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Abstract

We introduce a novel simulation-based method for Bayesian analysis to
learn model parameters based on data. The method employs importance
sampling (IS) to construct a sample-based approximation of the posterior
probability density function (PDF) and estimate the marginal likelihood. We
propose to build the IS density through an adaptive sampling approach based
on the cross entropy (CE) method. The aim is to identify the parameters of
a chosen parametric distribution family that minimize its Kullback-Leibler
divergence from the target posterior PDF. An adaptive multi-level approach,
based on tempering of the likelihood function, is proposed to efficiently solve
this CE optimization problem. We investigate the appropriate choice of the
parametric distribution, depending on the number of uncertain model pa-
rameters and nature of the posterior density. Numerical studies demonstrate
the performance of the proposed method.
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1. Introduction

Learning the parameters of a computational model from measured data
is a task arising in many fields of science and engineering. Bayesian analysis
provides a systematic framework to address this task by treating the param-
eters as random variables. The prior knowledge of the random variables,
given by the prior joint probability density function (PDF), is updated with
data to a posterior PDF through the application of Bayes’ rule. The nor-
malizing constant of the posterior PDF is known as marginal likelihood and
its evaluation is required in Bayesian model class selection, i.e., to assess the
plausibility of each model from a set of available models.

In most practical applications, the posterior PDF does not admit an-
alytical solutions, hence, numerical methods are employed to estimate the
posterior distribution, most of which are sampling-based. A popular class of
sampling methods is Markov chain Monte Carlo (MCMC) [1]. MCMC sam-
ples states of a Markov chain with stationary distribution equal to the target
posterior distribution. MCMC approaches have the drawback that it is dif-
ficult to assess if the simulated Markov chain has converged and the chain
can get stuck in local modes of the posterior. These issues can be partially
addressed by sequential Monte Carlo (SMC) samplers [2, 3, 4, 5]. The basic
idea of SMC is to sequentially sample a set of intermediate densities that
gradually approach the posterior density. In each step, sample generation
can be performed with a resample-move scheme [3]. In the resample step,
samples drawn from the previous distribution in the sequence are weighted
according to the next distribution and then resampled to obtain uniformly
weighted samples. This is followed by the move or rejuvenation step, which
applies an MCMC algorithm whose target distribution is the current distri-
bution in the sequence. SMC is often combined with MCMC algorithms that
are able to efficiently treat high-dimensional priors, including the precondi-
tioned Crank-Nicolson (pCN) sampler and its adaptive variants [6, 7, 8], see,
e.g., [9, 10]. In the context of Bayesian analysis, the intermediate densities in
SMC are defined by tempering the likelihood function by an exponent [2, 5].
Adaptive SMC approaches determine the tempering parameters and, hence,
the intermediate distributions, on the fly during the simulation [11, 12, 13].
An alternative approach, originally proposed in [14], transforms the Bayesian
inference problem into an equivalent reliability (rare event) estimation prob-
lem, which is then solved using state-of-the-art structural reliability methods.
This approach, termed Bayesian Updating with Structural reliability meth-
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ods (BUS), has been combined with MCMC-based subset simulation (SuS)
in [14, 15, 16]. BUS-SuS is an adaptive simulation method that, similar to
SMC, performs a sequence of sampling steps to gradually approach the pos-
terior distribution. An important advantage of SMC and BUS-SuS compared
to MCMC sampling is that both methods return an estimate of the marginal
likelihood as a by-product of the simulation.

Both SMC and BUS-SuS employ MCMC methods to generate samples
from the intermediate distributions, which inevitably leads to dependent pos-
terior samples. Alternatively, one can employ importance sampling (IS) to
obtain a weighted sample approximation of the posterior distribution through
sampling from a suitable IS density [17]. The same samples can be used to
obtain an estimate of the marginal likelihood. The effectiveness of IS strongly
depends on the choice of the IS density. Iterative IS methods adapt the IS
density through a sequence of sampling steps. Each batch of intermedi-
ate samples is used to identify the next IS density through fitting mixture
distribution models or through kernel density estimation [18, 19]. Proper
sample initialization is a key aspect of these approaches. Often the first set
of samples is generated with MCMC methods or with the help of Laplace
approximations [20, 21].

The cross entropy (CE) method is an adaptive IS method that constructs
the IS density through fitting a parametric distribution model [22]. The
parameters are determined through minimizing the Kullback-Leibler (KL)
divergence between a target distribution and the parametric model. The
CE method was originally proposed for rare event estimation [23]. In this
context, the target density is the optimal IS density for estimating the prob-
ability of the rare event. The CE optimization problem is solved through
a sequential sampling approach designed such that the samples gradually
approach regions of high probability mass of the optimal IS density. Such
multi-level CE-based IS methods have been extensively studied in the field of
rare event estimation and reliability analysis [23, 24, 25, 26, 27, 28, 29, 30, 31],
while the rationale of the multi-level CE approach has also been applied to
the solution of optimization problems [32, 25]. In the context of Bayesian
analysis, the CE approach has been applied for marginal likelihood estima-
tion in [33]. This method employs samples from the posterior obtained, e.g.,
with MCMC to solve the CE optimization problem in a manner similar to
the method of [34].

This paper proposes a new CE-based IS method for Bayesian Updating
(CEBU). The method applies the multi-level CE approach to fit a parametric
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distribution family such that it best approximates the posterior distribution.
Similar to the approach of [28], the adaptive sampling process is performed
through defining a sequence of intermediate densities that starting from the
prior gradually approach the posterior density. This density sequence is de-
fined by a tempering of the likelihood, as in classical SMC approaches [2, 5].
The tempering parameters are determined in an adaptive manner, follow-
ing the adaptive SMC paradigm [11, 12]. Hence, the proposed approach is
completely adaptive and does not require an initial choice of the distribution
parameters, e.g., based on an initial MCMC sampling step, as is the case in
iterative IS methods. We investigate two distribution families as parametric
densities, the Gaussian mixture (GM) [26, 27] and the von-Mises-Fisher-
Nakagami mixture (vMFNM) [28]. Using mixture models enables one to
efficiently describe multimodal posterior distributions.

The outline of the paper is as follows. We start by giving the fundamen-
tal definitions of Bayesian inverse problems and the IS method in Sec. 2.
In Sec. 3, we derive the proposed method by applying the CE method to
Bayesian updating using tempering. The choice of the parametric IS den-
sity is described in Sec. 4. In Sec. 5 we demonstrate the performance of the
method by means of three numerical examples and compare it to that of the
adaptive SMC and BUS-SuS methods.

2. Background

This section provides a brief background to Bayesian inverse problems
and importance sampling.

2.1. Bayesian inverse problem

We consider a model of an underlying process represented by a mapping
G : X → Y , where X is the space of parameters of the model and Y de-
notes the space of model outcomes. The model G may come, e.g., from a
system of ordinary differential equations, partial differential equations or ex-
pert knowledge. We assume that both the parameter space and the outcome
space are finite-dimensional, precisely X ⊆ Rn and Y ⊆ Rd. Consider now
that a set of measurements y ∈ Y of the underlying process is available. In
inverse problems, the objective is to identify the system parameter θ given
the measurements y.

In Bayesian inverse problems, the system parameters are assumed to be
uncertain, and one describes the prior belief on the parameter vector θ ∈ X
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by PDF p0 : X → R≥0. Given system measurements y, the formal objective
is to estimate the posterior PDF py : X → R≥0 for the parameters. We note
that we use a notation similar to [35]. The posterior PDF is obtained by
application of Bayes’ rule as

py (θ) :=
Ly(θ) · p0(θ)

Zy

, (1)

where the likelihood function Ly : X → R≥0 describes how likely the data
(collection of measurements) is for a particular instance θ of the system
parameters. The normalizing constant Zy is given by

Zy :=

∫
X
Ly(θ)p0(θ)dθ (2)

and is referred to as the marginal likelihood or model evidence. It is a measure
for the plausibility of the model G, and is required for model class selection
and model averaging [36].

Evaluation of the posterior PDF analytically is seldom possible, and one
has to resort to numerical approaches. In Sec. 3 we introduce an importance
sampling method based on the principle of CE minimization to approximate
the posterior PDF.

2.2. Importance sampling

Before presenting the proposed CE-based IS method, we provide a brief
background on IS. Let ψ(θ) = Ly(θ) · p0(θ) be the unnormalized posterior
PDF. Consider the generic problem of evaluating the expected value of a
function H : X → R with respect to py (θ). One can express this expectation
as

I = Epy [H(θ)] =
1

Zy

∫
X
H(θ)ψ(θ) dθ

=
1

Zy

∫
X
H(θ)W (θ)h(θ) dθ,

(3)

where Epy [·] denotes expectation with respect to py(θ), h : X → R≥0 is the

IS density, satisfying supp(h) ⊇ supp(ψ), andW (θ) = ψ(θ)
h(θ)

is the importance
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weight function. In a similar way, the marginal likelihood Zy can be expressed
as

Zy =

∫
X
W (θ)h(θ) dθ. (4)

Eqs. 3 and 4 give rise to the following self-normalized IS estimator for I:

Î =
1

N

1

Ẑy

N∑
i=1

W (θi)H(θi), (5)

where {θi, i = 1, . . . , N} are independently drawn samples from h(θ) and Ẑy

is the estimate of the marginal likelihood, given by

Ẑy =
1

N

N∑
i=1

W (θi). (6)

The estimator of Eq. 5 corresponds to the expectation with respect to a
Monte Carlo approximation of the PDF py(θ), given by

py(θ) ≈
1

NẐy

N∑
i=1

W (θi)δ(θ − θi), (7)

where δ(·) is the Dirac function. Often the interest is in estimating Eq. 3
for a wide range of functions H. In such case, it is a good idea to choose an
IS density h that is similar to py (θ). In fact, py (θ) would be the optimal
choice of the IS density for estimating the marginal likelihood Zy, since it

leads to a zero-variance estimator Ẑy.

3. Cross entropy method for Bayesian updating

In this section, we present a novel method to determine the posterior PDF
of the uncertain system parameters. The proposed method employs IS and
is based on the principle of CE minimization. The CE method is an adaptive
IS method that determines a near-optimal approximation of a target PDF
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by minimizing the KL divergence between the target density and a chosen
family of parametric distributions. It was originally proposed for estimating
rare event probabilities in [23] and was later extended for solving optimization
problems in [32]. In the context of Bayesian inverse problems, we implement
the CE method to approximate the posterior PDF py (θ). Hence, our target
density of interest is the PDF py (θ). The fitted parametric PDF can then
be used to estimate the marginal likelihood through IS according to Eq. 6.
Furthermore, following Eq. 7, a sample-based approximation of the posterior
PDF can be obtained.

Let h(θ,ν) be a family of parametric densities, where ν ∈ V is the pa-
rameter vector, which contains the prior PDF p0(θ). The KL divergence
between py (θ) and h(θ,ν) is a measure of difference between the two PDFs
and is defined as [22]

DKL (py(θ)||h(θ,ν)) = Epy

[
log

(
py(θ)

h(θ,ν)

)]
=

∫
X
log (py(θ)) py(θ)dθ −

∫
X
log (h(θ,ν)) py(θ)dθ.

(8)
The KL divergence can be interpreted as the information lost when approx-
imating py(θ) with h(θ,ν) [37]. It holds DKL (py(θ)||h(θ,ν)) ≥ 0, with
DKL (py(θ)||h(θ,ν)) = 0 if and only if h(θ,ν) = py(θ).

The basic idea of the CE method is to determine the parameter vector
ν∗ that minimizes the KL divergence of Eq. 8. The PDF h(θ,ν∗) is then a
close approximation of the posterior PDF py(θ). As the parametric density
appears only in the second term in Eq. 8, a minimum of the KL divergence
can be found by maximizing only this second term. Additionally, substituting
Eq. 1 for py(θ) into Eq. 8 results in the following optimization problem:

ν∗ = argmin
ν∈V

DKL (py(θ)||h(θ,ν))

= argmax
ν∈V

∫
X
Ly(θ)p0(θ) log(h(θ,ν))dθ

= argmax
ν∈V

Ep0 [Ly(θ) log(h(θ,ν))].

(9)

The expectation in Eq. 9 can be approximated using a set of samples {θk; k =
1, . . . , NS} from p0(θ), which gives the sample-counterpart of the CE opti-
mization problem:
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ν∗ = argmax
ν∈V

{
1

NS

NS∑
i=1

Ly(θi) log (h(θi,ν))

}
. (10)

Often, the objective functions in Eqs. 9 and 10 are convex and differentiable
with respect to ν, and therefore the problem is solved by setting the gradient
of the objective function equal to zero. In order to obtain a good sample
approximation of Eq. 9 with Eq. 10, a considerable number of the samples
drawn from p0(θ) should lie in the high probability region of py(θ). Ensuring
this is computationally challenging when the data is highly informative, i.e.,
when py(θ) differs significantly from p0(θ). To overcome this difficulty, we
develop a multi-level approach to solve the CE optimization problem.

3.1. Multi-level cross entropy method based on tempering

Consider a sequence of intermediate densities {ft(θ); t = 0, . . . , T}, which
start from the prior PDF and gradually approach the posterior PDF, i.e.,
f0(θ) := p0(θ) and fT (θ) := py(θ). Such a distribution sequence can be
constructed by tempering the likelihood function:

ft(θ) :=
Ly(θ)

βtp0(θ)

Zt
, (11)

where {βt; t = 0, . . . , T} is the sequence of tempering parameters, which sat-
isfy 0 = β0 < β1 < ... < βt < ... < βT−1 < βT = 1 and Zt is the normalizing
constant of ft(θ). The tempering parameters bridge the gap between p0(θ)
and py(θ) by allowing a smooth transition between the two PDFs. The
change between two consecutive densities in the sequence can be made small
through an appropriate selection of {βt; t = 0, . . . , T}. Consequently, the re-
gion over which ft(θ) is significant can be adequately represented by a small
number of samples drawn from ft−1(θ), or a close approximation of ft−1(θ).
An illustration of the sequence of Eq. 11 is shown in Figure 1. This dis-
tribution sequence has been previously used to develop MCMC-based SMC
samplers for Bayesian analysis [2, 5, 11].

In the multi-level CE method, we solve the CE optimization problem
sequentially for the intermediate densities defined in Eq. 11. This leads to
a sequence of parameter vectors {νt; t = 1, . . . , T}. The goal is to find a
final parameter vector νT close to the optimal parameter ν∗. The parameter
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vector νt is determined by minimizing the KL divergence between ft(θ) and
h(θ,ν), which results in the following optimization problem:

νt = argmax
ν∈V

Eft [log(h(θ,ν))]. (12)

We estimate the expectation in Eq. 12 by IS using a set of samples from
h(θ, ν̂t−1), where ν̂t−1 is the solution of the optimization problem in the
previous step. After substituting the expression of ft(θ) into Eq. 12, the
sample counter-part of the above CE optimization problem is obtained as

ν̂t = argmax
ν∈V

{
1

NS

NS∑
i=1

Wt(θi, ν̂t−1) log (h(θi,ν))

}
, (13)

where Wt(θ, ν̂t−1) = Ly(θ)βtp0(θ)

h(θ,ν̂t−1)
and {θi; i = 1, . . . , NS} are independent

samples drawn from h(θ, ν̂t−1). A default choice of h(θ, ν̂0) is the prior PDF
p0(θ).

3.2. Adaptive selection of tempering parameter and convergence

The accuracy and computational efficiency of the multi-level CE method
depends crucially on the choice of the tempering parameters. The difference
between the values of {βt; t = 0, . . . , T} directly influences the change be-
tween the respective intermediate densities. In order to get a good sample
approximation in Eq. 13 with a limited number of samples, the intermediate
PDF ft(θ) should not differ substantially from h(θ, ν̂t−1), which is a close
approximation of the PDF ft−1(θ). We ensure this by selecting the temper-
ing parameters adaptively using a criterion based on the effective sample size
(ESS). For NS samples drawn from h(θ, ν̂t−1), the ESS gives the equivalent
number of proposed samples from ft(θ) available for fitting the parametric
density. The ESS is therefore a measure of difference between the target den-
sity ft(θ) and the sampling density h(θ, ν̂t−1), and is defined as [17, 38, 39]

ESSt(βt) =
NS

1 + δ̂2Wt
(βt)

, (14)

where δ̂Wt(βt) denotes the sample coefficient of variation of the weights
{Wt(θi, ν̂t−1); i = 1, . . . , NS}. We choose βt such that the ESS in Eq. 14
is equal to some predefined target value ESStarget > 0. Thus, we define
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Figure 1: Sequence of intermediate target densities ft(θ) from prior p0(θ) to posterior
py(θ)

βt = argmin
β∈(βt−1,1]

{
(ESStarget − ESSt(β))

2} . (15)

This implies that the tempering parameter is increased such that the number
of proposed samples is equivalent to a chosen ESS in each level. Instead of
directly prescribing ESStarget, the user can specify the number of samples per
step NS and the desired coefficient of variation of the importance weights
δtarget, and determine the corresponding ESStarget by analogy with Eq. 14.

We now make the assumption that the parametric density h(θ, ν̂t−1) is
equal to ft−1(θ), in which case the importance weight Wt(θ, ν̂t−1) in Eq. 13
is proportional to the lumped importance weight

W̃t(θ) = L(θ)βt−βt−1 . (16)
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After substituting W̃t(θ) forWt(θ, ν̂t−1) in Eq. 14, and using the fundamental
relation Var[•] = E[•2]− E[•]2, the tempering parameter in Eq. 15 is given
by

βt = argmin
β∈(βt−1,1]


 NS

1 + δ2target
−

(∑NS

i=1 Ly(θi)
(β−βt−1)

)2

∑NS

i=1 Ly(θi)
(2β−2βt−1)


2 , (17)

where {θi; i = 1, . . . , NS} are independent samples generated from h(θ, ν̂t−1).
The modified selection criteria in Eq. 17 does not depend on the parameters
{νt; t = 0, . . . , T −1}. This provides improved robustness in the convergence
of the algorithm in problems where the parametric density is not able to
perfectly describe the target density. The adaptive procedure is stopped
when the value of the tempering parameter determined based on Eq. 17 is
equal to 1. After convergence, at the T -th step, the final parameter vector
ν̂T is determined by solving the optimization problem in Eq. 13 with βT = 1.

3.3. Marginal likelihood

The density h(θ, ν̂T ) determined by the CE method can be used to esti-
mate the marginal likelihood Zy by IS. As mentioned in Sec. 2.2, the posterior
PDF is the optimal IS density for estimating Zy. Hence, h(θ, ν̂T ), being a
close approximation of the posterior, is expected to be a good IS density
for estimating Zy, provided that the chosen parametric model is sufficiently
flexible. Following Eq. 4, the marginal likelihood can be expressed as

Zy =

∫
X
Ly(θ)p0(θ)dθ

=

∫
X
WT (θ)h(θ, ν̂T )dθ.

(18)

Eq. 18 leads to the following IS estimator

Ẑy =
1

N

N∑
i=1

WT i, (19)

where WT i = Ly(θi)p0(θi)

h(θi,ν̂T )
and {θi, i = 1, . . . , N} are independent samples

generated from h(θ, ν̂T ). The number of samples N in Eq. 19 can be chosen
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freely and can be different from the number of samples per level NS used to
solve the CE optimization problem.

The variance of the estimator Ẑy can be estimated using the samples
{θi, i = 1, . . . , N}, as follows [17]

σ̂2
Ẑy

=
1

N
V̂ar(WT i), (20)

where V̂ar(WT i) is the sample variance of the weights {WT i, i = 1, . . . , N}.
The samples {θi, i = 1, . . . , N} can be used to estimate expectations of ar-
bitrary function with respect to the posterior, using the self-normalizing IS
estimator of Eq. 5. Estimation of the variance of such estimates is discussed,
e.g., in [17].

3.4. Generation of posterior samples through resampling

The density h(θ, ν̂T ) determined by the CE method is an approximation
of the posterior PDF py(θ) for the chosen parametric family. Using a set of
independent samples {θi, i = 1, . . . , N} drawn from h(θ, ν̂T ), we obtain the
following IS approximation of the posterior PDF

py(θ) ≈
1

NẐy

N∑
i=1

WT iδ(θ − θi), (21)

where WT i are defined as in Eq. 19. To obtain independent and identically
distributed (i.i.d.) samples from the density in Eq. 21, one can apply a re-
sampling algorithm, such as stratified resampling, multinomial resampling
or residual resampling [40, 41]. In the present study, we employ a global
stratified resampling scheme adapted from [42]. This approach is summa-
rized in Algorithm 1. We note that an alternative approach for generating
samples from the posterior PDF is to employ the density h(θ, ν̂T ) as a pro-
posal density in the independent Metropolis-Hastings algorithm [43]. The
full CE-based IS algorithm for Bayesian updating (CEBU) is summarized in
Algorithm 2.

4. Choice of parametric density in the cross entropy method

In the CE method, the family of parametric distributions h(θ,ν) is typi-
cally chosen such that it contains the nominal density of the uncertain model
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Algorithm 1: Stratified Resampling

Result: N samples following the posterior PDF py(θ) given N
samples from the final importance sampling (IS) density
h(θ, ν̂T ) and their corresponding importance weights.

Input: Independent samples {θi; i = 1, . . . , N} from h(θ, ν̂T )
Importance weights {WT i, i = 1, . . . , N}

Main Algorithm:
Compute the cumulative sum of the normalized importance weights

W T i =

∑i
k=1WTk∑N
j=1WTj

. Draw uniformly distributed samples

wi ∼ U

(
i− 1

N
,
i

N

)
, for i = 1, . . . , N .

Set i = 1 and j = 1
repeat

if wi < W Tj then

Set θ̃i = θj.
Increase i = i+ 1.

else
Increase j = j + 1.

until i = N

Output: Samples {θ̃i; i = 1, . . . , N} distributed according to py(θ).

parameters. In the context of Bayesian inference, the nominal density corre-
sponds to the prior PDF p0(θ). Without loss of generality, we represent p0(θ)
in terms of an underlying outcome space u ∈ Rn of independent standard
normal random variables. To this end, we employ a mapping u = TISO(θ)
from the outcome space of the prior PDF p0(θ) to the outcome space of the
standard normal PDF, where TISO is a one-to-one iso-probabilistic transfor-
mation [44, 45]. For the specific case of independent priors, i.e., if p0(θ) can
be written as p0(θ) =

∏n
k=1 p

k
0

(
θ(k)

)
, TISO is comprised of a set of marginal

transformations given by u(k) = Φ−1
(
P k
0

(
θ(k)

))
; k = 1, . . . , n, where u(k)

and θ(k), respectively, denote the k-th components of the vectors u and θ,
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Algorithm 2: Cross entropy based importance sampling for
Bayesian updating (CEBU)

Result: Estimate of the marginal likelihood, Zy, and generate a set
of samples from a posterior distribution py(θ)

Input: Likelihood function, Ly(θ)
Prior distribution of the model parameters, p0(θ)
Choice of the parametric density h(θ,ν)
Sample size for CE optimization, NS

Target CoV of the weights in each level, δtarget
Desired number of samples, N , from the posterior

distribution

Algorithm:
Set t = 0 and β0 = 0.
Select h(θ, ν̂0) as the prior PDF p0(θ).
repeat

1. Draw NS samples {θi; i = 1, . . . , NS} from h(θ, ν̂t).

2. Evaluate the likelihood function values {Ly(θi); i = 1; . . . , NS}.

3. Determine the tempering parameter βt+1 by solving the optimization
problem in Eq. 17.

4. Compute the weights {Wt(θi, ν̂t); i = 1, . . . , NS}.

5. Determine ν̂t+1 by solving the CE optimization problem in Eq. 13
using the weights evaluated in the previous step.

6. Set t = t+ 1.

until βt = 1

7. Draw N samples {θi; i = 1, . . . , N} from h(θ, ν̂T ) and compute

{WT i =
Ly(θi)p0(θi)

h(θi,ν̂T )
; i = 1, . . . , N}.

8. Compute an estimate of the marginal likelihood by taking the sample
mean of {WT i; i = 1, . . . , N}: Ẑy = 1

N

∑N
i=1WT i.

9. Resample {θi; i = 1, . . . , N} according to Algorithm 1 to obtain
samples from the posterior PDF.
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Φ(·) is the standard Gaussian cumulative distribution function (CDF) and
P k
0 (·) is the marginal prior CDF of the k-th component. For the case of

dependent priors, TISO is given by the Nataf transformation [44], which con-
siders a Gaussian copula for the dependence structure, or, more generally,
the Rosenblatt transformation [45]. The posterior PDF in the transformed
space is given by:

ϕy(u) =
Ly(T

−1
ISO(u))ϕ0(u)

Zy

, (22)

where ϕ0(u) is the n-dimensional standard normal joint PDF. We note that
the normalizing constant in Eq. 22 is the same as the one in Eq. 1 because
of the iso-probabilistic nature of the transformation, as shown in Appendix
A.

The updating problem is solved in the transformed space. This approach,
which was also employed in [13], has certain advantages. In particular, the
uncertainty in the prior distribution is normalized and its support is un-
bounded. In the context of the CE method, the transformation TISO facil-
itates the choice of the parametric distribution family for a wide range of
Bayesian updating problems.

To implement the CE method, we consider two different parametric fam-
ilies h(u,ν), presented in Secs. 4.1 and 4.2, which contain ϕ0(u). We de-
termine the parameter vectors {ν̂t, t = 1, . . . , T} by sequentially minimizing
the KL divergence between h(u,ν) and the intermediate target densities in
the standard normal space according to the procedure in Algorithm 2. The
marginal likelihood is directly estimated using Eq. 19 with the weights eval-
uated at the final step. Samples {ui, i = 1, . . . , N} drawn from the final
density h(u, ν̂T ) are transformed to equivalent samples {θi, i = 1, . . . , N} in
the original parameter space by applying the inverse iso-probabilistic trans-
formation θi = T−1

ISO(ui). These samples are then resampled according to
Algorithm 1 to obtain samples distributed according to py(θ). We note that
the transformation to the original space can alternatively be applied following
resampling in the transformed space.

We consider two different distribution families for application of the CE
method in standard normal space. The first is the GM distribution, which
allows efficient representation of multi-modal posterior distributions. The
second is a distribution model, which enables efficient application of the
method to certain high-dimensional problems.
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4.1. Gaussian mixture

The GM density is defined as the weighted sum of K multivariate normal
PDFs:

fGM(u, [µ,Σ, α]) =
K∑
k=1

αkfN (u, [µk,Σk]), (23)

where µ is the set of K mean vectors, Σ is the set of K covariance matrices,
α is the set of K weights for the mixture terms summing up to one and

fN (u, [µk,Σk]) =
1√

2nπn detΣk

exp

(
−1

2

(
(u− µk)

TΣ−1
k (u− µk)

))
.

(24)

The total number of parameters to be fitted in the GMmodel isKn(n+3)/2+
(K − 1). For the uni-modal case, i.e., K = 1, closed-form expressions for the
parameter update in Eq. 13 are available, e.g., in [22]. For the multi-modal
case, we apply the Expectation-Maximization algorithm suggested in [27],
with initialization of the sample allocation to the different modes through
application of k-means clustering, to update the distribution parameters.

4.2. von-Mises-Fisher-Nakagami mixture

It is well-known that the probability mass of a high-dimensional PDF
with i.i.d. marginals concentrates on an important ring of radius propor-
tional to

√
n [46, 47]. This is commonly known as the concentration of norm

phenomenon. In the case of mixture distribution with i.i.d. density compo-
nents, we expect that in finite dimensions the probability mass concentrates
around multiple important rings. This is demonstrated in Figure 2 for a GM
model.

As a consequence, if the posterior PDF is a mixture of high-dimensional
i.i.d. densities, then it can be efficiently characterized by a distribution in
polar coordinates. The polar coordinate representation of a sample u ∈ Rn

is u = r · a, where a = u/∥u∥ is the direction and r = ∥u∥ is the radius.
In [28], a mixture distribution model in polar coordinates was introduced in
the context of the CE method for rare event simulation, which is shown to
perform well in high dimensional problems. The model consists of mixture
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components that combine the von-Mises-Fisher (vMF) distribution for the
direction a with the Nakagami distribution for the radius r and is, hence,
termed the von-Mises-Fisher-Nakagami (vMFN) mixture.

Figure 2: Illustration of the concentration of norm phenomenon for a GM model with
two modes both mean zero, a variance of 0.3 and 1.5 and a weighting of 0.35 and 0.65,
respectively. The figure shows this GM density in an underlying 2-dimensional space
[ũ1, ũ2]. a: Contour plot of 2-dimensional GM density- b: Contour plot of 16-dimensional
GM density - c: Contour plot of 32-dimensional GM density

The vMFN PDF is defined in polar coordinates as:

fvMFN(r,a, [µ, κ,Ω,m])

= fvMF (a, [µ, κ]) · fN(r, [Ω,m])

=
κn/2−1

(2π)n/2In/2−1(κ)
eκµ

Ta · 2mm

Γ(m)Ωm
r2m−1e−

m
Ω
r2 .

(25)

where fvMF is the PDF of the vMF distribution and fN is the PDF of the
Nakagami distribution. The concentration parameter κ describes how con-
centrated the samples are around the mean direction µ. This means that
for increasing κ the samples will be closer to the mean direction whereas for
κ = 0 they are uniformly distributed over the unit hypersphere. Regarding
the radius, m ≥ 0.5 is the shape parameter and Ω > 0 the spread parame-
ter. In Eq. 25, Ik denotes the modified Bessel function of first kind of order
k. It is noted that the vMFN distribution reduces to the standard normal
distribution for κ = 0, Ω = n, m = n/2 and an arbitrary mean direction µ.
The von-Mises-Fisher-Nakagami mixture (vMFNM) density is defined as the
weighted sum of K vMFN PDFs:

17



fvMFNM(r, a, [µ, κ,Ω,m, α]) =
K∑
k=1

αkfvMFN(r, a, [µk, κk,Ωk,mk]), (26)

where µ is the set of K mean directions, κ the set of K concentration pa-
rameters, Ω the set of K radial spread parameters and m the set of K radial
shape parameters. The total number of parameters in the vMFNM model is
K(n+3)+(K−1). This number scales linearly with the dimension n, unlike
the number of parameters in the GM model, which scales quadratically with
n. Hence, the vMFNM model is easier to fit in high dimensions than the
GM model. The parameter update in Eq. 13 is performed by an Expectation
Maximization algorithm, as suggested in [28].

5. Numerical investigation

To illustrate the proposed method, three numerical examples are studied:
one with a bimodal posterior, and two inverse analyses involving a structural
dynamics model and an epidemic model. The CE method is implemented
using both GM and vMFNM models, described in Sec. 4. The two resulting
approaches are abbreviated as CEBU-GM and CEBU-vMFNM. The number
of samples drawn from the posterior is always set equal to the number of
samples per level during CE optimization, i.e., N = NS. In each example, the
results from the proposed method are compared to those from the adaptive
variant of the SuS-based BUS approach (aBUS) [16] and the adaptive SMC
method [12]. For aBUS, the intermediate conditional probability is set to 0.1.
The adaptive SMC approach is implemented using the approach discussed
in Sec. 3.2 to evaluate the tempering parameters. Both aBUS and SMC are
implemented in the standard normal space following the approach discussed
in Sec. 4. The MCMC algorithm for performing the move step in aBUS
and SMC is an adaptive pCN sampler, also known as adaptive conditional
sampling algorithm [6, 7].

The algorithms are run 100 times for all examples to obtain statistics of
the estimates. For the case where a reference solution cannot be evaluated
analytically, the reference is obtained through a modified rejection sampling
algorithm [48, 49] that allows generating approximately i.i.d. posterior sam-
ples without prior knowledge of the maximum of the likelihood function.

To assess the quality of the CE-based posterior approximation of Eq. 21,
we employ the normalized effective sample size (nESS) [18]
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nESS =
ESS

N
=

1

1 + δ̂2WT

, (27)

where ESS is the effective sample size introduced in Eq. 14, N the number
of proposed samples and δ̂WT

the coefficient of variation of the importance
weights of the proposed samples. The nESS is a measure of the goodness
of fit of the parametric IS density and takes values in (0, 1]. The larger the
nESS, the smaller the variance of the resulting sample-based estimators.

5.1. Bimodal posterior

The first example involves the approximation of a bimodal posterior den-
sity, previously studied in [11, 13, 50]. The aim of this example is to inves-
tigate whether CEBU recognizes the bimodal structure of the posterior and
how its performance scales with the dimension of the sample space. Mul-
timodal posteriors are challenging for standard random walk MCMC-based
approaches as the generated chains can get stuck in one of the modes. The
likelihood function is modelled by the mixture of two Gaussian densities:

Ly(θ) = α · N (θ, [µ1,Σ1]) + (1− α) · N (θ, [µ2,Σ2]) . (28)

The fraction α denotes the portion of the probability mass assigned to
the first mode. The prior is uniformly distributed on the hypercube [−2, 2]n:

p0(θ) =
n∏
i=1

U(θi, [−2, 2]), (29)

where U(•, [a, b]) denotes the uniform distribution in [a, b].
The mean vectors of the two Gaussians in Eq. 28 are µ1 = 0.5 1n and

µ2 = −0.5 1n with 1n denoting the n-dimensional vector of ones. We consider
two different scenarios for the covariance matrices. In the first, it is Σ1 =
Σ2 = σ2In, with σ = 0.1 and In denoting the identity matrix. This choice of
σ leads to a separation of the two posterior modes [11]. In the second scenario,
the two covariance matrices are chosen as Σ1 = σ2R1 and Σ2 = σ2R2, with
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R1 =


1 0.8 0 · · ·
0.8 1 0
0 0 1
...

. . .


and

R2 =


1 −0.8 0 · · ·

−0.8 1 0
0 0 1
...

. . .


The latter scenario is of particular interest for assessing the performance of
the vMFNM model, which has limited capability of representing dependence.

The dimension n is varied between 2 and 32 in steps of 3, i.e., n =
2, 5, 8, ..., 32. The fraction is chosen as α = 0.9. The number of samples
per level is set to NS = 3000 and the target coefficient of variation of the
weights is δtarget = 1, corresponding to ESStarget = 1500. Since the posterior
is bimodal, two-component GM and vMFNM distributions are chosen.

In order to assess the ability of the method to correctly identify the two
distinct modes of the posterior, we compute the estimate α̂ of the portion of
probability mass of the first posterior mode. α̂ is estimated by a hard cluster-
ing approach using the two Gaussian mixture modes, under the assumption
that the uniform prior has no influence on the posterior.

Fig. 3 shows the contours of the estimated PDFs of the fraction α̂ for
the first and second scenarios in function of the dimension n. The PDFs
are estimated with 100 repeated simulation runs. The reference solution is
denoted by red color.
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(a) (b)

Figure 3: a: PDF of the fraction estimate of the bimodal posterior, without dependence, in
example 5.1. - b: PDF of the fraction estimate of the bimodal posterior, with dependence,
in example 5.1.
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The probability mass of the fraction estimates PDFs, obtained by CEBU-
vMFNM is concentrated around the true value for all tested dimensions and
scenarios. The variability of the estimate is higher for the second scenario,
owing to the limited ability of the vMFNM model to capture the parame-
ter dependence. The PDF obtained by CEBU-GM shows higher variability
compared to that with the vMFNM model. This is related to the higher
dimensionality of the parameter space of the GM model, which requires a
larger sample size to obtain confident estimates. The parameter dimension
scales quadratically with the dimension of the sample space n for the GM
model, as opposed to that of the vMFNM model, which scales linearly with
n. This results in a strongly skewed PDF of the fraction estimates for the
GM model as the parameter space dimension n becomes larger than 30. For
n = 32, the number of parameters of the GM model is 1121, which is close
to the number of effective samples per level used to fit the parameters (for
NS = 3000 and δtarget = 1, the target ESS is 1500). On the other hand, the
dependence of the mixture components is not an issue for the GM model, as
the model is fully capable of representing this dependence. Both the GM-
and vMFNM-based CEBU perform significantly better than the aBUS and
SMC approaches for this example for n < 30. aBUS shows significantly
larger variability in the fraction estimates compared to CEBU, although the
influence of the sample space dimension is minor due to the properties of im-
plemented pCN sampler. The SMC estimates show a bimodal behavior for
n > 8, as the algorithm tends to recognize either the first or the second mode
of the bimodal posterior. This is attributed to the random walk behavior of
the employed MCMC algorithm.

The behavior of the CEBU method with the two considered distribution
models is further studied in Fig. 4, which plots the obtained nESS as a
function of the sample space dimension n for the two considered scenarios.
The vMFNM model shows a remarkable behavior for the first scenario with
i.i.d. mixture components as nESS remains close to 1 independent of the
dimension. In the second scenario, the obtained nESS is significantly lower,
which reflects the low flexibility of the model and indicates that the vMFNM
model is not suitable for problems with high correlation coefficients. The
behavior of the GM model is similar for both cases; nESS is close to 1 for
n < 10 and decreases with increase of n due to the quadratic dependence of
the model parameters with n.

Fig. 5 shows the total model evaluations (TME) for the different con-
sidered approaches and the two different scenarios. Fig. 5a shows that the
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(a) (b)

Figure 4: Normalized effective sample size obtained with the vMFNM and GM models
for the bimodal posterior in example 5.1, with (a) and without dependence (b). The
continuous lines show the medians and the shaded areas show the 95% credible intervals
obtained from 100 independent simulation runs.

(a) (b)

Figure 5: Total model evaluations for the bimodal posterior in example 5.1, with (a) and
without dependence (b). The continuous lines show the medians and the shaded areas
show the 95% credible intervals obtained from 100 independent simulation runs.

CEBU and SMC approaches lead to similar TME. This is to be expected
as both approaches are based on the same definition of intermediate target
distributions; CEBU samples from a parametric IS density, while SMC gen-
erates samples from the target distributions with MCMC. Comparing Fig. 5a
with Fig. 5b, the vMFNM model leads to higher TME in the second scenario,
as it requires a larger number of steps to converge to the target ESS. The
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TME of aBUS are above all others for n > 17 in both scenarios.

5.2. Two degree-of-freedom structure

The second example was originally investigated in [11] and consists of a
two-storey building shown in Fig. 6a. The purpose of this example is to in-
vestigate the ability of the CEBU method to estimate posterior distributions
with strong nonlinear dependence. The structure is modeled as a 2 degree
of freedom (DOF) mass-spring-dashpot system. The system is subjected to
a narrow-banded ground acceleration such that only the first eigenmode is
excited. The ground acceleration am,g and the roof acceleration am,r are
measured with a frequency of 50Hz for a period of 1s, which results in 50
pairs of measurements. The measurements am,g are assumed to be perfect,
whereas am,r are assumed to be contaminated with Gaussian white noise and
unknown noise variance σ2

n. The masses of the 2-DOF system are assumed
to be known (m1 = m2 = 1). The uncertain parameters of the model that
are inferred from the measurements are the two stiffness parameters k1 and
k2, the damping ratio ξ, which is assumed to be the same for both DOFs,
and the variance of the noise σ2

n. The likelihood is defined as

Ly(θ) = exp

(
−d
2
ln(σ2

n)−
1

2

∥ar(k1, k2, ξ,am,g)− am,r∥22
σ2
n

)
, (30)

where ar(k1, k2, ξ,am,g) is the simulated acceleration at the roof, given the
excitation am,g at the ground, and d = 50 denotes the number of measure-
ments. This is solved using the Newmark method (e.g., [51]) with the same
time discretization interval as the frequency of available measurements. Un-
correlated uniform priors are used for all random variables:

p0,k1(k) = p0,k2(k) = U(k, [0, 3000]), (31)

p0,ξ(ξ) = U(ξ, [0.01, 0.05]), (32)

p0,σ2
n
(σ2

n) = U(σ2
n, [0, 1]). (33)

The measurements of the roof acceleration are generated using the model
with the true parameter values: k1 = k2 = 1000, ξ = 0.03 and σ2

n = 0.2. The
reference posterior is obtained using rejection sampling similar to [49] with
105 samples. The resulting joint posterior of the stiffness parameters k1 and
k2 has a strongly nonlinear dependence, as depicted in Fig. 6b.
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(a) (b)

Figure 6: a: Two story building subjected to ground acceleration [11]. - b: Sample based
contour plot of the joint PDF of the stiffness parameters k1 and k2.

The CEBU method is run with NS = 3000 samples per level and target
coefficient of variation of the weights set to δtarget = 1. Figs. 7 and 8
show the fitted mixture IS densities for the two stiffness parameters, k1 and
k2, obtained with different number of mixture terms K. Fig. 7 shows that
the GM model leads to a visually adequate representation of the posterior
distribution already with K = 5 mixture terms, whereas K = 10 results
in an almost perfect match. In contrast, the vMFNM model is not able
to accurately represent the posterior, even with K = 10 mixture terms, as
shown in Fig. 8. Although the performance of the model appears to increase
with increase of the number of mixture terms, its limited flexibility does
not allow to capture the full characteristics of the posterior density. This is
related to the fact that the individual mixture components of the vMFNM
cannot capture a strong dependence between the parameters.

The performance of the two models is further investigated by considering
the nESS as a function of the number of mixture terms, which is plotted
in Fig. 9. The plot shows that the nESS of the GM model increases as K
increases and appears to attain a constant value for K > 8. The obtained
nESS is rather high, reflecting the high flexibility of the GM model. The
situation is different for the vMFNM model. Thereby, the nESS shows a slow
increase with K and takes a small value for K = 10, which further indicates
the limitation of the vMFNM model to capture complex dependence.

Fig. 10 shows the behavior of the relative error of the log-marginal like-
lihood estimated with the two distribution models. The GM model results
in accurate estimates even for K = 3, with 95% credible bounds of the er-
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Figure 7: Sample based contour plot of the importance sampling density of the stiffness
parameters k1 and k2, obtained with the GM distribution with different number of mixture
terms, K. Contours of the true posterior distribution are plotted in red.

Figure 8: Sample based contour plot of the importance sampling density of the stiffness
parameters k1 and k2, obtained with the vMFNM distribution with different number of
mixture terms, K. Contours of the true posterior distribution are plotted in red.

ror smaller than 0.05. These bounds become smaller with increase of K.
The vMFNM model results in skewed estimates of the log-marginal likeli-
hood with the median being about 5% off, and wide credible intervals of the
relative error that appear to remain constant for K > 5.

In Tab. 1, we compare the estimated statistics (mean, µ̂, and standard
deviation, σ̂) of the posterior distribution of the model parameters obtained
by the CEBU method with K = 10 with the ones obtained with aBUS and
SMC methods. It can be seen that CEBU-GM, aBUS and SMC result in ac-
curate estimates of the mean of the parameters. A small underestimation is
observed in the estimates from CEBU-vMFNM. The associated uncertainty
(coefficient of variation, c.o.v.) obtained by CEBU-GM is significantly lower
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Figure 9: Normalized effective sample size obtained with the GM and vMFNM distribu-
tions with different number of mixture terms, K, in example 5.2. The continuous lines
show the medians and the shaded areas show the 95% credible intervals obtained from 100
independent simulation runs.

(close to one order of magnitude) compared to both aBUS and SMC. The
c.o.v.’s of the mean estimates obtained by CEBU-vMFNM are higher than
those of aBUS/SMC. Similar observations can be made for the estimates
of the standard deviation of the parameters. The table also compares the
mean and standard deviation (std) of the estimated log-marginal likelihood
obtained by the different approaches. Again, CEBU-GM results in signifi-
cantly lower standard deviation than both aBUS and SMC. The high stan-
dard deviation obtained by the CEBU-vMFNM method is attributed to one
outlier that is observed during the 100 independent runs. As with example
5.1, CEBU-GM and SMC lead to similar TME. The aBUS method requires
about 2500 less TME, indicating that the method converges on average in
approximately one simulation level faster than CEBU-GM/SMC. The TME
of CEBU-vMFNM is significantly higher than the other methods. This is due
to the strict requirement of the target c.o.v. of the weights (or, equivalently,
the target ESS), which results in about double as many levels for convergence
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compared to CEBU-GM/SMC.

Figure 10: Log-marginal likelihood error obtained with the GM and vMFNM models
with different number of mixture terms, K, in example 5.2. The continuous lines show
the medians and the shaded areas show the 95% credible intervals obtained from 100
independent simulation runs.

Table 1: Estimates of the posterior statistics of the model parameters, the log-marginal
likelihood and the total model evaluations for all investigated methods in example 5.2 .
The c.o.v./std of the estimates is obtained from 100 independent simulation runs.

Reference CEBU-GM (K=10) CEBU-vMFNM (K=10) aBUS SMC
µ̂k1 (c.o.v.) 9.48e+02 9.45e+02 (1.44e-02) 8.91e+02 (1.98e-01) 9.40e+02 (9.32e-02) 9.53e+02 (9.50e-02)
µ̂k2 (c.o.v.) 1.45e+03 1.44e+03 (1.06e-02) 1.40e+03 (1.30e-01) 1.46e+03 (8.29e-02) 1.43e+03 (8.16e-02)
µ̂ξ (c.o.v.) 3.05e-02 3.05e-02 (7.85e-03) 3.10e-02 (8.51e-02) 3.03e-02 (4.27e-02) 3.06e-02 (5.28e-02)
µ̂σ2

n
(c.o.v.) 2.83e-01 2.82e-01 (6.14e-03) 2.79e-01 (3.88e-02) 2.83e-01 (2.13e-02) 2.84e-01 (3.06e-02)

σ̂k1 (c.o.v.) 5.86e+02 5.82e+02 (2.53e-02) 4.16e+02 (2.46e-01) 5.67e+02 (1.40e-01) 5.68e+02 (1.52e-01)
σ̂k2 (c.o.v.) 6.31e+02 6.26e+02 (1.81e-02) 5.29e+02 (1.66e-01) 6.24e+02 (8.42e-02) 6.12e+02 (1.13e-01)
σ̂ξ (c.o.v.) 9.50e-03 9.51e-03 (1.33e-02) 8.13e-03 (1.64e-01) 9.43e-03 (7.89e-02) 9.37e-03 (8.99e-02)
σ̂σ2

n
(c.o.v.) 6.08e-02 6.02e-02 (3.25e-02) 5.72e-02 (1.65e-01) 6.07e-02 (6.81e-02) 6.19e-02 (6.69e-02)

log Ẑ (std.) 3.16e+00 3.17e+00 (1.13e-02) 2.76e+00 (2.96e+00) 3.16e+00 (1.57e-01) 3.11e+00 (2.20e-01)
TME (c.o.v.) 17049961 18210 (4.22e-02) 47430 (8.27e-02) 15750 (8.29e-02) 18030 (1.66e-02)
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5.3. Epidemiologic model

We apply CEBU to a real-life problem concerning the evolution of the
coronavirus pandemic (COVID-19) in Germany. The objective of this ex-
ample is to test the method on a real data-set. An extended SIR model
with a single federal intervention [52, 53] is considered, which describes the
evolution of the susceptible (S), infected (I), and removed (R) population
[53]:

dS(t)

dt
= −β(t)I(t)

Np

S(t) (34)

dI(t)

dt
= β(t)

I(t)

Np

S(t)− γI(t)

dR(t)

dt
= γI(t)

S(0) = Np − I0, I(0) = I0, R(0) = 0

In Eq. 34, β is the unknown infection rate that quantifies the progress of
the disease, γ is the removal rate (including recovery and mortality), I0 is the
initial number of infected individuals and Np is the size of the population.
To model an intervention or a series of measures taken by the government,
β is considered to be a piece-wise linear function of time [52]:

β(t) =


β0 t ≤ tint −

τint
2

linear tint −
τint
2

< t < tint +
τint
2

kintβ0 tint +
τint
2

≥ t

, (35)

where β0 ≥ 0 denotes the basic infection rate, kint ≥ 0 is the reduction factor,
tint ≥ 0 is the intervention time and τint ≥ 0 is the duration of transition.

During t ∈
(
tint −

τint
2
, tint +

τint
2

)
a linear transition from β0 to kintβ0 is

assumed.
The SIR model is calibrated using data Î of daily confirmed cases reported

by the Johns Hopkins University [54]. The analysis in this paper considers
data from 1 March to 5 June 2020. The population size for Germany is taken
as Np = 83.2× 106. The likelihood function is given by
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L(θ) =

Np∏
i=1

NB
(
Îi,

[
µNB,i, σ

2
NB,i

])
, (36)

where Îi is the measured number of infections at day ti, following a Negative
Binomial (NB) distribution with mean µNB,i = S(ti−1)− S(ti) and variance

σ2
NB,i = µNB,i +

µ2NB,i

r
. Here r denotes the dispersion coefficient. We assume

uninformative priors for the model parameters θ = (β0, γ, tint, τint, kint, r), i.e.,
the parameters are taken to be independent with lower and upper bounds
given by

p0,β0(β0) = U(β0, [0.1, 0.6]), (37)

p0,γ(γ) = U(γ, [0.07, 0.5]), (38)

ptint(tint) = U(tint, [1, 97]), (39)

p0,τint(τint) = U(τint, [1, 14]), (40)

p0,kint(kint) = U(kint, [0, 3]), (41)

p0,r(r) = U(r, [0, 50× 106]), (42)

Fig. 11 shows the posterior distribution of the model parameters β0, γ, kint
obtained using rejection sampling with 105 samples. It is observed that the
inferred parameters are correlated with marginal PDFs that differ signifi-
cantly from the prior.

We implement CEBU with the GM and vMFNM models as the para-
metric density. The target coefficient of variation of the weights is set to
δtarget = 1 and K = 3 mixture terms are employed. The performance of the
method is assessed by comparing the posterior means of β0, γ and kint, and
the log-marginal likelihood, log Zy, with the ones obtained from the reference
solution (based on 105 samples drawn through rejection sampling), aBUS and
SMC. The simulation results for NS = 500, 2000 and 8000 samples per level
are reported in Tab. 2. Fig. 12 illustrates the marginal likelihood error and
the required number of model evaluations for different values of NS ranging
between 500 and 8000. From Tab. 2, it is observed that the estimates of
the posterior means and marginal likelihood obtained from CEBU improve
with increase in the number of samples per level, however the convergence is
significantly faster for the GM density. The estimates from CEBU-GM with
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Figure 11: Posterior PDF of the basic infection rate β0, removal rate γ and reduction factor
kint: samples drawn from the posterior distribution (upper triangle), marginal distribution
of the individual parameters (diagonal), heat map of the sample approximation of the
posterior distribution (lower triangle).

NS = 2000 agree sufficiently well with the reference solution, whereas for
CEBU-vMFNM a larger NS is required for similar compliance. Furthermore,
the GM density outperforms the vMFNM density in terms of efficiency since
it achieves a lower c.o.v. of the estimates with a significantly smaller number
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of model evaluations. As with example 5.2, the poor performance of CEBU-
vMFNM for this example is attributed to the inability of the vMFNM density
to describe accurately highly correlated posterior PDFs. From Tab. 2, it is
observed that the estimates from aBUS and SMC compare well with the
reference solution and both approaches show broadly similar performance.
In comparison with CEBU-GM, we observe that these methods require a
smaller number of model evaluations, however the corresponding c.o.v. of
the estimates is about one order of magnitude higher. The number of model
evaluations in CEBU-GM is higher than in SMC due to the limited number
of mixture terms used, which cause CEBU-GM to require a larger number of
iterations for convergence to the posterior PDF. The relative performance of
the methods can be further assessed from Fig. 12, where it is seen that the
CE method with the GM density gives a much narrower confidence inter-
val for the marginal likelihood error than other approaches. Fig. 12b shows
that aBUS requires the least number of model evaluations followed by SMC
and CEBU-GM. CEBU-vMFNM requires a much larger number of model
evaluations than the other approaches.

(a) (b)

Figure 12: a: Log-marginal likelihood error for different number of samples per level, NS ,
in example 5.3. - b: Total model evaluations for different number of samples per level,
NS , in example 5.3. The continuous lines show the medians and the shaded areas show
the 95% credible intervals obtained from 100 independent simulation runs.

Finally, in Fig. 13 we show the 95% credible interval and the median of
the posterior predicted number of infected people per day, as obtained from
CEBU-GM, against the data. An acceptable match between the predictions
from CEBU-GM and the real data is observed, with the predicted mean

intervention day,
(
E
[
tint −

τint
2

])
, 2021-03-24, being close to the official first
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Figure 13: Median and 95%-credible interval of the number of infected people per day
predicted by the posterior samples of CEBU-GM (K=3) against the data (red line) of
corona example 5.3

day of lockdown in Germany, which was 2021-03-23. It is noted that we are
aware of the fact that the intervention in our epidemiologic model might be
related to high order effects, which happened before the specific date, since
the data is subjected to some temporal delay of report.

6. Conclusion

We propose an adaptive importance sampling (IS) method for Bayesian
updating of model parameters, in which an effective IS density is determined
using the principle of cross entropy (CE) minimization. A tempering of the
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Table 2: Estimates of the posterior mean of the model parameters, the log-marginal
likelihood and the total model evaluations for all investigated methods, with different
choices of the number of samples per level, Ns, in example 5.3. The c.o.v./std of the
estimates is obtained from 100 independent simulation runs.

Method NS µ̂β (c.o.v.) µ̂γ (c.o.v.) µ̂kint
(c.o.v.) log Ẑ (std.) TME (c.o.v.)

CEBU-GM 500 4.01e-01 (8.58e-02) 2.08e-01 (1.71e-01) 3.97e-01 (1.91e-01) -122.17e+00 (10.75e+00) 6315 (1.16e-01)
2000 4.42e-01 (1.55e-02) 2.36e-01 (3.36e-02) 4.16e-01 (2.64e-02) -116.04e+00 (7.10e-02) 27900 (3.58e-02)
8000 4.46e-01 (1.24e-02) 2.40e-01 (2.38e-02) 4.21e-01 (1.71e-02) -115.99e+00 (4.91e-02) 115520 (3.98e-02)

CEBU-vMFNM 500 4.07e-01 (1.53e-01) 2.07e-01 (3.15e-01) 4.00e-01 (3.96e-01) -147.69e+00 (42.00e+00) 15330 (3.30e-01)
2000 4.25e-01 (1.30e-01) 2.14e-01 (2.79e-01) 3.90e-01 (2.38e-01) -132.05e+00 (22.45e+00) 106860 (2.98e-01)
8000 4.39e-01 (9.51e-02) 2.32e-01 (1.90e-01) 4.16e-01 (1.48e-01) -122.70e+00 (16.81e+00) 698880 (1.72e-01)

aBUS 500 4.28e-01 (1.21e-01) 2.20e-01 (2.69e-01) 3.87e-01 (2.21e-01) -116.47e+00 (1.15e+00) 3785 (8.66e-02)
2000 4.47e-01 (6.46e-02) 2.41e-01 (1.33e-01) 4.19e-01 (1.04e-01) -116.00e+00 (4.52e-01) 14720 (7.36e-02)
8000 4.48e-01 (3.28e-02) 2.43e-01 (6.91e-02) 4.24e-01 (5.44e-02) -116.01e+00 (2.37e-01) 59600 (6.98e-02)

SMC 500 4.34e-01 (1.40e-01) 2.27e-01 (3.03e-01) 3.98e-01 (2.40e-01) -117.71e+00 (1.84e+00) 5150 (7.10e-02)
2000 4.44e-01 (8.81e-02) 2.38e-01 (1.84e-01) 4.14e-01 (1.44e-01) -116.53e+00 (8.26e-01) 20040 (3.75e-02)
8000 4.43e-01 (5.37e-02) 2.37e-01 (1.19e-01) 4.16e-01 (9.59e-02) -116.13e+00 (4.71e-01) 79840 (1.41e-02)

Reference - 4.49e-01 2.43e-01 4.23e-01 -115.98e+00 40740592

likelihood function is introduced to efficiently solve the CE optimization prob-
lem. The implementation of the CE method requires a suitable parametric
IS density. This parametric density is nudged towards the optimal IS density
by an adaptive selection of the tempering parameter based on an effective
sample size criterion. The final IS density obtained from the CE method
is also a good approximation of the posterior probability density function
(PDF) of the uncertain model parameters, and is used to generate posterior
samples by a resampling scheme.

We implement the CE method using the Gaussian mixture (GM) and von
Mises-Fisher-Nakagami mixture (vMFNM) models as the parametric family.
Their performance is investigated in the context of three numerical examples.
In terms of the confidence per run, the proposed method is found to be more
efficient than other existing approaches, such as adaptive Bayesian updating
with subset simulation and sequential Monte Carlo methods. In particular,
the CE method for Bayesian updating using the GM distribution showed
remarkable performance. The vMFNM model is highly efficient for high
dimensional posterior PDFs with independent or weakly dependent marginal
distributions. However, its performance for problems where the posterior
PDF has highly correlated marginals is poor.

As future research, one could explore more flexible parametric importance
sampling densities, like the student-t mixture model or an adapted version
of the vMFNM distribution, in the context of the proposed method. Fur-
thermore, a density based clustering algorithm considering the importance
weights could be tested for the expectation-maximization algorithm for es-

34



timating the parameters of the IS density. Due to the inherently sequential
structure of the proposed method, further applications of the method to
Bayesian filtering problems could be explored, wherein the final IS density
obtained from the CE method could be used as an approximate prior for the
next step. Finally, we note that the proposed method allows full paralleliza-
tion of the likelihood function evaluations. This provides a scope for further
enhancing the efficiency of the method.
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Appendix A. Evaluation of the marginal likelihood in the stan-
dard normal space

Using the relation in Eq. 2 and applying the iso-probabilistic transforma-
tion between the physical space and the standard normal space, one obtains

Zy =

∫
Ly(θ)p0(θ)dθ

=

∫
Ly

(
T−1
ISO(u)

)
p0

(
T−1
ISO(u)

)
|det(J−1

TISO
)|du

=

∫
Ly

(
T−1
ISO(u)

)
ϕ(u)du

(A.1)

as the marginal likelihood, where JTISO
denotes the Jacobian of the trans-

formation TISO. On applying the IS identity to Eq. A.1 with h(u, ν̂T ) as the
IS density, the following relationship is obtained:

Zy =

∫
W (u, ν̂T )h(u, ν̂T )du, (A.2)

where W (u, ν̂T ) =
Ly(T

−1
ISO(u))ϕ0(u)

h(u,ν̂T )
. Here ν̂T denotes the parameter vector

obtained in the final tempering step of the CE method. Zy can then be
estimated in accordance with Eq. 19 using samples from h(u, ν̂T ).
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