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Mixed aleatory-epistemic uncertainty quantification and 
sensitivity analysis 
 

Abstract: This work investigates the modelling of epistemic input 
parameter uncertainties, and the numerical techniques for uncer-
tainty quantification and uncertainty-based sensitivity analysis in the 
presence of both aleatory and epistemic uncertainties. Two different 
approaches are used, the interval valued probability (IVP) method 
and the Bayesian probabilistic (BP) method. In both cases, a double 
loop method is used to computationally separate the two different 
uncertainty types and propagate them within the model. These two 
approaches are successfully applied on a high-dimensional jet en-
gine secondary air system model from aerospace engineering. The 
different outputs obtained by the two approaches are interpreted 
and compared. For the global sensitivity analysis of the epistemic 
variables, an empirical “pinching” strategy is applied when using the 
IVP method. With the BP method, variance-based global sensitivity 
analysis of the epistemic variables is performed. Novel expressions 
for the Sobol indices of a statistic of a response, conditional on the 
epistemic variables, are presented and interpreted.  

1 Introduction 

Uncertainty quantification (UQ) and uncertainty-based sen-

sitivity analysis (SA) is an area of continuously increasing 

importance in computational engineering. Uncertainties are 

often classified into two categories, aleatory and epistemic, 

e.g. [3]. Aleatory uncertainty is due to randomness related to 

a physical process. This type of uncertainty is considered ir-

reducible, provided that an adequate statistical description is 

available. Probability theory is used for modeling this type of 

uncertainties, and there are well established sampling or sto-

chastic expansion methods for the UQ and SA of response 

quantities involving this type of uncertainties [7] [13]. Epis-

temic uncertainty is due to incomplete knowledge and/or lack 

of useful data, and it is considered reducible, e.g. by gather-

ing additional data or by refining the models. The use of 

probability theory for modeling epistemic uncertainty is put 

into question in literature and so-called imprecise probability 

methods [2] have emerged as alternative mathematical tools 

for modeling this type of uncertainty. This opens a debate be-

tween different research groups as to which is the best math-

ematical tool to model epistemic uncertainty [9]. It is more 

often than not that both types of uncertainties coexist in the 

engineering computational model universe. Therefore, ap-

propriate tools to model mixed aleatory-epistemic uncertain-

ties, and computational methods to propagate these uncer-

tainties within the model need to be investigated. When both 

types of uncertainty are present, it is of great importance to 

have efficient tools and methods at hand, which can separate, 

both conceptually and computationally, the influence of the 

two uncertainty types, and which can propagate them within 

the same model. There are few attempts to date for UQ and 

SA in a mixed uncertainty setting in real high-dimensional 

engineering models [10]. Such an attempt is presented in this 

work. The main focus is on the model input parameter uncer-

tainty. The type of epistemic uncertainty which is of interest 

herein is the case where the quantity is described through in-

tervals, e.g. obtained from expert judgments or technical 

drawings, and no measurement data is available.  

The structure of the paper is as follows: In Section 2 we dis-

cuss two different mixed aleatory-epistemic UQ approaches 

used in this work. Section 3 discusses the SA approaches 

used in the mixed uncertainty setting, and novel Sobol indi-

ces of a statistic of a response are presented, based on a gen-

eralization of concepts presented in [4]. Section 4 presents 

the secondary air system model of a jet engine, followed by 

the application of the presented UQ and SA methods on this 

model. Finally, Section 5 summarizes the results and con-

cludes this work. 

2 Mixed aleatory-epistemic UQ approaches 

Consider a model in the form: 

𝑌 = 𝑔(𝒙)  (1) 

where 𝒙 ∈ 𝓡𝒏 denotes possible outcomes of a vector 𝑿 that 

collects all uncertain input parameters of the model. In the 

mixed uncertainty case, the vector 𝑿 is decomposed as 𝑿 =
 [𝑿𝑎 , 𝑿𝑒], with 𝑿𝑎 containing the aleatory variables, and 𝑿𝑒  

containing the epistemic variables. The following two sub-

sections present in detail two mixed aleatory-epistemic UQ 

approaches, which nest one forward uncertainty propagation 

within another. In both approaches, the outer loop is associ-

ated with the treatment of the epistemic input variables 𝑿𝑒 , 

while the aleatory input variables 𝑿𝑎 lie in the inner loop 

(Fig. 1). The difference lies in the way how the epistemic var-

iables are modeled in the outer loop. These two approaches 

are also available in the open source Dakota software [12]. 

2.1 Interval valued probability (IVP) approach 

In the IVP method [5] [12], the model input variables which 

are identified as epistemic, 𝑿𝑒 , for which there is only inter-

val information and no data is available, are in the outer loop, 

and are simply treated as single intervals. Therefore, there is 

no distribution information for the epistemic variables; any 

sample within the provided interval bounds is a possible re-

alization. The aleatory variables are in the inner loop, and 
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probability distributions are assigned for them. There are dif-

ferent combinations of methods that can be used in either 

loop in order to propagate the uncertainty, however here only 

the nested sampling approach will be mentioned, which in-

volves using sampling techniques in both loops, as shown in 

Fig.1. Following this approach, first samples from the outer 

loop epistemic variables are taken through generating uni-

form random samples within the specified intervals. Subse-

quently, these epistemic variable values are kept as fixed val-

ues in the inner loop, where the aleatory input variables 

sampling takes place, based on their defined probability dis-

tributions. At this point, all the model input variables have 

obtained a value, therefore the real model evaluation can take 

place. Multiple model evaluations take place in the inner 

loop, as many as the number of inner loop samples, condi-

tional on a specific realization of the outer loop epistemic 

variables vector, which is kept constant in the inner loop. 

Therefore, each time in the inner loop a statistical quantity of 

interest (QoI) (e.g. mean value, variance) of the model re-

sponse can be computed, conditional on fixed values of the 

epistemic variables vector. In the end of this nested sampling 

approach, one obtains multiple values of the statistical QoI 

(as many as the number of the outer loop samples). The final 

goal of the IVP method is to compute output intervals bound-

ing the statistical QoI of the response, which quantify the ef-

fect of epistemic uncertainty within the model. This is simply 

done by keeping the minimum and maximum computed val-

ues of the statistical QoI. Additionally, at each epistemic 

sample one obtains a sample estimate of the cumulative dis-

tribution function (CDF) or one complementary CDF 

(CCDF). Collecting all CCDF estimates in the same plot 

gives the so-called horsetail plot [8], which can be used to 

observe the effect of epistemic uncertainty and to infer inter-

vals, as is presented in Section 4. 

2.2 Bayesian probability (BP) approach 

The BP method (also referred to as second order probability 

method in literature [5] [12]) uses the exact same idea with 

the IVP method, in the sense that both methods separate the 

variables in outer epistemic and inner aleatory loops. The dif-

ference lies in the way how the outer loop epistemic variables 

are treated. In the BP method, they are no longer treated 

simply as intervals, and subjective (Bayesian) probability as-

signments are made for them by the modeler based on the 

available information. We note here that assigning a fixed 

interval on the epistemic variables as is done in the IVP 

method based solely on an expert judgment is also a subjec-

tive modeling choice. The BP approach enables expressing a 

subjective degree of belief on the expert interval through the 

assignment of a probability distribution. Exactly the same 

nested sampling procedure is followed like the one described 

in Section 2.1. However, in the BP case the final result will 

be the full distribution and epistemic statistics (mean, vari-

ance, CDF) of the statistical QoI of the response, and not in 

the form of intervals bounding the statistical QoI of the re-

sponse as in the IVP method. Therefore, it is clear that the 

mathematical structure of the output is different between the 

two different methods. Within this work, the authors would 

like to demonstrate that, also when using the BP method, it is 

possible to obtain intervals bounding the statistical QoI of the 

response. Having obtained multiple samples of the statistical 

QoI of the response in the outer loop, one can use them to 

compute Bayesian credible intervals (BCI) which bound the 

result with a certain probability. More specifically the highest 

posterior density Bayesian credible interval is computed 

herein.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 1: Nested sampling approach used in the IVP and BP methods. 

3 Mixed aleatory-epistemic SA approaches 

Global SA investigates how much the variability of the out-

put depends on each of the input parameters, taken individu-

ally or in combinations with each other. The goal of an SA in 

the mixed aleatory-epistemic uncertainty setting is to obtain 

an importance ranking only of the epistemic variables, hav-

ing integrated out the effect of aleatory uncertainty. This is 

helpful if one considers that epistemic uncertainty can be po-

tentially reduced, e.g. by performing measurements to obtain 

more data. The epistemic variable importance ranking could 

then drive the decision making with regards to collecting ad-

ditional information to reduce uncertainty. 

3.1 SA using the IVP approach 

To the knowledge of the authors, global SA involving non-

probabilistic uncertain models is based mostly on empirical 

methods. A so-called pinching strategy is used [6]. This strat-

egy assesses how much the output uncertainty would reduce, 

if knowledge on the value of a variable would become avail-

able. This is done by comparing the uncertainty in the output, 

before and after pinching an uncertain input variable, i.e. re-

placing it with a fixed deterministic value. The pinching ap-

proach is helpful to assess qualitatively the sensitivity of ep-

istemic variables; however, the obtained sensitivities lack a 

clear interpretation. This method is able to assess individual 

contributions, and interactions are not taken into account. If 

one is interested in interactions, then the pinching strategy 

should be applied to more than one input variables at a time. 

Within this work, as presented in Section 4, an empirical es-

timate of the sensitivity of each individual epistemic variable 

is given by comparing the horsetail plots, before and after re-

moving the uncertainty from one epistemic variable at a time 

(see Figures 3 and 4). 
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3.2 SA using the BP approach 

When using the BP approach, it is possible to compute sen-

sitivities through decomposing the variance of the statistical 

QoI, leading to the so-called Sobol sensitivity indices. Clas-

sical variance-based SA looks at the contribution of each in-

put random variable, or combinations thereof, to the variance 

of the model output. The first order Sobol index of 𝑌 with 

respect to the i-th component 𝑋𝑖 is given by: 
 

𝑆𝑖 =
𝑉𝑖

Var[𝑔(𝑿)]
=

Var𝑋𝑖
{E𝑿−𝑖

[𝑔(𝑿)|𝑋𝑖]}

Var[𝑔(𝑿)]
  (2) 

 

where E𝑿−𝑖
[𝑔(𝑿)|𝑋𝑖] is the expected value of the output with 

respect to all input variables except 𝑋𝑖 which is fixed. Eq. 2 

considers only the influence of the contribution of variable 

𝑋𝑖, neglecting interactions with other variables. The effect of 

interactions is described by higher order Sobol indices. The 

total effect index considers the total influence of the contri-

bution of variable 𝑋𝑖, accounting also for interactions of 𝑋𝑖 

with other variables. These expressions are based on the 

Sobol decomposition of the variance of the output given as 

follows:  
 

Var[𝑔(𝑿)] = ∑ 𝑉𝑖

𝑛

𝑖=1

+ ∑ ∑ 𝑉𝑖𝑗

𝑗≠𝑖

𝑛

𝑖=1

+ 𝑉1,2,..𝑛  (3) 

 

where 𝑉𝑖𝑗 is the combined effect of 𝑋𝑖 and 𝑋𝑗 on the variance. 

Monte Carlo sampling or polynomial chaos expansions can 

be used to compute these Sobol indices.  

In the mixed aleatory-epistemic uncertainty case, the input 

variable vector is  𝑿 =  [𝑿𝑎 , 𝑿𝑒]. Assume that the statistical 

QoI to be computed in the inner loop is the mean value of the 

scalar model response, i.e. the expectation E𝑿𝒂
[𝑌|𝑿𝒆]. In this 

case, the Sobol decomposition is performed on the variance 

of the mean value of the output, conditional on the epistemic 

vector realization. The resulting expression for the first order 

Sobol index of the mean value is: 
 

𝑆𝜇,𝑖 =
Var𝑋𝑒,𝑖

{E𝑿𝑒−𝑖
[E𝑿𝑎

[𝑌|𝑿𝑒]|𝑋𝑒,𝑖]}

Var𝑿𝑒
[E𝑿𝑎

[𝑌|𝑿𝑒]]
  (4) 

 

Such an expression can be obtained for other statistical QoIs, 

such as the variance of the output, Var𝑿𝒂
[𝑌|𝑿𝒆]: 

 

𝑆𝑣𝑎𝑟,𝑖 =
Var𝑋𝑒,𝑖

{E𝑿𝑒−𝑖
[Var𝑿𝑎

[𝑌|𝑿𝑒]|𝑋𝑒,𝑖]}

Var𝑿𝑒
[Var𝑿𝑎

[𝑌|𝑿𝑒]]
  (5) 

 

As noted in [4], in the mixed uncertainty case, the variance-

based decomposition of the total variance contributed by 𝑿𝑒  

rather than 𝑿 is obtained, as can be seen in the denominator 

of Eqs. (4) and (5). The variance due to the aleatory variable 

set 𝑿𝑎 is involved in the inner loop computation of the statis-

tical QoI of the response, conditional on the epistemic vector 

realization, therefore it acts as a weight of the contribution of 

each realization of 𝑿𝑒 . Expressions for the total effect Sobol 

indices of a statistical QoI can be obtained accordingly.  

4 Numerical investigations 

4.1 The jet engine secondary air system  

The two mixed aleatory-epistemic UQ approaches presented 

herein are applied to the analysis of the secondary air system 

(SAS) of a three-stage low pressure turbine (LPT) of a jet 

engine. The jet engine’s secondary air system (SAS) is the 

ensemble of flows, which do not directly contribute to the 

engine thrust and is used for different purposes like internal 

unit cooling, prevention of hot gas ingestion into the turbine 

rotor cavities, sealing of the bearing chamber and control of 

the axial bearing load [11]. A complete description of the 

SAS functionality is given in [11]. The SAS is modeled with 

a 1-D flow network as a succession of chambers linked by 

flow passages (seals, orifices, pipes, etc.) [1]. Each flow pas-

sage has its own pressure loss characteristics. Figure 2 shows 

an example of an SAS 1-D flow network. The model takes 

the following input: boundary conditions in terms of pressure 

and temperature (in yellow in Figure 2) which are dependent 

on several engine performance parameters, and the geomet-

rical definition of each pressure loss device. After the solu-

tion of the network model equations the output is the pressure 

and temperature level at each chamber (green boxes in Figure 

2) and the mass flow rate in each flow line (blue lines in Fig-

ure 2). 
 

 

Fig 2: SAS network of an LPT arrangement. Figure taken from [1] 

4.2 Uncertainty modeling in the SAS model 

There are two types of inputs in the SAS model. The bound-

ary conditions are dependent deterministically on the engine 

performance parameters, which are pressures and tempera-

tures at critical engine locations. The uncertainty in the per-

formance parameters comes mainly from the uncertainty in 

the ambient conditions, as well as from engine-to-engine var-

iations. This kind of uncertainty is considered irreducible; 

these are therefore modeled as aleatory uncertain variables. 

The information available regarding these variables comes 

from industrial experts, based on legacy engines, in the form 

of a mean value and a standard deviation. These variables are 

modeled with the normal distribution. Uncertainty in the ge-

ometrical variables of the different flow elements comes 

from the uncertainty related to manufacturing tolerances. No 

measurement data of the actual geometries of any of the flow 
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elements is available. However, in most cases one could per-

form measurements on the manufactured parts in order to ob-

tain data for the geometric variables. Thus the uncertainty in 

the geometric variables is modelled as epistemic, since there 

is a chance of controlling and reducing this uncertainty. 

Without any available measurement data, the information 

available coming from the technical drawings is in the form 

of a single interval per variable, within which the true value 

could lie. For the IVP approach these intervals are taken as 

fixed, whereas for the BP approach the epistemic variables 

are modeled as uniform random variables on the given inter-

vals. In total, within the used SAS model of Figure 2, there 

are 63 uncertain input variables, of which 51 are modeled as 

epistemic uncertain, and 12 as aleatory. All uncertain input 

variables are considered independent within the current in-

vestigation. There is a large number of responses that the 

SAS produces as an output, however in this study, only the 

three mass flows B-2 (mass flow 1), E-3 (mass flow 2) and 

F-11 (mass flow 5), which constitute the ingoing mass flows, 

(see Figure 2) are of interest. The sum of these three mass 

flows is the response of interest.  

4.3 Mixed aleatory-epistemic UQ and SA of the SAS 

4.3.1 IVP approach 

As mentioned in Section 2.1, the final goal of the IVP method 

when performing mixed uncertainty UQ is to compute output 

intervals bounding the statistical QoI of the response, which 

quantify the effect of epistemic uncertainty within the model. 

Therefore, following the nested sampling approach, an inter-

val for the mean model response of interest can be obtained 

(Table 1).  

Table 1: Interval on the mean value of the sum of mass flows 1,2,5. W25 is the ref-
erence mass flow in the gas path. 

Outer loop LHS Inner loop LHS Interval (%W25) Time (hrs.) 

50 samples 50 samples [1.1943, 1.6121] 1.60 

100 samples 100 samples [1.1935, 1.6122] 4.88 

200 samples 200 samples [1.1927, 1.6172] 9.69 

 

The horsetail plot is plotted in Figure 3, which is an ensemble 

of CCDFs, and can be used to infer intervals. Each CCDF 

corresponds to aleatory uncertainty, conditional on one real-

ization of the epistemic variables vector. By observing how 

widespread the CCDF ensemble is, one can assess the influ-

ence of the epistemic input parameter uncertainty on the 

model’s response metric of interest. Looking at the results of 

Table 1 and Figure 3, one can observe that the resulting in-

terval is significant. The epistemic uncertainty comes from 

the manufacturing tolerances of the geometric variables. If 

the geometric variables would take their nominal values, we 

would expect a resulting CCDF close to the middle of the 

interval shown in Figure 3. Furthermore, the influence of the 

aleatory uncertainty, coming from the performance parame-

ters, can be observed in the form of each resulting CCDF.  

 

 

Fig 3: Horsetail plot for the sum of the three mass flows. Multiple aleatory CCDFs of 
this sum resulting from epistemic uncertainty in the geometric variables. 100 outer 
loop epistemic vector realizations, and 100 samples in the inner loop to compute the 
mean value of the response, conditional on each outer loop realization. 

Figure 4 illustrates the empirical pinching strategy for sensi-

tivity analysis with the IVP approach. Based on engineering 

expertise, mass flow 1 is clearly dependent on the value of 

the effective area of the orifice connecting boundary condi-

tion E to chamber 3 in figure 2. Also mass flow 1 obtains 

much larger values in the sum compared to mass flows 2 and 

5. Therefore, we would expect a large reduction in the epis-

temic uncertainty of the mass flow sum output, if this geo-

metric variable would be fixed to its nominal deterministic 

value. Hence, we choose to fix the effective area of this ori-

fice to its midpoint value and perform the uncertainty analy-

sis again. The resulting horsetail plot is seen in Figure 4. 

Comparing it to Figure 3, it can be observed that the resulting 

output epistemic uncertainty has been reduced significantly. 

 

Fig 4: Pinching approach for sensitivity analysis: Horsetail plot when fixing the value 
of effective area of orifice E-3 to its midpoint value. 

4.3.2 BP approach 

As discussed in Section 2.2, the final outcome of the BP 

method for mixed aleatory-epistemic UQ is the full distribu-

tion and epistemic statistics of the statistical QoI of the re-

sponse. For our example, Figure 5 shows the distribution of 

the mean value of the sum of the responses. 
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Fig 5: Estimated CCDF of response (sum of three mass flows) mean over aleatory 
uncertainty. (𝜇𝑒𝑝𝑖𝑠𝑡 = 1.4066, 𝜎𝑒𝑝𝑖𝑠𝑡 = 0.1235). 

As can be seen, the mixed uncertainty output is different be-

tween the IVP and the BP method. However, as shown in Ta-

ble 2, the final samples in the BP outer loop can be used to 

compute epistemic Bayesian credible intervals for the statis-

tical QoI of the response. 

Table 2: Comparing IVP intervals and BP Bayesian credible intervals 

Response statistical QoI Interval Result  (%W25) 

Mean mass flow sum 95% BCI [1.1913, 1.5964] 

Mean mass flow sum 99.9% BCI [1.1913, 1.6194] 

Mean mass flow sum IVP interval [1.1935, 1.6122] 

It can be seen that, a 95% BCI already gives an interval which 

is very similar to the IVP resulting interval, only a bit under-

estimated, while taking the 99.9% BCI gives a resulting in-

terval resembling very closely the corresponding IVP inter-

val. This is due to the fact that epistemic variables in the BP 

approach are modeled as uniform random variables on the 

given intervals. Therefore, the higher the confidence level in 

the BCIs, the closer the intervals will be to the ones obtained 

with the IVP approach. 

In Section 3.2, Sobol indices of the statistical QoIs were in-

troduced. The first order Sobol indices of the mean values of 

the responses 1 and 2 are shown in Figure 6. This first order 

sensitivity index indicates how much each epistemic varia-

ble, when taken into account independently, affects the mean 

value of the model response of interest. Accordingly, the first 

order Sobol indices of another statistical QoI (e.g. variance) 

could be obtained, as shown in Figure 7. In contrast to the 

main first order Sobol indices, the total order Sobol indices 

give the contribution of each epistemic variable when taking 

into account also the interactions with the other epistemic 

variables. The aleatory variables are integrated out when 

computing the statistic of interest in the inner loop, and thus 

no interactions between aleatory and epistemic variables are 

present. For our SAS application, no difference between 

main and total order indices of the mean value was observed. 

This indicates that there are no interactions between the ep-

istemic variables, i.e. the geometric variables of the different 

flow elements. This result is expected, since from an engi-

neering point of view we do not expect interactions between 

the geometric variables of the different flow elements. 

 

Fig 6: First order Sobol indices of the mean of mass flows 1 and 2. On the x-axis is 
a selection of the epistemic uncertain variables. 
 

 

 
 
Fig 7: First order Sobol indices of the mean of mass flows 1 and 2. On the x-axis is 
a selection of the epistemic uncertain variables. 

By comparing Figs. 6 and 7, it can be observed that the Sobol 

indices of the variance are very similar to the Sobol indices 

of the mean, and we obtain the same important epistemic var-

iables and the same importance ranking. However, this result 

depends on the behavior of the applied model. As an exam-

ple, in [14] it is shown that a completely different ranking is 

obtained for the analytical Ishigami function. It then depends 

on the purpose of the analysis which Sobol index is of inter-

est. 

5 Conclusions 

Within this work, two different methods for mixed aleatory-
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epistemic UQ have been investigated and applied success-

fully on a SAS model from aerospace engineering. The IVP 

approach computes intervals bounding the statistical QoI of 

the response. The width of these intervals quantifies the ef-

fect of epistemic uncertainty. The BP approach on the other 

hand gives as an output the full distribution of the statistical 

QoI of the response, and epistemic statistics on this statistical 

QoI. It has been shown that within the BP method, BCIs can 

be computed, which quantify epistemic uncertainty in the 

form of an interval, therefore comparable with the IVP result-

ing intervals. 

Uncertainty-based SA in the mixed aleatory-epistemic uncer-

tainty setting, using the IVP and BP approaches, has also 

been investigated. An empirical pinching strategy for sensi-

tivity analysis of the epistemic variables when using the IVP 

method has been applied. Using the BP approach, novel ex-

pressions for the Sobol indices of a statistical QoI of the re-

sponse have been presented and interpreted. These indices 

compute how much each epistemic variable, when taken into 

account independently, or when interacting with other epis-

temic variables, influences the variance of the statistical QoI 

of the response. Such a sensitivity analysis results in an im-

portance ranking of the epistemic variables, when the effect 

of aleatory (irreducible) uncertainty has been integrated out.  
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