.3. Adaptive strategy at time t1 = 7 years

The adaptive case is now investigated. Following Sw∗0 , the first inspection campaign is carried out at year t1 = 7,
with inspections of components {8,9,10,11,16,17,18,19,20}, at a cost of cini = 9 ∗ cI + cC = 1.9. No damage is
detected. This information is stored as z7.

At this point, the operator decides to improve the strategy adaptively, rather than continue with strategy Sw∗0 .
The optimal strategy Sw∗1 |z7

obtained for the posterior model is characterized by the heuristic parameter values in

Table 3, with associated expected total life-cycle cost E[Ctot|w∗1 |z7
]surrogate = 15.9. This value is discounted to time t1,

and excludes the initial cost cini.

Table 3: Parameters w∗1 and expected total life-cycle cost of the optimal strategy at time t1 = 7, after no detection of damage on components
{8,9,10,11,16,17,18,19,20}.

∆T pth nI η E[Ctot|w∗1 |z7
]

9 3 ·10−2 9 2.2 15.9

Figures 13a and 13b depict the contours of the GPR surrogate cost function around the optimum values of the
heuristic parameters at time t1.

The updated optimal heuristic parameters reflect the information gained at time t1 and the reduction of uncertainty
about the state of the structure. The optimal inspection interval increases to ∆T = 9, as does the optimal threshold on
the annual probability of system failure, pth = 3 · 10−2. The prescribed number of hotspots to be inspected remains
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(a) (b)

Figure 13: (a): Surrogate cost function around the optimum for the adaptive optimization at t1 = 7 for varying heuristic parameters pth and η . (b):
Surrogate cost function around the optimum for the adaptive optimization at t1 = 7 for varying heuristic parameters nI and ∆T .

at nI = 9. Furthermore, the updated prioritization component η increases, meaning that it gives more weight to the
components’ importance in the system; hence the components with a higher SEI are more likely to be inspected
several times during the service life.

In order to compare the initial strategy with the adapted strategy, the expected cost of Sw∗0 conditional on z7 is
evaluated with the surrogate cost function. We find that E[Ctot|w∗0,z7]surrogate = 16.9, excluding the initial cost cini.
The expected net gain of changing from strategy Sw∗0 to strategy Sw∗1 , after detecting no damage at the first inspection
is therefore

E [Ctot|w∗0,z7]−E[Ctot |w∗1 |z7
] = 1. (26)

Figure 14 shows that this gain comes from decreasing the number of inspections and repairs, which can be achieved
without significantly increasing the risk.

7. Concluding remarks

In this paper, we present an integral framework for planning inspections and maintenance actions in structural
systems. The framework, which draws upon our earlier works (Bismut et al., 2017; Luque and Straub, 2019), for
the first time enables such a planning for a general structural system as a whole. It explicitly models deterioration at
each component and includes the dependencies among multiple components. It accounts for the interaction among
the components within the structural system and their effect on the system reliability. The framework also propagates
the information collected at individual component inspections to the rest of the system.

The framework is based on the use of heuristics for prescribing inspection and maintenance strategies. This
heuristic approach only results in an approximately optimal strategy. When new information is available, an improved
heuristic may be found, which is more optimal under the a-posteriori model. This motivated us to propose an adaptive
approach, in which a new optimal heuristic is identified after inspection results are obtained. As we prove in Section
2.2.2, this adapted strategy is always at least as good as the original strategy.

In the investigated numerical application, the adaptation of the strategy results only in limited cost reductions in
the order of 5− 10%. The likely reason for this is that the inspection outcomes are not surprising under the prior
model. Were one to consider more unexpected inspection outcomes, the adapted optimal heuristic strategy would
differ more significantly from the original strategy.
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Figure 14: Comparison of expected cost for inspection, repair and failure for strategies Sw∗0 and Sw∗1
, conditional on z7.

We introduce a heuristic for prioritizing components for inspections, which is motivated by the value-of-information
concept. It accounts for the importance of component in the structural system, but also for the amount of informa-
tion obtained on other components in the system. Since it is not know a-priori which of these two effects if more
important, a heuristic parameter is optimized to weight them. In the future, the heuristic might be adjusted in cases
when components are not equi-correlated. Thereby it must be considered that inspections on components with higher
correlation are likely to provide more information on the system overall. Simultaneously, it should also be ensured
that components are selected for inspections in way that ensures their representativeness for the entire structure. An
adjusted heuristic can also account for varying costs of inspections.

In general, the approach is flexible with respect to adding new heuristic rules and parameters. While there is no
guarantee that any given heuristic is optimal, the computed expected total life-cycle cost allows to select the best
heuristic among the investigated ones. Hence the more heuristics are investigated, the better.

The proposed approach is generally applicable. However, there are still challenges to its application in practice.
Firstly, setting up the probabilistic model of the structure and the deterioration is non-trivial in many cases. Secondly,
the translation of the model to a DBN requires careful calibration of the DBN parameters. The first challenge is shared
by all approaches that aim at using physics-based models for predictive maintenance. The second challenge might
be addressed by writing corresponding software tools that automatize this task. Alternatively, the DBN could also be
replaced by another method that enables fast and efficient Bayesian analysis and reliability updating at the structural
system level.

Finally, an extension of the framework to include monitoring data seems straightforward, as long as a Bayesian
analysis of the structural system with the monitoring data is possible. Monitoring data can then be treated in the same
way as inspection data. With such an extension, the framework can be utilized to optimize monitoring systems.
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Appendix A. Parameters of the deterioration model

Appendix A.1. General model parameters

The parameters of deterioration model are obtained from (Straub, 2009; Luque and Straub, 2016). The relationship
between ln(C) and M is defined after (Ditlevsen and Madsen, 1996), such that the joint distribution of (ln(C),M) is
normally distributed with mean value (−33,3.5), standard deviations (0.47,0.3) and correlation coefficient −1.

A time step t corresponds to ν = 105 fatigue cycles.
For each fatigue hotspots, the stress scale factor K is assumed lognormally distributed. The standard deviation of

ln(K) is 0.22 for all hotspots, after (Moan and Song, 2000). The mean of ln(K) varies with the assumed fatigue life
for each component (see Appendix A.2).

Table A.1: Parameters of the fatigue crack growth model.

Variable Type Mean Std. Deviation
αa0 Normal dist. 0 1
αK Normal dist. 0 1
αM Normal dist. 0 1

Dk,0 [mm] Exponential dist. 1 1
Mk Normal dist. 3.5 0.3

lnKk Normal dist. Obtained from Table A.2 0.22
ln(Ck,i) Function ln(Ck,i) =−1.5667∗Mk,i−27.5166

λ Deterministic 0.8
dcr [mm] Deterministic 50
ξ [mm] Deterministic 10

ν [cycles] Deterministic 105

T [years] Deterministic 40
ρD0 Deterministic 0.5
ρM Deterministic 0.6
ρK Deterministic 0.8

Appendix A.2. Calibration of the fatigue stress range parameter to the fatigue life

Different approaches for the calibration of deterioration models to the component fatigue design factor (FDF) are
discussed in detail in (Straub, 2004). The FDF is defined as the ratio between the component fatigue life, TFL, and
the system service life, which here is TSL = T = 40[years]. We calibrate the mean value of the random stress scale
parameter K in Equation 23 to the FDF in two steps, so that two damage models coincide in terms of probability of
component failure after TSL years.

The first model is the Palmgren-Miner damage accumulation law (Palmgren, 1924; Miner, 1945). For high-cycle
fatigue with n stress cycles, the total accumulated damage δn is approximated by

δn = n ·ES

[
1

NF(S)

]
, (A.1)

where NF is the number of cycles to failure at a constant stress amplitude S. This relationship, better known as S-
N curve, has been defined empirically for various materials, geometries and conditions (Gurney, 1976; Hobbacher,
2015). We adopt the design S-N curve D from the Department of Energy (DoE), UK, after (Straub, 2004). It is
assumed that the fatigue stress S has a Weibull distribution with scale parameter kS and shape parameter λS = 0.8.

Failure occurs when the total damage exceeds a critical threshold, ∆, lognormally distributed with moments
(1,0.3) (Faber et al., 2000; JCSS, 2001). The resulting limit state function after n cycles is written:

gSN(n) = ∆−n ·ES

[
1

NF(S)

]
. (A.2)
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(a) (b) (c)

Figure A.1: (a): S-N model parameter kS in function of the FDF. (b): Probability of hotspot failure calculated from the S-N model with parameter
kS. (c): Probability of hotspot failure according to the FM model, in function of µK .

Additionally, the fatigue life FDF · T is defined such that the total damage reaches the critical value 1, with a
yearly cycle rate ν , i.e. n = ν ·FDF ·T :

ν ·FDF ·T ·E
[

1
NF(S)

]
= 1. (A.3)

The expectation in Equation A.3 establishes a mapping between FDF and parameter kS, depicted in Figure A.1a.
Furthermore, for a fixed value of kS, the probability of failure at the end of the lifetime T , Pr [gSN(n = ν ·T )< 0], given
by the Palmgren-Miner is approximated with FORM (Figure A.1b). We note that the evaluation of the probability of
failure uses the stochastic description of the S-N curve, while the expectation in Equation A.3 is computed with the
associated characteristic S-N curve.

The second model is the fracture mechanics (FM) model of Equation 22. The limit state function defining failure
at time T is written as

gFM = dcr−DT , (A.4)

where DT is the crack depth at time T , obtained by integration of Equation 22. It is expressed in function of the
random variables K, M and D0 (see Section 5.1). The probability of failure Pr [gFM < 0] in function of the assumed
mean value of K, µK , is shown in Figure A.1c.

Finally, the chosen FDF is mapped to µK such that the limit state functions in Equations A.4 and A.2 result in the
same probability of failure at the end of service life T . The FDF values and corresponding means of K for all hotspots
for the numerical application are obtained by jointly reading Figures A.1 (a-c) and are summarized in Table A.2.

Table A.2: Fatigue design factors (FDFs) and corresponding mean of random variable K at each hotspot.

Hotspot index k FDF Mean of Kk
{1,2,3,4} 10 7.58

{5,6,13,14,17,18,21,22} 2 16.26
{7,8,9,10,11,12,19,20} 3 13.29

{15,16} 7 8.88

Appendix B. Estimation of the annual risk of failure

The efficiency of the optimization method described in Section 2.2 depends on the sampling uncertainty of the
expectation with MCS (Equation 16), with nMC = 1 as the limiting case.

In theory, Equation 12 coupled with Equation 16, implies that the probabilities at every time step should be
conditioned on the full observation history Z1:nT , which includes the future inspection outcomes. In this section,
we show that one can replace the smoothed probability Pr(Fi|w,Z1:nT ) in Equation 12 by the filtered probability
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Pr(Fi|w,Z1:i−1) when estimating the expected risk of failure. Furthermore, we show that the corresponding Monte
Carlo estimator of the risk has a smaller sample variance.

We consider the actions that affect the system reliability A= {A1...AnT } during the service life, such as repair or
other maintenance actions. In this paper, the actions are deterministic for given inspection history Z1:nT and strategy
Sw, i.e. A=A(w,Z1:nT ). Here we explicitly include them in the expression of the expected cumulative probability
of failure:

EZ1:nT
[Pr(Fi|w,Z1:nT )] = EZ1:nT

[Pr(Fi|A(w,Z1:nT ),w,Z1:nT )] (B.1)

We recall two key principles in a sequential decision process. Firstly, a policy at time step i that assigns an action
Ai can only consider information Z1:i about the system up to that time, or in other terms, decisions cannot be based
on specific knowledge acquired in the future, i.e. Ai = Ai(w,Z1:i). Secondly, the cumulative failure event Fi never
depends on the actions after time step i, Ai:nT , neither unconditionally nor conditionally on Z1:nT . Hence we obtain
Equation B.2:

EZ1:nT
[Pr(Fi|w,Z1:nT )] = EZ1:nT

[Pr(Fi|A1:i−1(w,Z1:i−1),w,Z1:nT )] (B.2)

From there, we can split the expectation of the right hand term of Equation B.2:

EZ1:nT
[Pr(Fi|w,Z1:nT )] = EZ1:i−1

[
EZi:nT |Z1:i−1 [Pr(Fi|A1:i−1(w,Z1:i−1),w,Z1:i−1,Zi:nT )]

]
= EZ1:i−1 [Pr(Fi|A1:i−1(w,Z1:i−1),w,Z1:i−1)] .

(B.3)

Finally we obtain,

EZ1:nT
[Pr(Fi|w,Z1:nT )] = EZ1:i−1 [Pr(Fi|w,Z1:i−1)] . (B.4)

Therefore for a sample observation history z1:nT , the conditional filtered probability, Pr(Fi|w,z1:i−1), and the
smoothed probability, Pr(Fi|w,z1:nT ), are two valid unbiased estimators of the expected value EZ1:nT

[Pr(Fi|w,Z1:nT )].
Furthermore, Equation B.3 shows that the filtered probability is equal to the expectation of the smoothed probability
over the inspection results Zi:nT . This implies that the filtered probability is an estimator with a smaller variance than
the smoothed probability, hence is better suited as estimator of the noisy objective function in the optimization method
described in Section 2.2.

The variances of these two estimator and the standard error of the mean can be compared for the I&M strategies
that prescribe only inspections but no repair or maintenance actions to be carried out, i.e. for any Z1:nT , and at any
time step i, Ai(Z1:i) = ‘do nothing’. For instance, the strategy parametrized by w = {∆T = 10, pth = 1,ni = 5,η =
1,Drep = ∞} satisfies this condition. The expectations EZ1:i−1 [Pr(Fi|w,Z1:i−1)] and EZ1:nT

[Pr(Fi|w,Z1:nT )] are equal
to Pr(Fi) calculated with the prior model assumptions. The variance of these estimators is evaluated for the numerical
application described in Section 5, with nMC = 500 sample histories (see Figure B.2).

The variance of the smoothed estimator is indeed larger than of the filtered estimator: for the times between 1 and
10 years, the filtered estimator is exact, and the coefficient of variation of the smoothed estimator is of the order of
500%. For the subsequent time steps, up to year 30, the coefficient of variation of the smoothed estimator is up to 1.3
times that of the filtered estimator.

Appendix C. Prioritization Index for component inspection

The Prioritization Index (PI) is chosen as a proxy for the VoI. The reasoning behind the expression for the PI in
Equation 21 is outlined in this section. Here Fs is used to denote the event F∗i for a given time step i. The following
derivations omit the conditioning on Z1:i−1. The SEIk are nonetheless independent of any observation, by definition.

We express the certain event as {Ω}= {{Fc1 ∪Fc1}∩ ...∩{FcN ∪FcN}}, and obtain that

Pr(Fs) = Pr(Fs∩{{Fc1 ∪Fc1}∩ ...∩{FcN ∪FcN}})
= Pr(Fs,Fc1 , ...,FcN )+Pr(Fs,Fc1 ,Fc2 , ...,FcN )+Pr(Fs,Fc1 ,Fc2 , ...FcN )

+ ...+Pr(Fs,Fc1 ,Fc2 , ...,FcN−1 ,FcN )+∑
I

Pr(Fs,FcI ∩FcrI
)

(C.1)
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c.o.v=0 c.o.v=5.3-6.8 c.o.v=4.4-6.3 c.o.v=4.1-4.9

(a)

c.o.v=0.2-7.7 c.o.v=6.8-8.0 c.o.v=4.0-5.4 c.o.v=4.1-4.9

(b)

Figure B.2: Strategy defined byw = {∆T = 10, pth = 1,ni = 5,η = 1,Drep = ∞}. (a): Filtered conditional probability of failure Pr(Fi|w,Z1:i−1)

for 500 sample histories z(q), and resulting mean (bold line); (b) Smoothed conditional probability of failure Pr(Fi|w,Z1:nT ) for 500 sample
histories z(q), and resulting mean (bold line). The estimated range of the coefficient of variation (c.o.v) is indicated for each decade.

The last term in Equation C.1 corresponds to the joint probabilities of Fs and failed components belonging to the
subsets I of {1..N}, with |I| ≥ 2.

By introducing conditional probabilities and writing a = Pr(Fs|Fc1 , ...,FcN ), the probability of failure of the system
is

Pr(Fs) = a ·Pr(Fc1 , ...,FcN )+Pr(Fs|Fc1 ,Fc2 , ...,FcN ) ·Pr(Fc1 ,Fc2 , ...,FcN )+ ...+

Pr(Fs|Fc1 ,Fc2 , ...FcN ) ·Pr(Fc1 ,Fc2 , ...FcN )+∑
I

Pr(Fs|FcI ∩FcrI
) ·Pr(FcI ∩FcrI

) (C.2)

From Equation 20, we have that Pr(Fs|Fc1 , ...,Fck−1 ,Fck ,Fck+1 , ...,FcN ) = a+SEIk, and similarly we can express each
Pr(Fs|FcI ∩FcrI

) = a+MEII, where MEII is the multiple elements importance of components in I. By factorizing a,
we obtain Equation C.3:

Pr(Fs) = a+SEI1 ·Pr(Fc1 ,Fc2 , ...,FcN )+ ...

+SEIN ·Pr(Fc1 ,Fc2 , ...FcN )+b,
(C.3)

where b represents the contribution of simultaneous component failures. Equation C.4 introduces the marginal prob-
abilities of component failure:

Pr(Fs) = a+SEI1 ·Pr(Fc1) ·Pr(Fc2 , ...,FcN |Fc1)

+ ...+SEIN ·Pr(FcN ) ·Pr(Fc1 , ...,FcN−1 |FcN )+b.
(C.4)

From Equation C.4, we approximate Pr(Fs) with

Pr(Fs)' a+SEI1 ·Pr(Fc1)+ ...+SEIN ·Pr(FcN )+b, (C.5)

Equation C.5 is not actually used to calculate the interval failure probability of the system, Pr(F∗i ), but shows that
the probability of system failure approximately is a function of the terms SEIk ·Pr(Fck) defined for each component,
hence by the VoI for component k is a linear function of SEIk ·Pr(Fck). Furthermore, the amount of information learnt
on other components is related to the probability of failure Pr(Fck), through the components’ interdependence.

Figure C.3 compares two sample inspection histories for two values of η , from the numerical application to the
Zayas frame. As expected, more hotspots are inspected during the service life when a lower value for η is fixed. For
a higher value of η the inspected hotspots are principally those with the higher SEI values.
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(a) η = 0.84 (b) η = 2.96

Figure C.3: History of hotspots inspected (marked with a blue dot) for a sample deterioration history, following the strategies defined by ∆T =
7[years], nI = 10 and pth = 5.2 · 10−3, and a lower (a) and higher (b) prioritization parameter η . The hotspots numbers on the y-axis are sorted
according to their calculated SEI.
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