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Abstract

We propose an efficient importance sampling (IS) method for estimating the first-passage
probability of linear structures with uncertain parameters and subjected to Gaussian pro-
cess excitations. The method evaluates the reliability through integrating the conditional
first-passage probability given the uncertain structural parameters. We develop an adap-
tive IS strategy to efficiently perform this integration based on an IS density that is con-
structed using the cross entropy (CE) method. The CE method determines the IS density
by adaptively minimizing the Kullback-Leibler divergence between the theoretically opti-
mal sampling density and a chosen parametric family of probability distributions. The CE
optimization problem is solved for a series of target densities that gradually approach the
optimal IS density of the structural parameters. To define the intermediate densities, a
smoothening of the conditional first-passage probabilities is employed. Once the IS density
of the uncertain structural parameters is obtained, an effective IS density of the random
excitations conditional on the structural parameters is introduced to estimate the failure
probability of the structure. Unlike other tailored methods for solving this problem, the
proposed IS approach does not require any prior analysis of the dynamic system and can be
applied as a black-box method. Numerical examples demonstrate that the proposed method
can calculate the first-passage probability with remarkable efficiency.

Keywords: First-passage probability, Uncertain linear structure, Gaussian excitation,
Importance sampling, Cross entropy method

1. Introduction1

Reliability assessment of dynamically excited structures, involving structural parameter2

uncertainties as well as randomness in the external excitation, has gained increasing at-3

tention. In structural dynamic systems, failure is usually defined by the first passage of a4
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response quantity over a prescribed threshold. This paper focuses on the problem of esti-5

mating the first-passage probability for uncertain linear structures subjected to Gaussian6

process excitations.7

In early studies of first-passage problems, the reliability was evaluated using either out-8

crossing theory based on Rice’s formula or diffusion theory through a numerical solution of9

the Kolmogorov equation [30, 31]. The potential of these methods in dealing with systems10

involving uncertain structural parameters and random excitations has been investigated in11

[48, 34, 4, 17]. The solution based on out-crossing theory is approximate, as it is based on12

heuristic assumptions on the properties of the out-crossing event. The difficulty in solving13

the multi-dimensional Kolmogorov equation makes the diffusion theory method applicable14

to only small size structural systems. Some recent research efforts focus on the development15

of the probability density evolution method for estimating the first-passage probability of16

dynamical systems [9, 29, 49]. When the number of random variables is large, which is often17

the case for the problem at hand, the application of this method is not straightforward.18

In contrast, Monte Carlo methods are more robust and represent a powerful alterna-19

tive to the aforementioned approaches. The direct Monte Carlo (DMC) estimator, which is20

universally applicable, has a sampling coefficient of variation (c.o.v.) that is inversely pro-21

portional to the sample size. When the probability of failure is small, the method requires a22

large computational effort to estimate the reliability with acceptable confidence. In view of23

this, several advanced sampling techniques have been developed for reducing the sampling24

c.o.v. of the probability of failure estimator. Approaches applicable to general dynamic25

systems with both parameter uncertainties and randomness in the excitation include the26

standard subset simulation method [3, 11, 5], spherical subset simulation [21, 22] and the27

line sampling method [24, 39]. A comprehensive review of such variance reduction methods28

can be found in [43, 16].29

When the dynamical system is linear, more efficient sampling techniques can be designed30

by taking advantage of the linear relationship between the structural response and the ap-31

plied loading. For the particular case where the structural parameters are characterized32

as deterministic and the excitation is modeled by a Gaussian random process, alternative33

approaches to efficiently estimate the failure probability are proposed in [2, 38]. These meth-34

ods have been extended to deal with structures involving parameter uncertainties. Thereby,35

the first-passage probability conditional on a specific value of the uncertain parameters is36

evaluated according to the procedures in [2, 20, 38]. The unconditional first-passage prob-37

ability is then computed through integration of the conditional probability over the space38

of uncertain structural parameters using importance sampling (IS) [19, 45] or line sampling39

[38]. These methods are non-adaptive in nature and require system-specific information to40

facilitate the probability estimation. In the methods suggested in [19, 38], a psuedo-design41

point with respect to the uncertain structural parameters needs to be identified. In [19]42

the design point is used to generate the sampling density and to approximate the system43

response in terms of the uncertain structural parameters to alleviate computational time.44

In the approach based on line sampling [38], the design point provides the reference di-45

rection for generating random lines in the uncertain parameter space to efficiently explore46

the failure domain. The aforementioned methods are thus effective if the important region47
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contributing to the failure probability lies in the vicinity of a unique design point, and if the48

design point is easy to identify. When the failure domain has multiple regions of importance,49

an appropriate reference point is often difficult to identify. In the IS method presented in50

[45], the construction of the IS density is based on a surrogate function used to represent51

the conditional instantaneous failure probabilities, i.e. probabilities of out-crossing at spe-52

cific time instants. The performance of the method thus depends on a proper choice of the53

surrogate model, whose determination is not straightforward when the number of uncertain54

parameters is large, or the dependence of the conditional instantaneous failure probabilities55

on these parameters is strongly non-linear.56

The aim of this contribution is to develop an adaptive IS approach for estimating the57

first-passage probability of uncertain linear structures subjected to Gaussian random pro-58

cesses. In the proposed method, the randomness in the external excitation is tackled using59

the IS strategy presented in [2]. The main contribution lies in the introduction of a novel60

approach to obtain a near-optimal IS density related to the uncertain structural parameters,61

which is based on the cross-entropy (CE) method. In the CE method, an efficient sampling62

density is constructed by minimizing the Kullback-Leibler (KL) divergence between the op-63

timal IS density of the structural parameters and a chosen parametric family of probability64

distributions through a few rounds of small-size pre-sampling [41]. In the initial sampling65

steps, we solve the CE optimization for a sequence of target densities. To choose the inter-66

mediate densities for the first-passage problem, a smoothing parameter for the first-passage67

probability conditional on the uncertain structural parameters is introduced. The parameter68

value is updated adaptively in each sampling iteration to ensure a smooth transition to the69

optimal IS density. In terms of robustness, the proposed method can be used as a black-box70

algorithm as it is completely adaptive and does not require any prior investigations of the71

dynamical system. Therefore, in comparison to the methods suggested in [19, 38, 45], the72

approach developed in this study is more generally applicable to any linear dynamic system.73

The performance of the proposed method is demonstrated through numerical examples in74

section 5.75

2. Problem formulation76

2.1. Linear Dynamic System77

Consider a linear structural system comprising n degrees of freedom. The state of the78

structure under dynamic load is described by a mass matrix M, damping matrix C and79

stiffness matrix K, each of dimension n × n. Let Θ = {Θ1; . . . ; Θnθ
} be a vector of basic80

random variables that model the uncertain structural parameters describing M, C and K.81

Consider an l-dimensional load vector f(t) = {f1(t); . . . ; fl(t)} acting on the structure over82

a time duration [0, T ]. It is assumed that the components of f(t) are independent Gaussian83

random processes. Then one can characterize f(t) as a linear function of independent and84

identically distributed standard normal variables, which we collectively express as Ξ =85

{Ξ1; . . . ; Ξnξ
}. The mean of the input random processes is taken to be zero, without loss of86
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generality. The equation of motion of the structure subjected to the stochastic excitation87

f(t,Ξ) is given by88

M(Θ)Ẍ(t) + C(Θ)Ẋ(t) + K(Θ)X(t) = Df(t,Ξ). (1)

This semi-discretized equation of motion can be obtained, for instance, from spatial dis-89

cretization of the continuum model of the structure by the finite element method. In Eq.90

(1), Ẍ, Ẋ and X denote the acceleration, velocity and displacement vectors of dimension91

n× 1, and D is an n× l matrix that couples the random excitation f(t,Ξ) with the degrees92

of freedom of the structure. Without loss of generality, zero initial conditions are assumed93

at t = 0.94

Let h(t,Θ,Ξ) denote a critical response that is of interest, e.g. displacements, strains, ac-95

celerations, inter-storey drifts, etc. The structure is considered safe if the response h(t,Θ,Ξ)96

fulfills certain performance criteria. For a particular value of the structural parameters97

Θ = θ, it is assumed that the relationship between the input excitation f(t,Ξ) and the98

response h(t,θ,Ξ) is linear. Therefore, the input-output relation can be written in terms of99

a convolution integral as100

h(t,θ,Ξ) =
l∑

j=1

∫ t

0

Kj(t− τ ;θ)fj(τ,Ξ)dτ =

∫ t

0

KT(t− τ ;θ)f(τ,Ξ)dτ, (2)

where Kj(t;θ) is the response at time t due to a unit impulse applied at the j-th input101

at time t = 0. It requires l dynamic analyses to obtain the whole set of impulse response102

functions {Kj(t;θ), j = 1, . . . , l}, which completely define the input-output relationship. If103

the input excitation f(t) consists of filtered non-white processes, an augmented structural104

model comprising of the original structural system and the filters is considered, and Kj is105

taken as the convolution of the impulse response function of the original structural system106

and the filter producing the j-th component of f(t). The dynamic response is then computed107

by convoluting the impulse response functions of the augmented linear system with the white108

noise excitations applied to the filters.109

In practical applications, often a discrete-time formulation is adopted, wherein the dy-110

namic response of the structure is calculated by numerical integration using the values of111

the input at the discrete time instants. Let {t1, . . . , tnT
} be a set of discrete time points at a112

uniform time spacing ∆t = T/(nT−1) over the duration [0, T ]. Let {f(Ξ, t1), . . . ,f(Ξ, tnT
)}113

denote the stochastic excitation in discrete time. One can represent f(Ξ, tk) by a linear com-114

bination of Ξ as f(Ξ, tk) = GkΞ, where {Gk, k = 1, . . . , nT} are appropriate deterministic115

matrices of dimension l× nξ. Then, by analogy with Eq. (2), the input-output relationship116

is given by117

h(tk,θ,Ξ) =
k∑
s=1

csK
T(tk − ts;θ)f(ts,Ξ)∆t = rT

k (θ)Ξ, (3)

where rT
k (θ) =

∑k
s=1 csK

T(tk − ts;θ)Gs∆t and cs is a coefficient that depends on the118

particular numerical integration scheme used to integrate Eq. (2).119
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2.2. First-passage failure probability120

Consider a safe domain DS for the critical response h(t,Θ,Ξ). In first passage problems,121

the structure is regarded as safe if the response remains within the domain DS over the122

interval [0, T ]. Hence, the safe event is expressed as123

S = {θ ∈ Rnθ , ξ ∈ Rnξ : h(tk,θ, ξ) ∈ DS ∀k ∈ {1, . . . , nT}}. (4)

Whenever a response trajectory exits the safe domain, failure takes place. The first-passage124

failure event F is therefore the complement of S.125

For a single-sided barrier specified by a response threshold h∗, F is defined as126

F =

{
θ ∈ Rnθ , ξ ∈ Rnξ : max

k=1,...,nT

h(tk,θ, ξ) ≥ h∗
}
. (5)

In the case of a double-sided barrier ±h∗, F is the union of two disjoint events. The first127

one corresponds to an up-crossing of the response over the threshold h∗, the second one128

corresponds to a down-crossing of the response below the threshold −h∗. This leads to the129

following definition of F :130

F =

{
θ ∈ Rnθ , ξ ∈ Rnξ : max

k=1,...,nT

h(tk,θ, ξ) ≥ h∗
}

⋃{
θ ∈ Rnθ , ξ ∈ Rnξ : min

k=1,...,nT

h(tk,θ, ξ) ≤ −h∗
}

=

{
θ ∈ Rnθ , ξ ∈ Rnξ : max

k=1,...,nT

|h(tk,θ, ξ)| ≥ h∗
}
,

(6)

where |·| denotes absolute value. Following Eqs. (5) and (6), the probability of first-passage131

failure is defined via a multi-dimensional integral of the form132

PF =

∫
θ∈Rnθ

∫
ξ∈Rnξ

I{(θ, ξ) ∈ F}pΞ(ξ)pΘ(θ)dξdθ. (7)

Here pΞ(ξ) and pΘ(θ), respectively, denote the joint probability density function (PDF)133

of Ξ and Θ, and I{(θ, ξ) ∈ F} is the indicator function for the failure event which takes134

the value 1 if (θ, ξ) ∈ F and is 0 otherwise. The above probability can be estimated by135

direct Monte Carlo (DMC) simulation. However, it is well known that the number of samples136

needed by the DMC estimator to achieve a desired coefficient of variation (c.o.v.) is inversely137

proportional to the magnitude of PF . Therefore, when the probability of failure is small,138

which is typically the case in engineering applications, this approach requires an excessively139

large number of samples to provide accurate estimates. A standard approach to reduce the140

sampling variance of the DMC estimator is importance sampling (IS).141
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The basic idea in IS is to draw samples of Θ and Ξ from an importance sampling density142

hΘ,Ξ(θ, ξ). Accordingly, the reliability integral in Eq. (7) is modified to143

PF =

∫
θ∈Rnθ

∫
ξ∈Rnξ

I{(θ, ξ) ∈ F}pΞ(ξ)pΘ(θ)

hΘ,Ξ(θ, ξ)
hΘ,Ξ(θ, ξ)dξdθ. (8)

An IS estimator of PF based on the above integral is given by144

P̂F =
1

N

N∑
i=1

I{(θi, ξi) ∈ F}pΞ(ξi)pΘ(θi)

hΘ,Ξ(θi, ξi)
, (9)

where {(θi, ξi), i = 1, . . . , N} are independent samples distributed according to hΘ,Ξ(θ, ξ).145

The above estimator is unbiased provided the support of hΘ,Ξ(θ, ξ) contains the failure146

domain. The c.o.v. of the IS estimator depends not only on the number of samples, but147

also on the IS density. Hence, an appropriate selection of hΘ,Ξ(θ, ξ) can lead to significantly148

smaller c.o.v. compared to that of the DMC estimator. It is straightforward to show that149

the sampling variance becomes zero when150

hΘ,Ξ(θ, ξ) = h∗Θ,Ξ(θ, ξ) =
1

PF
I{(θ, ξ) ∈ F}pΞ(ξ)pΘ(θ), (10)

where h∗Θ,Ξ(θ, ξ) represents the optimal choice of the IS density. However, this optimal IS151

density cannot be used in practice because it requires prior knowledge of PF . The main152

challenge in the application of IS schemes therefore lies in the selection of a sub-optimal IS153

density hΘ,Ξ(θ, ξ) that is a good approximation to h∗Θ,Ξ(θ, ξ).154

In order to construct an effective IS density for the first-passage problem, we express the155

probability of failure in Eq. (7) alternatively as156

PF =

∫
θ∈Rnθ

PF |Θ(θ)pΘ(θ)dθ, (11)

where157

PF |Θ(θ) =

∫
ξ∈Rnξ

I{(θ, ξ) ∈ F}pΞ(ξ)dξ (12)

is the first-passage probability conditional on Θ = θ. One can evaluate this conditional158

probability of failure using existing methods for first-passage probability estimation of de-159

terministic structures. In particular, an efficient IS density that allows estimation of PF |Θ(θ)160

by IS has been developed in [2]. Therefore, in formulating an IS strategy to estimate PF ,161

the key task is the design of an IS density related to the uncertain structural parameters162

that would enable efficient estimation of the integral in Eq. (11). In Sec. 3 we briefly re-163

view two existing approaches to estimate the conditional first-passage probability PF |Θ(θ).164

Subsequently, in Sec. 4 we develop a novel IS procedure for evaluating Eq. (11) and discuss165

the resulting IS estimator for the first-passage probability PF .166

6



3. Conditional first-passage failure probability167

In this section, the first-passage problem is discussed for the case where the vector Θ168

modeling structural parameter uncertainties assumes a known value Θ = θ. The setting169

corresponds to the case of a deterministic structure subjected to Gaussian process excitation.170

As discussed before, the input excitation is represented by a linear function of independent171

standard normal random variables Ξ = {Ξ1; . . . ; Ξnξ
}. The conditional first-passage prob-172

ability is defined as the probability that the critical response h(t,θ,Ξ) out-crosses at least173

once the threshold h∗ during the time span [0, T ]. Consider the discrete-time system defined174

in Eq. (3). Let Fk(θ), k ∈ {1, . . . , nT} denote the event of out-crossing the threshold at the175

k-th time instant. The instantaneous out-crossing events are termed as ‘elementary failure176

events’ [2]. Occurrence of any one of the elementary failure events represents failure of the177

structure. Therefore, the first-passage failure event conditional on Θ = θ is defined as178

F (θ) =

nT⋃
k=1

Fk(θ). (13)

Let F+
k (θ) and F−k (θ), respectively, denote the up-crossing and down-crossing events at179

the k-th time step, i.e. F+
k (θ) = {ξ ∈ Rnξ : h(tk,θ, ξ) ≥ h∗} and F−k (θ) = {ξ ∈ Rnξ :180

h(tk,θ, ξ) ≤ −h∗}. Then, for the single- and double-barrier problems defined in Eqs. (5) and181

(6), the elementary failure events are given by Fk(θ) = F+
k (θ) and Fk(θ) = F+

k (θ)∪F−k (θ),182

respectively. It is noted that the events F+
k (θ) and F−k (θ) are mutually exclusive. Due to183

the linear relationship between h(tk,θ,Ξ) and Ξ given in Eq. (3), the boundaries of the184

failure domains F+
k (θ) and F−k (θ) are hyperplanes in the nξ-dimensional space of Ξ. The185

probability content of F+
k (θ) and F−k (θ) is given by186

P
[
F+
k (θ)

]
= P

[
F−k (θ)

]
= Φ

(
− h∗

‖rk(θ)‖

)
, (14)

where rk(θ) is as defined in Eq. (3) and Φ(·) is the standard normal cumulative distribution187

function (CDF).188

3.1. Analytical approximation based on out-crossing theory189

A classical approach to evaluate the probability of occurrence of F (θ) is based on the190

Poisson hypothesis for the number of out-crossings. Let η(h∗;θ, 0, T ) denote the number of191

of times the critical response h(t,θ,Ξ) out-crosses a safe domain defined by the threshold192

h∗. If the individual out-crossing events {Fk(θ), k = 1, . . . , nT} are assumed to be indepen-193

dent, the number of out-crossings η(h∗;θ, 0, T ) can be approximated by a Poisson random194

variable. Based on this approximation, an analytical solution of the conditional first-passage195

probability, for at-rest initial condition, is obtained as [32]196

PF |Θ(θ) = 1− P [{η(h∗;θ, 0, T ) = 0}] = 1− exp

(
−
∫ T

0

α(t;h∗,θ)dt

)
, (15)
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where α(t;h∗,θ) denotes the rate of out-crossing the safe domain at time t.197

Let α−(t;−h∗,θ) and α+(t;h∗,θ) denote the rates of down- and up-crossings of the198

process h(t,θ,Ξ) across the levels −h∗ and h∗, respectively. These level-crossing rates199

are given by the Rice formula [40]. The out-crossing rate across the safe domain is given200

as α(t;h∗,θ) = α+(t;h∗,θ) for a single-sided barrier, and α(t;h∗,θ) = α−(t;−h∗,θ) +201

α+(t;h∗,θ) for a double-sided barrier. For a linear system subjected to a zero mean Gaussian202

process excitation, the response process h(t,θ,Ξ) is a Gaussian random process (this follows203

directly from Eq. (2)). Furthermore, due to zero initial condition, the response process has204

a zero mean. In this situation, α−(t;−h∗,θ) = α+(t;h∗,θ) holds.205

For the discrete-time system in Eq. (3), the level-crossing rates at the discrete time206

points {tk, k = 1, . . . , nT} are given by the expression [44, 28]207

α−(tk;−h∗,θ) = α+(tk;h
∗,θ) =

σZ2

√
1− ρZ2Z1

2

σZ1

φ

(
h∗

σZ1

){
φ

(
ρZ2Z1h

∗

σZ1

√
1− ρZ2Z1

2

)
+

ρZ2Z1h
∗

σZ1

√
1− ρZ2Z1

2
Φ

(
ρZ2Z1h

∗

σZ1

√
1− ρZ2Z1

2

)}
.

(16)

where Z1 and Z2 are random variables that, respectively, denote h(t,θ,Ξ) and its time208

derivative at t = tk, σZ1 and σZ2 are, respectively, the standard deviations of Z1 and Z2,209

ρZ2Z1 is the correlation coefficient between Z1 and Z2, and φ(·) is the standard normal210

PDF. The statistics σZ1 , σZ2 and ρZ2Z1 are computed by direct analysis of Eq. (3). The211

conditional first-passage probability in Eq. (15) can then be evaluated through the discrete-212

time formulation as213

PF |Θ(θ) = 1− exp

(
−

nT∑
k=2

α(tk;h
∗,θ)∆t

)
. (17)

214

Note that, although the Poisson approximation is a convenient way to calculate the con-215

ditional first-passage probability, it is based on the assumption of independent out-crossings,216

which is often not met by real-life response processes. An improved formula that approx-217

imately accounts for the dependence between the out-crossing events is proposed in [46].218

The improvement is derived primarily for stationary narrow-band Gaussian processes.219

3.2. Monte Carlo simulation based on Importance Sampling220

In view of the limitations of the analytical approximation presented in the preceding221

section, we additionally consider an IS evaluation of the conditional first-passage probability.222

Therein an IS density hΞ(ξ|θ), conditional on Θ = θ, is introduced, and the probability in223

Eq. (12) is written as224

PF |Θ(θ) =

∫
ξ∈Rnξ

I {(θ, ξ) ∈ F} pΞ(ξ)

hΞ(ξ|θ)
hΞ(ξ|θ)dξ. (18)
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As mentioned before, the key challenge in the application of IS schemes lies in the selection225

of an appropriate IS density that guarantees low variability of the IS estimator. For the226

particular case of deterministic linear systems subjected to Gaussian process excitations, an227

efficient IS density is proposed in [2]. This IS density is expressed as a weighted sum of228

the conditional PDFs pΞ(ξ|Fk(θ)) = pΞ(ξ)I{(θ, ξ) ∈ Fk(θ)}/P (Fk(θ)), which are the joint229

PDFs of Ξ truncated on the elementary failure domains Fk(θ):230

hΞ(ξ|θ) =

nT∑
k=1

wk(θ)pΞ(ξ|Fk(θ)) =

nT∑
k=1

wk(θ)
pΞ(ξ)I{(θ, ξ) ∈ Fk(θ)}

P [Fk(θ)]
. (19)

In Eq. (19), {wk(θ), k = 1, . . . , nT} are the normalized weights associated with the elemen-231

tary failure events. The weights are chosen to be proportional to P [Fk(θ)], i.e. wk(θ) =232

P [Fk(θ)] /
∑nT

j=1 P [Fj(θ)]. For single- and double-sided barriers, the probability of occur-233

rence of Fk(θ) is given by P [Fk(θ)] = P
[
F+
k (θ)

]
and P [Fk(θ)] = P

[
F+
k (θ)

]
+ P

[
F−k (θ)

]
,234

respectively, where P
[
F+
k (θ)

]
and P

[
F−k (θ)

]
are as defined in Eq. (14). Upon substituting235

the expression of Eq. (19) for hΞ(ξ|θ) in Eq. (18), the following integral for the conditional236

first-passage probability is obtained237

PF |Θ(θ) =P̃ (θ)

∫
ξ∈Rnξ

I{(θ, ξ) ∈ F (θ)}∑nT

k=1 I{(θ, ξ) ∈ Fk(θ)}
hΞ(ξ|θ)dξ

=P̃ (θ)

∫
ξ∈Rnξ

1∑nT

k=1 I{(θ, ξ) ∈ Fk(θ)}
hΞ(ξ|θ)dξ.

(20)

Here P̃ (θ) =
∑nT

j=1 P [Fj(θ)] denotes the sum of the probabilities of the elementary failure238

events. The second equality in the above equation is due to the fact that I{(θ, ξ) ∈ F (θ)} =239

1 for every sample ξ simulated according to hΞ(ξ|θ). Estimation of the conditional first-240

passage probability based on Eq. (20) requires samples of the vector Ξ distributed according241

to the IS density hΞ(ξ|θ). An algorithm for generating these samples is discussed in [2], and242

is provided in Appendix A for completeness.243

4. First-passage probability considering random structural parameters244

Estimation of the unconditional first-passage probability, considering both structural pa-245

rameter uncertainties and random excitation, requires integration of the conditional failure246

probability PF |Θ(θ) over the whole domain of the PDF pΘ(θ). This leads to the integral247

PF =
∫
θ∈Rnθ

PF |Θ(θ)pΘ(θ)dθ, introduced earlier in Eq. (11). When the dimension of Θ is248

large, numerical integration is not feasible. In principle, one can estimate the integral by249

direct Monte Carlo sampling, wherein independent samples {(θi, i = 1, . . . , NS} are gener-250

ated from the PDF pΘ(θ). The associated conditional first-passage probabilities PF |Θ(θi)251

are determined based on Eq. (20), and the unconditional first-passage probability PF is252
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estimated as the sample average of
{
PF |Θ(θi), i = 1, . . . , NS

}
. Such an approach is efficient253

only if the parameter uncertainty is low. For high parameter uncertainty, the variance of254

PF |Θ(Θ) is large, and hence a large number of Monte Carlo samples are necessary to achieve255

acceptable accuracy.256

For the purpose of estimating the first-passage probability more efficiently, we introduce257

an IS density hΘ(θ) for Θ. The integral in Eq. (11) is modified to258

PF =

∫
θ∈Rnθ

PF |Θ(θ)W (θ)hΘ(θ)dθ, (21)

where W (θ) = pΘ(θ)/hΘ(θ) is the importance weight function. The density hΘ(θ) should259

be tailored to generate more samples of Θ from the ‘important region’, i.e. the region over260

which the value of PF |Θ(θ)pΘ(θ) is large, while ensuring a low variability of W (θ). The261

optimal IS density that guarantees this is given by the expression262

h∗Θ(θ) =
1

PF
PF |Θ(θ)pΘ(θ). (22)

We use the CE method to construct an IS density hΘ(θ) that is a close approximation of263

h∗Θ(θ).264

4.1. Construction of importance sampling density for Θ by the cross entropy method265

The CE method is an adaptive approach that determines a near-optimal IS density by266

minimising the KL divergence between the optimal IS density h∗Θ(θ) and a chosen parametric267

family of distributions. Define a family of parametric densities hΘ(θ;ν), where ν ∈ V is268

the parameter vector. The KL divergence between h∗Θ(θ) and hΘ(θ;ν) is a measure of the269

difference between the two PDFs, and is defined as [41]270

D(h∗Θ(θ), hΘ(θ;ν)) = Eh∗Θ

[
ln

(
h∗Θ(θ)

hΘ(θ;ν)

)]
= Eh∗Θ

[ln (h∗Θ(θ))]− Eh∗Θ
[ln (hΘ (θ;ν))] .

(23)

It holds that D(h∗Θ(θ), hΘ(θ;ν)) ≥ 0, with D(h∗Θ(θ), hΘ(θ;ν)) = 0 if and only if h∗Θ(θ) =271

hΘ(θ;ν). The CE method aims at finding the parameters ν∗ that minimizeD(h∗Θ(θ), hΘ(θ;ν)),272

i.e. it solves the following optimization problem:273

ν∗ = argmin
q∈V

D(h∗Θ(θ), hΘ(θ; q)) (24)

Since the parametric density appears only in the second term in Eq. (23), the above equation274

is equivalent to275

ν∗ = argmax
q∈V

Eh∗Θ
[ln (hΘ (θ; q))] . (25)
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Substituting h∗Θ(θ) in Eq. (25) with the expression of Eq. (22), one gets276

ν∗ = argmax
q∈V

EpΘ

[
PF |Θ(θ)ln (hΘ (θ; q))

]
. (26)

The expectation in the above equation can be estimated using a set of samples {θi, i =277

1, . . . , NCE} from pΘ(θ), which leads to the sample counterpart of the CE optimization278

problem:279

ν̂∗ = argmax
q∈V

1

NCE

NCE∑
i=1

PF |Θ(θi)ln
(
hΘ

(
θi; q

))
. (27)

280

Obtaining a good sample approximation of Eq.(26) with Eq.(27) requires a considerable281

number of samples in the high probability region of h∗Θ(θ), i.e. a large fraction of the282

samples {θi, i = 1, . . . , NCE} drawn from pΘ(θ) should belong to the region where the value283

of PF |Θ(θ)pΘ(θ) is large. When PF is small, this region has a small probability volume284

under pΘ(θ). This is illustrated in Fig. 1. Moreover, if the variance of PF |Θ(θ) is high,285

h∗Θ(θ) ∝ PF |Θ(θ)pΘ(θ) differs significantly from pΘ(θ). In these cases, solving Eq. (27) is286

impractical, because a large number of samples would be required to obtain a good sample287

approximation. To circumvent this problem, we solve the CE optimization using a multi-288

level approach. We introduce a sequence of intermediate target densities hkΘ(θ), k = 0, . . . , L,289

that start from pΘ(θ) and gradually converge to the optimal IS density h∗Θ(θ). The CE290

optimization problem is solved sequentially for each intermediate target density, leading291

to a sequence of parameter vectors {νk, k = 1, . . . , L}. The ultimate goal is to have νL292

close to ν∗, so that the IS density hΘ(θ;νL) can be used to estimate PF . This multi-level293

approach has been extensively used within the CE method for rare-event simulation (see [41]294

for the general methodology, and [25, 47, 15, 37] for applications in structural reliability). In295

contrast to existing works, which utilize the CE method to estimate the expectation of the296

indicator function I{θ ∈ F} (the failure probability), we utilize the CE mehod to estimate297

the expectation of the (smooth) conditional probability PF |Θ(θ).298

To bridge the gap between the nominal density pΘ(θ) and the optimal IS density h∗Θ(θ),
we define the intermediate target densities {hkΘ(θ), k = 0, . . . , L} as

hkΘ(θ) =
1

Ck
PF |Θ(θ)γkpΘ(θ), (28)

where 0 = γ0 < γ1 < . . . < γL = 1 and Ck =
∫
θ∈Rnθ

PF |Θ(θ)γkpΘ(θ)dθ is the normalization299

constant of the k-th distribution in the sequence. Note that h0
Θ(θ) = pΘ(θ) and hLΘ(θ) =300

h∗Θ(θ). This distribution sequence, which is illustrated in Fig. 1, has been previously used301

to derive sequential Monte Carlo approaches for sampling posterior distributions and for302

estimating normalizing constants in the context of Bayesian analysis [33, 12, 7, 13, 10]. In303

Eq. (28), {γk, k = 1, . . . , L} are smoothing parameters that define the smooth transition304

between pΘ(θ) and h∗Θ(θ). The rationale is that although h∗Θ(θ) can differ largely from305

pΘ(θ), the change between two consecutive intermediate densities can be made small through306
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Figure 1: Representation of pΘ(θ) and h∗Θ(θ), where h∗Θ(θ) peaks in the tail region of pΘ(θ). The figure also
shows the sequence of intermediate target densities that define a smooth transition from pΘ(θ) to h∗Θ(θ) in
the CE method.

an appropriate selection of the parameters {γk, k = 1, . . . , L}. This small change makes it307

possible for the samples generated from hk−1
Θ (θ), or a close approximation of hk−1

Θ (θ), to lie308

in the region of high probability density of hkΘ(θ).309

In the k-th step of the multi-level approach, we determine the parameter vector νk that310

minimizes the KL divergence between hkΘ(θ) and the parametric density hΘ(θ;ν). The311

stochastic optimization problem to be solved at each intermediate level is thus given by312

νk = argmin
q∈V

D(hkΘ(θ), hΘ(θ; q))

= argmax
q∈V

EhkΘ
[ln (hΘ (θ; q))]

= argmax
q∈V

EpΘ

[
PF |Θ(θ)γk ln (hΘ (θ; q))

]
.

(29)

The expectation in the objective function of Eq. (29) is estimated by IS, using a set of313

samples {θi, i = 1, . . . , NCE} distributed according to hΘ(θ; ν̂k−1), ν̂k−1 being the solution314

of the optimization in the previous step. Hence, the importance sampling counterpart of the315

optimization problem in Eq. (29) is given by316

ν̂k = argmax
q∈V

1

NCE

NCE∑
i=1

W̃k

(
θi, ν̂k−1

)
ln
(
hΘ

(
θi; q

))
, (30)

where W̃k

(
θ, ν̂k−1

)
= PF |Θ(θ)γk pΘ(θ)

hΘ(θ;ν̂k−1)
. A default choice for hΘ(θ; ν̂0) is the nominal317
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density of Θ, i.e. hΘ(θ; ν̂0) = pΘ(θ). Note that for k ≥ 2, ν̂k−1 minimizes the KL diver-318

gence between hk−1
Θ (θ) and hΘ(θ;ν), and, therefore, hΘ(θ; ν̂k−1) is a close approximation319

of hk−1
Θ (θ). Typically, the objective functions in Eqs. (29) and (30) are convex and differen-320

tiable with respect to q. Therefore, the optimization problem can be solved by setting the321

gradient of the objective function to zero.322

To ensure that each density hkΘ(θ), and hence the objective function in the corresponding323

optimization problem, can be reasonably approximated using a limited number of samples324

drawn from hΘ(θ; ν̂k−1), we select the parameter γk adaptively such that the sample c.o.v.325

δ̂W̃k
of the weights

{
W̃k

(
θi, ν̂k−1

)
, i = 1, . . . , NCE

}
reaches a target value δtarget. Hence, at326

each intermediate sampling step one solves the optimization problem327

γk = argmin
γ∈(γk−1,1)

(
δ̂W̃k

(γ)− δtarget
)2

. (31)

We note that bounding the c.o.v. of the weights according to Eq. (31) is equivalent to328

requiring that the number of effective samples (ESS) used to fit the parametric model takes329

a target value [26]. The ESS is expressed in terms of the c.o.v. of the weights as ESS =330

NCE/
(

1 + δ̂2
W̃k

(γ)
)

.331

The sequential procedure is stopped when the smoothing parameter for the target density332

at the current sampling step is equal to one. After convergence at the L-th step, the final333

parameter vector ν̂L is determined by solving the optimization problem in Eq. (30) with334

γL = 1. The resulting density hΘ(θ; ν̂L) is the closest approximation of h∗Θ(θ) for the335

chosen parametric model based on the samples drawn from hΘ(θ; ν̂L−1), and it is taken as336

the IS density for estimating the first-passage probability. Bounding the sample c.o.v. of337

the weights according to Eq. (31) is equivalent to bounding the c.o.v. of the IS estimate of338

the normalizing constant of the respective distribution in the sequence of Eq. (28) [35, 36].339

For example, choosing δtarget = 1.5, as suggested in [35], corresponds to a target c.o.v. of the340

IS estimate of approximately 0.05 for NCE = 1000. Therefore, the applied stopping criteria341

ensures that the c.o.v. of the IS estimate of the unconditional first-passage probability is342

smaller than a certain target value.343

Determination of the IS density for Θ based on the above described procedure requires344

repeated evaluations of the conditional first-passage probability PF |Θ(θ). One could evaluate345

PF |Θ(θ) by IS according to Eq. (20). However, for the parameter vectors obtained by solving346

Eq. (30) at each intermediate step to converge smoothly to the optimal parameter value,347

the sampling variance of the estimates of PF |Θ(θ) should be small. To ensure this, the348

IS estimator of PF |Θ(θ) will require a large number of samples, which would significantly349

increase the overall computational effort needed for CE optimization. Hence, we instead350

evaluate PF |Θ(θ) analytically by the Poisson approximation stated in Eq. (17). The IS351

estimator of PF |Θ(θ) is only applied once the final IS density for Θ is obtained. The352

analytical approximation reduces the computational effort at the expense of accuracy, as353

the fitted IS density may be sub-optimal. However, numerical studies show that the IS354

density obtained based on this approach gives fairly accurate estimates of the unconditional355
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Algorithm 1: Determination of IS density for Θ by the CE method

1 input:
2 Sample size NCE.
3 Choice of parametric density hΘ(θ;ν).
4 Target c.o.v. of the weights at each intermediate step, δtarget.

5 initialization:
6 Set k = 0.

7 Select hΘ(θ; ν̂k) as the nominal density pΘ(θ).

8 repeat:
9 Set k = k + 1.

10 Generate independent samples
{
θi, i = 1, . . . , NCE

}
from hΘ(θ; ν̂k−1).

11 Evaluate the conditional first-passage probabilities
{
PF |Θ(θi), i = 1, . . . , NCE

}
based on the analytical approximation stated in Eq. (17).

12 Compute the likelihood ratio
{

pΘ(θi)

hΘ(θi;ν̂k−1)
, i = 1, . . . , NCE

}
for the random

samples.
13 Solve the optimization problem in Eq. (31) to determine γk.

Note that the conditional first-passage probabilities and the likelihood ratios
computed in the previous steps are used to evaluate the sample c.o.v. of the

weights
{
W̃k

(
θi, ν̂k−1

)
, i = 1, . . . , NCE

}
. Further simulations are not needed

in this step.

14 Determine ν̂k by solving the optimization problem in Eq. (30).

15 while γk < 1
16 output:

17 L = k, and hΘ(θ; ν̂L) = IS density for Θ.

first-passage failure probability. The resulting procedure for determining the IS density for356

Θ based on the CE method is described in Algorithm 1.357

4.2. Estimator for the unconditional first-passage failure probability358

Using the IS density for Θ introduced in the previous section, the unconditional first-359

passage probability PF is obtained by computing the expectation of the conditional failiure360

probability:361

PF =

∫
θ∈Rnθ

PF |Θ(θ)pΘ(θ)dθ

=

∫
θ∈Rnθ

PF |Θ(θ)
pΘ(θ)

hΘ(θ; ν̂L)
hΘ(θ; ν̂L)dθ

(32)

Substitution of the integral expression for PF |Θ(θ) in Eq. (20) into the above equation yields362

363
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PF =

∫
θ∈Rnθ

∫
ξ∈Rnξ

{
P̃ (θ)∑nT

k=1 I{(θ, ξ) ∈ Fk(θ)}
W (θ)

}
hΘ,Ξ(θ, ξ)dξdθ, (33)

where W (θ) = pΘ(θ)

hΘ(θ;ν̂L)
and hΘ,Ξ(θ, ξ) = hΞ(ξ|θ)hΘ(θ; ν̂L) is the joint IS density of Θ364

and Ξ. Here hΞ(ξ|θ) is the IS density for Ξ conditional on Θ = θ defined in Eq. (19),365

and P̃ (θ) =
∑nT

k=1 P [Fk(θ)] is the sum of the probabilities of the elementary failure events366

{Fk(θ), k = 1, . . . , nT}. As discussed in Sec. 3.2, {P [Fk(θ)] , k = 1, . . . , nT} can be calcu-367

lated analytically using Eq. (14). The IS estimator for PF is expressed as368

P̂F =
1

N

N∑
i=1

P̃ (θi)∑nT

k=1 I{(θi, ξi) ∈ Fk(θi)}
W (θi), (34)

where
{(
θi, ξi

)
, i = 1, . . . , N

}
are samples of the structural parameters and excitation dis-369

tributed according to hΘ,Ξ(θ, ξ) = hΞ(ξ|θ)hΘ(θ; ν̂L). The variance estimate of P̂F is [27]370

371

V̂ar(P̂F ) =
1

N − 1

 1

N

N∑
i=1

(
P̃ (θi)∑nT

k=1 I{(θi, ξi) ∈ Fk(θi)}
W (θi)

)2

− P̂ 2
F

 . (35)

The sample size N of the IS estimator determines the sampling c.o.v. of the probability372

of failure estimates. In the present study, two choices for N are investigated. In the first373

case, N is taken equal to NCE, i.e. the number of sample employed in the intermediate374

steps of the CE optimization problem. In the second case, N is adapted on the fly to ensure375

that, in each independent simulation run, the estimator of the c.o.v. of P̂F , denoted by376

δ̂P̂F
, takes a value smaller than a prescribed threshold δ∗

P̂F
. δ̂P̂F

is given by the expression377

δ̂P̂F
= V̂ar(P̂F )/P̂F , and is computed after every sample increment. We observed that the378

variance of the estimator δ̂P̂F
is large, especially when N is small. To obtain a robust379

convergence criterion, we check for convergence after every M0 samples, wherein the average380

of the previous m0 values of δ̂P̂F
, denoted by δavg, is compared with δ∗

P̂F
. This ensures that381

δavg has a gradually decreasing behaviour. Ideally, m0 should be chosen smaller than or382

equal to M0. In the present study we take M0 = 100 and m0 = 25. The procedure to383

estimate PF using the adaptive approach is described in Algorithm 2.384
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Algorithm 2: Implementation of IS estimator for PF with adaptive choice of N

1 input:

2 Nominal density pΘ(θ) and the IS density hΘ(θ; ν̂L) for Θ.
3 IS density hΞ(ξ|θ) for Ξ conditional on Θ = θ.
4 Number of sample increments M0 after which convergence is checked.

5 The window length m0 for averaging the values of δ̂P̂F
to check convergence.

6 Target value of the c.o.v. of P̂F , δ∗
P̂F

.

7 initialization:
8 Set i = 0.
9 repeat:

10 Set i = i+ 1.

11 Generate a sample θi distributed according to hΘ(θ; ν̂L).

12 Generate ξi distributed according to hΞ(ξ|θi) using the algorithm in Appendix
A.

13 Compute the dynamic response h
(
t,θi, ξi

)
at the discrete time instants

{tk, k = 1, . . . , nT} using Eq. (3).

14 Evaluate the indicator functions
{

I
{(
θi, ξi

)
∈ Fk

(
θi
)}
, k = 1, . . . , nT

}
.

15 Compute the likelihood ratio W
(
θi
)

=
pΘ(θi)

hΘ(θi;ν̂L)
.

16 Compute P̃
(
θi
)

=
nT∑
k=1

P
[
Fk
(
θi
)]

, where P
[
Fk
(
θi
)]

is evaluated using Eq. (14).

17 Compute P̂F =
1

i

i∑
j=1

P̃
(
θj
)∑nT

k=1 I
{(
θj, ξj

)
∈ Fk

(
θj
)}W (

θj
)
.

18 Compute

δ̂P̂F
(i) =

1

P̂F
√
i− 1

√√√√1

i

i∑
j=1

(
P̃
(
θj
)∑nT

k=1 I
{(
θj, ξi

)
∈ Fk

(
θj
)}W (

θj
))2

− P̂ 2
F .

19 if i mod M0 = 0 then

20 Compute the sample average δavg = 1
m0

i∑
j=i−m0+1

δ̂P̂F
(j).

21 end

22 while i ≤M0 or δavg > δ∗
P̂F

23 output:

24 N = i, and P̂F = estimate of the first-passage probability.

385

4.3. Choice of the parametric density in the cross entropy method386

In this section, we discuss the choice of the parametric distribution family hΘ(θ;ν).387

Typically, hΘ(θ;ν) is chosen such that it contains the nominal density pΘ(θ). It is recalled388

that Θ = {Θ1; . . . ; Θnθ
} is the vector of basic random variables that model the uncertain389
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structural parameters. In reliability analysis, it is common practice to consider the compo-390

nents of Θ are independent and standard normally distributed. If the structural parameters391

are mutually dependent and (or) follow a non-Gaussian distribution, they can be generated392

by an iso-probabilistic transformation of independent standard normal random variables393

[18, 14]. Therefore, without loss of generality, we assume that Θ is an nθ-dimensional stan-394

dard normal random vector, i.e. pΘ(θ) =
∏nθ

j=1 pΘj
(θj), where for every j, pΘj

(θj) is a395

one-dimensional standard normal PDF for Θj.396

4.3.1. Multi-variate normal distribution397

A standard choice of the distribution family is the multi-variate normal distribution398

[25, 41, 15]. This parametric family is completely described by its first two (joint) mo-399

ments, the mean vector µ and the covariance matrix Σ. The unknown parameter vector400

to be determined by CE optimization is thus given by ν = [µ Σ]. This leads to a total401

of nθ(nθ + 3)/2 scalar parameters to be estimated at every sampling iteration of the CE402

method. The multi-variate normal distribution belongs to the exponential family, for which403

an analytical solution to the optimization problem in Eq. (30) can be derived [41]. Sub-404

stituting hΘ(θ;ν) = N (θ;µ,Σ) in Eq. (30), and setting the derivative of the objective405

function with respect to ν equal to 0, yields the following parameter updates:406

µ̂k =

∑NCE

i=1 θ
iW̃k

(
θi, ν̂k−1

)∑NCE

i=1 W̃k

(
θi, ν̂k−1

) (36)

407

Σ̂k =

∑NCE

i=1 W̃k

(
θi, ν̂k−1

) (
θi − µ̂k

) (
θi − µ̂k

)T∑NCE

i=1 W̃k

(
θi, ν̂k−1

) (37)

The number of parameters in the multi-variate normal distribution increases quadratically408

with nθ. This results in a rapid increase in the number of samples per level required to obtain409

a good estimate of the optimal parameter values. Therefore, the CE method with multi-410

variate normal densities performs poorly in high dimensional problems, i.e. in problems411

where the number of basic random variables representing structural parameter uncertainties412

is large.413

4.3.2. von Mises-Fisher-Nakagami distribution414

An alternative choice of the parametric density that is more suitable for high dimensions415

is the von Mises-Fisher-Nakagami (vMFN) distribution, as proposed in [37]. This distri-416

bution model is defined in terms of the polar coordinates of the standard normal random417

vector Θ. The polar representation of Θ is given by418

Θ = RA, (38)

where A is a random unit vector uniformly distributed on the nθ-dimensional unit hyper-419

sphere and R is a scalar random variable, independent of A, that follows the chi-distribution420
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with nθ degrees of freedom. The sample pair {r a} represents the radius and direction of a421

corresponding standard normal sample θ.422

The vMFN distribution in polar coordinates is given by [37]423

fvMFN([r a];µ, κ,m,Ω) = fN(r;m,Ω)fvMF(a;µ, κ). (39)

Here fvMF(a;µ, κ) is the PDF of the von Mises-Fisher distribution and fN(r;m,Ω) is the424

PDF of the Nakagami distribution. fvMF(a;µ, κ) is defined in terms of the mean direc-425

tion µ (with ‖µ‖ = 1) and the concentration parameter κ ≥ 0, which characterizes the426

concentration around µ, and is given by427

fvMF(a;µ, κ) = Cnθ
(κ) exp (κµTa). (40)

Here Cnθ
(κ) = κ

nθ
2 −1

(2π)
nθ
2 Inθ

2 −1
(κ)

is the normalizing constant, and Ik denotes the modified Bessel428

function of the first kind at order k. fN(r;m,Ω) is defined in terms of a shape parameter429

m ≥ 0.5 and a spread parameter Ω > 0. fN(r;m,Ω) is given by430

fN(r;m,Ω) =
2mm

Γ(m)Ωm
r2m−1 exp (−m

Ω
r2), (41)

where Γ(k) is the gamma function. The nominal density of the polar coordinates in the431

nθ-dimensional Θ-space is retrieved by setting [µ, κ,m,Ω] = [a, 0, nθ

2
, nθ], where a is an432

arbitrary direction.433

When the vMFN distribution is used within the CE method, the unknown parameter434

vector to be estimated by CE optimization is given by ν = [µ, κ,m,Ω]. Here all parameters435

are scalar-valued, with the exception of µ, which is a vector of dimension nθ. Thus, the total436

number of parameters to be estimated at each sampling iteration is nθ + 3, which increases437

only linearly with nθ. The parameter updates at each step are obtained by substituting438

hΘ(θ;ν) = fvMFN([r a];µ, κ,m,Ω) in Eq. (30), and equating the derivate of the objective439

function with respect to ν to 0. This leads to closed-form analytical updating rules for µ440

and Ω, which are given by441

Ω̂k =

∑NCE

i=1 W̃k

(
riai, ν̂k−1

)
(ri)2∑NCE

i=1 W̃k

(
riai, ν̂k−1

) (42)

442

µ̂k =

∑NCE

i=1 a
iW̃k

(
riai, ν̂k−1

)
‖
∑NCE

i=1 a
iW̃k

(
riai, ν̂k−1

)
‖
. (43)

The updating rules for κ and m cannot be derived analytically in closed-form, they require443

the solution of a non-linear equation [47, 8]. One could use a numerical scheme, such as444

the Newton-Raphson method to determine these parameters. However, in order to have an445
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efficient updating process, we employ an approximate solution of the resulting non-linear446

equation to update κ andm. The approximate updating rule for the concentration parameter447

κ of the von Mises-Fisher distribution reads [6]448

κ̂k =
χ · nθ − χ3

1− χ2
, (44)

where χ is defined as449

χ = min

(
‖
∑NCE

i=1 a
iW̃k

(
riai, ν̂k−1

)
‖∑NCE

i=1 W̃k

(
riai, ν̂k−1

) , χmax

)
. (45)

with χmax < 1 typically selected as χmax = 0.95. The shape parameter m of the Nakagami450

distribution is approximated with the inverse normalized variance estimator [1, 23]451

m̂k =
(Ω̂k)2

µ4 − (Ω̂k)2
, (46)

where µ4 is defined as452

µ4 =

∑NCE

i=1 W̃k

(
riai, ν̂k−1

)
(ri)4∑NCE

i=1 W̃k

(
riai, ν̂k−1

) . (47)

453

4.3.3. Remark on the use of mixture models as the parametric density454

When the failure domain is complex or has multiple design points in the structural455

parameter space, the uni-modal parametric densities described above may not be flexible456

enough to fit the complex shape and orientation of the optimal IS density. In such cases,457

a multi-modal model for the parametric density hΘ(θ;ν) is required. Implementation of458

the multi-modal counterpart of the two aforementioned distribution models, including the459

associated parameter updates, is described in the literature (see [25, 15] for studies on multi-460

variate normal mixtures and [47, 37] for studies on the vMFN mixture model). However, for461

the numerical examples considered in this paper, a uni-modal choice of hΘ(θ;ν) is sufficient.462

Hence, multi-modal parametric densities are not investigated further here.463

5. Numerical illustrations464

The performance of the proposed CE-based importance sampling (CEIS) method is465

demonstrated by means of two numerical examples: the first considers a single degree-of-466

freedom (DOF) linear oscillator subjected to a stationary Gaussian white noise (GWN); and467

the second considers a 10-DOF linear structure excited by a filtered non-stationary Gaussian468

excitation. The second problem is one of the benchmark reliability examples studied in the469
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existing literature [42]. In the first example, the structure has two uncertain parameters.470

Since the problem is low dimensional with respect to the number of uncertain structural471

parameters, the multi-variate normal distribution is chosen as the parametric density for472

implementing the CE method. The second example demonstrates the performance of the473

method in a setting where the dimension of the structural parameter uncertainty is high.474

Both choices of the parametric density, namely, the multi-variate normal distribution and475

the vMFN model, are implemented and their relative performance is investigated.476

In the CE optimization step, the target c.o.v. of the weights for the intermediate dis-477

tributions is set to δtarget = 1.5. Recall from Sec. 4.2 that the sample size N in the final478

reliability estimation step is either fixed or chosen adaptively on the fly. In the subsequent479

sections, the following nomenclature is used to denote the choice of N as well as the choice480

of the parametric density within the CE method:481

• CEIS-mvn-fixN denotes the estimator with a fixed N , equal to the number samples482

per level of the CE optimization, and the multi-variate normal distribution as the483

parametric density.484

• CEIS-vMFN-fixN is same as above, but uses the von Mises-Fisher-Nakagami distribu-485

tion as the parametric density.486

• CEIS-mvn-adap and CEIS-vMFN-adap are the variants of the above estimators where487

N is chosen adaptively to ensure that the sample estimate of the c.o.v. of P̂F in each488

independent simulation run is smaller than a prescribed threshold δ∗
P̂F

.489

We measure the performance of the proposed method in terms of the sample mean and490

c.o.v. of the estimates of the probability of failure and the total computational effort needed491

to obtain the estimates. In the subsequent sections, these performance measures are de-492

noted by P̂F , δ∗
P̂F

and NT , respectively. The main computational effort lies in computing493

the dynamic system response, which requires evaluation and post-processing of the impulse494

response function. The number of evaluations of the impulse response function is chosen495

as the measure for the computational cost. In the considered examples, the dimension of496

the input excitation is l = 1. Hence, each evaluation of the impulse response function re-497

quires one dynamic analysis. The impulse response function of the critical response needs498

to be evaluated for every sample realization θ of the uncertain parameter vector Θ. During499

CE optimization, the impulse response function is post-processed to determine the Poisson500

approximation of the conditional first-passage probability PF |Θ(θ). In the reliability esti-501

mation step, the impulse response function for every sample θ is convoluted with a sample502

realization of the input excitation to obtain a realization of the response time-history, which503

is subsequenly used for evaluating the IS estimator for PF in Eq. (34). In Tables 1-6, the504

computational effort, i.e. the number of evaluations of the impulse response function, for505

finding the optimal IS density of the structural parameters by CE optimization and that506

for reliability estimation by IS are noted separately within parenthesis. The performance507

measures are estimated from 100 independent simulation runs. The reference values for the508

failure probabilities of Examples 5.1 and 5.2 are evaluated with large-scale DMC simulation.509
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The reference solution is denoted by PF,DMCS in Tables 1-6, and the associated c.o.v. given510

by δPF,DMCS
=
√

1−PF,DMCS

NTPF,DMCS
is also noted.511

5.1. SDOF oscillator under stationary Gaussian white noise512

Consider a single degree-of-freedom (DOF) oscillator with natural frequency ω and damp-513

ing ratio η subjected to white noise excitation:514

Ẍ(t) + 2ηωẊ(t) + ω2X(t) = f(t) (48)

The system is assumed to start from rest, i.e. X(0) = 0 and Ẋ(0) = 0. The structural515

parameters ω and η are modeled as a pair of independent lognormal random variables. ω516

has mean 2π rad/s and standard deviation 0.2π rad/s, and η has mean 0.05 and standard517

deviation 0.005. The structure is subjected to a stochastic force f(t) of duration T = 20s,518

which is characterized as a zero mean Gaussian white noise with auto-correlation function519

〈f(t)f(t+ τ)〉 = Iδ(τ). Here I denotes the intensity of the white noise, which is taken equal520

to 1 m2/s3. Failure is defined as the maximum value of the displacement X(t) exceeding521

a threshold h∗ within the time span [0, T ]. The response of the structure is computed at522

the discrete time instants {tk = (k − 1)∆t, k = 1, . . . , nT}, where the time step size is523

assumed to be ∆t = 0.01s. Hence, the number of time instants is nT = 2001. The random524

vector Ξ characterizing f(t) consists of the sequence of i.i.d. standard normal random525

variables {Ξk, k = 1, . . . , nT} that generate the white noise at the discrete time instants, i.e.526 {
f(tk,Ξ) =

√
I/∆tΞk, k = 1, . . . , nT

}
.527

The sample mean and c.o.v. of the estimates of the first-passage probability for different528

h∗, as well as the average computational effort needed to obtain the estimates with the529

proposed CEIS method, are reported in Table 1. The simulation results are obtained using530

the multi-variate normal distribution as the parametric density. A sample size of NCE = 500531

samples per level is employed to solve the CE optimization problem. The estimates from532

the adaptive variant of the IS estimator (CEIS-mvn-adap) correspond to δ∗
P̂F

= 0.05. The533

reference value for the probability of failure, also shown in Table 1, is computed from 108
534

DMC samples. The sample mean value of the probability estimates obtained using the535

proposed estimators compare well with the reference solution. There is a small under-536

estimation for the case h∗ = 1.1m, which might well be due to the sampling variance of the537

reference solution. The required computational effort for CE optimization shows that the538

average number of sampling iterations increases as the failure probability becomes smaller.539

A parametric study is conducted to investigate the effect of the number of samples per540

level on the performance of the CEIS method. To this end, values of NCE in the range541

100-1000, and δ∗
P̂F

= 0.05 and 0.025 are considered. For different values of NCE, the sample542

means of the probability of failure estimates across all threshold levels h∗ are similar to the543

values in Table 1, and hence are not reported. Fig. 2 shows that the sample c.o.v. δP̂F
and544

the total computational effort NT change significantly for varying NCE. The dotted lines545

in Fig. 2 indicate the average computational effort needed to solve the CE optimization546
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Table 1: Failure probability estimates for Example 5.1 using CEIS-mvn-fixN and CEIS-mvn-adap with
NCE = 500. Results from CEIS-mvn-adap obtained with δ∗

P̂F
= 0.05. Reference solution obtained from

large-scale DMC simulation.

h∗ (m) CEIS-mvn-fixN CEIS-mvn-adap DMC (NT = 108)

P̂F δP̂F
NT P̂F δP̂F

NT PF,DMCS δPF,DMCS

0.7 1.81× 10−3 0.040 1595 1.81× 10−3 0.046 1476 1.82× 10−3 0.002
(1095 + 500) (1110 + 366)

0.8 2.74× 10−4 0.037 1910 2.73× 10−4 0.046 1763 2.80× 10−4 0.006
(1410 + 500) (1440 + 323)

0.9 4.00× 10−5 0.058 2045 3.91× 10−5 0.048 1878 4.08× 10−5 0.016
(1545 + 500) (1560 + 318)

1.1 7.80× 10−7 0.040 2485 7.78× 10−7 0.043 2332 9.06× 10−7 0.105
(1985 + 500) (2035 + 297)

problem for different values of NCE. The difference between the vertical coordinates of547

the solid lines and the dotted line is the average computational effort required in the final548

reliability estimation step. The optimization effort increases monotonically with NCE. For549

the estimator CEIS-mvn-fixN, an increase in NCE also implies an increase in the sample550

size of the IS estimator, and hence we observe an increase in the total computational effort551

and a decrease in the sampling c.o.v. of the probability estimates. In case of the estimator552

CEIS-mvn-adap, we observe that the computational effort NT initially decreases before553

increasing. This behaviour is more pronounced for δ∗
P̂F

= 0.025. The reason for this is the554

number of effective samples (ESS) that are available for fitting the parametric density in555

every sample iteration of the CE method. For a fixed value of δtarget, the ESS decreases with556

decrease in the number of samples per level. Hence the parameter vector determined by CE557

optimization using a small NCE is sub-optimal in comparison to that obtained using higher558

values of NCE. Consequently, a larger number of samples are required during reliability559

estimation to meet the prescribed δ∗
P̂F

. The increase in the sample size in the final step560

increases the overall computational effort. As NCE increases, we obtain improved estimates561

of the parameter vector, and the number of samples needed for reliability estimation starts562

decreasing. Beyond a certain value of NCE, which for this example is NCE = 250, the563

sample size required in the IS estimator becomes nearly constant. This indicates that the564

parametric density fitted using 250 samples per level is sufficiently optimal, and a further565

increase in the number of samples per level does not give any additional advantage. As566

expected, the sample c.o.v. of the estimator CEIS-mvn-adap remains close to the prescribed567

threshold δ∗
P̂F

for different values of NCE. Finally, Fig. 2 demonstrates that the total568

computational effort required by the estimator CEIS-mvn-adap to achieve a sample c.o.v.569

of 0.025 is approximately half of that required by the estimator CEIS-mvn-fixN. Hence, if570

the goal is to ensure that the IS estimates of the failure probability achieve a given level of571

c.o.v., using the adaptive variant of the estimator is computationally more efficient.572
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Figure 2: Variation in the total computational effort NT and the sample c.o.v. δP̂F
for different values of

NCE in Example 5.1. The rows corresponds to the threshold levels (a) h∗ = 0.7m; (b) h∗ = 0.8m; (c)
h∗ = 0.9m; (d) h∗ = 1.1m. Note that the dashed line does not reflect NT , but the computational effort
needed only for CE optimization. The values corresponding to CEIS-mvn-fixN are plotted.
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5.2. 10-story linear frame under filtered non-stationary Gaussian excitation573

The second example considers a ten-story linear structure with uncertain material prop-574

erties and subject to a stochastic ground acceleration. This system has been studied in [42].575

The structure is idealized as a 10-DOF mass-spring-dashpot system with lumped masses576

{mi, i = 1, . . . , 10}, inter-storey stiffness coefficients {ki, i = 1, . . . , 10} and damping ratios577

{ηi, i = 1, . . . , 10}. The governing equation is given by578

MẌ(t) + CẊ(t) + KX(t) = {m1, . . . ,m10}Tf(t), (49)

with initial conditions X(0) = 0 and Ẋ(0) = 0. In Eq. (49), X(t) = {X1(t), . . . ,X10(t)}T
579

is the displacement vector, where X i(t) denotes the relative displacement between the i-th580

floor and the support, and M, C and K are the mass, damping and stiffness matrices which581

are, respectively, given by582

M =


m1 0 0 . . . 0
0 m2 0 . . . 0
· · · . . . ·
0 . . . 0 0 m10

 (50)

583

C =


c1 + c2 −c2 0 . . . 0
−c2 c2 + c3 −c3 . . . 0
· · · . . . ·
0 . . . 0 −c10 c10

 (51)

584

K =


k1 + k2 −k2 0 . . . 0
−k2 k2 + k3 −k3 . . . 0
· · · . . . ·
0 . . . 0 −k10 k10

 (52)

The damping coefficients in Eq. (51) are defined as {ci = 2ηi
√
miki, i = 1, . . . , 10}.585

The random support excitation f(t) in Eq. (49) is modeled by a modulated filtered586

GWN:587

f(t) = ω2
dxd(t) + 2ηdωdẋd(t)− ω2

gxg(t)− 2ηgωgẋg(t), (53)

where {xd(t) ẋd(t) xg(t) ẋg(t)}T are the states of the filter defined by the linear system588

ẍd(t) + 2ηdωdẋd(t) + ω2
dxd(t) = N(t)

ẍg(t) + 2ηgωgẋg(t) + ω2
gxg(t) = 2ηdωdẋd(t) + ω2

dxd(t)

xd(0) = 0, ẋd(0) = 0, xg(t), ẋg(0) = 0.

(54)

In the above equation, N(t) is a GWN with zero mean and auto-correlation function589

〈N(t)N(t + τ)〉 = Ie2(t)δ(τ). Here I denotes the intensity of the white noise, and e(t)590

is the modulating function given by591
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e(t) =


0 for t ≤ 0s
t/2 for 0s ≤ t ≤ 2s
1 for 2s ≤ t ≤ 10s
exp(−0.1(t− 10)) for t ≥ 10s

(55)

The numerical values of the filter parameters are assumed to be ωd = 15 rad/s, ηd = 0.8,592

ωg = 0.3 rad/s and ηg = 0.995, and the white noise intensity is taken as I = 0.08 m2/s3. In-593

dependent normally distributed impulses with zero mean and standard deviation e(tk)
√
I∆t594

are applied to the filter at each discrete time steps {tk, k = 1, . . . , nT}. The duration of the595

excitation and the sampling interval are taken as T = 20s and ∆t = 0.005s, respectively.596

Therefore the total number of random variables required to characterize the uncertain exci-597

tation is 4001.598

In addition to the uncertainty in the input excitation, the structural parameters mi, ηi599

and ki, i = 1, . . . , 10 are assumed to be uncertain and are modeled as random variables. The600

following two cases are considered.601

• Case 1: the stiffness coefficients {ki, i = 1, . . . , 10} are modeled by independent602

Gaussian random variables. The lumped masses {mi, i = 1, . . . , 10} and damping603

ratios {ηi, i = 1, . . . , 10} are assumed to be deterministic with their values set to604

m1 = · · · = m10 = 10 Mg and η1 = · · · = η10 = 0.04, respectively.605

• Case 2: in addition to {ki, i = 1, . . . , 10}, the parameters {mi, i = 1, . . . , 10} and606

{ηi, i = 1, . . . , 10} are modeled by independent Gaussian random variables. This607

setting corresponds to Case 2 of Problem 2 considered in [42].608

The statistical properties of the uncertain structural parameters in Cases 1 and 2 are listed609

in Table 2. It is noted that Gaussian random variables for structural properties are censored610

when the deviation from the mean exceeds five times the standard deviation.611

Table 2: Statistical properties of the uncertain structural parameters in Example 5.2.

Parameters Distribution Mean Standard deviation

Case 1 k1, k2, k3 censored Normal 40 MN/m 4.0 MN/m
k4, k5, k6 censored Normal 36 MN/m 3.6 MN/m

k7, k8, k9, k10 censored Normal 32 MN/m 3.2 MN/m
m1, · · · ,m10 Deterministic 10 Mg –
η1, · · · , η10 Deterministic 0.04 –

Case 2 k1, . . . , k10 censored Normal same as in Case 1
m1, . . . ,m10 censored Normal 10 Mg 1.0 Mg
η1, . . . , η10 censored Normal 0.04 0.004

In both cases, two response quantities are considered: (i) the first floor displacement,612

given by h1(t,Θ,Ξ) = X1(t), and (ii) the inter-storey drift between the ninth and the tenth613

floors, given by h2(t,Θ,Ξ) = X10(t)−X9(t). The objective is to determine the probability614

that the maximum value of a response hi(t,Θ,Ξ) exceeds a prescribed threshold h∗i over the615

time interval [0s 20s].616
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5.2.1. Case 1: 10 uncertain structural parameters617

The structural system in this case comprises 10 uncertain parameters {ki, i = 1, . . . , 10},618

which are modeled as independent normal variables with statistical properties shown in619

Table 2. The CEIS method is implemented using the multi-variate normal distribution that620

has a total of 65 scalar parameters for nθ = 10, and the vMFN model that has 13 scalar621

parameters.622

The simulation results for h∗1 = 0.052m and h∗2 = 0.01m, obtained using the estimators623

CEIS-mvn-fixN and CEIS-vMFN-fixN, are reported in Tables 3 and 4, respectively. These624

results illustrate the effect of varying the number of samples per level on the performance of625

the method. While using the vMFN model within the CEIS method results in sufficiently626

accurate estimates for any value of NCE, the sample means of the estimates obtained using627

the multi-variate normal distribution deviate significantly from the reference solution for628

NCE = 125. In terms of the c.o.v. of the estimates δP̂F
, the estimator CEIS-vMFN-fixN629

is superior for sample sizes lower than 1000 samples per level. In case of the multi-variate630

normal distribution the CE optimization problem requires additional steps to converge. This631

results in a larger computational effort NT for the estimator CEIS-mvn-fixN. The perfor-632

mance gap between the two estimators reduces with increase in the number of samples per633

levels, and with NCE = 1000 both approaches give comparable results. The poor perfor-634

mance of the multi-variate normal distribution is due to the larger number of parameters635

that are required to be updated in every sampling iteration of the CE method. For a small636

NCE, the available number of effective samples per level is insufficient to obtain an adequate637

estimate of the optimal parameter values during CE optimization.638

Table 3: Failure probability estimates for Example 5.2-Case 1 for h∗1 = 0.052m. Comparison between the
estimators CEIS-mvn-fixN and CEIS-vMFN-fixN. Reference probability of failure obtained from 106 DMC
samples is PF,DMCS = 3.88× 10−4(δPF,DMCS

= 0.051).

NCE CEIS-mvn-fixN CEIS-vMFN-fixN

P̂F δP̂F
NT P̂F δP̂F

NT

125 1.70× 10−4 0.821 653 3.84× 10−4 0.165 406
(528 + 125) (281 + 125)

250 3.66× 10−4 0.200 1178 3.82× 10−4 0.115 805
(928 + 250) (555 + 250)

500 3.82× 10−4 0.134 1800 3.79× 10−4 0.079 1540
(1300 + 500) (1040 + 500)

1000 3.79× 10−4 0.053 3180 3.78× 10−4 0.060 3020
(2180 + 1000) (2020 + 1000)

We investigate the performance of the adaptive variant of the IS estimator for different639

sample sizes per level. The results from CEIS-mvn-adap and CEIS-vMFN-adap obtained640

with NCE = 250, 500, 1000, and δ∗
P̂F

= 0.05 are reported in Table 5. With 250 sam-641

ples per level, the CEIS method using the multi-variate normal distribution fails to con-642
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Table 4: Failure probability estimates for Example 5.2-Case 1 for h∗2 = 0.01m. Comparison between the
estimators CEIS-mvn-fixN and CEIS-vMFN-fixN. Reference probability of failure obtained from 106 DMC
samples is PF,DMCS = 1.27× 10−3(δPF,DMCS

= 0.028).

NCE CEIS-mvn-fixN CEIS-vMFN-fixN

P̂F δP̂F
NT P̂F δP̂F

NT

125 2.21× 10−3 7.135 644 1.21× 10−3 0.205 404
(519 + 125) (279 + 125)

250 1.18× 10−3 0.237 1135 1.22× 10−3 0.111 783
(885 + 250) (533 + 250)

500 1.23× 10−3 0.104 1755 1.21× 10−3 0.063 1540
(1255 + 500) (1040 + 500)

1000 1.25× 10−3 0.053 3090 1.22× 10−3 0.054 3000
(2090 + 1000) (2000 + 1000)

verge to the prescribed δ∗
P̂F

, even after expending considerable computational effort. For643

NCE = 500 and 1000, the estimator CEIS-mvn-adap requires greater computational effort644

to converge in the final reliability estimation step. The sample mean and c.o.v. of the645

probability estimates P̂F obtained using the two estimators are comparable.646

Table 5: Failure probability estimates for Example 5.2-Case 1 using CEIS-mvn-adap and CEIS-vMFN-adap.
Results obtained with δ∗

P̂F
= 0.05.

CEIS-mvn-adap CEIS-vMFN-adap

P̂F δP̂F
NT P̂F δP̂F

NT

h∗1 = 0.052m

NCE = 250 – – – 3.73× 10−4 0.050 1690
(550 + 1140)

NCE = 500 3.74× 10−4 0.061 2622 3.77× 10−4 0.053 2144
(1230 + 1392) (1045 + 1099)

NCE = 1000 3.78× 10−4 0.050 3430 3.78× 10−4 0.051 3062
(2240 + 1190) (2020 + 1042)

h∗2 = 0.010m

NCE = 250 – – – 1.22× 10−3 0.044 1682
(543 + 1139)

NCE = 500 1.23× 10−3 0.049 2722 1.22× 10−3 0.050 2048
(1250 + 1472) (1020 + 1028)

NCE = 1000 1.22× 10−3 0.051 3190 1.22× 10−3 0.046 3012
(2080 + 1110) (2000 + 1012)

Fig. 3 shows the variation in the total computational effort NT and the sample c.o.v. δP̂F
647

of the estimators CEIS-vMFN-fixN and CEIS-vMFN-adap for different number of samples648

per level. The results from CEIS-vMFN-adap are obtained using δ∗
P̂F

= 0.05 and 0.025.649

For the estimator CEIS-vMFN-fixN we observe an increase in NT and a decrease in δP̂F
650

with increasing values of NCE. For the estimator CEIS-vMFN-adap with δ∗
P̂F

= 0.025,651

27



the computational effort required to obtain the probability estimates using NCE = 125652

is significantly higher compared to that using NCE = 250. The required computational653

effort with δ∗
P̂F

= 0.05 remains nearly constant for NCE = 125, 250. For both values of654

δ∗
P̂F

, a gradual increase in NT is observed for NCE ≥ 250. The sample c.o.v. δP̂F
of the655

estimator CEIS-vMFN-adap remains close to the prescribed values of δ∗
P̂F

for all values of656

NCE. These results are consistent with the ones of Fig. 2 of Example 5.1. Finally it is noted657

that the estimator CEIS-vMFN-fixN requires a total computational effort of approximately658

NT = 3000 to achieve a sample c.o.v. of approximately 0.05 for both considered thresholds.659

The estimator CEIS-vMFN-adap achieves this sample c.o.v. with an approximate effort of660

NT = 1690 for both response thresholds, and hence is more efficient.661
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Figure 3: Variation in the total computational effort NT and the sample c.o.v. δP̂F
for different values of

NCE in Example 5.2-Case 1. The rows corresponds to the threshold levels (a) h∗1 = 0.052m; (b) h∗2 = 0.010m.
Note that the dashed line does not reflect NT , but the computational effort needed only for CE optimization.
The values corresponding to CEIS-vMFN-fixN are plotted.

5.2.2. Case 2: 30 uncertain structural parameters662

In this case, the parameters {mi, ki, ηi, i = 1, . . . , 10} are modeled as independent nor-663

mally distributed random variables with statistical properties shown in Table 2. The dynam-664

ical system thus comprises of nθ = 30 uncertain structural parameters. Choosing the multi-665

variate normal distribution as the parametric density leads to a total of nθ(nθ + 3)/2 = 495666

scalar parameters that need to be estimated at every sampling iteration of the CE method.667

In order to obtain sufficiently accurate estimates of the failure probability, the number of668

samples per level NCE should be chosen such that an adequate number of effective samples669
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(ESS) are available for fitting the parametric model. The required ESS depends on the num-670

ber of parameters to be estimated. In [37] it is discussed that an ESS of approximately 1.5671

times the number of parameters is a good choice. For a multi-variate normal distribution in672

30 dimensions, this leads to a required sample size of NCE ' 2400. Using such large sample673

size per level is inefficient. Therefore, for this case, the vMFN distribution is chosen as the674

parametric density in the CE method. The vMFN model has nθ + 3 = 33 parameters and675

gives fairly accurate estimates with NCE ' 165.676

The simulation results for h∗1 = 0.057m, 0.073m and h∗2 = 0.013m, 0.017m obtained677

using the estimators CEIS-vMFN-fixN and CEIS-vMFN-adap with NCE = 250 are reported678

in Table 6. The results from CEIS-vMFN-adap are obtained using δ∗
P̂F

= 0.05. The reference679

solution obtained from 3.5 × 107 DMC samples is also shown in the table. The dynamic680

system in Case 2 is one of the benchmark examples considered in [42]. Hence results from681

other existing variance reduction methods are available for this case. These results are also682

reported in Table 6. The following nomenclature is used to denote the alternative methods:683

SubSim/MCMC denotes subset simulation with Markov chain Monte Carlo, SubSim/Hybrid684

denotes hybrid subset simulation, CMA denotes importance sampling using approximate685

representations of performance functions, S3 denotes spherical subset simulation and LS de-686

notes line sampling. The results show that the sample mean of the probability estimates687

obtained using the proposed methods are broadly comparable with that obtained using other688

variance reduction schemes. The CEIS-vMFN-fixN and CEIS-vMFN-adap methods signifi-689

cantly outperform SubSim/MCMC, SubSim/Hybrid and S3 in terms of the sample c.o.v. of690

the estimates and the computational effort. The estimates obtained using CMA and LS have691

smaller variability and require smaller computational effort. It is noted that the superior692

performance of CMA and LS comes at the expense of reduced robustness. These methods693

make use of certain algorithmic parameters for reliability estimation, whose selection re-694

quires prior knowledge of the system behaviour and possibly additional investigations. LS695

requires specification of an important direction to sample from, which corresponds to the696

important region of the failure domain. CMA uses IS to estimate the failure probability,697

wherein a pseudo-design point needs to de identified to generate the sample density. The de-698

sign point is further used to obtain an approximate representation of the dynamic response699

in terms of the uncertain structural parameters. Such an approximation can also lead to a700

bias in the reliability estimates. In this regard, the proposed CEIS method is advantageous701

as it is completely adaptive, requires no system specific information, and can be utilized as702

a black-box method.703

Fig. 4 demonstrates the variation in the total computational effort and the sample704

c.o.v. of the estimator CEIS-vMFN-adap for different number of samples per level. The705

observations are broadly similar to that in Fig. 3. The results in Fig. 4 show that if the target706

c.o.v. δ∗
P̂F

is about 0.1, one could expect to get satisfactory results with a total computational707

effort of approximately 1000 samples, i.e. 125-250 samples per level. Moreover, it is observed708

that even with 125 samples per level, CEIS-vMFN-fixN and CEIS-vMFN-adap outperform709

other sampling approaches like SubSim/MCMC, SubSim/Hybrid and S3.710
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Figure 4: Variation in the total computational effort NT and the sample c.o.v. δP̂F
for different values of

NCE in Example 5.2-Case 2. The rows corresponds to the threshold levels (a) h∗1 = 0.057m; (b) h∗1 = 0.073m;
(c) h∗2 = 0.013m; (d) h∗2 = 0.017m. Note that the dashed line does not reflect NT , but the computational
effort needed only for CE optimization. The values corresponding to CEIS-vMFN-fixN are plotted.
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6. Concluding remarks711

We develop an adaptive importance sampling method to estimate the first-passage proba-712

bility of uncertain linear structures subjected to dynamic loads modeled by Gaussian random713

processes. The main novelty lies in the construction of an effective IS density for the uncer-714

tain structural parameters, which is accomplished using the multi-level CE method. In the715

multi-level approach, the CE optimization is solved sequentially for a series of intermediate716

target densities that gradually approach the optimal IS density of the uncertain parameters.717

The distribution sequence is constructed by introducing a smoothening of the first-passage718

probability conditional on the uncertain parameter vector. During CE optimization, the719

conditional first-passage probability is evaluated using an analytical approximation. This720

approach significantly reduces the computational effort needed for optimization, without721

compromising much on accuracy. The IS density of the uncertain structural parameters is722

finally combined with an efficient IS density for the random excitation proposed in [2] to723

estimate the first-passage probability.724

The sample size in the IS estimator of the failure probability is chosen using two ap-725

proaches. In the first case, the number of samples is fixed to a certain value, and in the726

second case the sample size is chosen adaptively on the fly to ensure that an estimate of the727

c.o.v. of the IS estimator is less than a specified threshold. Results from numerical exam-728

ples demonstrate that for achieving a desired level of the sample c.o.v. of the probability729

estimates, the adaptive variant of the estimator is computationally more efficient. Imple-730

mentation of the CE method requires specification of a parametric density. In the present731

study, the multi-variate normal distribution is used when the number of uncertain structural732

parameters is small, while for high dimensional problems the von Mises-Fisher-Nakagami733

distribution is employed. The numerical studies show that the proposed IS method performs734

significantly better than other sampling-based approaches in terms of the sample c.o.v. of the735

estimates and the computational effort. Furthermore, the proposed approach is a black-box736

method that requires no prior investigations of the dynamical system.737

Two different directions of future research are envisioned. The first involves investigating738

how the proposed line of work can be extended to problems of system reliability analysis,739

where failure of the structure is expressed in terms of multiple component level first-passage740

events. The second involves determining if the proposed approach can be further developed741

to estimate the reliability of non-linear structures.742
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[42] G. I. Schuëller and H. J. Pradlwarter. Benchmark study on reliability estimation in higher dimensions827

of structural systems–an overview. Structural Safety, 29(3):167–182, 2007.828
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Appendix A. Sample generation from the IS density hΞ(ξ|θ) in Eq. (19)843

The steps for generating a sample ξ distributed according to the IS density hΞ(ξ|θ)844

defined in Eq. (19) are summarized in Algorithm 3. The algorithm is as proposed in [2].845

Algorithm 3: Sample generation from the IS density hΞ(ξ|θ)

1 input:

2 Weights of IS density hΞ(ξ|θ):
{
wk(θ) = P [Fk(θ)] /

∑nT
j=1 P [Fj(θ)] , k = 1, . . . , nT

}
.

The probabilities of the elementary failure events {Fk(θ), k = 1, . . . , nT} are
calculated analytically based on Eq. (14).

3 Design points associated with the boundaries of the elementary failure events:{
ξ∗k(θ) = h∗ rk(θ)

‖rk(θ)‖2 , k = 1, . . . , nT

}
. h∗ is the threshold value of the critical

response and rk(θ) is as defined in Eq. (3).

4 sampling:
5 Draw an index k from the set {1, . . . , nT}. Each index k is selected with a

probability proportional to wk(θ).
6 Simulate ξ′ as a nξ-dimensional standard Gaussian vector with independent

components.
7 Simulate U1 and U2 as uniform variables on [0, 1].
8 Compute α = Φ−1 [U1 + (1− U1)Φ (βk(θ))]. βk(θ) = ‖ξ∗k(θ)‖ is the Euclidean

norm of the the design point ξ∗k(θ).
9 Compute the unit vector u∗k = ξ∗k(θ)/‖ξ∗k(θ)‖.

10 For a single-sided barrier, set ξ = ξ′ + (α− ξ′Tu∗k)u∗k

For a double-sided barrier, set ξ =

 ξ′ +
(
α− ξ′Tu∗k

)
u∗k if U2 ≤ 1/2

−ξ′ −
(
α− ξ′Tu∗k

)
u∗k otherwise

11 output:
12 ξ, a random sample distributed according to hΞ(ξ|θ).
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