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ABSTRACT10

We present an adaptive importance sampling (IS) method to estimate the reliability of linear11

structures with parameter uncertainties that are subjected to Gaussian process excitation. Structural12

failure is defined as a union of multiple first-passage failure events. The main contribution is the13

introduction of an efficient IS density for the uncertain structural parameters. This density is14

determined by minimizing the cross entropy (CE) between the theoretically optimal IS density15

of the structural parameters and a chosen parametric family of probability distributions. The CE16

minimization procedure requires evaluation of the system failure probability conditional on fixed17

values of the uncertain parameters. A closed-form analytical approximation of this conditional18

failure probability is derived based on an upper bound on the out-crossing rate. Finally, a joint IS19

density of the random excitation and the uncertain structural parameters is introduced to estimate20

the series system failure probability involving parameter uncertainties. The accuracy and efficiency21

of the proposed method is demonstrated by means of two examples: the first involves a Gaussian22

white noise-excited two-story linear shear frame and the second involves a six-story three-bay23

moment resisting steel frame subjected to a filtered non-stationary Gaussian excitation.24
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INTRODUCTION25

Structural reliability analysis aims at computing the probability of failure of a structure with26

respect to a prescribed failure criterion by accounting for the uncertainties in the structural param-27

eters (the geometric and material properties) and the external loading. When the load is dynamic,28

such as the one arising from earthquakes, wind or sea waves, the reliability is estimated in terms of29

the first-passage probability, i.e., the probability that the dynamic response of the structure exceeds30

a prescribed threshold level over the duration of the excitation. In general, reliability analysis is31

usually classified into two categories: component reliability, which considers only a single mode of32

failure, and system reliability, in which multiple failure modes are considered. This paper focuses33

on the estimation of series system reliability of uncertain linear structures subjected to Gaussian34

process excitation. Here the system failure event is defined as the union of first-passage events35

associated with multiple critical responses.36

The series system reliability cannot be directly deduced from the marginal first-passage prob-37

abilities of the output responses if the component failure events are statistically dependent. Such38

dependence is usually present when the component first-passage events occur due a common source39

of excitation or when the resistances of the components are dependent. For the case where the40

structural parameters are deterministic and the applied excitation is modeled as a Gaussian process,41

there are several approaches to estimate the series system reliability. Analytical approximations42

of the failure probability based on the joint out-crossing rate of Gaussian responses processes are43

proposed in (Li and Melchers 1993; Song and Der Kiureghian 2006). Bounds can be obtained44

on the system reliability using analytical bounding formulas (Melchers and Beck 2018) or linear45

programming (Song and Der Kiureghian 2003; Byun and Song 2020). Alternatively, the Monte46

Carlo simulation (MCS) method can be applied to estimate the system failure probability. This47

approach is devoid of assumptions (Poisson assumption for the number of out-crossings) and,48

hence, is asymptotically exact with increase in the number of samples. The main challenge in49

applying MCS lies in controlling the sampling variance of the failure probability estimator; the aim50

is to obtain probability estimates of acceptable accuracy with a small number of dynamic model51
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runs. Reduction in sampling variance is achieved by advanced Monte Carlo methods such as subset52

simulation (Au and Beck 2001a), Girsanov’s transformation-based IS (Kanjilal and Manohar 2019)53

and line sampling (Koutsourelakis et al. 2004; Schuëller et al. 2004b). Efficient simulation meth-54

ods that are specific to deterministic linear dynamical systems have also been developed. These55

methods increase the efficiency of estimation by utilizing the linearity of the structural response56

with respect to the Gaussian loading. The central theme of these methods is to express the failure57

region of the series system in terms of a large number of linear failure regions corresponding to58

the failure of a particular output response at a particular time instant. In (Au and Beck 2001b) this59

strategy is applied to design an effective IS density of the random excitation. Other approaches to60

estimate the system reliability based on this concept are studied in (Katafygiotis and Cheung 2004;61

Katafygiotis and Cheung 2006; Misraji et al. 2020).62

When the structural parameters are uncertain and the excitation is a Gaussian random process,63

the response is non-linear with respect to the structural parameters. In this case, estimation of the64

series system reliability becomes considerably more involved. The MCS method is the most viable65

approach to tackle this class of problems. The subset simulation method can be readily applied66

to this case. Alternatively, efforts to extend the tailored approaches for Gaussian process-excited67

deterministic linear systems to deal with structural parameter uncertainties have been attempted in68

(Jensen and Valdebenito 2007; Pradlwarter and Schuëller 2010; Valdebenito et al. 2014). In these69

studies, the system failure probability conditional on a given realization of the uncertain parameters70

is determined using the approach in (Au and Beck 2001b). The unconditional failure probability71

of the series system is then estimated by integrating the conditional probability over the domain of72

the uncertain parameters by importance sampling (Jensen and Valdebenito 2007; Valdebenito et al.73

2014) or line sampling (Pradlwarter and Schuëller 2010). These methods require system specific74

information to facilitate reliability estimation. In (Jensen and Valdebenito 2007; Pradlwarter and75

Schuëller 2010), a pseudo-design point with respect to the uncertain structural parameters has to be76

identified. These approaches can be effective when there is a unique design point (in the parameter77

space) contributing to the failure probability. The IS method in (Valdebenito et al. 2014) makes78

3 Kanjilal, July 1, 2021



use of a surrogate model for the probability of failure as a function of the uncertain parameters.79

The performance of the method thus relies on the proper choice of the surrogate model, which is80

not a straightforward task when the number of uncertain parameters is large or the dependence of81

the conditional failure probability on the parameters is strongly non-linear.82

The present contribution develops an adaptive importance sampling method to estimate the83

series system reliability of uncertain linear structures subjected to Gaussian loading. It is an ex-84

tension of a recently developed method for component-level first-passage probability estimation85

of structures with parameter uncertainty (Kanjilal et al. 2021). The proposed approach employs86

the strategy presented in (Au and Beck 2001b) to construct a conditional (on a fixed value of87

the structural parameters) IS density of the random loading. A novel IS density of the uncertain88

structural parameters is then introduced. This IS density is obtained through application of the89

cross entropy (CE) method. The CE method is an adaptive sampling approach that determines90

a near-optimal IS density through minimizing the Kullback-Leibler (KL) divergence between the91

theoretically optimal IS density and a chosen parametric family of probability distributions. We92

discuss appropriate distribution models for the chosen parametric family, depending on the dimen-93

sion of parameter uncertainties and the number of failure modes. The CE optimization requires94

evaluation of the system failure probability conditional on sample realizations of the uncertain95

parameters. To ensure smooth convergence to the optimal IS density, we employ an analytical ap-96

proximation of the conditional failure probability during optimization. The approximation is based97

on an upper bound on the joint out-crossing rate of the critical responses (Li and Melchers 1993).98

In this study, we derive a closed-form analytical solution of the upper bound, which enables faster99

evaluation of the conditional probability during CE optimization. Finally, a joint IS density of the100

uncertain structures and the random excitation is considered to estimate the failure probability of101

the series system. Unlike the methods in (Jensen and Valdebenito 2007; Pradlwarter and Schuëller102

2010; Valdebenito et al. 2014), the proposed approach is completely adaptive and can be used as a103

black-box algorithm as it does not require problem-specific adjustments. It is therefore more robust104

and generally applicable to any linear dynamical system.105
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PROBLEM FORMULATION106

Linear Dynamical System107

Weconsider an = degree-of-freedom linear structurewith uncertain parameters subjected to non-108

stationary stochastic excitation. The governing equation describing the response of the structure is109

expressed as110

M(�) ¥̂ (C) + C(�) ¤̂ (C) +K(�)^ (C) = D f (C), (1)111

where ¥̂ , ¤̂ and ^ are the = × 1 acceleration, velocity and displacement vectors, M, C and K are112

the = × = mass, damping and stiffness matrices, � is an =) × 1 vector of random variables that113

model the uncertain structural parameters, f is an ; × 1 vector of random dynamic loads acting on114

the structure over a time span C ∈ [0, )] and D is an =× ; matrix that couples the external excitation115

with the degrees of freedom of the structure. We consider the case where the components of f are116

Gaussian random processes.117

Let {/8; 8 = 1, . . . , <} be < critical output responses. In a linear system, the relationship118

between the input excitation and the output response is linear, and can be written as119

/8 (C, )) =
;∑
9=1

∫ C

0
 8 9 (C − g; )) 5 9 (g)3g =

∫ C

0
QT
8 (C − g; )) f (g)3g. (2)120

In the above equation, ) denotes a particular outcome of the uncertain structural parameter vector121

� and  8 9 (C; )) denotes the unit impulse response function for the 8-th output at time C due to a unit122

impulse applied at the 9-th input at time C = 0, where the outputs are assumed to start from zero123

initial conditions without loss of generality. Consider a discrete time representation of the time124

interval [0, )]. Let {C: = (: − 1)ΔC; : = 1, . . . , =) } be the time instants of analysis, where =) is the125

number of time points and ΔC = )/(=) − 1) is the time step size. Let f (C: ) denote the stochastic126

excitation at time C = C: . For Gaussian loading, one can represent f (C: ) by a linear combination127

of an =/ × 1 standard Gaussian random vector � as f (C: ) = G:�, where {G: , : = 1, . . . , =) } are128

appropriate deterministic matrices. Then the discrete-time analog of the input-output relationship129
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in Eq. (2) is given by130

/8 (C: , ) ,�) =
:∑
B=1

2BQ
T
8 (C: − CB; )) f (CB)ΔC = rT

8,: ())�, (3)131

where rT
8,:
()) = ∑:

B=1 2BQ
T
8 (C: − CB; ))GBΔC and 2B is a coefficient that depends on the particular132

numerical integration scheme used to integrate Eq. (2).133

Series System Reliability134

Reliability analysis of dynamical systems involves the computation of the first-passage proba-135

bility. In a series system defined in terms of < output responses, first-passage failure occurs when136

any one of the outputs {/8, 8 = 1, . . . , <} exceeds a corresponding threshold level I∗
8
within the137

time duration ) . The system level failure event � is therefore expressed as138

� =
<⋃
8=1

�8, (4)139

where140

�8 =

{
) ∈ R=) , / ∈ R=/ : max

:=1,...,=)
|/8 (C: , ) , /) | ≥ I∗8

}
(5)141

denotes first-passage failure with respect to the 8-th output response. The probability of occurrence142

of � can be expressed by means of the multi-dimensional integral143

%� =
∫
)∈R=)

%� |�())?�())3) , (6)144

where145

%� |�()) =
∫
/∈R=/

I{() , /) ∈ �}?�(/)3/ (7)146

represents the conditional probability of failure of the system given the uncertain parameters ) . In147

the above equations, ?�(/) and ?�()), respectively, denote the joint probability density function148

(PDF) of � and �, and I{() , /) ∈ �} is the indicator function for the failure event which takes the149
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value 1 if () , /) ∈ � and is 0 otherwise.150

A convenient way to evaluate %� is by Monte Carlo simulation (MCS). In principle, one could151

use the standard Monte Carlo method. When the probability of failure is small, standard MCS152

requires a very large number of dynamical system evaluations to generate accurate results. In this153

paper we develop an alternative strategy based on importance sampling (IS) to estimate the series154

system reliability. To this end, we note that the study in (Au and Beck 2001b) introduces an IS155

density of the random vector�modeling the dynamic load, which enables efficient estimation of the156

conditional probability of failure %� |�()) by IS. Therefore, the key challenge in the construction of157

an efficient IS estimator for %� lies in the design of an effective IS density to integrate %� |�()) over158

the domain of the uncertain parameter vector�. In the next section, we present a novel approach to159

determine this IS density using the cross entropy method. Subsequently, we combine the proposed160

IS density of � with the IS density of � to obtain the estimator for the first-passage probability of161

the series system.162

DETERMINATION OF THE IS DENSITY OF �163

Evaluation of the dynamic system reliability of uncertain structures according to Eq. (6) requires164

integration of the conditional failure probability %� |�()) over the sample space of �. In order to165

evaluate the integral by IS, an IS density ℎ�()) of the structural parameters is introduced. The166

integral in Eq. (6) is modified to167

%� =
∫
)∈R=)

%� |�()), ())ℎ�())3) , (8)168

where , ()) = ?�())/ℎ�()) is the importance weight function. Based on Eq. (8), one can169

estimate %� using the following IS estimator:170

%̂� =
1
#'

#'∑
8=1

%� |�() (8)), () (8)), (9)171

where {) (8); 8 = 1, . . . , #'} are independent samples distributed according to ℎ�()). The coef-172
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ficient of variation (CoV) of the IS estimator depends on the choice of ℎ�()). The theoretically173

optimal IS density that leads to an estimator with zero variance is given by174

ℎ∗�()) =
1
%�
%� |�())?�()). (10)175

In practice, it is not possible to sample from this IS density since %� is not known. Instead, we176

construct an IS density for � that is a close approximation of ℎ∗�()) using the cross entropy (CE)177

method.178

The CE method is an adaptive approach to determine a near-optimal IS density through mini-179

mizing the Kullback-Leibler (KL) divergence between the theoretically optimal IS density ℎ∗�())180

and a chosen parametric family of probability distributions. Let ℎ�(); .) be a family of para-181

metric densities, where . ∈ V is the parameter vector, such that it contains the nominal density,182

?�()), of the uncertain parameters . The KL divergence between ℎ∗�()) and ℎ�(); .) is defined183

as (Rubinstein and Kroese 2016)184

� (ℎ∗�()), ℎ�(); .)) = Eℎ∗�

[
ln

(
ℎ∗�())
ℎ�(); .)

)]
. (11)185

The basic idea of the CE method is to determine the optimal parameter vector .∗ that minimizes186

� (ℎ∗�()), ℎ�(); .)). Substitution of the expression of ℎ∗�()) in Eq. (10) into Eq. (11) yields the187

following CE optimization problem:188

.∗ = argmax
q∈V

E?�
[
%� |�())ln (ℎ� (); q))

]
. (12)189

The above optimization can be solved by approximating the expectation in Eq. (12) using a set of190

samples distributed according to ?�()). However, in practical applications, the optimal density191

ℎ∗�()) can differ significantly from ?�()), in which case a large number of samples is required to192

obtain a good sample approximation. This difficulty can be circumvented by adopting a multi-level193

approach (Rubinstein and Kroese 2016). For the case of component reliability problems, i.e., when194
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the structure failure event � is comprised of a single first-passage failure event, we have developed195

an efficient multi-level strategy to determine the IS density of � by the CE method (Kanjilal et al.196

2021). Here we extend this method to deal with series systems.197

Multi-level CE method198

The multi-level CE method solves the optimization problem in Eq. (12) by defining a sequence

of target densities {ℎ[:]� ()), : = 0, . . . , !}, which starts from the nominal density ?�()) and

gradually approaches the optimal IS density ℎ∗�()). Consider the sequence of PDFs defined

according to the expression

ℎ
[:]
� ()) =

1
�:
%� |�())W: ?�()), (13)

where 0 = W0 < W1 < . . . < W! = 1 and �: =
∫
)∈R=) %� |�())

W: ?�())3) . Note that ℎ[0]� ()) =199

?�()) and ℎ[!]� ()) = ℎ∗�()). The parameters {W: , : = 1, . . . , !} ensure a smooth transition200

between ?�()) and ℎ∗�()). In the multi-level approach, the CE optimization is solved sequentially201

for each of the intermediate target densities, which leads to a sequence of parameter vectors202

{. [:] , : = 1, . . . , !}. The final parameter vector . [!] should approximate well the solution of Eq.203

(12).204

The parameter vector . [:] in each level is estimated by solving a CE optimization problem205

that minimizes the KL divergence between ℎ[:]� ()) and ℎ�(); .). The objective function of the206

resulting optimization, i.e., the expectation E?�
[
%� |�())W: ln (ℎ� (); q))

]
, is approximated with207

IS using a set of samples {) (8) , 8 = 1, . . . , #} distributed according to ℎ�(); .̂ [:−1]), where .̂ [:−1]
208

is the estimate of . [:−1] determined in the previous level. The stochastic optimization problem to209

be solved in each intermediate level is therefore given by210

.̂ [:] = argmax
q∈V

1
#

#∑
8=1
,̃:

(
) (8) , .̂ [:−1]

)
ln

(
ℎ�

(
) (8); q

))
, (14)211

with ,̃:

(
) , .̂ [:−1]

)
= %� |�())W: ?� ())

ℎ� ();.̂ [:−1] ) . A default choice for ℎ�(); .̂ [0]) is the nominal density212
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?�()). The smoothing parameter W: is selected adaptively such that the sample CoV X̂
,̃:

of the213

weights
{
,̃:

(
) (8) , .̂ [:−1]

)
, 8 = 1, . . . , #

}
is equal to a target value XC0A64C :214

W: = argmin
W∈(W:−1,1)

(
X̂
,̃:
(W) − XC0A64C

)2
. (15)215

The choice of the value of XC0A64C is discussed in (Papaioannou et al. 2016; Papaioannou et al. 2018).216

In the present study we set XC0A64C to 1.5. It is noted that Eq. (15) is equivalent to requiring that217

the number of effective samples available to fit the parametric density at each sampling iteration is218

equal to a target value for a given # (Latz et al. 2018). The effective sample size (ESS) is expressed219

in terms of the CoV of the weights as ESS = #/
(
1 + X̂2

,̃:
(W)

)
. The adaptive procedure is stopped220

when the value of W: determined based on Eq. (15) is equal to 1. After convergence at the !-th221

step, the final parameter vector .̂ [!] is determined by solving Eq. (14) with W! = 1. The sampling222

density ℎ�(); .̂ [!]) is taken as the IS density of � for estimating the probability of failure.223

Estimation of the conditional probability of failure during CE optimization224

Determination of the IS density ℎ�(); .̂ [!]) requires evaluation of the conditional failure225

probability %� |�()) for all samples of� generated during CE optimization. In principle, one could226

estimate %� |�()) byMCS, e.g., by using the ISmethod in (Au and Beck 2001b). However, to ensure227

smooth convergence of the CE method, the CoV of the IS estimator of %� |�()) should be small.228

This requires a sufficient number of samples to be used in the estimator, which, in turn, increases229

the number of evaluations of the dynamical system. To alleviate the increase in computational230

effort, we employ an analytical approximation of %� |�()) during CE optimization.231

Recall that in series system reliability problems, failure occurs when any one of the responses /8232

out-crosses its prescribed threshold I∗
8
within the duration) of the random excitation. The analytical233

approximation we adopt is based on the Poisson hypothesis for the number of out-crossing (Rice234

1944; Melchers and Beck 2018). For the discrete-time setting described earlier, this approximation235

is given by236

%� |�()) = 1 − exp

(
−

=)∑
:=2

U(C: ; z∗, ))ΔC
)
, (16)237
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where z∗ = {I∗1, . . . , I
∗
<} is the vector of response thresholds and U(C: ; z∗, )) is the out-crossing238

rate of the vector process `(C, ) ,�) = {/1(C, ) ,�), . . . , /< (C, ) ,�)} across the <-dimensional239

double-sided barrier {|/8 | = I∗8 ,8 = 1, . . . , <} at time C = C: . This rate is written as the sum of the240

individual out-crossing rates of the scalar processes over their respective barrier (Li and Melchers241

1993; Song and Der Kiureghian 2006)242

U(C: ; z∗, )) =
<∑
8=1

U8 (C: ; z∗, )), (17)243

where U8 (C: ; z∗, )) denotes the out-crossing rate of the process /8 (C, ) ,�) across the surface (8 =244

{` : |/8 | = I∗8 ,
��/ 9 �� < I∗

9
∀ 9 ≠ 8} (representing 8-th mode of failure) at time C = C: . For double-245

sided barrier, U8 (C: ; z∗, )) is further expressed as U8 (C: ; z∗, )) = U+8 (C: ; z∗, )) + U−8 (C: ; z∗, )), where246

U+
8
(C: ; z∗, )) and U−8 (C: ; z∗, )) denote the rates of up- and down- crossings of the process /8 (C, ) ,�)247

across the thresholds I∗
8
and−I∗

8
, respectively. For a linear system subjected to a zeromeanGaussian248

process excitation, the response /8 (C, ) ,�) is a Gaussian random process (this follows directly from249

Eq. (2)). Furthermore, due to the zero initial condition, the response process has a zero mean. In250

this situation, U+
8
(C: ; z∗, )) = U−8 (C: ; z∗, )) holds, which leads to251

U8 (C: ; z∗, )) = 2U+8 (C: ; z∗, )). (18)252

The up-crossing rate U+
8
(C: ; z∗, )) is calculated based on the generalized Rice formula (Belyaev253

1968)254

U+8 (C: ; z∗, )) =
∫
(∗8

∫ ∞

0
¤I8 5 ¤/8/8 ˜̀ ( ¤I8, I∗8 , z̃; C: )3 ¤I83 z̃, (19)255

where ˜̀ is the (<−1)-dimensional random process obtained from the vector process ` by removing256

its 8-th component, i.e., ˜̀ = {/1, . . . , /8−1, /8+1, . . . , /<}, (∗8 = {˜̀ :
��/ 9 �� < I∗

9
} is the (< − 1)-257

dimensional subspace defined on the hyperplane of the 8-th face /8 = I∗8 , ¤/8 is the time derivative258

process of /8 and 5 ¤/8/8 ˜̀ (·; C: ) is the joint PDF of ¤/8, /8 and ˜̀ at the same time instant. An259

analytical approach for evaluating the above integral is derived in (Song and Der Kiureghian 2006).260
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The approach requires repeated conditioning of the PDF 5 ¤/8/8 ˜̀ (·; C: ) and is practically feasible261

when<, i.e., the number of components of the series system, is small. Application of this approach262

within the framework of the CE method has been explored in (Kanjilal et al. 2020). An alternative263

approach, applicable to systems with large number of components, is to solve U+
8
(C: ; z∗, )) by264

obtaining an upper bound for the integral. This bound reduces the multi-dimensional integral in265

Eq. (19) into a one-dimensional integral over the real line and is given by (Li and Melchers 1993)266

U+8 (C: ; z∗, )) ≤ 5/8 (I∗8 ; C: )
∫ ∞

−∞

[
f8q

(
− H
f8

)
+ HΦ

(
H

f8

)]
1
V8
q

(
H − `8
V8

)
3H, (20)267

where Φ(·) and q(·) are the cumulative distribution function and the PDF of a standard normal268

random variable, respectively. 5/8 (I∗8 ; C: ) denotes the marginal pdf of /8 at C = C: evaluated at269

/8 = I∗8 ,270

5/8 (I∗8 ; C: ) =
1
f/8

q

(
I∗
8
− `/8
f/8

)
, (21)271

f8 denotes the standard deviation of ¤/8 |{/8 = I∗8 , ¯̀ = z̄} at C = C: ,272

f8 =
√

Var[ ¤/8 |/8 = I∗8 , ¯̀ = z̄] = f ¤/8
√

1 − d2
8
, (22)273

and the parameters `8 and V8 are given by:274

`8 = ` ¤/8 + d/8 ¤/8
f ¤/8
f/8
(I∗8 − `/8 )

V8 = f ¤/8

√
d2
8
− d2

/8 ¤/8
.

(23)275

In Eqs. (21)-(23), `/8 and ` ¤/8 denote the mean of /8 and ¤/8, f/8 and f ¤/8 denote the standard devia-276

tion of /8 and ¤/8, d/8 ¤/8 denotes the correlation coefficient of /8 and ¤/8 and d8 =
√
ΣT
¤/8`
Σ−1
``Σ ¤/8`/f ¤/8 .277

Here Σ`` is the covariance matrix of the vector process ` and Σ ¤/8` is the covariance of ¤/8 and `.278

The above statatistics are computed at C = C: by direct analysis of Eq. (3).279

In this work, we derive an analytical solution of the integral in Eq. (20) that facilitates faster280
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computation of the upper bound of U+
8
(C: ; z∗, )). The details of this derivation are provided in281

Appendix I. By substituting the solution into Eq. (20) and applying Eqs. (17) and (18) we get the282

following upper bound of the out-crossing rate of the series system283

U(C: ; z∗, )) ≤ 2
<∑
8=1

5/8 (I∗8 ; C: )


√
f2
8
+ V2

8
q
©«

`8√
f2
8
+ V2

8

ª®®¬ + `8Φ
©«

`8√
f2
8
+ V2

8

ª®®¬
 . (24)284

Substitution of Eq. (24) into Eq. (16) leads to an upper bound on the conditional failure probability285

%� |�()). We evaluate %� |�()) approximately using this upper bound during CE optimization. The286

resulting procedure for determining the IS density of� is described in Algorithm 1. The analytical287

approximation reduces the computational cost at the expense of accuracy. However, numerical288

studies show that the IS density obtained based on this approach gives fairly accurate estimates of289

the unconditional failure probability. The IS estimator of %� |�()) is applied only during reliability290

estimation (as described in the next section), after the final IS density of � is obtained.291

Finally, we remark that the Poisson approximation for the number of out-crossings used in Eq.292

(16)may notworkwell for all linear systems. When the threshold levels are small and/or the response293

processes have a narrow bandwidth, the assumption of independent out-crossings underlying the294

Poisson approximation is not justified and could result in erroneous estimates. In such cases, the295

IS density of the uncertain parameters constructed by the CE method will be sub-optimal, which296

will increase the sampling CoV of the IS estimator of the series system failure probability. This297

issue can be addressed by applying Vanmarcke’s formula for evaluating the out-crossing rate in298

Eq. (16). Vanmarcke’s formula, proposed in (Vanmarcke 1975) and further developed in (Di Paola299

1985; Michaelov et al. 1999; Barbato and Conte 2011), provides an improved estimate of the300

failure probability by taking into account the dependence between the out-crossing events of the301

scalar responses {/8 (C, ) ,�), 8 = 1, . . . , <} across their respective threshold levels. This leads to a302

modified out-crossing rate for the vector process `(C, ) ,�), deduced by multiplying U8 (C; z∗, )) in303

Eq. (17) with a correction term that is equal to the ratio of the out-crossing rates of the response304

/8 (C, ) ,�) and its envelope process across the threshold I∗
8
. The upper bound on the out-crossing305
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rate U(C; z∗, )) of the system responses in Eq. (24) needs to be modified accordingly. A detailed306

description of the correction term is provided in (Song and Der Kiureghian 2006).307

Algorithm 1: Determination of IS density of � by the multi-level CE method
1 input:
2 Sample size # .
3 Choice of parametric density ℎ�(); .).
4 Target CoV of the weights at each intermediate level, XC0A64C .
5 initialization:
6 Set : = 0.
7 Select ℎ�(); .̂ [0]) as the nominal density ?�()).
8 repeat:
9 Set : = : + 1.

10 Generate independent samples
{
) (8) , 8 = 1, . . . , #

}
from ℎ�(); .̂ [:−1]).

11 Evaluate the out-crossing rates
{
U(C: ; z∗, ) (8)), 8 = 1, . . . , #

}
for the random samples at

the discrete time instants {C: , : = 1, . . . , =) } based on the upper bound in Eq. (24).
12 Substitute the upper bounds of the out-crossing rates computed in the previous step

into Eq. (16) to compute an approximate estimate (an upper bound) of the conditional
failure probabilities

{
%� |�() (8)), 8 = 1, . . . , #

}
.

13 Compute the likelihood ratio
{

?� () (8) )
ℎ� () (8) ;.̂ [:−1] ) , 8 = 1, . . . , #

}
for the random samples.

14 Solve the optimization problem in Eq. (15) to determine W: .
Note that the conditional first-passage probabilities and the likelihood ratios
computed in the previous steps are used to evaluate the sample CoV of the weights{
,̃:

(
) (8) , .̂ [:−1]

)
, 8 = 1, . . . , #

}
. Further simulations are not needed in this step.

15 Determine .̂ [:] by solving the optimization problem in Eq. (14).
16 while W: < 1
17 output:
18 ! = : and ℎ�(); .̂ [!]) = IS density of Θ.

Choice of parametric distribution family308

The failure domain in series system reliability problems is comprised of multiple important309

regions, each representing the domain of the component failure events. Due to this, the optimal IS310

density ℎ∗�()) is typically multi-modal. Therefore, to adequately represent ℎ∗�()), the parametric311

density ℎ�(); .) should also have a multi-modal behavior. We consider two types of mixture312

distributions as the parametric family: the Gaussian mixture distribution and the von Mises-Fisher-313

Nakagami mixture distribution. Recall that � = {Θ1; . . . ;Θ=) } is the vector of basic random314
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variables that model the uncertain structural parameters. In reliability analysis, it is common315

practice to consider that the components of � are independent and standard normally distributed.316

If the structural parameters are mutually dependent and/or follow a non-Gaussian distribution, they317

can be generated by an iso-probabilistic transformation of independent standard normal random318

variables (Hohenbichler and Rackwitz 1981; Der Kiureghian and Liu 1986). Therefore, without319

loss of generality, we assume that � is an =)-dimensional standard Gaussian random vector, i.e.,320

?�()) =
∏=)

9=1 ?Θ 9 (\ 9 ), where for every 9 , ?Θ 9 (\ 9 ) is a one-dimensional standard Gaussian PDF321

for Θ 9 .322

Gaussian mixture distribution323

The PDF of a Gaussian mixture (GM) model is defined as the sum of a number of Gaussian324

PDFs, each of them multiplied by a weighing factor:325

5GM(); .) =
="∑
B=1

cB 5G(); -B,�B), (25)326

where 5G(); -B,�B) is the B-th Gaussian PDF with mean -B and covariance matrix �B and {cB; B =327

1, . . . , ="} are normalized weights satisfying the condition
∑="
B=1 cB = 1. The parameter vector in328

this case is given by . = {cB, -B,�B; B = 1, . . . , ="}, where cB is scalar-valued, -B is a vector of329

dimension =) and �B is an =) ×=) symmetric matrix. This results in a total of =" =) (=)+3)
2 + (=" −1)330

unknown parameters in the parametric density. The parameter vector is determined in every level331

of the CE method by solving the optimization problem in Eq.(14). The optimal solution in each332

level is obtained by substituting ℎ�(); .) = 5GM(); .) in Eq. (14), and equating the gradient of the333

objective function with respect to the unknown parameters to zero.334

For the special case of =" = 1, an exact analytical solution of the optimization problem can335

be obtained (Rubinstein and Kroese 2016). For the general case of =" > 1, the optimization336

is solved iteratively using an appropriate numerical scheme. The recent study in (Geyer et al.337

2019) employs the fact that the CE optimization problem can be viewed as a weighted maximum338

likelihood estimation problem to derive a modified expectation-maximization (EM) algorithm. In339
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the present study, we adopt this approach to solve Eq. (14). The EM procedure and the updating340

rules of .̂ [:] for the GM model are described in (Geyer et al. 2019) and are not further discussed341

here.342

von Mises-Fisher-Nakagami mixture distribution343

The CE method with Gaussian densities performs poorly in high-dimensional problems, i.e.,344

in problems where the number =) of uncertain structural parameters is large. This is due to two345

reasons: the first is the degeneracy of the importance weight function , ()) in high-dimensions346

(Au and Beck 2003; Katafygiotis and Zuev 2008). The second reason is the number of parameters347

in the GM model, which increases quadratically with =) . This results in a rapid increase in the348

number of samples per level # required to obtain an adequate estimate of the optimal parameter349

values.350

Papaioannou et al. (Papaioannou et al. 2019) introduce the von-Mises-Fisher-Nakagami351

(vMFN) density as an alternative choice of the parametric family in the CE method. This paramet-352

ric density is more efficient in high-dimensions. For series system reliability analysis, one should353

use a von-Mises-Fisher-Nakagami mixture (vMFNM), whose PDF is defined in terms of the polar354

coordinates of the standard normal random vector �:355

5vMFNM( [A a]; .) =
="∑
B=1

cB 5vMFN( [A a]; -B, ^B, kB,ΩB), (26)356

where the sample pair {A a} represents the polar coordinates (radius and direction) of ) and357

5vMFN( [A a], -B, ^B, kB,ΩB) is the B-th vMFN density with parameters {-B, ^B, kB,ΩB} and normal-358

ized weight cB. The vMFN PDF in Eq. (26) is (Papaioannou et al. 2019)359

5vMFN( [A a]; -B, ^B, kB,ΩB) = 5N(A;kB,ΩB) 5vMF(a; -B, ^B), (27)360

where 5vMF(a; -B, ^B) is the PDF of a vonMises-Fisher distribution with mean direction -B (‖-B‖ =361

1) and concentration parameter ^B ≥ 0 and 5N(A;kB,ΩB) is the PDF of a Nakagami distribution362
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with shape parameter kB ≥ 0.5 and spread parameter ΩB > 0. The analytical expressions of363

5vMF(a; -B, ^B) and 5N(A;kB,ΩB) can be found in (Wang and Song 2016; Papaioannou et al. 2019).364

When the vMFN distribution is used within the CE method, the unknown parameter vector365

to be estimated by CE optimization is given by . = {[-B, ^B, kB,ΩB]; B = 1, . . . , ="}. Here all366

parameters are scalar-valued, with the exception of {-B; B = 1, . . . , ="}, which are vectors of367

dimension =) . Thus, the total number of parameters to be estimated in each sampling iteration is368

=" (=) + 3) + (=" − 1), which increases only linearly with =) . The optimal parameter vector in369

each level of the CE method is determined by substituting ℎ�(); .) = 5vMFNM( [A a]; .) in Eq. (14)370

and equating the derivative of the objective function with respect to the unknown parameters to371

zero. We apply the EM algorithm to solve the CE optimization problem. The EM procedure and372

the updating rules of .̂ [:] for the vMFNM are described in (Papaioannou et al. 2019) and are not373

further discussed here.374

ESTIMATION OF PROBABILITY OF FAILURE BY IMPORTANCE SAMPLING375

The IS density of the uncertain structural parameters derived in the previous section is applied376

to estimate the probability of failure of the series system. To this end, we write the unconditional377

failure probability of Eq. (6) in the modified form378

%� =
∫
)∈R=)

%� |�())
?�())

ℎ�(); .̂ [!])
ℎ�(); .̂ [!])3) , (28)379

where ℎ�(); .̂ [!]) denotes the IS density of the uncertain parameters � obtained using the CE380

method and %� |�()) is the system probability of failure conditional on � = ) . The conditional381

failure probability is defined in Eq. (7). To ensure reliable and efficient estimation of %� based on382

Eq. (28), we evaluate %� |�()) by IS sampling.383

Consider the discrete time representation of the dynamical system introduced earlier. Let the384

failure event �8,: denote out-crossing of the threshold level I∗8 by the 8-th absolute structural response,385

/8, at time instant C = C: . From the definition of the system failure event in Eqs. (4) and (5), it follows386

that occurrence of any one of the elementary failure events {�8,: ; 8 = 1, . . . , <, : = 1, . . . , =) } leads387
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to failure of the structure. Hence, the failure event of the series system is an union of the elementary388

failure events, i.e., � =
⋃<
8=1

⋃=)
:=1 �8,: . In order to evaluate %� |�()) by IS, we introduce an IS389

density of the random vector � characterizing the input excitation, and modify the integral in Eq.390

(7) to391

%� |�()) =
∫
/∈R=/

I {() , /) ∈ �} ?�(/)
ℎ�(/ |))

ℎ�(/ |))3/, (29)392

where ℎ�(/ |)) denotes the IS density of� conditional on� = ) . Since the structure is deterministic393

for a given value of the uncertain parameters, the sampling density ℎ�(/ |)) can be designed394

based on available IS methods for dynamic reliability estimation of deterministic structures. For395

the particular case of deterministic linear structures subjected to Gaussian process excitation, an396

efficient IS density of� is suggested in (Au and Beck 2001b). We employ this IS density to evaluate397

%� |�()). Accordingly, we define ℎ�(/ |)) as a weighted sum of Gaussian PDFs truncated over the398

domain of the elementary failure events:399

ℎ�(/ |)) =
<∑
8=1

=)∑
:=1

F8,: ())?�(/ |{() , /) ∈ �8,: }) =
<∑
8=1

=)∑
:=1

F8,: ())
?�(/)I{() , /) ∈ �8,: }

Pr
[
�8,: |� = )

] , (30)400

where F8,: ()) are normalized weights given by401

F8,: ()) =
Pr

[
�8,: |� = )

]∑<
A=1

∑=)
B=1 Pr

[
�A,B |� = )

] . (31)402

The probability of occurrence of �8,: conditional on� = ) is calculated according to the expression403

Pr
[
�8,: |� = )

]
= 2Φ(−ℎ∗

8
/‖r8,: ())‖), where r8,: ()) is as defined in Eq. (3).404

Substituting %� |�()) in Eq. (28) with the integral in Eq. (29), we obtain the following405

expression for %� :406

%� =
∫
)∈R=)

∫
/∈R=/

{
%̃())∑<

8=1
∑=)
:=1 I{() , /) ∈ �8,: }

, ())
}
ℎ�,�() , /)3/3) , (32)407

where ℎ�,�() , /) = ℎ�(/ |))ℎ�(); .̂ [!]) is the joint IS density of� and �,, ()) = ?� ())
ℎ� ();.̂ [! ] ) is the408
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importance weight function associated with � and %̃()) = ∑<
8=1

∑=)
:=1 Pr

[
�8,: |� = )

]
is the sum409

of probabilities of the elementary failure events {�8,: ; 8 = 1, . . . , <, : = 1, . . . , =) } conditional on410

� = ) . The probability of failure of the series system is therefore estimated by IS as411

%̂� =
1
#'

#'∑
9=1

%̃() ( 9))∑<
8=1

∑=)
:=1 I{() ( 9) , / ( 9)) ∈ �8,: }

, () ( 9)), (33)412

where
{(
) ( 9) , / ( 9)

)
, 9 = 1, . . . , #'

}
are independent samples of the structural parameters and ex-413

citation distributed according to ℎ�,�() , /) = ℎ�(/ |))ℎ�(); .̂ [!]). In order to generate a sample414 (
) ( 9) , / ( 9)

)
from ℎ�,�() , /), we first generate ) ( 9) from the IS density ℎ�(); .̂ [!]). The corre-415

sponding sample / ( 9) is then generated from the conditional IS density ℎ�(/ |) ( 9)) according to the416

algorithm described in (Au and Beck 2001b; Kanjilal et al. 2021).417

NUMERICAL INVESTIGATIONS418

We investigate the performance of the CE-based IS (CE-IS) method by means of two numerical419

examples. The first considers a two-story linear shear frame, with two uncertain structural parame-420

ters, subjected to a stationary Gaussian white noise. The system failure event is defined in terms of421

three components. This constitutes a simplified problem in terms of both the number of uncertain422

structural parameters and component failure modes, and is intended to illustrate different aspects of423

the proposed method. The second example considers a six-story three-bay moment-resisting frame424

driven by a filtered non-stationary Gaussian process excitation. This problem demonstrates the425

performance of the method in a more complicated setting where the system consists of 22 uncertain426

structural parameters and 24 components. In both examples, � is a vector of independent standard427

normal random variables. The uncertain structural parameters are generated from � by means of428

iso-probabilistic transformations.429

The performance of the CE-IS method is assessed in terms of the sample mean and sample430

CoV of the estimates of %� , denoted by %̂� and X%̂� in this section, and in terms of the number of431

dynamical system evaluations required by the method. #�� denotes the total number of samples432

of � needed to determine the IS density of the uncertain parameters using the CE method. #'433
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denotes the number of samples of (�,�) used to obtain a sample estimate of %� during reliability434

estimation, i.e., for evaluating Eq. (33). The dynamical system is required to be evaluated for every435

sample realization of � to determine the impulse response functions. During CE optimization, the436

impulse response functions of the critical responses /8 and their velocities ¤/8 are post-processed437

to evaluate the analytical approximation of %� |�()). In the reliability estimation step, the impulse438

response functions of /8 are convoluted with a sample realization of the input excitation to obtain439

a realization of the response time-histories. In the considered examples, the input excitation is440

represented by a scalar Gaussian process, i.e., ; = 1. Hence, for every generated sample of441

the uncertain parameters, the impulse response functions of /8 and ¤/8 are obtained from a single442

dynamic analysis. Therefore, #�� and #' also indicate the number of dynamical system evaluations443

needed in the CE optimization step and the reliability estimation step, respectively. #) = #�� +#'444

is the total number of system evaluations required to obtain an estimate of %� . The performance445

measures are averaged over 50 independent simulation runs. The reference values of the probability446

of failure are obtained by large-scale direct MCS.447

While implementing the CE-IS method, the sample size #' in the reliability estimation step is448

selected using two approaches. In the first approach, #' is taken equal to the number of samples449

per level for CE optimization, i.e., #' = # . In the second approach, #' is adapted on the fly to450

ensure that an estimate of the CoV of the IS estimate of %� is smaller than a specified target value451

X∗
%̂�
. The adaptive variant of the IS estimator is implemented according to the procedure described452

in (Kanjilal et al. 2021).453

A two-story linear shear frame454

The first example involves a two-story linear shear frame which is excited by a stochastic ground455

acceleration. The structure, idealized as amass-spring-dashpot systemwith 2 degrees of freedom, is456

depicted in Fig. 1. The system has been previously studied in (Valdebenito et al. 2014). Each floor457

possesses a mass of < = 30Mg. The stiffness parameters {:8; 8 = 1, 2} are modeled as independent458

uniform randomvariables withmarginal distribution :8 ∼ U[12, 28]MN/m. A classical damping of459

4% is assumed for the twomodes. The ground acceleration 5 (C) is modeled as a stationary Gaussian460
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white noise of duration ) = 15s and spectral intensity ( = 10−4m2/s3. The stochastic excitation is461

discretized at time intervals of ΔC = 0.01s, i.e., =) = 1501. The random vector � characterizing462

5 (C) consists of the sequence of i.i.d. standard normal random variables {Ξ: , : = 1, . . . , =) } that463

generate the white noise at the discrete time instants, i.e.,
{
5 (C: ) =

√
2c(/ΔCΞ: , : = 1, . . . , =)

}
.464

Three response measures are considered: /1= absolute displacement of the first floor, and /2 =465

inter-story drift between first and second floors and /3 = absolute displacement of the top floor.466

The objective is to estimate the probability that any one of these responses exceeds a corresponding467

threshold I∗
8
over the duration of the random excitation.468

Weconsider two choices of the response thresholds: (i) case 1: (I∗1, I
∗
2, I
∗
3) = (0.006, 0.006, 0.006)m,469

this is the case studied in (Valdebenito et al. 2014) and (ii) case 2: (I∗1, I
∗
2, I
∗
3) = (0.004, 0.003, 0.006)m.470

The reference value of the probability of failure in both cases is estimated by direct MCS with 107
471

samples. The performance of the CE-IS method is investigated for the following parametric fam-472

ilies: single Gaussian (S-G) distribution, single vMFN (S-vMFN) distribution, Gaussian mixture473

(GM) distribution and vMFN mixture (vMFNM) distribution. For the mixture models, =" = 3474

densities are considered to account for the three component failure modes of the series system. In475

the present example, where the number of uncertain structural parameters is =) = 2, the parameter476

vector . for S-G and S-vMFN distributions consists of 5 unknown parameters, whereas for GM477

and vMFNM distributions it consists of 17 unknown parameters.478

Fig. 2 shows samples from the IS densities of� for case 1 obtained using the different parametric479

densities. The IS densities are fitted using # = 250 samples per level during CE optimization. It is480

seen that the optimal IS density in this case is uni-modal. This can be attributed to the fact that the481

contribution to the system failure probability comes primarily from one of the three components,482

i.e., there is one dominant component failure mode (the top floor displacement) for the considered483

values of the response thresholds. As a consequence, a uni-model parametric density is able to484

adequately represent the important region of the failure domain in the�-space. The use of mixture485

distributions does not offer any additional advantage in this case. This is further substantiated by486

Table 1, where we report the results of reliability analysis and the computational effort for # =487
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250 and 1000 samples per level. All four parametric densities require two steps on average to488

converge to the failure domain, as is indicated by the value of #�� . The computational effort489

required to determine the IS density of � is comparable among the different parametric families.490

The probability of failure estimates in Table 1 are obtained using a fixed number of samples (equal491

to #) in the IS estimator, i.e., #' = number of samples per level during CE optimization. The492

reference value of the probability of system failure is 1.79 × 10−3 with a CoV of 0.8%. For all493

four parametric densities, the sample mean of the probability estimates obtained by the CE-IS494

method compare well with the reference solution. In terms of the sample CoV of the estimates, the495

performance of the method is similar for all choices of the parametric density.496

The IS densities of � in case 2, i.e., for (I∗1, I
∗
2, I
∗
3) = (0.004, 0.003, 0.006)m, are illustrated497

in Fig. 3. The failure domain has multiple important regions, as is indicated by the multi-modal498

nature of the optimal IS density ℎ∗�()). For the GM and vMFNM distributions, it can be seen499

that the three mixture components can describe the failure domain sufficiently accurate and that500

majority of the samples are located near the modes of the optimal IS density, which are the regions501

that have a higher contribution to the probability of failure. In contrast, the samples from the502

S-G and S-vMFN distributions are more dispersed with a higher fraction of these located in the503

less important regions, i.e., regions which have less contribution to the failure probability. As a504

consequence, the uni-modal parametric densities are less efficient than the mixture distributions505

for this case. This is further substantiated by the simulation results in Table 2. The results are506

obtained with # = 250 samples per level. The values of #�� indicate that for all choices of the507

parametric density, the CE method requires two steps on average to converge. We evaluate the508

IS estimator for %� with both non-adaptive and adaptive selection of #'. The two choices of #'509

are indicated by #'-NonAdap and #'-Adap in Table 2. The results for #'-Adap correspond to a510

target CoV of X∗
%̂�
= 0.05. The reference value of the probability of system failure is 4.70 × 10−3

511

with a CoV of 0.5%. The sample mean of the probability estimates obtained with the two choices512

of #' are similar for all parametric densities. Although we observe a small bias in comparison513

with the reference solution, the estimates given by the CE-IS method are sufficiently accurate for514
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practical use. In terms of the sample CoV of the estimates and the computational effort, the mixture515

distributions perform better. For #'-NonAdap, it is seen that the CoV of the estimates obtained516

using the GM and vMFNM distributions are smaller than the ones obtained using the S-G and517

S-vMFN distributions. For #'-Adap, the GM and vMFNM distributions require lesser number of518

dynamic system evaluations to converge to the target CoV of 5%. The superior performance of519

the mixture distributions is due to the greater accuracy in describing the multi-modal nature of the520

failure domain.521

We investigate the effect of the sample size per level # on the performance of the method. For522

this, different values of # in the range 125-1000 are considered. The study is conducted for case523

2 using the mixture distributions as the parametric family. The sample means of the probability524

estimates are similar to those given in Table 2 and hence are not reported separately. The sample525

CoV of the estimates and the computational effort is depicted in Fig. 4. It is observed that the526

number of levels required for the CE optimization to converge remains the same (on average equal527

to two) for all values of # . Hence, the computational effort needed for optimization, #�� , increases528

monotonically with # . The difference between the vertical coordinates of the dotted line and the529

solid lines corresponds to #', the average number of dynamical system evaluations used in the530

reliability estimation step. With increase in # , the number of effective samples of � available to531

fit the parametric densities at each intermediate level increases. This leads to better estimation of532

the parameters in the IS density of �. For #'-NonAdap, where #' = # , an increase in # also533

implies an increase in the number of samples of (�,�) used to obtain a sample estimate of %�534

during reliability estimation. Due to these factors, the sample CoV of the probability estimates for535

#'-NonAdap decreases as # increases. For #'-Adap, it is seen that the sample size for reliability536

estimation initially decreases as # increases. This is due to the sub-optimality in the IS density of�537

obtained with a small # , which leads to a greater computational effort during reliability estimation538

necessary to meet the prescribed X∗
%̂�
. As # increases, one obtains improved estimates of the539

parameter vector, and the number of samples for reliability estimation starts decreasing. Beyond540

a certain value of # , # = 500 in this example, #' is nearly constant, which indicates that the IS541
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density of � obtained using 500 samples per level is sufficiently optimal, and a further increase542

in # does not give any additional advantage during reliability estimation. The sample CoV of the543

probability estimates for #'-Adap remains close to the prescribed X∗
%̂�

for all # . Finally, Fig. 4544

shows that the IS estimator with adaptive selection of #' requires a smaller number of dynamical545

system evaluations to meet a prescribed CoV. It is seen that the GM with #'-Adap requires only546

1350 system evaluations to achieve a sample CoV less than 5%, whereas with #'-NonAdap similar547

accuracy is obtained with approximately 3000 system evaluations. A similar observation is made548

for the vMFNM distribution. This indicates that if the goal is to achieve a desired value of the549

sample CoV, the adaptive variant of the IS estimator is more efficient provided that the number of550

samples per level # is chosen appropriately. Similar results as in Fig. 4 are observed for component551

reliability analysis of randomly excited uncertain linear structures where the failure event is defined552

by the first-passage of a single critical response across a prescribed threshold (Kanjilal et al. 2021).553

A moment-resisting steel frame554

We consider the six-story three-baymoment-resisting steel frame shown in Fig. 5. The structure555

has been previously analysed in an example given in (Au and Beck 2001b), where deterministic556

structural parameters are considered. The frame is represented by a two-dimensional linear finite557

element model. The members connecting the joints of the frame are described by two-noded beam558

elements with two translational DOF and one rotational DOF per node. The equation of motion559

of the structure is obtained after applying static condensation wherein only the DOFs representing560

the horizontal displacement of the columns are retained. The frame members have different cross-561

sections, which are denoted by {�8; 8 = 1, . . . , 6} (for columns) and {�8; 8 = 1, . . . , 3} (for girders)562

in Fig. 5. For each floor, the same section is used for all the girders. The member sections are563

taken from Example 2 in (Au and Beck 2001b). The Young’s modulus of the members vary with564

cross-section: {�8; 8 = 1, . . . , 3} denote the modulus of the girder sections {�8; 8 = 1, . . . , 3} and565

{�8; 8 = 4, . . . , 9} denote the modulus of column sections {�8; 8 = 1, . . . , 6}. {�8; 8 = 1, . . . , 9}566

are modeled by independent log-normal random variables with mean 200 GPa and CoV 10%. A567

lumped mass model is applied, wherein the mass of the frame members and the contribution from568

24 Kanjilal, July 1, 2021



the dead loads are lumped at the nodes of the frame. These point masses are considered as uncertain569

and are modeled by log-normal random variables with mean values given in Table 3 and CoV 10%.570

Rayleigh damping is assumed so that the first two modes have the same critical damping ratio,571

which is modeled by a log-normal random variable with mean 0.04 and CoV 10%. Hence, the572

number of uncertain structural parameters is =) = 22.573

The structure is excited by a stochastic ground acceleration 5 (C) applied in the horizontal574

direction. We adopt the characterization of the random excitation given in (Au and Beck 2001b)575

and model 5 (C) by a modulated Clough-Penzin filtered white noise:576

5 (C) = l2
3G3 (C) + 2[3l3 ¤G3 (C) − l2

6G6 (C) − 2[6l6 ¤G6 (C), (34)577

where
{
G3 (C) ¤G3 (C) G6 (C) ¤G6 (C)

}T are the states of the filter defined by the linear system:578

¥G3 (C) + 2[3l3 ¤G3 (C) + l2
3G3 (C) = 4(C)# (C)

¥G6 (C) + 2[6l6 ¤G6 (C) + l2
6G6 (C) = 2[3l3 ¤G3 (C) + l2

3G3 (C)

G3 (0) = 0, ¤G3 (0) = 0, G6 (0) = 0, ¤G6 (0) = 0.

(35)579

In the above equation, # (C) is a Gaussian white noise with zero mean and spectral intensity580

( = 1 × 10−3m2/s3. The numerical values of the filter parameters are taken to be l3 = 15.7 rad/s,581

[3 = 0.6, l6 = 17.5 rad/s and [6 = 0.8. The envelope function is given by 4(C):582

4(C) =



0 for C ≤ 0s

(C/4)2 for 0s ≤ C ≤ 4s

1 for 4s ≤ C ≤ 14s

exp(−(C − 14)2/2) for C ≥ 14s

(36)583

A duration of ) = 30s and a sampling time interval of ΔC = 0.02s are used in computing the584

response of the structure. Therefore, the total number of standard Gaussian random variables in585
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the discrete approximation of 5 (C) is =) = 1501.586

Peak inter-story drift ratio587

Here we consider the probability that the peak inter-story drift ratio at any column exceeds a588

specified threshold level I∗ in (%). The responses {/8; 8 = 1, . . . , <} thus consist of the inter-story589

drift ratios of all columns connecting the floors, resulting in < = 24 critical responses. As the590

number of uncertain structural parameters is high, the vMFN density is selected as the parametric591

family in the CE-IS method. Since all columns in a floor experience nearly the same inter-story592

drift, a significant overlap of the respective failure domains is expected. To adequately describe the593

failure domains of all columns in the six stories, a mixture distribution with =" = 6 components is594

considered. The parameter vector . thus consists of 155 unknown parameters.595

The simulation results for threshold levels I∗ = 0.5, 0.75 and 1% are given in Table 4. The IS596

density of� is determined using # = 500 samples per level during CE optimization. The values of597

#�� reported in the table indicate that the number of levels required for the optimization to converge598

increases with the threshold level. The probability of failure is estimated using both choices of #'.599

The results for #'-Adap correspond to a target CoV of X∗
%̂�
= 0.10. Failure probability estimates600

for both #'-NonAdap and #'-Adap are comparable and agree well with the reference solution.The601

sample CoV of the probability estimates for #'-Adap remain close to the target value X∗
%̂�
= 0.10.602

For #'-NonAdap, the probability estimates for higher threshold levels have smaller CoV than for603

lower thresholds, whereas for #'-Adap the number of dynamical system evaluations required to604

achieve the target CoV decreases with increase in the threshold level. For I∗ = 0.5% the method605

performs poorly; crude MCS would result in a similar CoV with a lower computational effort of606

approximately 625 samples. The poor performance of the CE-IS method for I∗ = 0.5 % can be due607

to two reasons. First, the out-crossing rate-based analytical approximation is used to evaluate the608

conditional probability %� |�()) during CE optimization. It is known that the Poisson assumption of609

the number of out-crossing can perform poorly for low threshold levels. This leads to a sub-optimal610

IS density of the uncertain structural parameters for I∗ = 0.5 %. The second reason could be that611

the applied distribution model might not be able to approximate well the optimal IS density. The612
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latter issue can be addressed by increasing the number of terms in the mixture distribution.613

Peak floor acceleration614

Here we consider the failure probability that the peak floor acceleration over all stories exceeds615

a specified threshold level I∗ (in g). Since the horizontal displacement of the girders is obtained616

by linear interpolation of the nodal displacements of the beam elements, this probability is equal617

to the failure probability that the absolute horizontal acceleration at any one of the nodes of the618

frame exceeds the threshold level I∗. There are thus < = 24 critical responses {/8; 8 = 1, . . . , <}619

corresponding to the horizontal acceleration at the 24 nodes of the structure. The probability of620

failure is estimated for threshold levels I∗ = 0.2, 0.3 and 0.4g. The simulation results obtained621

using a vMFNM distribution with =" = 6 mixture components is given in Table 5. A sample size622

of # = 500 is used per level during CE optimization. Similar to the case of peak inter-story drifts,623

the results show that the computational effort required to determine the IS density of the uncertain624

structural parameters increases with the threshold level. For I∗ = 0.2 and 0.3g, the probability625

of failure estimates obtained from the CE-IS method agree well with the reference solution. For626

I∗ = 0.4g, a small under-estimation is observed; however, for this threshold the sampling uncertainty627

of the reference solution is significant. It is seen that the sample CoV of the probability estimates628

for #'-NonAdap with #' = 500 is comparable to that for #'-Adap with X∗
%̂�
= 0.10. However,629

the number of dynamical system evaluations required to obtain the estimates with #'-Adap is less.630

This indicates that for # = 500 samples per level the IS estimator with adaptive selection of #' is631

more efficient.632

CONCLUDING REMARKS633

This contribution presents an adaptive IS method to estimate the series system reliability of634

uncertain linear structures subject to Gaussian loading. The main contribution is the introduction635

of an efficient IS density of the uncertain structural parameters. We determine this IS density by636

the CE method through minimizing the KL divergence between the theoretically optimal IS density637

and a chosen parametric family of probability distributions. Based on an upper bound on the joint638

out-crossing rate of the output responses, a closed-form analytical approximation of the system639

27 Kanjilal, July 1, 2021



failure probability conditional on a fixed value of the structural parameters is derived. The use640

of the analytical approximation enables smooth convergence of the CE optimization problem. A641

joint IS density of the uncertain structural parameters and the random excitation is considered to642

estimate the probability of failure. The numerical results indicate that the proposed approach is643

efficient and accurate.644

We investigate the performance of alternative parametric distribution models, depending on645

the number of uncertain structural parameters and failure modes. In series systems, where the646

structural failure event is a union of multiple first-passage failures, the optimal IS density of the647

uncertain parameters is usually multi-modal in nature. In such cases, a mixture distribution offers648

more flexibility in approximating the optimal IS density. This is demonstrated in our numerical649

studies, where we compare the performance of uni-modal and mixture distribution models from650

the Gaussian and the vMFN density family. The mixture distributions outperform the uni-modal651

distributions both in terms of the coefficient of variation of the failure probability estimate and the652

computational effort. In terms of dimensionality of the problems, i.e., the number of uncertain653

structural parameters =) involved, we note that the proposed method remains applicable in high654

dimensions. However, fitting the IS density of the uncertain parameters by CE minimization655

becomes computationally expensive due to increase in the number of unknown parameters in the656

parametric densities. This increase is quadratic in =) for the GM distribution and linear in =) for657

the vMFNM distribution. Hence, to adequately fit the parametric IS density in high dimensions, a658

larger number of samples will be required in each level of the CE method. The required sample659

size scales approximately the same as the number of unknown parameters. In small dimensions,660

the GM and vMFNM distributions exhibit similar efficiency. In high dimensions, the vMFNM661

distribution is more efficient.662

As future research, it is interesting to further develop the method for application to non-663

linear dynamical systems. In the presence of non-linearity, the structural response processes are664

non-Gaussian. An extension of the method to non-Gaussian response processes poses two key665

challenges. The first lies in obtaining an analytical approximation of the failure probability condi-666
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tional on the structural parameters, which is required to determine the IS density of the uncertain667

parameters by CE minimization. In this regard, application of the Poisson approximation requires668

knowledge of out-crossing rates of non-Gaussian response processes, which is not straight-forward669

to obtain. An estimate of the conditional failure probability for non-linear systems can be obtained,670

for example, by stochastic averaging (dos Santos et al. 2019) or tail-equivalent linearization (Fu-671

jimura and Der Kiureghian 2007) techniques. However, these methods are computationally too672

costly for repeated evaluations in the context of the proposed CE-IS method and would need to be673

adapted. The second challenge lies in constructing an effective IS density of the random excitation674

to evaluate the conditional failure probability during reliability estimation. Some approaches can675

be found in (Schuëller et al. 2004a; Kanjilal and Manohar 2019), but also here additional research676

is necessary to enable their implementation into the proposed approach.677
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Appendix I. Evaluation of the upper bound of U+
8
(C: ; z∗, ))683

The integral in the upper bound of the up-crossing rate U+
8
(C: ; z∗, )) in Eq. (20) is given by684

� =
∫ ∞

−∞

[
f8q

(
− H
f8

)
+ HΦ

(
H

f8

)]
1
V8
q

(
H − `8
V8

)
3H, (37)685

where f8, `8 and V8 are as defined in Eqs. (22) and (23). In order to derive an analytical solution686

of �, we consider the change of variables D = (H − `8)/V8. Then Eq. (37) can be re-expressed as687
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� =
∫ ∞

−∞

[
f8q

(
− V8D + `8

f8

)
+ (V8D + `8)Φ

(
V8D + `8
f8

)]
q(D)3D

= f8

∫ ∞

−∞
q

(
− V8D + `8

f8

)
q(D)3D + V8

∫ ∞

−∞
Φ

(
V8D + `8
f8

)
Dq(D)3D

+ `8
∫ ∞

−∞
Φ

(
V8D + `8
f8

)
q(D)3D

= f8�1 + V8�2 + `8�3

(38)688

There exist well-known expressions for evaluating integrals of functions of normal densities (Owen689

1980). Using these results we get the following analytical expressions for �1, �2 and �3:690

�1 =
∫ ∞

−∞
q

(
− V8D + `8

f8

)
q(D)3D = f8√

V2
8
+ f2

8

q
©«

`8√
V2
8
+ f2

8

ª®®¬
�2 =

∫ ∞

−∞
Φ

(
V8D + `8
f8

)
Dq(D)3D = V8√

V2
8
+ f2

8

q
©«

`8√
V2
8
+ f2

8

ª®®¬
�3 =

∫ ∞

−∞
Φ

(
V8D + `8
f8

)
q(D)3D = Φ

©«
`8√

V2
8
+ f2

8

ª®®¬

(39)691

Substitution of Eq. (39) into Eq. (38) leads to the result692

� =
√
V2
8
+ f2

8
q
©«

`8√
V2
8
+ f2

8

ª®®¬ + `8Φ
©«

`8√
V2
8
+ f2

8

ª®®¬ (40)693
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TABLE 1. Failure probability estimates of two-story linear shear frame - case 1. Results obtained
by the CE-IS method using the S-G, GM, S-vMFN and vMFNM distributions. The reference value
of probability of failure estimated from 107 direct Monte Carlo samples is 1.79 × 10−3 with a CoV
of 0.8%

# = 250 # = 1000

%̂� X%̂�
#�� #' #) %̂� X%̂�

#�� #' #)

S-G 1.69 × 10−3 0.071 510 250 760 1.71 × 10−3 0.032 2000 1000 3000

GM 1.71 × 10−3 0.068 535 250 785 1.71 × 10−3 0.036 2020 1000 3020

S-vMFN 1.69 × 10−3 0.069 510 250 760 1.70 × 10−3 0.034 2040 1000 3040

vMFNM 1.70 × 10−3 0.068 520 250 770 1.72 × 10−3 0.032 2020 1000 3020

36 Kanjilal, July 1, 2021



TABLE 2. Failure probability estimates of two-story linear shear frame - case 2. Results obtained
by the CE-ISmethod using the S-G,GM, S-vMFN and vMFNMdistributionswith # = 250 samples
per level. The results for #'-Adap correspond to a target CoV of X∗

%̂�
= 0.05. The reference value

of probability of failure estimated from 107 direct Monte Carlo samples is 4.70 × 10−3 with a CoV
of 0.5%

#'-NonAdap #'-Adap

#�� %̂� X%̂�
#' #) %̂� X%̂�

#' #)

S-G 515 4.50 × 10−3 0.174 250 765 4.38 × 10−3 0.050 1400 1915

GM 515 4.40 × 10−3 0.095 250 765 4.41 × 10−3 0.047 838 1353

S-vMFN 520 4.25 × 10−3 0.120 250 770 4.43 × 10−3 0.048 954 1474

vMFNM 530 4.47 × 10−3 0.106 250 780 4.38 × 10−3 0.045 842 1372

37 Kanjilal, July 1, 2021



TABLE 3. Probabilistic description of the point masses in moment-resisting steel frame. The point
masses follow log-normal distribution with mean values reported in the table and CoV of 10%.

Floor Mean value of point mass (×103 kg)

Exterior column Interior column

2 60.4 81.0
3 53.3 78.1
4 51.9 76.0
5 51.7 75.8
6 50.1 73.5

Roof 44.6 63.1
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TABLE 4. Failure probability estimates for peak inter-story drift ratio of moment-resisting steel
frame. Results from CE-IS method with #'-Adap correspond to a target CoV of X∗

%̂�
= 0.10.

# = 500 samples used per level during CE optimization. Reference solution estimated by 2 × 106

direct Monte Carlo samples.

I∗ CE-IS direct MC

(%) #'-NonAdap #'-Adap

#�� %̂� X%̂�
#' #) %̂� X%̂�

#' #) %� X%�

0.5 500 1.33 × 10−1 0.173 500 1000 1.28 × 10−1 0.112 1203 1703 1.31 × 10−1 0.002

0.75 1000 4.36 × 10−3 0.137 500 1500 4.21 × 10−3 0.103 858 1858 4.31 × 10−3 0.011

1 1620 7.61 × 10−5 0.142 500 2120 7.32 × 10−5 0.090 696 2316 7.70 × 10−5 0.081
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TABLE 5. Failure probability estimates for peak floor acceleration of moment-resisting steel
frame. Results from CE-IS method with #'-Adap correspond to a target CoV of X∗

%̂�
= 0.10.

# = 500 samples used per level during CE optimization. Reference solution estimated by 2 × 106

direct Monte Carlo samples.

I∗ CE-IS direct MC

(g) #'-NonAdap #'-Adap

#�� %̂� X%̂�
#' #) %̂� X%̂�

#' #) %� X%�

0.2 500 1.09 × 10−1 0.091 500 1000 1.06 × 10−1 0.093 392 892 1.09 × 10−1 0.002

0.3 1480 2.21 × 10−3 0.112 500 1980 2.14 × 10−3 0.080 302 1782 2.21 × 10−3 0.015

0.4 2120 2.42 × 10−5 0.098 500 2620 2.40 × 10−5 0.102 476 2596 1.55 × 10−5 0.180
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Fig. 1. Two-story shear frame excited by stochastic ground acceleration 5 (C)
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Fig. 2. Comparison of the IS density of the uncertain structural parameters in the standard normal
space (�-space) for two-story linear shear frame - case 1. The solid lines represent the contours of
the optimal IS density ℎ∗�()), which is estimated by direct MCS with 107 samples. The scattered
points are samples of � drawn from the IS density obtained by the CE-IS method.
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Fig. 3. Comparison of the IS density of the uncertain structural parameters in the standard normal
space (�-space) for two-story linear shear frame - case 2. The solid lines represent the contours of
the optimal IS density ℎ∗�()), which is estimated by direct MCS with 107 samples. The scattered
points are samples of � drawn from the IS density obtained by the CE-IS method.
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(a) GM distribution
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(b) vMFNM distribution
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Fig. 4. Total computational effort #) and the sample CoV X%̂� as a function of # for two-story linear
shear frame - case 2. The rows correspond to different parametric densities (a) GM distribution; (b)
vMFNM distribution. Note that the dashed line does not reflect #) , but the computational effort
needed only for CE optimization.
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Fig. 5. Moment-resisting steel frame
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