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Abstract

Reliability analysis of deteriorating structural systems requires the solution of time-variant reliability problems. In the
general case, both the capacity of and the loads on the structure vary with time. This analysis can be approached by
approximation through a series of time-invariant reliability problems, which is a potentially effective strategy for cases
where direct solutions of the time-variant reliability problem are challenging, e.g. for structural systems with many
elements or arbitrary load processes. In this contribution, we thoroughly review the formulation of the equivalent time-
invariant reliability problems and extend this approximation to structures for which inspection and monitoring data is
available. Thereafter, we present methods for efficiently evaluating the reliability over time. In particular, we propose
the combination of sampling-based methods with a FORM (first-order reliability method) approximation of the series
system reliability problem that arises in the computation of the lifetime reliability. The framework and algorithms are
demonstrated on a set of numerical examples, which include the computation of the reliability conditional on inspection
data.
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1. Introduction

Deterioration can lead to decommissioning or failures
of structures and infrastructures. Consequently, signifi-
cant resources are spent by societies and industries to pre-
vent or mitigate deterioration and its effects, through de-
sign measures, maintenance, inspection, monitoring, re-
pair and retrofitting actions. To optimally plan these mit-
igation measures, a proper assessment of the reliability of
deteriorating structures is crucial. In structural reliability,
such an assessment is performed through physics-based
stochastic models of the deterioration processes and the
structural performance [1–3].

Computing the reliability of a deteriorating structure is
a special instance of time-variant reliability analysis [4–7].
In the general case, the failure of a deteriorating system
corresponds to a first-passage problem. Solutions to this
problem rely on analytical solutions or numerical approxi-
mations of the outcrossing rate conditional on slowly mix-
ing random processes and random variables [6–9]. While
these methods work well for selected cases, their appli-
cation to general structural systems with possibly many
deteriorating elements and arbitrary load processes is chal-
lenging. That also holds for the computation of the relia-
bility conditional on inspection and monitoring data (with
the exception of some special cases).
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Conveniently, for most combinations of deterioration
models and structural models encountered in practice, the
structural reliability can be evaluated by transforming the
time-variant reliability analysis into a series of time-invariant
analyses [2]. This is a common approach for application
to structural systems [e.g., 10–14].

To compute the time-variant reliability of the structure
based on time-invariant analyses requires the solution of
a series system problem. Such an analysis can be per-
formed at little extra computational cost when utilizing
Monte Carlo simulation, but is demanding when apply-
ing advanced sampling methods. Therefore, researchers
have often relied on the use of upper or lower bounds to
the time-variant reliability [e.g., 10, 11, 14, 15]. Overall,
efficient algorithms are desirable for the evaluation of the
lifetime reliability, in particular when the structural analy-
sis is based on numerical solutions and the number of limit
state function calls should be limited. This motivates the
development of efficient algorithms that can lead to results
that are more exact than the bounds, but at little extra
cost.

In many instances, the interest is on the reliability of a
deteriorating structure conditional on inspection and mon-
itoring data [e.g., 14, 16]. To the best of our knowledge,
no rigorous treatment of the conditional lifetime reliabil-
ity of structural systems and its computation based on the
time-invariant formulation can be found in the literature.
In particular, as we show in this paper, for computing the
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reliability at time t conditional on inspection or monitor-
ing data up to time tZ , it generally is not sufficient to
evaluate the conditional reliability only for time intervals
after tZ . Instead, it is necessary to evaluate the conditional
reliability for all time intervals.

The paper starts out by revisiting the basic definitions
of reliability in deteriorating structural systems and the
different cases in which the reliability can be evaluated or
approximated through time-invariant reliability analyses.
We describe and demonstrate the necessary computations
when considering reliability updating with inspection and
monitoring results.

We then propose efficient strategies for the computa-
tion of the structures lifetime reliabilities through analyt-
ical approximations (FORM), sampling-based approaches
and combinations thereof. We present computational strate-
gies for improved efficiency of the time-invariant reliability
evaluations, and we propose an approach for estimating
the time-variant reliability without additional limit state
function calls. The principles and computational strate-
gies are investigated and demonstrated on a set of four
numerical examples.

2. Reliability of deteriorating structural systems

2.1. General

At time t, a structure can – at least conceptually – be
characterized by its capacity R(t) and the demand on the
structure1 S(t). The corresponding safety margin is [3]

M(t) = R(t)− S(t). (1)

More generally, the system can be modeled by a limit
state function2 g(X, t). Therein, X is the vector of in-
put random variables [1, 2, 17]. By definition, a negative
value of the limit state function corresponds to a failure
of the system. The safety margin M(t) is an instance
of the limit state function with input random variables
X = [R(t);S(t)]. One can define a point-in-time failure
event3 as

F ∗(t) = {R(t) ≤ S(t)}, (2)

or, more generally, as

F ∗(t) = {g(X, t) ≤ 0}. (3)

Computation of the corresponding probability Pr[F ∗(t)]
is typically straightforward, as discussed in Section 3.2;

1Depending on the formulation, S(t) is either the load or the load
effect.

2Often, the system is characterized by multiple limit state
functions gi(X, t) representing different system failure mechanisms.
These can always be combined to a single limit state function by
g(X, t) = min{g1(X, t), g2(X, t), . . . }, even if this may not be opti-
mal for computational purposes.

3F ∗(t) is also termed instantaneous failure event and the corre-
sponding Pr[F ∗(t)] is termed instantaneous failure probability in the
literature [2, 3].

consequently, this quantity is frequently used to assess the
reliability of deteriorating structures [13, 14, 18–20]. How-
ever, for decision making purposes, e.g. in design or in-
tegrity management, this quantity can be misleading, be-
cause it does not capture the history leading up to time
t. In particular, it neglects that the system may already
have failed previously and the model R(t) or g(X, t) has
no actual meaning in this case.

To describe the reliability of the structure at time t, one
must therefore consider the random processes {R(τ)}τ∈[0,t]

and {S(τ)}τ∈[0,t] and compute the accumulated failure
event, which defines the event of failure at any time up
to t:

F (t) = {∃τ ∈ [0, t], R(τ) ≤ S(τ)}, (4)

or

F (t) =

{[
min
τ∈[0,t]

g(X, τ)

]
≤ 0

}
. (5)

Utilizing the more general definition of Eq. 5, the prob-
ability of a failure up to time t is

Pr[F (t)] = Pr

{[
min
τ∈[0,t]

g(X, τ)

]
≤ 0

}
. (6)

All quantities that are commonly used to describe the
lifetime reliability can be computed from Pr[F (t)] [21].
These include the cumulative distribution function (CDF)
of the structure’s lifetime T ,

FT (t) = Pr(T ≤ t) = Pr [F (t)], (7)

and the corresponding probability density4

fT (t) =
d

dt
FT (t). (8)

The reliability of the structure is

Rel(t) = 1− Pr[F (t)]. (9)

The hazard function is

h(t) =
fT (t)

Rel(t)
. (10)

h(t) describes the failure rate of the structure conditional
on it having survived up to time t.

The function Pr[F (t)] and the derived quantities sum-
marized above describe the reliability of a single structural
system. When the system fails, it might be systematically
replaced. Such a process can be described by renewal the-
ory [23, 24], which enables calculation of the cost and risk
of the system considering replacement. Such studies have
been performed, e.g. for optimizing risk acceptance crite-
ria [25, 26]. The focus of the current paper is on individual

4The probability density fT (t) is sometimes referred to as the
unconditional failure rate [2, 22]. We avoid this name, because in the
system reliability literature the term failure rate is used exclusively
to denote the conditional rate, Eq. 10 [21].
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structural systems with high reliability, without consider-
ing their replacement. However, the lifetime distribution
of the structure FT (t) = Pr[F (t)], which is the result of
the models and algorithms presented in the following, can
be the basis for a renewal process analysis.

In summary, the reliability performance of a deteri-
orating structure without maintenance and repair actions
is fully described by Pr[F (t)]. In the general case, comput-
ing Pr[F (t)] requires the solution of a first-passage prob-
lem. However, most deteriorating structures can be repre-
sented by stochastic deterioration models that correspond
to classes (a) and (b) in Figure 1. For these classes, the
time-variant reliability problem can be transformed into
a series of time-invariant reliability problems. These are
presented in Sections 2.2 and 2.3. The main focus of this
paper lies on the deterioration model class (b). For com-
pleteness, Figure 1c represents problems that cannot be
adequately represented by classes (a) or (b) and require
the solution of the general first-passage problem. An ex-
ample is low-cycle fatigue, in which the damage propagates
only when large load events occur, as illustrated in Figure
1c.

In Section 2.4, we consider the computation of Pr[F (t)]
conditional on inspection and monitoring data and in Sec-
tion 2.5 conditional on repair actions.

2.2. Stochastic deterioration models resulting in monoton-
ically decreasing limit state functions

The first class of stochastic deterioration models for
structures are those in which the limit state function g(X, t)
describing failure is monotonically decreasing with time t
for any value of X (Figure 1a). Deterioration is described
by a function hd(X, t) and failure occurs when deteriora-
tion exceeds some limit Dcr (which might also be a random
variable and thus part of X). The corresponding generic
limit state function is

g(X, t) = Dcr − hd(X, t). (11)

For example, fatigue modeled with the Palmgren-Miner
damage accumulation rule and SN curves falls into this
category [e.g., 1, 27]. Other examples are deterioration
models based on gamma processes, where failure occurs
when the resistance falls below a (possibly probabilistic)
level [28, 29].

A monotonically decreasing g(X, t) signifies that
minτ∈[0,t] g(X, τ) = g(X, t). Inserting this equality into
Eq. 5 results in

F (t) = {g(X, t) ≤ 0} = F ∗(t). (12)

Hence the failure event F (t) is equivalent to the point-in-
time failure event F ∗(t), because the safety margin will be
negative at time t if it is negative at any time prior to t.
As a consequence, it is

Pr [F (t)] = Pr [F ∗(t)]

= Pr [g(X, t) ≤ 0] .
(13)

Time t

(b) Load and capacity separable  

Load  S(t)

Capacity R(t)
Failure

(c) General �rst-passage problem

Load  S(t)

Capacity R(t)

Failure

(a) Damage threshold

Damage D(t)

Damage threshold Dcr Failure

Figure 1: Classes of stochastic deterioration models. Class (a) are
problems, in which the system is described by a non-decreasing dam-
age function and failure occurs when the damage exceeds a thresh-
old. Class (b), which is the main focus of this paper, are problems
in which the (deteriorating) capacity {R(t)} can be modeled inde-
pendently of the load process {S(t)}. Class (c), here represented by
an example of low-cycle fatigue, are problems in which the capacity
and load processes cannot be modeled independently.

Because the computation of Pr [F ∗(t)] is typically straight-
forward (see Section 3.2), the computation of the lifetime
reliability can be performed without difficulties for this
class of deterioration models.

Note that the requirement of a monotonically decreas-
ing g(X, t) precludes the effect of maintenance and repair
actions, which are considered in Section 2.5.

2.3. Deteriorating structures with separable demand and
capacity variables

A second common class of stochastic deterioration mod-
els is illustrated in Figure 1b. These are models in which
the random variables or processes X can be separated into
a group XS determining demands and a group XR deter-
mining capacity.

In the simplest case, failure of the structure can be de-
scribed by a safety margin of the form of Eq. 1, M(t) =
R(XR, t) − S(t). This is the case when the load or load
effect at time t can be summarized by a scalar random vari-
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able5 S(t) and the capacity of the structure with respect
to that load or load effect can be determined as R(XR, t).
The capacity R(XR, t) includes the deterioration process
and is a monotonically decreasing function of t.

Conveniently, time is discretized in intervals j = 1, . . . ,m,
such that the jth interval corresponds to t ∈ (tj−1, tj ]. A
common choice is yearly intervals, but finer discretization
can be desirable if the service life is short or if inspection
or maintenance intervals are shorter than one year.

By analogy with the point-in-time failure event F ∗(t),
we define the interval failure event F ∗j as the event of a
failure in (tj−1, tj ], neglecting the occurrence of previous
failure events:

F ∗j =

{[
min

τ∈(tj−1,tj ]
g(X, τ)

]
≤ 0

}
. (14)

Exact computation of the corresponding probability
Pr(F ∗j ) is challenging, but if the load can be summarized
by a scalar variable, a good approximation is

Pr(F ∗j ) ≈ Pr [R(XR, tj) ≤ Smax,j ] , (15)

wherein Smax,j is

Smax,j = max
t∈(tj−1,tj ]

S(t), (16)

the maximum demand in time interval j. For example,
Smax,j can be the load effect of the annual maximum wind
load. The statistics of S(t) are obtained by an extreme
value analysis. Pr [R(XR, tj) ≤ Smax,j ] in Eq. 15 can be
evaluated by a time-invariant reliability analysis. This is
the strong benefit of this formulation.

Note that the approximation made in Eq. 15 is strictly
conservative, because the maximum demand in the time
interval, Smax,j , is compared with the minimum capac-
ity in the interval, R(XR, tj). The error is bounded by
Pr [R(XR, tj) ≤ Smax,j ]−Pr [R(XR, tj−1) ≤ Smax,j ], which
typically is a small number6. The error can be controlled
by the choice of the time interval durations.

Challenges to this reliability analysis may arise when
R(t) and S(t) cannot be considered as statistically inde-
pendent. Note that in many real life applications, R(t)
and S(t) are not strictly independent. Nevertheless, the
assumption of independence is often justified. As an exam-
ple, fatigue deterioration is determined by cyclic loading,
which is related to the extreme loads S(t). For high-cycle
fatigue, however, only a small part of the deterioration
damage is associated to those extreme events, and inde-
pendence among R(t) and S(t) is a justified assumption

5S(t) can also be a function of other random variables XS , e.g.
when the distribution of S(t) is subject to parameter uncertainty
or when S(t) is the load effect that depends on properties of the
structure. This dependence is omitted here for readability.

6I.e., the true interval failure probability for interval j must lie
between the estimates for intervals j−1 and j. Therefore, the maxi-
mum error that can result from this approximation corresponds to a
shift of the estimated Pr(F ∗

j ) by one year. In most cases, the actual
error is significantly smaller than that.

(and a common one in the literature [1]). The same may
not hold for low-cycle fatigue (which is illustrated in Fig-
ure 1c), as discussed in [6].

In many structures, it is not possible to summarize
the loads on the system in a single scalar variable S(t).
Instead, the demand is summarized by a vector7 S(t); e.g.,
the demand on an offshore structure at time t is the joint
effect of wind speed, wave height and current velocity at
t. Therefore, a limit state function g[XR,S(t), t] has to be
considered.

It is conducive to split the load vector into time-variant
loads Stv(t) and time-invariant loads Sti, which are con-
stant over the entire service life of the structure8. If multi-
ple of the loads are time-variant, the evaluation of Pr(F ∗i )
must consider the load-combination problem. The exact
solution of this problem requires the solution of an out-
crossing problem, which can itself only be solved approxi-
mately in the general case. Alternatively, approximate for-
mulations involving only time-invariant random variables
are available [2, 30–32]. If one of the time-varying loads is
dominating, the load-combination problem can be reduced
to applying the extreme value distribution of the dominat-
ing load and the conditional distributions of the remaining
time-variant loads, summarized in the load vector Smax,j
for the time interval j. The interval probability of failure
can then be evaluated as

Pr(F ∗j ) ≈ Pr [g (XR,Smax,j ,Sti, tj) ≤ 0] . (17)

Here the capacity during the time interval j is approxi-
mated with the capacity at time tj , in analogy to the ap-
proximation of Eq. 15. When only one time-variant load
process is present, Smax,j in Eq. 17 is replaced by Smax,j .

To evaluate Pr[F (ti)], we note that the event of a struc-
tural failure up to time ti is the union of the interval failure
events Pr(F ∗j ) leading up to ti:

Pr [F (ti)] = Pr (F ∗1 ∪ F ∗2 ∪ · · · ∪ F ∗i ) . (18)

In the general case, the events F ∗j are dependent, hence
knowledge of the Pr(F ∗j ) is not sufficient to compute Pr[F (ti)].
However, bounds can be found as [33]:

max
j∈[1,...,i]

Pr(F ∗j ) ≤ Pr [F (ti)] ≤
i∑

j=1

Pr(F ∗j ). (19)

If the maximum demands Smax,j are mutually inde-
pendent, or if their dependence is positive, the statisti-
cal dependence among the Pr(F ∗j ) will be non-negative9.

7This vector can be dependent on other variables XS .
8With some modifications, the methodology presented in this pa-

per is also applicable to the case where the loads are constant only
over a fraction of the service life.

9Non-negative dependence implies that Pr(F ∗
j1
|F ∗

j2
) ≥ Pr(F ∗

j1
) for

any j1 and j2. Note that the resistances R(XR, tj) will be positively
correlated among different tj .
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Hence a narrower upper bound can be found based on in-
dependent interval failure events:

max
j∈[1,...,i]

Pr(F ∗j ) ≤ Pr [F (ti)] ≤ 1−
i∏

j=1

[
1− Pr(F ∗j )

]
. (20)

If the reliability is dominated by uncertainty on the de-
mands Smax,j , Pr[F (ti)] will be closer to the upper bound
of Eq. 20. Conversely, if the reliability is dominated by
uncertainty on R(t) or Sti, Pr[F (ti)] will be closer to the
lower bound. The upper bound in Eq. 20 has been used
in the literature as an approximation of Pr[F (ti)], e.g. in
[10, 12, 34]

Exact computation of Pr [F (ti)] = Pr [F ∗1 ∪ F ∗2 ∪ · · · ∪ F ∗i ]
involves the solution of a system reliability problem. While
such a problem can be solved, the direct evaluation of the
probability of the union is associated with increased com-
putational cost and is often less accurate10. Therefore, we
propose a novel approach to evaluating Pr[F (ti)] in Section
3.3.

Once the probabilities Pr[F (ti)] are computed for times
t1, t2, . . . , ti, the full function FT (t) = Pr[F (t)] can be ap-
proximated by interpolation. The reliability and the haz-
ard function (failure rate) then follow from FT (t).

2.4. Deteriorating structures with inspection and monitor-
ing data

On many structures, inspection and monitoring are em-
ployed to reduce the uncertainty on the condition R(t) or
the loading S(t). The information provided by inspection
or monitoring data can be included through Bayesian up-
dating of the failure probabilities [35–37]. In the context of
structural reliability, the data available up to time t can be
described by an event Z(t), and the updated probability
is Pr [F (t)|Z(t)] [37, 38].

In computing Pr [F (t)|Z(t)], it should be kept in mind
that Z(t) does not alter the ”inherent” reliability of the
structure, since the information has no effect on the actual
physical system11. Z(t) does however alter one’s estimate
of the reliability. Once the information Z(t) is obtained,
the probability distribution of the random variables X is
updated from fX to fX|Z(t), and as a result the reliability
is updated as well [39]. The complete theory presented
thus far holds also for the conditional distributions and
probabilities.

For the stochastic deterioration model class (b), the
probability of failure at time ti conditional on data up to
time tZ is found by conditioning Eq. 18 on Z(tZ):

Pr [F (ti)|Z(tZ)] = Pr [F ∗1 ∪ F ∗2 ∪ · · · ∪ F ∗i |Z(tZ)]. (21)

This result has an important implication: For computing
the reliability at time ti, it is not sufficient to consider

10The exception being an evaluation with crude Monte Carlo sim-
ulation, as discussed in Section 3.1.

11The actions taken based on the information, such as repair or
retrofitting actions, do alter the system (Section 2.5).

only the interval failure events from time tZ on, but all
intervals starting at j = 1 must be considered. Therefore,
whenever new data arise, the entire history F ∗1 −F ∗i must
be reconsidered conditional on the entire data.

This implication may seem counterintuitive. Reliabil-
ity estimates conditional on data are typically shown as
Pr [F (ti)|Z(ti)], i.e. the probability of failure at time ti
is presented conditional on all data available up to time
ti. This is known as filtering. However, data obtained at
a time tZ nevertheless influence the reliability estimates
for times t < tZ , in a process known as smoothing [40]:
The data allow updating of the distribution of X, which
includes XR, that affects the probability of all F ∗j , inde-
pendent of whether data has been obtained prior to or
after tj . The difference between filtering and smoothing is
illustrated further below in Figure 11.

If data is collected at tZ , the structure must have sur-
vived up to this point and one can condition on this sur-
vival event, by analogy with the computation of the hazard
function. Does that imply that the interval failure events
prior to tZ can be neglected in this case, because they are
known not to have occurred? Unfortunately no. In the
general case, the survival of these events contains informa-
tion, and that information is affected by Z(tZ). Formally,
for any ti > tZ it is

Pr
[
F (ti)

∣∣∣Z(tZ) ∩ F (tZ)
]

=
Pr
[
F (ti) ∩ F (tZ)

∣∣∣Z(tZ)
]

Pr
[
F (tZ)

∣∣∣Z(tZ)
]

=
Pr [F (ti)|Z(tZ)]− Pr [F (tZ)|Z(tZ)]

1− Pr [F (tZ)|Z(tZ)]
.

(22)

Both probabilities on the right hand side of Eq. 22 must
be evaluated following Eq. 21.

Instead of evaluating Eq. 22, one would typically com-
pute the more general hazard function (Eq. 10) that con-
ditions on survival at any year, not only on survival at
time tZ . To evaluate the hazard function conditional on
the data, one has to first evaluate Pr [F (ti)|Z(tZ)]. The
hazard function given Z(tZ) is then obtained by replac-
ing Pr [F (ti)] in Eqs. 8-10 with Pr [F (ti)|Z(tZ)]. This is
illustrated in Section 4.2.1.

In summary, for the stochastic deterioration model class
(b), computation of the reliability conditional on data re-
quires the evaluation of the entire history conditional on
the data, irrespective of the time at which the data is ob-
tained. This leads to an increased computational effort,
which seems not to have been recognized previously.

Note that in case of the stochastic deterioration model
class (a), the above is not relevant. Because Pr [F (t)|Z(tZ)] =
Pr [F ∗(t)|Z(tZ)], it is sufficient to compute the latter.

2.5. Deteriorating structures with maintenance and repair
actions

Maintenance and repair actions lead to changes in the
distribution of R(t). In many instances, the condition of
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the structure after a repair action at time trep can be con-
sidered as statistically independent of the condition prior
to the repair. If the loading is also independent before and
after trep, then the reliability of the structure can be com-
puted from trep on, without consideration of the events
prior to trep. If the variables are dependent, then it is
necessary to compute the full history, wherein the repair
is modeled by adding new random variables or processes
describing R(t) for times t ≥ trep.

3. Efficient computational strategies for comput-
ing the reliability of deteriorating structures

In this section, we present and propose methods for ef-
fectively computing the failure probability Pr[F (t)], either
directly or through the interval failure probability Pr(F ∗i ).

3.1. Monte Carlo simulation

Monte Carlo simulation (MCS) is the simplest and
most robust solution strategy to computing the reliabil-
ity of deteriorating structures. Accounting for dependence
among the failure events in multiple time periods is straight-
forward with MCS. The disadvantage of MCS is its ineffi-
ciency, in particular when computing small probabilities.
This makes MCS infeasible for problems that involve com-
putationally costly limit states, and for most problems that
require the computation of the reliability conditional on
inspection results. However, whenever MCS is computa-
tionally feasible, it should be the method of choice.

MCS proceeds by generating samples x(k), k = 1, . . . , ns,
of X. For stochastic deterioration model class (b), the
probability of failure is estimated based on Section 2.3 as

Pr [F (ti)] ≈
1

ns

ns∑
k=1

I
{[

min
j=1:i

g
(
x

(k)
R , s

(k)
max,j , s

(k)
ti , tj

)]
≤ 0

}
.

(23)
I[] is the indicator function, which takes value 1 if its ar-
gument holds and 0 otherwise.

Note that the evaluations of the limit state functions
g
(
x

(k)
R , s

(k)
max,j , s

(k)
ti , tj

)
can be reused when evaluating

Pr [F (ti)] for different i. The Monte Carlo method is very
robust in the sense that the accuracy of the probability
of failure estimate depends only on the probability of fail-
ure itself. In both cases above, the coefficient of variation
(c.o.v.) of the MCS estimate is

δMCS =

√
p− p2

p
√
ns

≈ 1
√
p ns

, (24)

wherein p is either Pr [F (t)] or Pr [F (ti)].
It follows from Eq. 24 that to achieve a c.o.v. of the

estimate of 10%, the required number of samples (and
hence evaluation of the model g) is ns = 100

Pr[F (ti)]
. For

a Pr [F (ti)] in the order of 10−6, around 108 model eval-
uations are required. This is only feasible for simple ana-
lytical models (which could be surrogate models).

When computing the reliability conditional on inspec-
tion or monitoring data, one can estimate Pr[F (ti)|Z(tZ)]
with Eq. 23 by generating samples x(k) that follow the
conditional distribution fX|Z(t). This can be achieved by
any Bayesian algorithm that generates posterior samples,
including MCMC methods [e.g., 41] and the BUS approach
[37, 38]. Note that the computational demands by an MCS
analysis might increase by additional orders of magnitude
in the conditional case if updating the distribution of X re-
quires evaluations of the deterioration or structural model
[39].

3.2. Efficient computation of Pr[F ∗(t)] or Pr[F ∗i ]

Computation of Pr[F ∗(t)] = Pr[F (t)] for the stochas-
tic deterioration model class (a) or Pr[F ∗i ] for class (b) re-
quires the solution of time-invariant reliability problems.
A large number of methods exist for this purpose, which
include approximation methods, in particular FORM and
SORM (first-/second-order reliability method), and
sampling-based methods. Here, we exemplary consider
FORM and subset simulation (SuS), but note that the
strategies presented here can be extended to other meth-
ods. For example, sequential importance sampling [42],
line sampling [43–45] or other importance sampling tech-
niques [e.g., 46, 47] might be considered instead of SuS.
All these structural reliability methods are optimized for
computing Pr[gj(X) ≤ 0]. Here, gj(X) is utilized as short
notation for the limit state function g (XR,Smax,j ,Sti, tj)
in Eq. 17, whereby X = [XR; Smax,i; Sti].

3.2.1. FORM

FORM is based on a transformation of the random
variables X entering the limit state function to correspond-
ing uncorrelated standard normal random variables U =
T (X) [30]. This is achieved by means of the Rosenblatt
transformation [48] or the Nataf transformation [49], see
also [17]. The limit state function is then expressed in
terms of U:

Gj(u) = gj
[
T−1(u)

]
, (25)

wherein T−1 denotes the inverse transform.
FORM linearizes the limit state function in standard

normal space around the most likely failure point (MLFP)
u∗j , also known as design point. It is defined as

u∗j = arg min‖u‖
s.t. Gj(u) ≤ 0.

(26)

where ‖ . ‖ denotes the Euclidian norm.
βj = ‖u∗j‖ is the reliability index. Because of the prop-

erties of the standard normal space, the probability of fail-
ure associated with the linearized limit state function is a
function solely of βj . This is the FORM approximation of
Pr(F ∗j ):

Pr(F ∗j ) ≈ Φ(−βj), (27)

with Φ being the standard normal CDF.
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Figure 2: MLFPs and limit state surfaces associated with interval
failure events in three subsequent years. Note the dimension of the
ordinate is changing with the considered time interval i. MLFPs
and the limit state surfaces are plotted for year 5 to 7, for ratio=0.5.
MLFPs are u∗

5 = [1.78; 3.20], u∗
6 = [1.89; 2.82] and u∗

7 = [1.93; 2.47].
These are the results of Section 4.2 with ratio = 0.5.

FORM is typically efficient and accurate for problems
with limited number of random variables X [44]. The com-
putationally expensive part of the analysis is the solution
of the minimization problem, Eq. 26.

In cases where the evaluation of the limit state function
gj is expensive, one can further reduce the computation
cost by exploiting the fact that the solution of Eq. 26 is
similar for subsequent time intervals. Thereby, the solu-
tion u∗j−1 can be taken as the starting point when solving
Eq. 26.

The input random variables describing time-variant loads
Smax,j vary among time intervals j. When the Smax,j
are iid (independent, identically distributed) for different
j, the MLFP found for time interval j is nevertheless a
close starting point for j + 1 when replacing uSmax,j with
uSmax,j+1 , as illustrated in Figure 2.

3.2.2. Subset simulation

Subset simulation (SuS) [50] is based on formulating
the sought probability Pr(F ∗j ) = Pr[gj(X) ≤ 0] through a
sequence of conditional probabilities

Pr[gj(X) ≤ 0] =

M∏
k=1

Pr[gj(X) ≤ hk|gj(X) ≤ hk−1]. (28)

M is the number of subsets and hk are the intermediate
thresholds, with ∞ = h0 > h1 > · · · > hM−1 > hM = 0.
In this way, {gj(X) ≤ hk} is a subset of {gj(X) ≤ hk−1},
which ensures the validity of Eq. 28.

The intermediate thresholds hk are selected such that
the conditional probabilities in Eq. 28 are sufficiently

large, typically around 0.1. Hence standard Monte Carlo
can be applied to compute these conditional probabilities,
whereby samples of X are generated with Markov Chain
Monte Carlo (MCMC). For details on the implementation
we refer to [50, 51].

SuS can handle high-dimensional problems, i.e. many
random variables in X. It does however require a signif-
icantly higher number of limit state function calls than
FORM, commonly in the order of 103 − 104. Separately
solving Pr(F ∗j ) = Pr[gj(X) ≤ 0] with SuS for different j is
thus inefficient. Instead, one should exploit that the capac-
ity is monotonically decreasing under deterioration, which
implies that g (XR,Smax,Sti, tj) ≥ g (XR,Smax,Sti, tj+1).
The failure event corresponding to the first limit state
function is therefore a subset of the failure event corre-
sponding to the second. Note that here we have omitted
the index j for the load random variables Smax, implying
that the same maximum load applies in all time intervals.
In reality those are different, and failure in time interval j
is not a subset of failure in j + 1, as discussed in Section
2.3. However, as long as all Smax,j are iid, they can all
be replaced by the same Smax and one can consider F ∗j
to be a subset of F ∗j+1 for the purpose of computing the
individual Pr(F ∗j ).

This gives rise to the following efficient computational
procedure: The interval failure probability Pr(F ∗j ) of the
last interval i is computed first, with SuS following Eq. 28.
The probability of the preceding time interval j−1 is then
computed as

Pr(F ∗j−1) = Pr(F ∗j−1|F ∗j ) Pr(F ∗j ). (29)

Pr(F ∗j−1|F ∗j ) is estimated by generating samples of X

conditional on F ∗j via MCMC12. If Pr(F ∗j−1|F ∗j ) is signif-
icantly larger than the selected conditional probability of
intermediate thresholds (commonly 0.1), the same samples
might be used to compute also Pr(F ∗j−2|F ∗j ), Pr(F ∗j−3|F ∗j )
and so on, until the conditional probability is smaller than
0.1. A new subset level is then introduced at the last in-
terval failure event for which Pr(F ∗j−k|F ∗j ) ≥ 0.1.

In case that Pr(F ∗j−1|F ∗j ) ≤ 0.1, additional subset levels
can be introduced, as in standard SuS.

The sequential computation with SuS is illustrated in
Figure 3. The efficiency of this sequential approach to
computation is presented and investigated in more details
in [54].

3.3. Efficient computation of Pr [F (ti)] = Pr (F ∗1 ∪ F ∗2 ∪ · · · ∪ F ∗i )

For the stochastic deterioration model class (b), the
bounds on the probability of failure Pr [F (ti)] are readily
determined from the interval failure probabilities Pr(F ∗i )
according to Eq. 20. However, these bounds are often wide
and a more accurate estimate of Pr [F (ti)] is desirable.

12This choice of the intermediate threshold also ensures that the
resulting estimate is unbiased, because the threshold is not selected
adaptively (see Section 9.6 of [52], also [53]).
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These are results of Section 4.1.

Such an estimate is readily available through a FORM
system analysis (Section 3.3.1). We propose to extend the
FORM solution to cases where the Pr(F ∗i ) are computed
through sampling-based methods (Section 3.3.2). Finally,
in Section 3.3.3 we discuss the computation of Pr [F (ti)]
when the structural system performance is described by
the conditional probability of structural failure given the
condition of the structure, Pr(F ∗i |XR = xR).

3.3.1. FORM

FORM facilitates an efficient computation of Pr (F ∗1 ∪ F ∗2 ∪ · · · ∪ F ∗i ),
since it requires as an input only the FORM reliability in-
dexes β∗j associated with the individual Pr(F ∗j ), and the
corresponding FORM sensitivities αj . These are obtained
as a side product of the FORM analysis of Pr(F ∗j ), as the
unit vector pointing from the origin to the MLFP,

αj =
u∗j
‖u∗j‖

. (30)

The probability of the union Pr (F ∗1 ∪ F ∗2 ∪ · · · ∪ F ∗i ) is
then estimated through [48, 55]

Pr (F ∗1 ∪ F ∗2 ∪ · · · ∪ F ∗i ) ≈ 1− Φn(b;ρ). (31)

Φn(b;ρ) is the multivariate standard normal CDF with
correlation coefficient matrix ρ, evaluated at b. The vec-
tor b consists of the i individual FORM reliability indexes
b = [β1; . . . ;βi] associated with the different time inter-
vals. The elements of ρ are the correlation coefficients
among the linearized limit state functions of the different
time intervals, computed as [48, 55]

ρkj = αjα
>
k . (32)

wherein αj and αk are the row vectors of FORM sensi-
tivities. In evaluating Eq. 32 one must treat Smax,j and
Smax,k as two separate random variables.

In the common case that Smax ,j and Smax ,k are sta-
tistically independent of each other, Eq. 32 translates to

ρjk =αXR,1,j αXR,1,k + · · ·+ αXR,nR
,j αXR,nR

,k+

αSti,1,j αSti,1,k + · · ·+ αSti,nSti
,j αSti,nSti

,k
(33)

wherein αXR,1,j is the FORM sensitivity associated with
the first element of XR in time interval j, and αSti,1,j is the
one associated with the first element of Sti in time interval
j.

To illustrate this, consider the case depicted in Figure
2, where each limit state g (XR,Smax,j ,Sti, tj) consists of
two random variables A = XR and Sj = Smax,j . The
corresponding standard normal random variables are UA
and US,j . The correlation among the linearized limit states
in time intervals j and k is

ρjk = αA,jαA,k. (34)

For the example shown in Figure 2, the resulting cor-
relation coefficients are ρ5,6 = 0.27, ρ5,7 = 0.30, and
ρ6,7 = 0.34.

Note that the multivariate standard normal CDF Φn
in Eq. 31 must be solved numerically. For larger num-
ber of dimensions, this evaluation can be challenging [56].
Given that the dimension of Φn in Eq. 31 is equal to the
number of time intervals considered, which can be high, it
is essential that an accurate algorithm for Φn is employed.
For the numerical investigations in this paper, we utilize
the algorithm described in [57].

3.3.2. Sampling-based methods combined with a FORM ap-
proximation

When sampling-based methods are used to determine
the interval failure probabilities Pr(F ∗i ), we propose to
use also the FORM approximation of Eq. 31 to estimate
Pr [F (ti)]. The equivalent FORM reliability indexes in Eq.
31 are determined as

βj = Φ−1
[
Pr(F ∗j )

]
. (35)

Methods for approximating the FORM sensitivities from
sampling-based reliability methods have been proposed in
the literature [58]. To this end, a linearized limit state
function in standard normal space is determined based on
samples in or around the failure domain.

In this paper, we use a simpler approach, which is to
compute the mean values of all samples in the failure do-

main u
(k)
F,i and normalize the resulting vector:

αj ≈
∑
k u

(k)
F,i

‖
∑
k u

(k)
F,i‖

. (36)
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We have found that Eq. 36 is sufficiently accurate for
most applications with a single design point, and simple
to implement.

The approach will fail if multiple design points are
present and relevant, i.e. when the failure event within
a time interval is itself a series system. In this case, the
series system formulation of Eq. 31 must be extended, by
considering each linearized limit state associated with a
design point as a separate failure event. To identify the
multiple design points from failure samples, a clustering
algorithm can be run [e.g., 59] and the FORM sensitivi-
ties associated with the multiple design points j = 1, 2, . . .
can be approximated by the normalized midpoints of the
identified clusters. The component reliability can be ap-
proximated by the smallest distance of any sample in the
cluster from the origin. If the cross-entropy-based impor-
tance sampling approach with Gaussian densities is ap-
plied, the different clusters are obtained as a side-product
of the structural reliability analysis [46, 47, 60, 61]. Note
that if the failure event within one time interval is itself
a series system, the computation of the system reliabil-
ity with Eq. 31 must consider the individual component
failure events in all i time intervals jointly.

3.3.3. Computing Pr [F (ti)] through the conditional
Pr
(
F ∗j |XR = xR

)
For some structural systems, it is possible to efficiently

evaluate the conditional probability of system failure in a
time interval j conditional on the condition of the com-
ponents, Pr

(
F ∗j |XR = xR

)
. This is of particular interest

when the structural system is composed of discrete struc-
tural elements, which are modeled as being either in a
functioning (= 1) or failed (= 0) state, in function of the
deterioration [14]. If the interval failure events are inde-
pendent for given resistance and deterioration parameters
XR = xR, the conditional cumulative probability of failure
can be computed as

Pr [F (ti) |XR = xR] = 1−
i∏

j=1

[
1− Pr

(
F ∗j |XR = xR

)]
.

(37)
If the structure is subject to uncertain permanent loads
Sti, the probability of failure should also be conditioned on
those, i.e. Pr [F (ti) |XR = xR,Sti = sti] should be utilized
below and the integrations in Eqs. 38 and 40 should be
also over Sti.

The unconditional cumulative probability of failure is

Pr [F (ti)] =

∫
ΩXR

Pr [F (ti) |XR = xR] fXR
(XR) dxR.

(38)
All structural reliability methods can be used to com-

pute this (potentially high-dimensional) integral, by defin-
ing the equivalent limit state function [14, 62]:

gF (ti)(uS ,xR) = uS − Φ−1 {Pr [F (ti) |XR = xR]} , (39)

Table 1: Parameters of example 1.

Parameter Distribution Mean Standard deviation

A [mm/yr] lognormal 0.6 0.5
C [yr] lognormal 5.0 5.0
w [mm] deterministic 20

wherein uS is a standard normal random variable, and Φ−1

is the inverse of the standard normal CDF. The cumulative
probability of failure is then

Pr [F (ti)] =

∫
gF (ti)

(uS ,xR)≤0

ϕ(uS)fXR
(xR) dxR. (40)

which is the classical formulation of a structural reliability
problem. ϕ is the standard normal PDF.

Since FORM can be utilized to approximate the inte-
gral in Eq. 40, it is possible to compute the corresponding
FORM sensitivities αj . The sensitivity associated with
uS , αUS,i

, is representative of the influence of the uncer-
tainty in the time-variant load on the reliability.

4. Numerical investigations

We present four examples, to investigate and demon-
strate the framework of Section 2 and the methods pro-
posed in Section 3.

The first two examples in Sections 4.1–4.2 are included
for illustrative purposes and to facilitate parameter stud-
ies. These problems can be solved easily with a variety of
methods and exact reference solutions are available. The
examples in Sections 4.3–4.4 correspond to the type of ap-
plications for which the proposed methods are developed.
They include structures whose capacity is a function of
the resistances of many elements, all of which are subject
to deterioration. Hence the model of R(t) involves a large
number of random variables (in the order of 100).

4.1. Example 1: Stochastic deterioration model class (a)

To illustrate stochastic model class (a), we consider a
steel plate subject to corrosion. Failure is defined as the
corrosion loss exceeding the plate thickness w. The limit
state function is

g(X, t) = w −A(t− C). (41)

X = [A;C] are the random variables of the model; A is the
corrosion rate and C is the coating life. Corrosion starts
only once the coating life is exceeded. The parameters are
summarized in Table 1.

Figure 4 shows the limit state functions describing fail-
ure at the end of years 1 − 20 in standard normal space,
together with the design points (MLFP). The iterations
required in the design point search are also depicted. The
modified HLRF algorithm is used [63], with the starting
point taken as the MLFP of the subsequent year following
Section 3.2.1. It can be observed that only few steps are
necessary to find the design point for every year.
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Figure 4: Example 1: Limit state surfaces and MLFPs associated
with the failure events at times t = 1, . . . , 20yr in standard normal
space. Red dots indicate the steps of the modified HLRF algorithm
for finding the MLFPs.

Additionally, Figure 3 illustrates the sequential SuS so-
lution of this reliability problem. SuS computations are
fairly efficient, a total of 16 · 103 limit state function eval-
uations is sufficient to accurately compute the reliability
for all 20 time steps. Nevertheless, FORM would be the
method of choice here, since it requires only 813 limit state
function evaluations in total.

Figure 5 shows the failure probability Pr[F (t)] eval-
uated with FORM and SuS. As expected for this low-
dimensional mildly non-linear example, FORM gives fairly
accurate results. The mean SuS estimate coincides with
the exact solution computed by numerical integration.

4.2. Example 2: Linear Gaussian model

To facilitate numerical investigations of the stochas-
tic deterioration model class (b), we consider an idealized
model. The capacity of the system is

R(t) = r0 −At. (42)

r0 is the initial capacity and A is the linear rate of deterio-
ration. Failure occurs when the demand S(t) exceeds R(t),
with the failure event described by Eq. 4. The demand
is described by its annual maximum Smax,j , which is iid
for all years i. The interval failure probability is evaluated
following Eq. 15.

The parameters of the model are summarized in Table
2. They are motivated by the example of a pressurized
steel pipe subject to corrosion13. All random variables are
modeled by normal distributions to enable an analytical
solution.

13In a steel pipe, the pressure resistance R(t) of the pipe is as pro-

portional to 2Sy
d−dUC(t)

Dp
, with Sy the yield stress, Dp the diameter

of the pipe, d the wall thickness of the pipe and dUC(t) the general
corrosion depth [64, 65]. By ignoring localized corrosion effects and
assuming dUC to be a linear function of time, the expression of R(t)
in Eq. 42 is obtained.
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Figure 5: Example 1: The lifetime failure probability computed with
FORM and SuS. The latter is shown as the 95% credible interval
represented by the colored area, evaluated by 10 repeated runs of
SuS.

Table 2: Parameters of example 2.

Parameter Distribution Mean Standard deviation

A [MPa/yr] normal 0.2 0.2
Smax,j [MPa] normal 40 σS

r0 [MPa] deterministic r0
εm[MPa] normal 0 0.5

The standard deviation of the demand σS is varied, to
examine the effect of different ratios between the uncer-
tainty in R and the uncertainty in Smaxj

. It is

σS = ratio× µS
σA 20yr

r0 − µA 20yr
. (43)

ratio is the ratio between the c.o.v. of Smaxj
and the c.o.v.

of R at year 20.
r0 is selected such that probability of failure in one year

without deterioration is 10−6:

Φ

(
−r0 − µS

σS

)
= 10−6 ⇐⇒ r0 = −Φ−1(10−6)σS+µS .

(44)
Since the limit state function is linear and all random

variables are normal, a FORM analysis gives the exact re-
sult (bare the approximation made by the time discretiza-
tion). Figure 6 presents the resulting probabilities of the
interval failure event Pr(F ∗i ) for years i = 1, . . . , 20.

Figure 7 presents the FORM sensitivity αA,j of the
deterioration parameter A in function of time interval j
for different ratios. Note that, since in each year there are

only two random variables active, it is αSmax,j =
√

1− α2
A,j .

Furthermore, since all Smax,j are iid, the correlation coef-
ficient among the interval failure limit state functions in
two years j and k is given by Eq. 34 as ρjk = αA,jαA,k.

Figure 8 shows the reliability in function of time com-
puted with the (here exact) FORM formulation of Eq. 31.
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Figure 7: Example 2: FORM sensitivity of deterioration model pa-
rameter A.

The bounds following Eq. 20 are provided additionally.
For ratio = 1, the uncertainty in the load process domi-
nates, and the assumption of independence among failure
events in different years (the upper bound of Eq. 20) is
a reasonable one. Conversely, for ratio = 0.1, the uncer-
tainty in the deterioration process dominates, hence the
cumulative Pr [F (t)] is closer to the lower bound. In other
words, the larger the αA,i, and hence the correlation coef-
ficients among the interval failure event limit state func-
tions, the closer Pr [F (t)] will be to the lower bound.

4.2.1. Conditional on inspection results

We additionally consider two inspection results and
compute the updated probability of failure, following Sec-
tion 2.4. Inspections are performed at times tZ = [10; 15]yr
and result in measurements of the remaining pressure ca-
pacity, m = [47.04; 46.84]MPa.

The measurements are imperfect and are related to the
true capacity by

mj = R(tZ,j) + εj , (45)

with εj being a normal distributed measurement error with
zero mean and standard deviation σε = 0.5MPa.

With this model, an analytical solution for the poste-
rior probability distribution of A given the measurement
result mj is available. It is the normal distribution with
updated mean and standard deviation:

µ′′A = µA + ρA,M σA
mj − (r0 − µAtZ,j)√

σ2
At

2
Z,j + σ2

ε

, (46)

σ′′A = σA

√
1− ρ2

A,M . (47)

wherein µA and σA are the prior mean and standard devi-
ation of A and ρA,M is the correlation coefficient between
A and the measurement outcome:

ρA,M = − σAtZ,j√
σ2
At

2
Z,j + σ2

ε

. (48)

To consider two measurements, Eqs. 46 and 47 can be
applied twice, whereby the posterior moments conditional
on the first measurement are taken as prior moments with
the second measurement.

Since also the posterior of A is normal distributed, all
posterior results can be computed exactly with a FORM
analysis, in which the prior distribution of A is replaced
by the posterior distributions.

Figure 9 shows the posterior interval failure probabili-
ties Pr

[
F ∗j |Z(tZ)

]
for ratio = 0.5, conditional on the first

measurement and conditional on both measurements. As
discussed in Section 2.4, all interval failure probabilities
need to be computed from the first time interval on.

Figure 10 shows the corresponding FORM sensitivities
of deterioration parameter A. The contribution of A to
the failure probability reduces because the uncertainty in
A is reduced by each inspection result. Note that this
conclusion would also hold for less favorable inspection
results, because the reduction in the uncertainty of A is
independent of the measured value, Eq. 47.

Figure 11 shows the posterior cumulative probability
of failure Pr [F (ti)|Z(ti)], Eq. 21. The dashed lines are
included to emphasize that in computing Pr [F (ti)|Z(ti)],
the entire history leading up to ti has to be conditioned
on Z(ti), following Section 2.4.

Figure 12 shows the associated bounds. It highlights
that with increasing amount of information, Pr [F (ti)|Z(ti)]
approaches the upper bound, which is a direct consequence
of the decreased importance of A, Figure 10.

Finally, Figure 13 exhibits the hazard function of the
inspected structure. It is computed by utilizing the Pr[F (ti)|Z(tZ)]
of Figure 11 as an input to Eqs. 8–10, as described in Sec-
tion 2.4.

4.3. Example 3: Ship cross-section subject to corrosion

A cross-section of a ship structure is considered (Figure
14). The steel frame is subject to spatially distributed cor-
rosion, which is modeled by a hierarchical model combined

11
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Figure 9: Example 2: Interval failure probabilities for years i =
1, . . . , 20 conditional on the inspection results. Results shown for
ratio = 0.5.
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Figure 10: Example 2: FORM sensitivity of deterioration model
parameter A, conditional on inspection results. Results shown for
ratio = 0.5.
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the probability at time t conditional on all information available
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Figure 12: Example 2: Cumulative failure probability conditional on
the inspection result for ratio = 0.5, together with bounds.
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Figure 13: Example 2: Hazard function conditional on the inspection
result.
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Figure 14: Example 3: Cross-section of the ship structure [66].

with a random field (RF) model. The RF is represented
by spectral decomposition.

The frame is subject to bending caused by stillwater
and wave loading. The corresponding limit state function
is

g (XR,XS ,Smax,j , tj)

= XmMR(Xd, ti)−XswMsw,j −XwvMwv,j ,
(49)

wherein MR is the moment capacity, which is a function
of deterioration parameters Xd and subject to structural
model uncertainty Xm. Msw,j is the stillwater bending
moment, which is affected by self-weight, cargo and bal-
last, and Xsw is the associated model uncertainty; Mwv,j

is the bending moment caused by wave loading and Xwv

is the associated model uncertainty. It is XR = [Xd;Xm],
XS = [Xsw;Xwv] and Smax,j = [Msw,j ;Mwv,j ].

Mwv,j is associated with the annual maximum wave
load, whereas Msw,j is representative of the random-point-
in-time stillwater moment. The stillwater moment is con-
stant during a single voyage of the ship. Hence if the time
interval duration is selected as that of a ship voyage (in
the order of weeks to a month), this limit state is exact.
If longer time intervals are used in the analysis, this limit
state represents a (possibly non-conservative) approxima-
tion. However, the approximation error is expected to be
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Figure 15: Example 3: Interval failure probability Pr(F ∗
j ) and cumu-

lative failure probability Pr[F (t)] of the ship steel frame, computed
with the proposed SuS-FORM algorithm. The 95% credible interval
of a direct MCS solution of Pr[F (t)] from ns = 25 · 103 samples is
provided for comparison (in red).

limited, since the cargo in subsequent voyages is likely to
be correlated (with higher correlation at lag 2 than at lag
1). Therefore, modeling Msw as constant within one year
and independent among years is a reasonable model. Al-
ternatively, this modeling choice can be justified through
the use of Turkstra’s rule, because the wave-induced mo-
ment is dominating the reliability (over the stillwater mo-
ment) [67, 68].

The complete model and parameters are described in
[66]. In total, the problem includes 106 random variables.

The reliability is evaluated in one-year time intervals
with SuS, utilizing 103 samples at each intermediate sub-
set. The sequential approach of Section 3.2.2 is employed
to compute the interval failure probabilities for years j =
1, . . . , 30, resulting in a total of around 17 · 103 limit state
function evaluations. Based on Pr(F ∗j ), the failure prob-
ability Pr[F (t)] is evaluated with the FORM system ap-
proximation following Section 3.3.2. The results are shown
in Figure 15. Note that the MCS solution provided for ver-
ification requires 750 · 103 limit state function evaluations,
corresponding to 30 [years] times 25 · 103 samples.

Additionally, Figure 16 shows the hazard function h(t)
evaluated from Pr[F (t)] according to Eq. 10. Note that
h(t) is lower than the interval failure probability (as is
fT (t), Eq. 8).

4.4. Example 4: Steel frame subject to fatigue

We consider a steel frame subject to fatigue deteriora-
tion at selected joints (the hot spots), Figure 17. Details
of this example are provided in [14], where the interval
failure probability was computed, but not the cumulative
Pr [F (t)].

The evolution of the system resistance is described by
employing a fatigue crack growth model at each hot spot.
The uncertain parameters of the model at each hot spot
are:
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Figure 16: Example 3: Hazard function of the ship section.

• initial fatigue crack depth D0,

• material parameter C,

• scale parameter K of the hot spot stress distribution

• model uncertainties B∆S and BSIF

This leads to a total of 110 random variables XR describing
the evolution of the structural capacity.

The structure is subject to a time-varying horizontal
load, modeled by its annual maximum Smax,j . The struc-
tural reliability is evaluated by computing the probability
of failure in function of the hot spot conditions, which im-
plicitly results in the conditional Pr[F ∗j |XR = xR].

The probability of failure of the Zayas frame is com-
puted following Section 3.3.3 and SuS is employed to eval-
uate the reliability following Eq. 40. SuS is run with 1000
MCMC samples per subset level and a conditional proba-
bility of each intermediate event of 0.1. Results are shown
in Figure 18. The statistics of Pr[F (ti)] are determined
from 500 independent simulation runs.

Figure 19 additionally shows the bounds on the failure
probability following Eq. 20. In the first few years, when
deterioration is still negligible, Pr[F (t)] is close to the up-
per bound. Thereafter, it approaches the lower bound,
indicating that the uncertainty on the condition of the
structure, i.e. on R(XR, t), dominates the reliability.

4.4.1. With inspection results

Additionally, we include results from inspections on the
hot spots. Inspections are performed every 10 years, with
6 varying hot spots checked at each inspection, with the
exception of year 40, when only 4 hot spots are inspected.
For simplicity it is assumed that no fatigue cracks are de-
tected at any of the inspections.

Figure 20 shows the probability of failure of the struc-
ture conditional on the inspection outcomes. At each time
t, Pr[F (t)|Z(t)] is conditioned on inspection results up to
time t. The computation of Pr[F (t)|Z(t)] is performed ac-
cording to Section 2.4 and as illustrated in more details in
Section 4.2.1.
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Figure 17: Example 4: Steel frame loaded with Smax,j . Red dots
indicate the fatigue hot spots.

5. Concluding remarks

The reliability analysis of deteriorating structural sys-
tems requires efficient computational procedures, because
the reliability needs to be evaluated at multiple points in
time. When computing the reliability conditional on in-
spection or monitoring data, the analysis must be repeated
for the entire period every time new information is avail-
able, as discussed in Section 2.4. The situation is even
more severe when performing risk-based planning of in-
spection and monitoring, since all computations need to be
repeated many times for different potential inspection or
monitoring outcomes [69]. All this motivates the develop-
ment of efficient approaches to compute the time-variant
reliability of deteriorating structures. In this paper, we
follow the strategy of discretizing time and representing
the time-variant reliability problem by a series of time-
invariant reliability problems.

As demonstrated in this paper, smart sequential com-
putation of the time-invariant reliability at different times
t can reduce the number of limit state function evaluations
by a factor in the order of 10, which is substantial. Im-
portantly, we presented a simple way of computing the cu-
mulative probability of failure Pr[F (t)] based on advanced
sampling methods without additional limit state function
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Figure 18: Example 4: Failure probability Pr[F (t)] of the steel frame.
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Figure 19: Example 4: Bounds on the failure probability Pr[F (t)] of
the steel frame, together with the best estimate.
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Figure 20: Example 4: Failure probability of the steel frame condi-
tional on inspection results.

evaluations, which can further reduce compuational cost
by a factor of 10 or more. For example, the complete
lifetime reliability of the ship structure in Section 4.3 was
evaluated accurately with 17 ·103 limit state function eval-
uations. For a similarly accurate crude Monte Carlo sim-
ulation, which has been used frequently in the literature,
in the order of 107 limit state function evaluations would
be necessary.

The proposed procedure involves approximations at
multiple steps. Firstly, the definition of the interval failure
probability following Eqs. 15 or 17 is not exact. As long
as the problem involves only one time-variant load vari-
able and the time intervals are selected sufficiently small,
the error is small, bounded and always conservative. If
multiple time-variant load processes are present, the qual-
ity of the approximation depends on how well these can
be approximated by time-invariant random variables, e.g.
through Turkstra’s rule. In many, possibly most practical
cases, such an approximation is sufficiently good, albeit
not generally conservative [e.g., 32]. Importantly, this ap-
proximation error can be evaluated without considering
deterioration. Secondly, an error is introduced in comput-
ing the interval failure probabilities with FORM/SORM
or sampling-based methods. This approximation error is
discussed in the general literature on structural reliabil-
ity methods and hence is well-understood. Thirdly, the
FORM-based approximation of the series system evalua-
tion introduces another error. In all investigated cases,
we found this error to be so small that it could not be
quantified relative to a Monte Carlo reference solution.
Furthermore, this error is bounded by the bounds of Eq.
20.

As we emphasized, special care is needed when con-
sidering results from inspection and monitoring. The lit-
erature on Bayesian updating of the reliability and on
reliability- and risk-based planning of inspections and mon-
itoring has not always rigorously defined and computed the
exact time-variant reliability of structural systems. (For
structural components, the limit state functions are mostly
of the first class, Section 2.2, and therefore the equivalence
between the point-in-time-failure and the cumulative fail-
ure event holds, which avoids the problem.) In particular,
the fact that the conditional reliability must be computed
by considering all interval failure events from time 0 on
seems not to have been recognized previously.

We have not considered methods that directly solve
the outcrossing problem. We are of the opinion that as
long as the interval failure probability can be defined by
Eqs. 15 or 17, it is at present preferable to follow the
approach outlined in this paper. General solutions to the
outcrossing problem, insofar as they are not restricted to
some special cases, are conceptually and computationally
demanding and introduce approximation errors of their
own. Nevertheless, in light of new developments in efficient
methods for structural reliability analysis, we believe that
it is worthwhile to revisit algorithms for solving the general
outcrossing problem.
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