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In probabilistic assessments, spatially variable material properties are modeled

with random fields. These random fields can be learned from spatial data by

means of Bayesian analysis. This paper presents analytical expressions for the

Bayesian analysis of hierarchical Gaussian random fields. We model the prior

spatial distribution by a Gaussian random field with normal-gamma distributed

mean and precision and make use of the conjugacy of prior distribution and

likelihood function to find the posterior distribution of the random field param-

eters. We present closed-form expressions for the spatial mean and precision

function of the posterior predictive Student’s t-random field. Furthermore, we

discuss the application of the hierarchical model to non-Gaussian random fields
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1. Introduction1

Setting up an engineering model requires definition of material properties.2

To correctly account for their inherent randomness, such material properties3

are commonly modeled probabilistically. A probabilistic representation with4

random variables is sufficient for modeling materials without or with negligible5

spatial variability. However, in many applications the effects of the spatial6

variability of materials should not be neglected in the modeling process. This is7

the case, e.g., with soil parameters in geotechnical assessments [1], and material8

parameters in assessments of large concrete structures [e.g. 2].9

Spatially variable uncertain quantities can be modeled by random fields10

(RFs). An RF represents a random variable at each point of a spatial domain [3].11

A complete definition of the RF requires specification of the joint distribution12

of the variables corresponding to any collection of points of the spatial domain.13

This is nontrivial in general with the exception of Gaussian and a special case14

of non-Gaussian RFs, termed translation RFs. Translation RFs are RFs that15

can be expressed as functions of Gaussian RFs [4], e.g., a lognormal RF can be16

expressed as the exponential of a Gaussian RF. A Gaussian RF implies that the17

joint distribution for any collection of points is multivariate Gaussian and can18

be completely defined by the first- and second-moment functions [5]. Gaussian19

RFs have well established statistical properties and a variety of methods are20

available for simulating them [e.g. 6].21

RFs can be learned from data through Bayesian analysis [7]. In the gen-22

eral case, such an update needs to be done numerically with methods usually23

based on Monte Carlo sampling, including Markov chain Monte Carlo methods24

[8], sequential Monte Carlo methods [9, 10] and subset simulation [11, 12, 13].25

However, Gaussian RFs enable the use of conjugate priors to learn the RF26

parameters via a closed-form update in a Bayesian analysis [14, 2].27

RFs have been used for a long time in the field of geostatistics for the inter-28

polation of spatial data by means of kriging, which includes Bayesian inference29

of Gaussian RF parameters [e.g. 15, 16]. A comprehensive review of hierarchi-30
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cal Bayesian analysis with spatial data from the viewpoint of geostatistics can31

be found in [17]. More recently, these approaches have gained importance in32

the field of machine learning. They are used for Gaussian process regression,33

which is a versatile surrogate model for random functions with noisy observa-34

tions [18]. In the engineering community, the potential of accounting for spatial35

variability within Bayesian analysis has been recognized especially in the field36

of geotechnical engineering [e.g. 19, 20, 21, 22]. Therein, it is often essential to37

identify site-specific trend functions of soil properties in addition to the inherent38

spatial variability. Recently, attempts have been made to simultaneously learn39

the trend function and autocovariance function with sparse measurements in a40

Bayesian analysis. The approach of [23, 24, 25] applies sparse Bayesian learning41

to learn the trend function of the RF and subsequently draws samples from the42

posterior distribution of the RF parameters through Markov chain Monte Carlo43

methods. The authors of 26 applied Bayesian compressive sampling to repre-44

sent non-homogeneous RFs. This approach does not require the explicit choice45

of a prior RF model. It expresses the RF as a superposition of a set of basis46

functions and evaluates the posterior distribution of the coefficients of these47

functions using sparse measurements. The method has been combined with the48

Karhunen-Loève expansion to obtain realizations of the RF [27, 28, 29], and49

has been recently extended to treat multi-dimensional and cross-correlated RFs50

[30, 31].51

Bayesian approaches have also found their way into other engineering fields,52

e.g., for estimating design values of structural material properties when samples53

are available [32, 33], which is also included in the current European standards54

for constructions (EN 1990) [34].55

The aim of this paper is to present a hierarchical Bayesian model for mate-56

rial properties modeled with Gaussian or translation RFs. Hierarchical Gaus-57

sian Bayesian models have been well developed in the context of Bayesian linear58

regression [e.g. 7] and hierarchical spatial modeling [e.g. 35]. This work ap-59

plies existing results from these fields to derive a comprehensive hierarchical RF60

model that can be used in the context of stochastic material modeling. We make61
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use of the fact that the normal-gamma distribution is the conjugate prior for62

the mean and precision of a Gaussian RF to obtain the posterior distribution of63

the RF parameters. The posterior predictive RF is a non-homogeneous RF with64

Student’s t-marginal distribution. Importantly, given a prior distribution for the65

RF parameters and a chosen autocorrelation function, all steps of the Bayesian66

analysis can be performed in closed form, providing marginal and multivariate67

solutions for the posterior predictive RF model. This property should simplify68

application in practice, especially in engineering domains where accounting for69

spatial variability is currently not common practice. Moreover, we discuss how70

existing approaches for simulation of Gaussian RFs can be applied to gener-71

ate realizations of the derived RF model. The application to situations with72

non-Gaussian translation prior RFs is investigated and for the specific case of73

lognormal prior distribution, the equations for the required transformation are74

given. Furthermore, we discuss the influence of the prior correlation function75

and a posterior point estimate of its parameters. Finally, we show that the76

presented updating approach is a generalization of the Bayesian approach for77

evaluation of characteristic values of EN 1990.78

The structure of the paper is as follows. Section 2 presents the structure79

of the hierarchical RF, followed by a short review of Bayesian analysis and a80

step-by-step presentation of the proposed Bayesian updating procedure. Sec-81

tion 3 applies the method to two examples from different engineering fields82

(geotechnical engineering and structural engineering). A summary and main83

conclusions are given in Section 4. The analytical expressions for updating the84

RF are derived in Appendices A to C and Appendix D describes properties of85

the log-Student’s t-distribution.86

2. Methodology87

In a Gaussian RF X(z), the joint distribution of {X(zi), i = 1, . . . , n} for88

any zi ∈ Ω ⊂ Rd and n ∈ N is jointly Gaussian, with Ω denoting the domain89

of definition of the RF and d the spatial dimension of Ω [5]. This RF is fully90
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described by the spatial functions for the mean value, the variance and the91

autocorrelation. Closed-form solutions are available for the posterior distribu-92

tion of the RF given data M of X [7, 36]. We consider a prior RF for X(z)93

with homogeneous point statistics, i.e., a-priori the RF has constant mean and94

variance. The vector of uncertain hyperparameters is θ = [µX , λX ]
T

, where95

µX is the mean value and λX is the precision (inverse of the variance). The96

assumption of prior homogeneity is a simplification and limits the application97

to cases without a spatial trend of the RF or cases where a homogeneous RF98

X(z) can be obtained from the actual RF by a normalization operation [e.g., 3]99

or by de-trending methods [e.g., 37, 38]. Figure 1 summarizes the investigated

τ

X(z)

µ
X

λ
X

M

Figure 1: The hierarchical RF model to learn X(z) from M. µX and λX are the mean and

precision of the RF X(z) and M is the measurement data. τ is the vector of parameters of

the autocorrelation function.

100

problem setting, where the nodes represent uncertain quantities (the random101

variables and the RF) and the arrows denote the direct dependencies among102

them [e.g. 39]. τ is the vector of correlation parameters, i.e., the parameters of103

the autocorrelation function of the RF. These are initially considered as deter-104

ministic; the estimation of τ from the data M is discussed in Section 2.7. It is105

worth noting that the method can handle arbitrary autocorrelation functions,106

i.e., we do not require the autocorrelation function to depend on the difference107

in location, although in most applications this is a standard choice. The aim108

of the analysis is to learn X(z) conditional on M. The individual steps of the109
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analysis are derived in the following, preceded by a short introduction to the110

basics of Bayesian analysis.111

2.1. Bayesian analysis112

When performing a Bayesian analysis, the first step is setting up a prior joint113

probability density function (PDF) of the parameters θ. The prior PDF f (θ)114

is then updated to the posterior PDF f (θ|M) with data M, by application of115

Bayes’ rule [7]:116

f (θ|M) ∝ f (θ) · L (θ|M) , (1)

where L (θ|M) is the likelihood function, summarizing the information from117

the data M. Note that a single data point Mi may contain various types118

of information, including the measurement outcome, the measurement loca-119

tion or time, the used measurement device and the environmental conditions120

at the time of the measurement. In this paper, we focus on the case where121

M contains spatially distributed measurements of an RF X(z). Hence, each122

Mi includes the measurement outcome xm,i and the corresponding measure-123

ment location zm,i, i.e., Mi = [xm,i, zm,i]. Given a set of n direct measure-124

ments of the RF X(z), M = [M1, M2, . . . , Mn]
T

, with measurement outcomes125

xm = [xm,1, xm,2, . . . , xm,n]
T ⊆ Rn and corresponding measurement locations126

Zm = [zm,1, zm,2, . . . , zm,n]
T ⊆ Rn×d, the joint likelihood is the PDF of X(z)127

at locations Zm conditional on θ:128

L (θ|M) = f (xm; Zm|θ) . (2)

2.2. Prior model129

We consider a Gaussian RF X(z) whose parameter vector θ has a normal-130

gamma (NG) prior, with PDF [e.g. 40, 33, 35]131

f (θ) = NG (µX , λX |µ0, κ0, α0, β0) = N (µX |µ0, κ0λX) · G (λX |α0, β0)

= C0λ
α0− 1

2

X exp
(
−λX

(κ0

2
(µX − µ0)

2
+ β0

))
. (3)
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Γ (·) is the gamma function and C0 is a normalizing constant, given by132

C0 =
βα0

0 κ
1
2
0

Γ (α0) (2π)
1
2

. (4)

The spatial variability of the prior RF is determined by its autocorrelation133

function ρ (z1, z2) [5, 3]. A classical choice for the autocorrelation function134

is the Matérn model, which includes the exponential model and the square-135

exponential model [41, 5, 18].136

2.3. Likelihood function137

The likelihood function for learning the RF X(z) with spatially distributed138

measurements M is given by Equation (2). For the Gaussian RF this translates139

to:140

L (θ|M) =
λ
n
2

X

(2π)
n
2 (det (Rm))

1
2

exp

(
−λX

2
(xm − µX1n) R−1

m (xm − µX1n)
T

)
,

(5)

where Rm is the correlation matrix of the measurement locations with entry141

Rm,i,j calculated as ρ (zm,i, zm,j). 1n denotes a 1× n-vector of ones.142

Uncertainty in the measurement procedure can be accounted for by including143

a measurement error εi. Assuming an additive measurement error yields the144

following relation between the actual value x at location zm,i and the measured145

value xm,i:146

xm,i = x (zm,i) + εi. (6)

The error εi is often modeled by a zero-mean Gaussian random variable with147

standard deviation σε and statistical independence between the measurement148

errors at different locations is assumed. In such case, the methodology presented149

in the following sections is applicable with a minor modification: λX does not150

describe the precision of X(z) but the overall precision of X(z) + ε, i.e.,151

λX =
(
λ−1
X,RF + σ2

ε

)−1

, (7)
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where λX,RF is the precision of X(z). Moreover, the autocorrelation function152

describing the overall variability reads153

ρ (zi, zj) = ρRF (zi, zj) · (1− γε) + δ(i, j) · γε, (8)

where ρRF (zi, zj) denotes the spatial correlation function of X(z) and γε =154

σ2
ελX ∈ (0, 1) is the portion of the overall variance attributed to the mea-155

surement error. δ(i, j) is the Dirac delta function returning 1 if i = j and 0156

otherwise.157

2.4. Posterior distribution of the parameters158

In the general case, Equation (1) needs to be solved numerically, e.g. through159

sampling techniques, due to the intractability of the normalizing constant. How-160

ever, analytical solutions for the posterior distribution are available in some spe-161

cial cases, when using conjugate priors [7, 40]. The chosen NG prior distribution162

and the multivariate Gaussian likelihood of Equation (5) are conjugate. Hence,163

the posterior distribution of θ can be derived analytically and has the same para-164

metric form as the prior, i.e., it is a NG distribution. The Bayesian updating165

simplifies to an update of the parameters of the NG distribution [42, 35]:166

f (θ|M) = NG (µX , λX |µn, κn, αn, βn) = Cnλ
αn− 1

2

X exp
(
−λX

(κn
2

(µX − µn)
2

+ βn

))
,

(9)

where the normalizing constant Cn is given by167

Cn =
βαnn κ

1
2
n

Γ (αn) (2π)
1
2

. (10)
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The parameters of the posterior distribution can be obtained with the following168

set of equations:169

µn =
κ0µ0 + 1nR−1

m x
T
m

κ0 + 1nR−1
m 1T

n

, (11)

κn = κ0 + 1nR−1
m 1T

n, (12)

αn = α0 +
n

2
, (13)

βn = β0 +
1

2

(
xmR−1

m x
T
m +

κ0µ
2
01nR−1

m 1T
n − 2κ0µ01nR−1

m x
T
m −

(
1nR−1

m x
T
m

)2
κ0 + 1nR−1

m 1T
n

)
.

(14)

A derivation of the parameters in Equations (11) to (14) can be found in [7]170

in the context of Bayesian linear regression. For easier accessibility, we provide171

the derivations in Appendix A.172

2.5. Marginal posterior predictive distribution173

Typically, the goal is to make predictions about the quantity of interest174

X. To this end, one needs the posterior predictive distribution of X, which is175

obtained by marginalization of the joint PDF of X conditional on θ and the176

posterior distribution of θ given M. When X is modeled by a single random177

variable and the measurement points are uncorrelated, the posterior predictive178

distribution is given as [33, 19, 7]179

f (x|xm) =

∫
Θ

f (x|θ) f (θ|xm) dθ, (15)

where Θ denotes the domain of definition of θ. The conditional independence180

between X given θ and M does no longer hold when X is modeled as an RF.181

Instead, the posterior and the posterior predictive distribution of X will depend182

on the spatial location z. In RF theory, the PDF of the RF X(z) at location183

z is termed marginal (or first order) PDF of X(z). The marginal posterior184

predictive PDF of X(z), denoted f (x; z|M), is given as185

f (x; z|M) =

∫
Θ

f (x; z|θ,M) f (θ|M) dθ. (16)
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Here, f (x; z|θ,M) is the marginal PDF of X(z) given θ and M, which requires186

an additional updating step. In this step, the prior is the marginal PDF of X(z)187

given θ, f (x; z|θ), which is a Gaussian PDF with parameters µX and λX . The188

posterior PDF f (x; z|θ,M) is again a Gaussian PDF with parameters µ′′z and189

λ′′z, which can be calculated by application of the following updating rules for190

the conditional Gaussian distribution [15, 36, 3]:191

µ′′z = µX +Rz,mR−1
m (xm − µX1n)

T
, (17)

λ′′z = λX
(
1−Rz,mR−1

m R
T
z,m

)−1
, (18)

where Rz,m : Rd → R1×n is a row vector function with element i defined192

as ρ (z, zm,i) with n being the number of measurements and Rm is given by193

Equation (8).194

The integral in Equation (16) can be written as follows:195

f (x; z|M) =

∫ +∞

λX=0

∫ +∞

µX=−∞
N (x|µ′′z, λ′′z)N (µX |µn, κnλX)G (λX |αn, βn) dµXdλX .

(19)

Solution of the integral in Equation (19) results in the following marginal pos-196

terior predictive PDF:197

f (x; z|M) = ft (x|µz,t, λz,t, νt) =
Γ
(
νt
2 + 1

2

)
Γ
(
νt
2

) (
λz,t
πνt

) 1
2

(
1 +

λz,t (x− µz,t)2

νt

)− νt2 − 1
2

,

(20)

where ft (x|µt, λt, νt) denotes the PDF of the Student’s t-distribution with lo-198

cation parameter µt, scale parameter λt and degrees of freedom νt [36].199

The spatial functions for the parameters of the posterior predictive Student’s200

t-distribution are given in closed form by the following expressions:201

µz,t = µn +Rz,mR−1
m (xm − µn1n)

T
, (21)

λz,t =
αn

βn

(
1−Rz,mR−1

m RT
z,m +

(
1−Rz,mR−1

m 1T
n

)2
κ−1
n

) , (22)

νt = 2αn. (23)
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The parameters µn, κn, αn and βn are obtained following the updating rules in202

Equations (11) to (14). A detailed derivation of the parameter update can be203

found in Appendix B.204

2.6. Posterior predictive random field205

The approach presented in Section 2.5 enables predicting the marginal dis-206

tribution of quantity X at any location z ∈ Ω given spatial data M. This is207

useful in cases where the correlation among values of X at different locations208

needs not be accounted for in further predictions [33]. However, in many cases209

the spatial dependence of X is required for predictions. In such cases, the joint210

distribution of X at k different locations is given by the k-th order posterior211

predictive PDF of X (z):212

f (x; Z|M) =

∫
Θ

f (x; Z|θ,M) f (θ|M) dθ. (24)

The posterior distribution for the parameter vector θ is the same as the one213

appearing in Equation (16). The prior distribution of the RF X (z) given θ214

is Gaussian and, hence, f (x; Z|θ) is k-variate Gaussian. Since the updating215

rules for a conditional Gaussian distribution of Equations (17) and (18) can216

be extended to the multivariate case, f (x; Z|θ,M) is also k-variate Gaussian217

with mean vector µ′′Z and precision matrix ΛZ
′′, which can be calculated by the218

following equations [36]:219

µ′′Z = µX1T
k + RZ,mR−1

m (xm − µX1n)
T
, (25)

ΛZ
′′ = λX

(
RZ −RZ,mR−1

m RT
Z,m

)−1
, (26)

where RZ,m : Rk×d → Rk×n is a matrix function with element i, j defined as220

ρ (zi, zm,j). RZ : Rk×d → Rk×k is a matrix function with element i, j defined221

as ρ (zi, zj). Rm is the matrix containing the correlation of the measurement222

locations and a potential measurement error, as introduced in Section 2.3. 1k223

is a 1× k vector of ones.224
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Equation (24) takes the following form:225

f (x; Z|M) =

∫ +∞

λX=0

∫ +∞

µX=−∞
N
(
xz|µ′′Z,ΛZ

′′)N (µX |µn, κnλX)G (λX |αn, βn) dµXdλX .

(27)

The integral in Equation (27) results in the following k-th order posterior pre-226

dictive PDF227

f (x; Z|M) = ft (x|µZ,t,ΛZ,t, νt) =
Γ
(
νt
2 + k

2

)
Γ
(
νt
2

) (det (ΛZ,t))
1
2

(πνt)
k
2

(
1 +

(x− µZ,t) ΛZ,t (x− µZ,t)
T

νt

)− νt2 − k2
.

(28)

where ft (x|µZ,t,ΛZ,t, νt) is the k-variate Student’s t-distribution [43, 36]. As228

in the univariate case, νt is a scalar parameter denoting the degrees of freedom.229

νt is given by Equation (23) and the parameters µZ,t and ΛZ,t are given in230

closed form:231

µZ,t = µn1T
k + RZ,mR−1

m (xm − µn1n)
T
, (29)

ΛZ,t =
αn
βn

(
RZ −RZ,mR−1

m RT
Z,m +

(
1T
k −RZ,mR−1

m 1T
n

)
κ−1
n

(
1T
k −RZ,mR−1

m 1T
n

)T)−1

,

(30)

RZ, RZ,m and Rm follow the definitions for Equations (25) and (26) and the232

parameters µn, κn, αn and βn are obtained following the updating rules in233

Equations (11) to (14). The analytical expressions for the parameters of the234

multivariate posterior predictive Student’s t-distribution are derived in detail in235

Appendix C.236

The multivariate Student’s t-distribution as predictive distribution for the237

multivariate Gaussian distribution also appears in Bayesian regression for the238

normal linear model [35, 7, 44]. In fact, the presented model forms a special239

case of weighted linear Bayesian regression with a single explanatory variable.240

Equation (28) can be used for multivariate predictions of X accounting for241

the information in M. It is noted that for k = 1, Equation (28) reduces to the242

expression for the marginal posterior predictive Student’s t-distribution given243
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in Equation (20), accordingly Equations (29) and (30) reduce to Equations (21)244

and (22).245

Equations (29) and (30) can be directly transformed to the spatial parameter246

functions of the posterior predictive RF, i.e., the mean function µt(z) and the247

precision function λt (z1, z2):248

µt(z) = µn +Rz,mR−1
m (xm − µn1n)

T
, (31)

λt (z1, z2) =
αn
βn

(
ρ (z1, z2)−Rz1,mR−1

m R
T
z2,m +

(
1−Rz1,mR−1

m 1T
n

)
κ−1
n

(
1−Rz2,mR−1

m 1T
n

))−1
,

(32)

where ρ (z1, z2) is the prior correlation of z1 and z2. Rz,m and Rm are utilized249

as in Equations (17) and (18). The posterior predictive RF is fully defined by250

the parameters specified by Equations (23), (31) and (32).251

2.7. Choice of correlation parameters252

The choice of the prior autocorrelation function ρ (z1, z2) has significant in-253

fluence on the predictive distribution of the proposed RF model; it controls the254

spatial variability of the prior RF and the correlation of the measurement loca-255

tions in Rm. Hence, the autocorrelation function and its parameters need to be256

chosen carefully. Although literature is available on different parametric corre-257

lation models, their advantages and disadvantages [e.g. 5, 41, 45], the specific258

parameter choice for a problem at hand remains challenging if little informa-259

tion about the modeled quantity is available. This problem can be addressed260

by treating the vector τ of correlation parameters as a random vector with261

associated prior distribution f(τ ). The dependency between τ and the multi-262

variate posterior predictive distribution can be expressed explicitly by extending263

Equation (24) as follows:264

f (x; Z|M, τ ) =

∫
Θ

f (x; Z|θ,M, τ ) f (θ|M, τ ) dθ. (33)

f (x; Z|M) can then be determined by marginalization of f (x; Z, τ |M):265

f (x; Z|M) =

∫
T

f (x; Z, τ |M) dτ =

∫
T

f (x; Z|M, τ ) f (τ |M) dτ , (34)
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with T denoting the domain of definition of τ . Figure 2 illustrates the adapted266

hierarchical Bayesian model where τ is considered as additional uncertain pa-267

rameter, in contrast to the deterministic choice illustrated in Figure 1. The

X(z)

µ
X

λ
X τ

M

Figure 2: Adapted hierarchical Bayesian model to consider τ as uncertain parameter. The

dependence of the resulting RF model on τ can be integrated out when τ is modeled as

random vector.

268

closed-form updating procedure for the posterior predictive expressions can only269

be used to find f (x; Z|M, τ ). Direct evaluation of Equation (34) can be cum-270

bersome or even impossible, as it requires evaluation of f (τ |M), which depends271

on the choice of the correlation model and most likely cannot be evaluated in272

closed form.273

Through application of Bayes’ theorem, f (τ |M) is given by the following274

expression:275

f (τ |M) ∝ f(τ ) · f (M|τ ) . (35)

Including the dependency on τ in the definition of the likelihood function of276

Equation (2) gives277

L (θ|M, τ ) =
λ
n
2

X

(2π)
n
2 det (Rm (τ ))

exp

(
−λX

2
(xm − µX1n) (Rm (τ ))

−1
(xm − µX1n)

T

)
.

(36)

f (M|τ ) is the proportionality constant in f (θ|M, τ ) ∝ f (θ) ·L (θ|M, τ ), hence278

f (M|τ ) =
f (θ) · L (θ|M, τ )

f (θ|M, τ )
. (37)
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Note that θ and τ are independent and thus, f (θ|τ ) = f (θ). f (θ|M, τ ) is the279

posterior PDF of θ for a given τ , which is a NG PDF with parameters given in280

Section 2.4. Splitting the densities and their respective normalizing constants281

in Equation (37) gives282

f (M|τ ) =
C0
Cn (τ )

· (2π)
−n2 det (Rm (τ ))

− 1
2
f̂ (θ) · L̂ (θ|M, τ )

f̂ (θ|M, τ )
, (38)

where C0 and Cn are defined in Equations (4) and (10). f̂ (θ) and f̂ (θ|M, τ )283

are the unnormalized prior and posterior NG distributions. L̂ (θ|M, τ ) is the284

exponential term of the likelihood function and is equal to the ratio of f̂ (θ|M, τ )285

and f̂ (θ) (cf. Appendix A). Thus, the fraction disappears in Equation (38).286

Inserting the expressions for C0 and Cn into Equation (38) yields287

f (M|τ ) =

(
κ0

κn (τ )

) 1
2 Γ (αn)βα0

0

Γ (α0) (βn (τ ))
αn (2π)

−n2 det (Rm (τ ))
− 1

2 . (39)

Using Equation (39), sampling from f (τ |M) can be achieved, e.g. by using288

Markov chain Monte Carlo methods [8]. These samples τi, i = 1, . . . , NMCMC289

can then be used to approximate f (x; Z|M):290

f (x; Z|M) ≈ 1

NMCMC

NMCMC∑
i=1

f (x; Z|M, τi) . (40)

Alternatively, the posterior distribution of τ can be approximated by its291

maximum a-posteriori (MAP) estimate [46]. That is, Equation (34) is approxi-292

mated by293

f (x; Z|M) ≈ f (x; Z|M, τ ∗) , (41)

where τ ∗ is the MAP estimate of τ . It is found by maximizing Equation (35)294

with respect to τ . Using Equation (39), this is equivalent to solving the following295

optimization problem:296

arg maxτ∈T f (τ |M) = arg minτ∈T ln (κn (τ )) + 2αnln (βn (τ )) + ln (det (Rm (τ )))− 2ln (f(τ )) ,

(42)

where κn, αn and βn follow the definitions in Section 2.4 conditional on τ .297
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The parametric form of the correlation model can be chosen among a set298

of models by means of Bayesian model selection. To this end, the marginal299

likelihood, i.e., the normalizing constant of Eq. (35), must be evaluated for the300

different parametric model choices and multiplied with the prior beliefs in the301

models [47].302

2.8. Extension to non-Gaussian prior random fields303

The presented Bayesian approach is applicable to Gaussian prior RFs and304

data assigned with additive Gaussian measurement error. Its applicability can305

be extended to the class of so-called translation RFs, defined as [4, 48]306

Y (z) = T (U (z)) , (43)

where U (z) is a zero-mean and unit-variance Gaussian RF. If the marginal307

cumulative distribution function (CDF) of the non-Gaussian RF FY ;z(y(z)) is308

given and it is strictly increasing, one can define the transformation of Equation309

(43) as T (·) = F−1
Y ;z(Φ(·)), with F−1

Y ;z(·) denoting the inverse of FY ;z(·) and Φ(·)310

the standard normal CDF [49]. U (z) is obtained from Y (z) by inversion of311

Equation (43):312

U (z) = T−1 (Y (z)) . (44)

To apply the proposed hierarchical Bayesian approach to the non-Gaussian313

RF Y (z), each measurement outcome ym,i transformed to the Gaussian space314

through Equation (44) should be associated with an additive Gaussian error.315

This can be equivalently stated as follows:316

ym,i = T (u (zm,i) + εi) , (45)

where εi is a zero-mean Gaussian measurement error. A special case is a log-317

normal RF Y (z) with parameters µlnY and λlnY and a multiplicative lognormal318

measurement error, i.e., ym,i = y (zm,i) · εy,i. In such case, Equations (43) and319
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(45) can be rewritten as functions of a Gaussian RF X (z):320

Y (z) = exp (X (z)) , (46)

ym,i = exp (x (zm,i) + εi) = exp (x (zm,i)) · exp (εi) = exp (x (zm,i)) · εy,i.

(47)

µlnY and λlnY are the mean value and precision respectively of the underlying321

Gaussian RF X (z) including the precision of the measurement error, i.e., µX =322

µlnY and λX = λlnY . As defined in Section 2.3, λX is given as the overall323

precision of X (z) + ε. The error term εy,i follows a lognormal distribution with324

median 1. Its parameters are µlnε = 0 and λlnε = λX
γε

, which are mean value and325

precision respectively of the underlying Gaussian measurement error. γε has to326

be chosen accordingly to reflect the contribution of ε to the overall variance of the327

underlying Gaussian random field. That is, the hierarchical Bayesian approach328

is directly applicable by a simple logarithmic transformation of the data and329

the measurement error. After the updating procedure, the posterior predictive330

RF can be transformed back to the original space by applying Equation (46).331

The transformed marginal distribution of the posterior predictive RF has the332

form of a log-Student’s t-distribution. This distribution model is used in finance333

for the pricing of options [50, 51] and belongs to the family of log-symmetric334

distributions [52]. The marginal PDF of the posterior predictive RF is defined335

as follows:336

f (y; z|M) = ft,ln (y|µz,t, λz,t, νt) = y−1 Γ
(
νt
2 + 1

2

)
Γ
(
νt
2

) (
λz,t
πνt

) 1
2

(
1 +

λz,t (ln (y)− µz,t)2

νt

)− νt2 − 1
2

.

(48)

The finite-dimensional PDF can be derived in a similar manner. It is noted that337

the log-Student’s t-distribution has divergent integer moments of any order. A338

short proof of this can be found in Appendix D. The parametrization of Y (z)339

conditional on M is done by means of µz,t, λz,t and νt, i.e., in terms of the340

parameters of the underlying Student’s t-RF X (z). For νt → ∞, ft,ln (yz|M)341

converges to a lognormal distribution with location parameter µz,t and scale342

parameter λ
− 1

2
z,t .343
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2.9. Sampling the posterior predictive random field344

The finite-dimensional distribution of the posterior predictive RF is the345

multivariate Student’s t-distribution with parameters µZ,t,ΛZ,t and νt. The346

posterior predictive random vector X(Z) corresponding to locations Z can be347

expressed as follows [43]:348

X(Z) =
U (Z)√

V
νt

+ µZ,t, (49)

where U(Z) is a zero-mean Gaussian random vector with precision matrix ΛZ,t.349

V is a random variable that follows the chi-square distribution with νt degrees350

of freedom and is independent of U(Z). Replacing U(Z) in Equation (49) by351

U(z), a zero-mean Gaussian RF with spatial precision function λt (z1, z2) as352

given by Equation (32), and furthermore replacing µZ,t by µt(z), the spatial353

function for the mean value defined in Equation (31), yields the corresponding354

expression for the posterior predictive Student’s t-RF. Hence, the Student’s t-355

RF X(z) can be expressed as a function of a Gaussian RF and one additional356

independent chi-square random variable. In case of sampling from a translation357

RF Y (z), the transformation of Equation (43) has to be adapted accordingly.358

Samples from U(z) can be generated by a variety of existing methods [e.g. 6].359

2.10. Connection to the Bayesian approach of EN 1990360

Annex D.7 of EN 1990 (Eurocode 0) on the basis of structural design of-361

fers a method to determine design values for material properties when samples362

are available [34]. The samples are used to estimate a quantile value of the363

underlying probability distribution, the so-called characteristic value. This ap-364

proach distinguishes between the cases where (a) mean and variance of the365

material property are unknown and (b) only its variance is unknown. In case366

(a), the characteristic value can be estimated based on the sample mean, sam-367

ple standard deviation and the number of samples n. The underlying theory368

is a Bayesian approach and the calculated value is the 5% quantile value of369

the posterior predictive distribution [33, 2]. We show in the following that the370
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hierarchical approach presented in this paper is a generalization of case (a) in371

Annex D.7 of EN 1990.372

We consider a material property X that follows a normal distribution with373

unknown parameters θ and that a set of samples xm = [xm,1, xm,2, . . . , xm,n]
T

374

are available. If no prior information about f (θ) is available, a non-informative375

choice can be made by choosing aNG distribution with the following parameters376

[42]:377

[µ0, κ0, α0, β0] =

[
/, 0,−1

2
, 0

]
, (50)

resulting in f (θ) = λ−1
X .378

Furthermore, we assume independence of the random variables correspond-379

ing to the measurement locations and neglect the measurement error, i.e., Rm =380

I. This leads to a simplification of Equations (11) to (14):381

µn =
1nx

T
m

n
=

1

n

n∑
i=1

xm,i, (51)

κn = n, (52)

αn =
n− 1

2
, (53)

βn =
1

2

(
xmx

T
m −

(
1nx

T
m

)2
n

)
=

1

2

n∑
i=1

(xm,i − µn)
2
. (54)

If one neglects the dependence between the measurements and the RF at the382

predictive locations, the posterior predictive distribution f (x|xm) is obtained383

following Equation (15) and is space-invariant. It is a Student’s t-distribution384

with the following parameters:385

µt = µn =
1

n

n∑
i=1

xm,i, (55)

λt =
αn

βn
(
1 + κ−1

n

) =
n(n− 1)

(n+ 1)
∑n
i=1 (xm,i − µn)

2 , (56)

νt = 2αn = n− 1. (57)
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The characteristic values in the method in EN 1990 are defined as 5% quan-386

tile values of a Student’s t-distribution with parameters given by Equations (55)387

to (57). An additional transformation step is added for ease of use, in which388

the Student’s t-distributed random variable X is normalized:389

Ut = (X − µt)λ
1
2 , (58)

where Ut follows the standard Student’s t-distribution with νt degrees of free-390

dom, i.e., µt = 0 and λt = 1. This normalization allows the use of standardized391

coefficients (kn values), which only depend on n:392

kn = −F−1
Ut

(p)

√
n+ 1

n
, (59)

where F−1
Ut

(·) is the inverse CDF of Ut and p = 0.05, since the characteristic393

value xk is defined as the 5% quantile value. Using the kn value, xk is obtained394

as follows:395

xk = µ̄X
(
1− knδ̄X

)
, (60)

where µ̄X = 1
n

∑n
i=1 xm,i is the sample mean and δ̄X = µ̄X

σ̄X
is the sample396

coefficient of variation with σ̄X = 1
n−1

∑n
i=1 (xm,i − µ̄X)

2
. EN 1990 provides397

tabulated values of kn for varying n.398

The method in EN 1990 also covers the case when the material property399

Y follows a lognormal distribution and ym = [ym,1, ym,2, . . . , ym,n]
T

are the400

available samples. In this case, the Bayesian analysis underlying the method401

is conducted as described above for the Gaussian random variable X = ln(Y )402

with the logarithmic samples xm,i = ln(ym,i), i = 1, . . . , n. The posterior403

predictive distribution f (y|ym) is a log-Student’s t-distribution parameterized404

in terms of the parameters of the underlying Student’s t-distribution given by405

Equations (55) to (57). The characteristic value yk is the 5% quantile value of406

f (y|ym), which is equivalent to the exponential of the 5% quantile value of the407

underlying Student’s t-distribution. Thus, yk can be calculated as408

yk = exp
(
µ̄X
(
1− knδ̄X

))
, (61)

20



where µ̄X and δ̄X are the sample mean and sample coefficient of variation of409

the logarithmic samples and kn is given by Equation (59).410

In a nutshell, the method in Annex D.7 of EN 1990 to determine charac-411

teristic values for the design of structures is a special case of the presented RF412

analysis, which assumes a non-informative prior distribution, independent mea-413

surements without measurement error and independence between measurement414

locations and the material parameter at the predictive locations.415

3. Numerical examples416

In this section, the proposed approach is applied to two numerical examples.417

The first one involves a one-dimensional RF of a geotechnical material, while418

the second one models the concrete compressive strength of a ship lock wall419

with a two-dimensional anisotropic RF.420

3.1. Tip resistance of cohesive soil421

Soil parameters are often determined based on measurements from cone422

penetration testing (CPT). In CPT, the tip resistance qT measures the force423

required to push the cone through the soil and can be used to infer further424

soil parameters. In this example, data from a CPT is used, where the tip425

resistance of a cohesive soil layer was measured in depths from z = 3.900 m to426

z = 10.275 m resulting in 256 equidistant measurements of the tip resistance.427

The data is taken from [53] and was also used by Wang and Zhao to illustrate428

the performance of Bayesian compressive sampling when sparse data is available429

[26]. The tip resistance is modeled by the one-dimensional RF qT (z) in vertical430

direction with lognormal prior marginal distribution. Hence, the transformation431

of Equation (46) is applied:432

qT (z) = exp (X (z)) . (62)

The underlying prior RF X (z) is a homogeneous Gaussian RF with unknown433

mean value µX and unknown precision λX . The prior autocorrelation function434
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is modeled by the exponential model with unknown correlation length lc:435

ρ (zi, zj) = exp

(
−|zj − zi|

lc

)
(63)

Furthermore, no prior information on µX or λX are available and thus a non-436

informative prior NG distribution is chosen with the parameters from Equa-437

tion (50).438

It is assumed that knowledge of the full data set is not available but only a439

subset of 13 measurement values taken at equidistant locations, as illustrated by440

the blue dots in panel a) of Figure (3). It is assumed that the measurements are441

associated with a multiplicative lognormal measurement error, where the por-442

tion of the total variance attributed to the transformed Gaussian measurement443

error is given as γε = 0.01. In a first step, the MAP estimate for lc is obtained444

by solving the minimization problem of Equation (42), where the vector τ only445

consists of lc. A uniform prior on the positive numbers is employed for lc and446

hence the term ln (f(τ )) in the optimization problem can be dropped and the447

MAP estimate reduces to a maximum likelihood estimate [54]. The resulting448

estimate for lc is obtained as l∗c = 0.74 m.449

Consequently, the posterior parameters of the NG distribution are obtained450

by application of Equations (11) to (14) in combination with Equation (47) to451

account for the log-transformation of the measurements. The spatial parameter452

functions of the posterior predictive Student’s t-RF are calculated by means453

of Equations (31) and (32). From Equation (23) the degrees of freedom are454

calculated as νt = 12. These are the parameters of the RF qT (z) given M, which455

has log-Student’s t-marginal distribution with PDF given by Equation (48). As456

the moments are not defined, the illustration in panel a) of Figure (3) shows the457

median of the posterior predictive tip resistance and the corresponding 5% and458

95% quantile values along the depth of the soil layer. The increasing width of the459

orange area shows that the uncertainty is very small close to the measurement460

locations and increases away from the measurements. The full data set of 256461

measurements is indicated by a black dotted line. Panel b) of Figure 3 shows462

three independent realizations of the posterior predictive RF. Comparison of the463
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Figure 3: Posterior predictive RF of the tip resistance qT. Panel a) shows the median (red

line) and the two-sided 90% credible interval, i.e., the area between the 5% and 95% quantile

value (orange area) of the marginal log-Student’s t-distributions. The 13 blue dots mark the

used measurement locations and values while the full data set is illustrated by the dotted

black line. Panel b) shows three independent realizations of the posterior predictive RF in

comparison to the two-sided 90% credible interval in gray.

random realizations with the full data set shows good accordance regarding the464

number and amplitude of strong local deviations from the posterior predictive465

median. Hence, the proposed approach can sufficiently approximate both the466

overall trend of the RF and the associated uncertainty.467

To illustrate the influence of the number of measurements on the posterior468

prediction, the above calculations are repeated for n = 6 and n = 64 equidis-469

tant measurements. Figure 4 illustrates the measurement values and locations470

by blue dots in panel a) and panel c), respectively. For n = 6, the MAP op-471

timization results in l∗c,6 = 3.89 m and for n = 64 it gives l∗c,64 = 1.17 m. This472

large difference in the MAP estimates is due to the assumed uninformative prior473

distribution for the correlation length, in which case, the MAP estimate only474

depends on the data. Large differences in the data can lead to significant varia-475

tion in the estimated correlation length. The median and corresponding 5% and476

95% quantile values of qT (z) are illustrated in panel a) and c), respectively of477

Figure 4. Comparison to Figure 3 shows that with increasing amount of data,478
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Figure 4: Posterior predictive RF of the tip resistance qT for n = 6 (panel a) and b)) and

n = 64 (panel c) and d)). Panel a) and c) show the median (red line) and the two-sided 90%

credible intervals of the marginal log-Student’s t-distributions. The blue dots mark the used

measurement locations and values while the full data set is illustrated by the dotted black

line. Panel b) and c) each show three independent realizations of the posterior predictive RF

in comparison to the two-sided 90% credible intervals in gray.

the uncertainty, i.e., the variability of qT (z) is reduced. However, even with479

a small amount of data (n = 6), the global trend of the tip resistance can be480

predicted and the location-specific information can be used efficiently to set up481

an RF model. The large variability in the areas between the measurements is482

illustrated by three independent realizations in panel b) of Figure 4. When the483

amount of data is relatively large (n = 64), the remaining uncertainty in the484

tip resistance becomes comparatively small and random realizations of the RF485

do not differ significantly from the full data set, as can be seen in panel d) of486

Figure 4.487

Figure 5 plots f (lc|M) with the MAP estimate l∗c = 0.74 m located at the488

mode of f (lc|M). It appears that, although the posterior distribution has a489

distinct mode, it covers a broad range by remaining relatively flat for increasing490

values of lc. This is caused by the uniform prior distribution for lc and shows491

that such a uniform prior can lead to an improper posterior distribution of the492

correlation length. While this is not a problem when using MAP, it is an issue493
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Figure 5: Posterior distribution of the correlation length f (lc|M) as function of the correlation

length lc and the corresponding MAP estimate l∗c .

when the full posterior distribution of lc is to be used. In such cases, a different494

prior distribution should be chosen.495

3.2. Concrete compressive strength of a ship lock wall496

In this example, we investigate the concrete compressive strength fc of a497

ship lock wall made of tamped concrete in the 1920s. The length of the wall is498

105 m and the height of the tamped concrete layer is 8 m, the third dimension499

is not taken into account for this study. 24 measurements of fc are available500

from three vertical core samples taken at the quarter points of the wall [2]. The501

situation is illustrated in Figure 6 and the measurement data and corresponding502

locations are shown in Table 1. We assume that the measurements are associated503

with a multiplicative lognormal measurement error with coefficient of variation504

CVε = 0.025.

26.25 m 26.25 m 26.25 m 26.25 m

8 
m

105 m

C1 C2 C3
z1

z2

Figure 6: Ship lock wall with a total length of 105 m and a total height of 8 m made of

tamped concrete from the 1920s. Three vertical core samples (C1, C2 and C3) were taken at

the quarter points of the wall indicated by the three dashed lines.

505

Applying the transformation of Equation (46), the logarithm of fc is modeled506
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Table 1: Measurements of the concrete compressive strength fc and the corresponding mea-

surement locations of 24 specimens from 3 vertical core samples (C1, C2 and C3) in the quarter

points of the ship lock wall.

Core sample C1 Core sample C2 Core sample C3

z1 [m] z2 [m] fc,m [MPa] z1 [m] z2 [m] fc,m [MPa] z1 [m] z2 [m] fc,m [MPa]

0.40 29.2 0.21 21.2 0.34 18.5

1.24 15.5 1.25 16.0 1.34 10.3

2.25 8.7 2.05 32.0 2.17 13.2

26.25
3.15 12.3

52.5
3.33 20.7

78.75
3.24 14.5

4.12 16.2 4.15 13.8 4.27 25.4

5.33 11.6 5.25 12.1 5.12 14.5

6.15 13.4 6.40 8.6 6.23 13.2

7.05 13.9 7.45 14.8 7.08 33.0

with a two-dimensional Gaussian RF with non-informative prior NG distribu-507

tion (cf. Equation (50)).508

Typically, massive concrete structures made of tamped concrete from that509

time have been built in layers [55]. Hence, we employ a transverse anisotropic510

exponential correlation function, where the correlation length lc,1 in direction511

z1 differs from the correlation length lc,2 in direction z2 [56]:512

ρ (zi, zj) = exp

(
−

√
(∆1 (zi, zj))

2

l2c,1
+

(∆2 (zi, zj))
2

l2c,2

)
, (64)

where ∆1 (zi, zj) and ∆2 (zi, zj) denote the canonical distances of zi and zj513

in directions z1 and z2 respectively. Assuming a uniform prior on lc,1 and lc,2514

results in the following MAP estimate for the two correlation lengths:515

l∗c =
[
l∗c,1, l

∗
c,2

]
= [1.54 m, 0.58 m] (65)

These values are used in the Bayesian updating to obtain the posterior predic-516

tive RF for fc. As the marginal posterior predictive PDF is a log-Student’s t-517

distribution, the moments cannot be evaluated and thus, Figure 7 illustrates the518

median (panel a)) and the corresponding 5% quantile value (panel b)) of fc(z)519
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a) Median of the posterior predictive concrete compressive strength

b) 5% quantile value of the posterior predictive concrete compressive strength
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m
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20
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CA B
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Figure 7: Posterior predictive median (panel a)) and 5% quantile value (panel b)) of the

concrete compressive strength fc of a ship lock wall obtained with data from three vertical

core samples (n = 24 measurements of the concrete compressive strength). The median and

5% quantile value at points A, B and C are listed in Table 2.

given M across the ship lock wall. The measured values and the information520

about their location are clearly reflected, as regions close to low measurement521

values show low median and 5% quantile values, and regions close to high mea-522

surement values show higher median and 5% quantile values. This is illustrated523

by the example of three points (A, B and C) at different locations of the ship524

lock wall, where the median and 5% quantile values have been extracted and525

listed in Table 2. Point A, located close to a low measurement value, features

Table 2: Median (50% quantile value, fc,0.5) and 5% quantile value (fc,0.05) of the marginal

posterior predictive concrete compressive strength at three different locations (A, B and C)

of the ship lock wall.

z1 [m] z2 [m] fc,0.5 [MPa] fc,0.05 [MPa]

Point A 25.95 2.5 10.7 6.6

Point B 37.25 5.3 15.9 8.2

Point C 78.3 6.85 23.1 14.1

526

a posterior median of 10.7 MPa and a 5% quantile value of 6.6 MPa, both of527

which are significantly lower than those at point C with a median of 23.1 MPa528

and a 5% quantile value of 14.1 MPa. Contrary to point A, point C is located529

close to a high measurement value (cf. Table 1). The median of 15.9 MPa and530
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5% quantile of 8.2 MPa at point B are representative values for all locations far531

away from the measurements, i.e., all points with negligible spatial correlation532

to any measurement location.533

Section 2.10 demonstrates the connection of the proposed RF approach and534

the established Bayesian approach in EN 1990. Next, we compare this approach535

to the results of the proposed hierarchical RF model using the data of Table 1.536

The mean and standard deviation of the log-transformed measurement values537

are µ̄X = 2.75 and σ̄X = 0.37 with a corresponding kn value of kn(nm = 24) =538

1.75. Applying Equation (61) gives a characteristic value (5% quantile value) of539

fc,k = 8.2 MPa. This value matches the 5% quantile value at locations without540

spatial correlation to the measurement points (cf. point C in Table 2). We note541

that this congruence depends on the chosen prior parameters of the RF and,542

thus, is the exception, not the rule.543

The correlation length is an important parameter in any RF model. To544

illustrate this, the Bayesian analysis has been carried out for lc = 0.5l∗c and lc =545

2l∗c . The resulting marginal median of fc(z) in the area around the core sample546

C2 is illustrated in Figure 8. Obviously, the larger the correlation length, the547

bigger the area that is influenced by the spatial correlation to the measurements.548

For lc = 0.5l∗c the spatial effect of the measurements on the median is restricted549

to a domain of length ≈ 2 m, wheres for lc = 2l∗c this effect spans over a length550

of ≈ 10 m. It is mentioned that this is the effect of the final step of the Bayesian551

approach, where the posterior predictive distribution is obtained. The whole552

RF is influenced by the data and the chosen correlation length by the global553

posterior parameters of the NG distribution, as can be seen by the different554

median values of fc(z) at locations Da, Db and Dc indicated in Figure 8. These555

locations are chosen exemplarily for all points with negligible spatial correlation556

to any measurement location. For lc = 0.5l∗c the median is 15.7 MPa and for557

lc = 2l∗c it is 16.3 MPa, compared to 15.9 MPa when lc = l∗c .558

When employing the MAP procedure to approximate f (τ |M), it is impor-559

tant to be aware of the sensitivity of the estimate and the amount of information560

provided by the data. In this example, the vertical distance of the measurement561
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Figure 8: Posterior predictive median of the concrete compressive strength of a ship lock wall

in the area around core sample C2 obtained with varying correlation lengths.
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Figure 9: Two-dimensional posterior distribution of the correlation lengths in z1 (horizontal)

and z2 (vertical) direction, f (lc|M). The maximum of f (lc|M) is located at lc,1 = 1.54 m

and lc,2 = 0.58 m, which is equivalent to the MAP estimate l∗c .

locations is relatively small while the horizontal distance is either 0 or very large.562

Hence, the MAP estimate for lc,1 is subject to larger uncertainty than the MAP563

estimate for lc,2, which is illustrated in Figure 9. While f (τ |M) has a distinct564

maximum in direction lc,2 at lc,2 = 0.58 m, it is relatively flat in direction lc,1. In565

fact, any lc,1 smaller than 5 m is approximately equally likely given the data at566

hand. Only for lc,1 > 5 m the measurements of different core samples are notice-567

ably correlated. This behavior is of special interest when no prior information568

on the correlation length is assumed, since in such case the MAP estimate is569

only controlled by the data. In general, learning the correlation length from570

limited amount of data is not a trivial task, especially if no prior information on571

the RF parameters is available. In a study on the correlation length of soil pa-572

rameters, a minimum of 5 measurement values within one correlation length are573

recommended for learning the correlation length of the exponential correlation574

model [57].575
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4. Conclusion576

This paper presents a comprehensive hierarchical Bayesian approach to model577

random material properties with spatially distributed data. It is based on mod-578

eling a Gaussian random field assuming a normal-gamma prior distribution on579

its parameters. Closed-form expressions for the posterior normal-gamma dis-580

tribution of the parameters of the random field are derived by making use of581

the conjugacy of the normal-gamma distribution and a multivariate Gaussian582

likelihood function. Subsequently, closed-form expressions for the spatial pa-583

rameter function of the posterior predictive random field are derived, resulting584

in a non-homogeneous Student’s t-random field. That is, the marginal distribu-585

tion of the posterior predictive random field is a Student’s t-distribution with586

location-specific parameters.587

Sampling from such a random field can be achieved by expressing the Stu-588

dent’s t-random field in terms of a Gaussian random field and one additional589

chi-squared random variable. For estimating the correlation parameters, a maxi-590

mum a-posteriori estimation approach is proposed that accounts for the available591

data and potential prior information. In addition, an extension of the approach592

to non-Gaussian translation prior random fields is discussed and closed-form593

expressions for the case of a lognormal marginal prior distribution are derived.594

The applicability of the presented approach to different engineering fields is595

illustrated by two examples, one from the field of geotechnical engineering and596

one from structural engineering. The derived posterior random field models597

reflect the location-specific information from the measurements, whereas their598

uncertainty increases with increasing distance from the measurement locations.599

Furthermore, it is demonstrated that the uncertainty can be reduced by in-600

creasing the amount of data. The spatial fluctuation of the posterior random601

field is sensitive to the choice of the correlation length parameter. When no602

information is available on the prior autocorrelation function, the maximum603

a-posteriori estimate for the correlation length is sensitive to the measurement604

data and should be handled with care, especially in the case where limited data605
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is available.606

A measurement error can be included to account for uncertainty in the mea-607

surements, in which case the variance contribution of the error to the total608

random field variance needs to be specified. This contribution can be learned609

from the data in a similar way as the parameters of the correlation model, which610

remains a topic of future investigations.611

The presented modeling approach can be extended to account for a trend612

function in the prior random field parameters. A trend in the prior mean can613

be included by employing a linear basis function model, similar to the work614

of [23]. A parametric dependence can also be included in the prior precision615

parameter, which leads to a model known as weighted Bayesian linear regression616

[7]. Investigation of these models in the context of material modeling is left to617

future studies.618
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Appendix A. The posterior normal-gamma distribution626

The posterior parameters of the normal-gamma distribution for the param-627

eter vector θ = [µX , λX ]
T

, as specified in Equations (11) to (14) are derived in628

the following.629

According to Bayes’ theorem, the posterior distribution f (θ|M) is propor-630

tional to the product of prior distribution f (θ) and likelihood L (θ|M), which631

are defined in Equations (3) and (5). Using the normal-gamma prior distribution632
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and the multivariate Gaussian likelihood gives the following expression:633

f (θ|M) ∝ λα0+n
2−

1
2

X · exp

(
−κ0λX

2
(µX − µ0)

2

)
· exp (−λXβ0) ·

· exp

(
−λX

2
(xm − µX1n) R−1

m (xm − µX1n)
T

)
. (A.1)

With the definition of A = κ0 (µX − µ0)
2−2µX1nR−1

m x
T
m+µ2

X1nR−1
m 1T

n, Equa-634

tion (A.1) can be rearranged as635

f (θ|M) ∝ λα0+n
2−

1
2

X · exp

(
−λX

(
β0 +

1

2
xmR−1

m x
T
m +

1

2
A

))
. (A.2)

Initially, the focus lies on A which is expanded and modified as follows:636

A =
(
κ0 + 1nR−1

m 1T
n

)(
µ2
X − 2µX

κ0µ0 + 1nR−1
m x

T
m

κ0 + 1nR−1
m 1T

n

)
+ κ0µ

2
0. (A.3)

Next, the square of the expression inside the second parenthesis is completed:637

A =
(
κ0 + 1nR−1

m 1T
n

)(
µX −

κ0µ0 + 1nR−1
m x

T
m

κ0 + 1nR−1
m 1T

n

)2

︸ ︷︷ ︸
B

+κ0µ
2
0 −

(
κ0µ0 + 1nR−1

m x
T
m

)2
κ0 + 1nR−1

m 1T
n︸ ︷︷ ︸

C

.

(A.4)

The terms of C in Equation (A.4) are expanded and converted to a common638

denominator:639

C =
(
κ0µ

2
01nR−1

m 1T
n − 2κ0µ01nR−1

m x
T
m −

(
1nR−1

m x
T
m

)2) (
κ0 + 1nR−1

m 1T
n

)−1
.

(A.5)

Inserting the expression for B and C into Equation (A.2) gives:640

f (θ|M) ∝ λα0+n
2−

1
2

X · exp

(
−λX

(
β0 +

1

2
xmR−1

m x
T
m +

1

2
C

))
· exp

(
−λX

2
B

)
.

(A.6)

The parametric form of the posterior normal-gamma distribution as defined in641

Section 2.4 is as follows:642

NG (µX , λX |µn, κn, αn, βn) = Cnλ
αn− 1

2

X · exp

(
−κnλX

2
(µX − µn)

2

)
· exp (−λXβn) .

(A.7)
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Writing out all the terms in Equation (A.6) and comparing it to (A.7) one643

can see that up to the normalizing constant Cn, the resulting expression of644

Equation (A.6) is a normal-gamma distribution with parameters as follows:645

µn =
κ0µ0 + 1nR−1

m x
T
m

κ0 + 1nR−1
m 1T

n

, (A.8)

κn = κ0 + 1nR−1
m 1T

n, (A.9)

αn = α0 +
n

2
, (A.10)

βn = β0 +
1

2

(
xmR−1

m x
T
m +

κ0µ
2
01nR−1

m 1T
n − 2κ0µ01nR−1

m x
T
m −

(
1nR−1

m x
T
m

)2
κ0 + 1nR−1

m 1T
n

)
.

(A.11)

The normalizing constant is646

Cn =
βαnn κ

1
2
n

Γ (αn) (2π)
1
2

. (A.12)

Appendix B. The marginal posterior predictive Student’s t-distribution647

In Section 2.5, the Student’s t-distribution is introduced as the marginal pos-648

terior predictive distribution of the RF X(z) for the normal-gamma conjugate649

prior distribution of the RF parameters. This appendix derives the analytical650

expressions for the parameters of the marginal posterior predictive distribution651

as given in Equations (21) to (23).652

The marginal posterior predictive PDF at any point z ∈ Ω is defined by653

f (x; z|M) =

∫
Θ

f (x; z|θ,M) f (θ|M) dθ. (B.1)

f (θ|M) is the posterior normal-gamma distribution as defined in Equation (9)654

and f (x; z|θ,M) is a location-specific normal distribution with parameters µ′′z655

and λ′′z given by Equations (17) and (18). Hence, Equation (B.1) can be ex-656

panded as follows:657

f (x; z|M) =

∫ +∞

λX=0

∫ +∞

µX=−∞
N (x|µ′′z, λ′′z)N (µX |µn, κnλX) dµXG (λX |αn, βn) dλX .

(B.2)
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The inner integral involves the convolution of two normal densities:658 ∫ +∞

µX=−∞
N (x|µ′′z, λ′′z)N (µX |µn, κnλX) dµX = f (x; z|λX ,M) . (B.3)

For the solution of the integral, the expression for µ′′z, given in Equation (17) is659

rewritten as follows:660

µ′′z = µX +Rz,mR−1
m (xm − µX1n)

T
= µX

(
1−Rz,mR−1

m 1T
n

)
︸ ︷︷ ︸

ψ

+Rz,mR−1
m x

T
m︸ ︷︷ ︸

ξ

.

(B.4)

For this special case and noting that λ′′z does not depend on µX , the marginal-661

ization in Equation (B.3) can be solved analytically and results in a normal662

density f (x; z|λX ,M) = N
(
x|µ̃z, λ̃z

)
, where µ̃z and λ̃z are given by the fol-663

lowing equations [36]:664

µ̃z = ψµn + ξ, (B.5)

λ̃z =
(

(λ′′z)
−1

+ ψ2λ−1
X κ−1

n

)−1

= λX

(
1−Rz,mR−1

m R
T
z,m +

(
1−Rz,mR−1

m 1T
n

)2
κ−1
n

)−1

︸ ︷︷ ︸
κ̃z

.

(B.6)

Inserting in Equation (B.2) results in665

f (x; z|M) =
βαnn (κ̃z)

1
2

Γ (αn) (2π)
1
2

∫ +∞

λX=0

λ
αn− 1

2

X exp

(
−λX

(
βn +

κ̃z
2

(xz − µ̃z)
2

))
dλX .

(B.7)

A solution of the integral in Equation (B.7) is readily available and the resulting666

expression is as follows [36]:667

f (x; z|M) =
βαnn (κ̃z)

1
2

Γ (αn) (2π)
1
2

(
βn +

κ̃z
2

(xz − µ̃z)
2

)− 1
2−αn

Γ

(
αn +

1

2

)
. (B.8)

To bring f (x; z|M) into a standardized format, we define µz,t = µ̃z, λz,t = κ̃zαn
βn

668

and νt = 2αn [36]. This gives669

f (x; z|M) =
Γ
(
νt+1

2

)
Γ
(
νt
2

) (
λz,t
πνt

) 1
2
(

1 +
λz,t
νt

(xz − µz,t)2

)− νt2 − 1
2

. (B.9)
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Equation (B.9) describes the marginal posterior predictive distribution of the670

RF X(z) given measurement data M, which is a Student’s t-distribution with671

location parameter µz,t, scale parameter λz,t and degrees of freedom νt defined672

as follows:673

µz,t = µn +Rz,mR−1
m (xm − µn1n)

T
, (B.10)

λz,t =
αn

βn

(
1−Rz,mR−1

m RT
z,m +

(
1−Rz,mR−1

m 1T
n

)2
κ−1
n

) , (B.11)

νt = 2αn, (B.12)

where µn, κn, αn and βn are the posterior parameters of the normal-gamma674

distribution given by Equations (11) to (14).675

Appendix C. The multivariate posterior predictive Student’s t-distribution676

This section extends the derivation of Appendix B to the multivariate case677

to derive the parameters for the k-th order posterior predictive Student’s t-678

distribution as given by Equations (23), (29) and (30) in Section 2.6.679

The PDF of the posterior predictive distribution of the RF X(z) is680

f (x; Z|M) =

∫
Θ

f (x; Z|θ,M) f (θ|M) dθ, (C.1)

with x ∈ Rk and Z = [z1, . . . ,zk] ∈ Rk×d denoting any set of spatial points in Ω.681

f (x; Z|θ,M) is a k-variate normal density with mean vector µ′′Z and precision682

matrix ΛZ
′′ given by Equations (25) and (26). f (θ|M) is a normal-gamma683

distribution as defined in Equation (9) and is independent of the locations Z.684

Equation (C.1) is expanded as follows:685

f (x; Z|M) =

∫ +∞

λX=0

∫ +∞

µX=−∞
N
(
x|µ′′Z,ΛZ

′′) · N (µX |µn, λXκn) dµX · G (λX |αn, βn) dλX .

(C.2)
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The inner integral can be solved by rewriting Equation (25) as follows:686

µ′′Z = µX1k + RZ,mR−1
m (xm − µX1n)

T
= µX

(
1k −RZ,mR−1

m 1T
n

)
︸ ︷︷ ︸

ψ

+ RZ,mR−1
m x

T
m︸ ︷︷ ︸

ξ

.

(C.3)

Using this expression, the integration over µX can be performed analytically687

and results in the density of a multivariate normal distribution N
(
x|µ̃Z, Λ̃Z

)
688

with parameters given as [36]689

µ̃Z = µnψ + ξ, (C.4)

Λ̃Z =
((

ΛZ
′′)−1

+ψT (λXκn)
−1
ψ
)−1

. (C.5)

Substituting Equations (26) and (C.3) into Equation (C.5), Λ̃Z can be ex-690

presssed as the following linear function of λX :691

Λ̃Z = λX

(
RZ −RZ,mR−1

m RT
Z,m +

(
1k −RZ,mR−1

m 1T
n

)T
κ−1
n

(
1k −RZ,mR−1

m 1T
n

))−1

︸ ︷︷ ︸
K̃Z

.

(C.6)

Inserting N
(
x|µ̃Z, Λ̃Z

)
into Equation (C.2) gives692

f (x; Z|M) =

∫ +∞

λX=0

N
(
x|µ̃Z, K̃ZλX

)
G (λX |αn, βn) dλX . (C.7)

Next, an alternative parametrization is introduced, defining νt = 2αn and η =693

λXβn
αn

. Inserted into Equation (C.7), this gives the following [36]:694

f (x; Z|M) =

∫ +∞

η=0

N
(
x

∣∣∣∣µ̃Z, K̃Z
ηαn
βn

)
G
(
η
∣∣∣νt

2
,
νt
2

)
dη, (C.8)

for which a solution is available [36]. The resulting expression is695

f (x; Z|M) =
Γ
(
k+νt

2

)
Γ
(
νt
2

) ∣∣∣K̃Z

∣∣∣ 12 ( αn
βnπνt

) k
2

(
1 +

αn (x− µ̃Z) K̃Z (x− µ̃Z)
T

βnνt

)− k+νt2

,

(C.9)
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which is a k-variate Student’s t-distribution with parameters µ̃Z,
αn
βn

K̃Z and νt.696

Defining µZ,t = µ̃Z and ΛZ,t =
αn
βn

K̃Z yields the expression of Equation (28)697

for the k-th order posterior predictive distribution of X(z) given measurement698

data M. That is, f (x; Z|M) = ft (x|µZ,t,ΛZ,t, νt) with parameters given as699

µZ,t = µn1k + RZ,mR−1
m (xm − µn1n)

T
, (C.10)

ΛZ,t =
αn
βn

(
RZ −RZ,mR−1

m RT
Z,m +

(
1k −RZ,mR−1

m 1T
n

)
κ−1
n

(
1k −RZ,mR−1

m 1T
n

)T)−1

,

(C.11)

νt = 2αn, (C.12)

where µn, κn, αn and βn are the posterior parameters of the normal-gamma700

distribution given by Equations (11) to (14).701

Appendix D. The log-Student’s t-distribution702

In Section 2.8, the log-Student’s t-distribution is introduced as resulting703

marginal distribution of the posterior predictive RF when the prior RF has log-704

normal marginal distribution. In this appendix, the log-Student’s t-distribution705

and some of its properties are described.706

When X follows a Student’s t-distribution, Y = exp (X) follows the log-707

Student’s t-distribution [50, 52]. The PDF can be derived as follows:708

ft,ln (y) =

∣∣∣∣dln (y)

dy

∣∣∣∣ ft (ln (y)) =
1

y
ft (ln (y)) , (D.1)

where ft (·) is the PDF of the Student’s t-distribution, which gives709

ft,ln (y|µt, λt, νt) = y−1 Γ
(
νt
2 + 1

2

)
Γ
(
νt
2

) (
λt
πνt

) 1
2

(
1 +

λt (ln (y)− µt)2

νt

)− νt2 − 1
2

,

(D.2)

where µt, λt and νt are the parameters of the underlying Student’s t-distribution.710

The CDF of Y is given by the CDF of the underlying Student’s t-distribution711
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with argument ln (y):712

Ft,ln (y|µt, λt, νt) = Ft (ln (y) |µt, λt, νt) . (D.3)

The log-Student’s t-distribution does not have finite moments of any order. A713

simple proof is given in the following. The expected value of Y is defined as:714

E [Y ] = E [exp (X)] , (D.4)

where X follows the Student’s t-distribution. The exponential function can be715

written in terms of the following power series [e.g. 58]:716

exp (x) =

∞∑
k=0

xk

k!
, (D.5)

which can be substituted into Equation (D.4) to give:717

E [Y ] = E

[ ∞∑
k=0

Xk

k!

]
=

∞∑
k=0

E
[
Xk
]

k!
. (D.6)

E
[
Xk
]

is the k-th raw moment of the Student’s t-distributed random variable718

X. However, the moments of the Student’s t-distribution are only finite for719

orders k < νt [59] and thus, the following holds for E [Y ] due to the sum in720

Equation (D.6):721

E [Y ]→∞ for νt <∞. (D.7)

Since the first-order moment of Y is infinite, all higher-order integer moments722

of Y , as well as joint moments for the multivariate case, will also be infinite. In723

the limiting case, when νt → ∞, the log-Student’s t-distribution converges to724

the lognormal distribution, which has finite moments of any order.725
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(2017) 523 – 536.795

[27] Y. Wang, T. Zhao, K.-K. Phoon, Direct simulation of random field samples796

from sparsely measured geotechnical data with consideration of uncertainty797

in interpretation, Canadian Geotechnical Journal 55 (6) (2018) 862 – 880.798

[28] Y. Wang, T. Zhao, Y. Hu, K.-K. Phoon, Simulation of random fields with799

trend from sparse measurements without detrending, Journal of Engineer-800

ing Mechanics 145 (2) (2019) 04018130.801

[29] S. Montoya-Noguera, T. Zhao, Y. Hu, Y. Wang, K.-K. Phoon, Simulation of802

non-stationary non-Gaussian random fields from sparse measurements us-803

ing Bayesian compressive sampling and Karhunen–Loève expansion, Struc-804
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