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Abstract

The identification of parameters of structural models through measurements of the system’s response is of interest
in many contexts. In Bayesian system identification the underlying inverse problem is formulated in a probabilistic
setting, and Bayes’ rule is applied to update a prior conjecture on the parameters. We apply the Bayesian framework to
identify the parameters of structural systems using dynamic measurement data. The likelihood function is formulated
in terms of the misfit of the frequency transformed data and the model frequency response function. We introduce
a novel formulation that accounts for the correlation of the model error in both spatial and frequency domain. The
proposed formulation is able to handle dense data sets in the frequency domain without need to manually select data
points. Due to the high computational demands of sampling-based approaches for solving the Bayesian updating
problem with expensive structural dynamics models, we resort to surrogate models. We apply a recently introduced
rational surrogate model that approximates the complex frequency response as a rational of two polynomials with
complex coefficients. Samples of the posterior distribution of the model parameters are then obtained through an
adaptive sequential sampling approach using the surrogate instead of the original dynamic model. The proposed
method is successfully applied to identify the orthotropic stiffness and damping parameters of a finite element model
of a cross laminated timber plate.

Keywords: Bayesian Updating, Parameter Updating, Structural Dynamics, Surrogate Model, Frequency Response
Function, Rational Function Approximation

1. Introduction1

In structural dynamics, one is interested in determining the dynamic response of a structure or system as a basis for2

design decisions to ensure a satisfactory performance of the system related to safety and serviceability. Applications of3

structural dynamics have a wide range and include civil, automotive and aerospace engineering systems. The dynamic4

system response is governed by a set of differential equations, whose parameters define the structural characteristics5

of the system. Typically, the spatial domain is discretized by a numerical method, often the finite element method,6

in which case the problem is formulated as a discrete finite element system. The structural response can then be7

determined in the time or frequency domain.8

When comparing computed model results to measurements conducted on existing structures, usually noticeable9

discrepancies are observed. These discrepancies are due to measurement errors and, more importantly, errors related10

to the model response. The latter stem from a lack of knowledge of the parameter values, such as the stiffness, damping11

or mass, and possibly a lack of understanding of the behavior of the actual system. The information contained in the12

measurements can be used to reduce these errors. This procedure is known as system identification [1, 2, 3, 4].13

System identification can be performed with parametric and non-parametric approaches. This paper focuses on the14

parametric approach to model updating, also termed parameter updating or indirect system identification [5]. In the15

scope of parametric model updating, it is assumed that a mathematical model structure can be deduced from physical16

understanding of the structure. Then, the task is to determine the parameters of a chosen model such that the model17

best describes the measurements. A wide range of methods for parametric model updating have been proposed in the18

literature. Typically results from vibration measurements, such as acceleration time histories, frequency responses,19
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natural frequencies and mode shapes, modal strains or curvatures or modal flexibilities [6] are utilized for this purpose.20

A distinction is made between deterministic and probabilistic approaches.21

Deterministic approaches aim at finding an optimal parameter set, such that the discrepancy between model output22

and measurement is minimized. This is typically stated as an optimization problem. An overview of deterministic23

updating techniques can be found in [7]. Despite the fact that deterministic methods have been successfully applied,24

they have limitations. A common problem is the ill-posedness and ill-conditioning of the optimization problem. These25

issues can be efficiently treated through considering the inverse problem in a probabilistic framework.26

Within a probabilistic framework, the quantities which are subject to uncertainty, such as parameters in the struc-27

tural models and the errors themselves, are modeled as random variables. Commonly, the uncertainty is separated into28

model prediction and measurement uncertainty [6]. The uncertainty attributed to a quantity is then fully described29

by its probability density function (PDF). A commonly applied method to solve the probabilistic inverse problem is30

Bayesian updating. Through Bayesian updating the probabilistic description of the system parameters conditional31

on the observed measurements can be found [8]. The prior knowledge on the uncertain parameters, i.e. before32

the measurements become available, is expressed through the prior distribution. The distribution conditional on the33

measurements is found by application of Bayes’ rule as the normalized product of the prior PDF and the likelihood34

function, which summarizes the measurements. The prior distribution imposes a regularization to the inverse prob-35

lem, which effectively addresses its ill-posedness. The application of Bayesian methods to system identification is36

presented in, e.g., [9]. A Bayesian statistical framework for updating structural models is given by [10] and a detailed37

discussion of Bayesian methods in structural dynamics can be found in [11].38

The evaluation of the posterior distribution requires solving a possibly high-dimensional integral. Except from39

some trivial cases this integral needs to be approximated numerically. A number of methods have been developed for40

this purpose. Asymptotic approximation methods, such as Laplace approximation [12], assume a Gaussian posterior41

distribution centered around the maximum a-posteriori (MAP) estimate [10]. Laplace approximations are inaccurate42

in problems with small numbers of measurements and are difficult to obtain in multimodal (non-uniquely identifiable)43

problems. For this reason, increasing attention has been given to stochastic methods, among which the most common44

method is Markov Chain Monte Carlo (MCMC) sampling [13]. A general discussion of MCMC sampling in the scope45

of Bayesian updating of structural models is given in [14]. Examples of MCMC methods and other variants thereof46

applied to Bayesian updating in structural dynamics include Gibbs-sampling [15], Transitional MCMC (TMCMC)47

[16, 17] or evolutionary MCMC methods [18, 19, 20]. An alternative approach to MCMC is the BUS approach, which48

employs sampling-based structural reliability methods to sample from the posterior distribution [21]. Application of49

the BUS approach combined with subset simulation to structural identification problems can be found in [21, 22, 23].50

In sampling approaches, the model outcome needs to be computed for a large number of samples of the parameters,51

which can be prohibitive for computationally intensive models. For this reason, surrogate models are often used52

to approximate the computationally intensive model through a simple mathematical model that can be evaluated53

much faster. Popular choices include polynomial chaos expansions (PCE) [24, 25], Neumann series expansions54

[26] and machine learning techniques such as neural networks [27] or Gaussian process models [28]. Applications55

of surrogate modelling techniques combined with sampling approaches to Bayesian structural identification can be56

found in [29, 30]57

Often, the inverse problem is formulated in terms of the modal properties of the system [15, 31, 32, 33, 34]. This58

requires the application of modal identification techniques, e.g., [35, 36, 37]. Despite the successful application and59

computational efficiency of modal data based approaches, the modal identification from time domain data can be error-60

prone. To avoid the modal analysis with possible identification errors, frequency response based approaches can be61

chosen. This is especially important for models with high modal density where modal identification is a challenging62

task [38]. It should be noted that the application of model updating based on the frequency response requires the63

availability of both, excitation and response measurement data.64

Approaches to Bayesian updating using frequency response data are presented in [18, 19, 20, 39]. [19] discusses65

various error sources and their influence on the likelihood formulation. A PCE-based surrogate model is built to66

approximate the frequency response function (FRF) as a function of the modal properties. Posterior samples are67

computed through an evolutionary MCMC method. [39] solve the Bayesian identification problem with MCMC for a68

three degree of freedom system. Another approach is given in [40], where eigenfrequencies and FRF data are used in69

the updating procedure in low- and medium-frequency band, respectively.70

This paper proposes a Bayesian parameter updating procedure for linear dynamic models that is based on fre-71
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quency response data obtained from measurements. A novel formulation of the likelihood function relating the fre-72

quency data with the model response is introduced, which accounts for the correlation of the model error in both73

spatial and frequency domain. The formulation employs a multivariate complex normal distribution for the logarithm74

of the model error, leading to a joint normal distribution for the logarithm of the absolute value and the phase of the75

model error. The computational cost is reduced by combining the updating procedure with a surrogate model recently76

introduced in [41], which is especially suited for approximating FRFs. The surrogate model expresses the FRF as a77

ratio of polynomial chaos representations and is thus able to capture the highly non-linear behavior in terms of the78

model parameters. The coefficients of the surrogate model are determined based on a non-intrusive regression-based79

approach, which allows the coupling with any black-box finite element solver. We then employ an adaptive variant of80

BUS with subset simulation to generate samples from the posterior distribution [23] using the surrogate model instead81

of the numerical model of the system. A numerical example is presented that applies the proposed updating method82

to a cross-laminated timber (CLT) plate.83

The outline of the paper is as follows. First, a description for the linear dynamic system with parameter uncertainty84

is given. In Section 3 the rational function approximation is introduced and a regression based method for estimating85

the coefficients is presented. Section 4 presents the Bayesian updating problem. Furthermore the likelihood function86

definition and the prior assumptions are discussed. Finally in Section 5, the proposed framework is applied to update87

the model parameters of a cross-laminated timber plate. The paper closes with the conclusions in Section 6.88

2. Linear dynamic model with parameter uncertainty89

Within the proposed framework, Bayesian updating makes use of measurement data to update the parameters of an90

engineering model of a given physical system. We assume that the physical system is modeled by a space-discretized,91

linear dynamic system with N degrees of freedom (DOF). Let X be a random vector with outcome space Rd and92

joint probability density function (PDF) fX (x). X models a set of uncertain parameters that influence the state of the93

dynamic system. The matrices K (X), C (X) and M (X) denote stiffness, damping and mass matrix with parametric94

uncertainty. The equation of motion describing the system state in the frequency domain is given as95

K (X) ũ (ω,X) + iωC (X) ũ (ω,X) − ω2M (X) ũ (ω,X) = f̃(ω) . (1)

Here, f̃ (ω) and ũ (ω,X) are the deterministic force and the uncertain displacement vector in the frequency domain96

and i =
√−1 denotes the imaginary number.97

From the above, it is evident that the outcome space of the solution ũ is the N-dimensional complex set CN . The98

frequency response function (FRF) h̃i j : R×Rd → C, defining the acceleration at DOF i due to a force f̃ j at DOF j in99

terms of the circular frequency ω is then found by the ratio100

h̃i j (ω,X) =
−ω2ũi (ω,X)

f̃ j(ω)
. (2)

3. Rational Function Approximation101

Sampling-based Bayesian system identification requires a large number of model evaluations for different real-102

izations of X. Rather than using the model output directly, one may construct surrogate models that approximate the103

original model by a simple mathematical form. The surrogate model can then be used instead of the original model,104

thus alleviating high computational cost. A large number of surrogate models have been proposed in the literature,105

including artificial neural networks, polynomial chaos expansion (PCE) and Gaussian process models. The PCE is106

a popular choice due to its guaranteed convergence property [42]. However, as discussed in [41, 43], the classical107

PCE approach exhibits slow convergence in the case of representing FRFs due to their inherent nonlinear nature. In108

order to improve the convergence of PCE for representing FRFs, we introduced a non-intrusive rational surrogate109

model, termed rational function approximation, in [41]. This rational structure is suitable to represent FRFs in terms110

of the parameters of the model, as the original model itself can be interpreted as a rational function over the space of111

input parameters. We give a short but comprehensive summary of this model, which is subsequently applied in the112

probabilistic identification setting.113
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Without loss of generality, we assume that the random vector X follows the independent standard Gaussian dis-114

tribution. In case this assumption does not apply it is possible to transform X to an equivalent independent standard115

normal random vector through an iso-probabilistic transform [44]. Consider a numerical modelM (X) with outcome116

space C. Let P (X) and Q (X) be truncated polynomial chaos representations with maximum orders mp and mq, such117

that118

P (X) =

np−1∑
i=0

piΨi (X) , Q (X) =

nq−1∑
i=0

qiΨi (X) . (3)

Here {pi ∈ C, i = 0, . . . , np − 1} and {qi ∈ C, i = 0, . . . , nq − 1} are complex coefficients and Ψi are the multivariate119

Hermite polynomials. The set {Ψi, i = 0, . . . , n} consists of products of univariate normalized Hermite polynomials120

of maximum total degree m; it is n =
(

d+m
m

)
. We define the rational function approximation (RFA) R(X) obtained by121

taking the ratio of the two PCE representations of Eq. (3):122

R(X) =
P (X)
Q (X)

=

∑np−1
i=0 piΨi (X)∑nq−1
i=0 qiΨi (X)

. (4)

In order to determine the unknown coefficients in Eq. (4), a regression method is developed in [41]. In this approach123

the coefficients are found by minimization of the modified mean-square error ẽrr, defined as124

ẽrr = E
[
|M (X) Q (X) − P (X)|2

]
. (5)

ẽrr is the mean-square of the truncation error M (X) − R (X) multiplied by the denominator Q (X) of the rational125

approximation. Using a set of samples {xk, k = 1, . . . ,N} of X and corresponding model evaluations {M(xk), k =126

1, . . . ,N}, we estimate the coefficients {pi} and {qi} through minimizing a sample estimate of ẽrr. Throughout this127

paper, we use Latin hypercube sampling (LHS) in order to generate samples of X. Substituting the expressions of128

Eq. (3) in Eq. (5) and performing the sampling approximation, we define the following minimization problem129

{p,q} = arg min
{p̃,q̃}∈Cnp+nq

1
N

N∑
k=1

∣∣∣∣∣∣∣∣M (xk)
nq−1∑
i=0

q̃iΨi (xk) −
np−1∑
i=0

p̃iΨi (xk)

∣∣∣∣∣∣∣∣
2

. (6)

The minimizer is the solution of the following homogeneous linear system of equations of dimensions (np + nq) ×130

(np + nq)131

Ar = 0. (7)

Here r = [p; q] ∈ C(np+nq) is the vector of unknown coefficients and A ∈ C(np+nq)×(np+nq) is defined as follows132

A =

[
ΨT

PΨP −ΨT
P diag (M)ΨQ

−ΨT
Q diag (M∗)ΨP ΨT

Q diag (M ◦M∗)ΨQ

]
, (8)

where diag (·) is the diagonal matrix whose diagonal entries are the elements of (·), ◦ denotes the Hadamard product133

and ∗ denotes complex conjugation. Matrices ΨP ∈ RN×np and ΨQ ∈ RN×nq have as (i, j)-element Ψ j(xi) and vector134

M ∈ CN has as i-element the model evaluationM (xi). A non-trivial solution r , 0 to the homogeneous system of135

Eq. (7) can be found through the minimum-norm least-squares solution.136

r = arg min
r̂∈C(np+nq )

∥∥∥Âr
∥∥∥

2 subject to
∥∥∥̂r

∥∥∥
2 = 1 . (9)

A solution to this problem can be found through applying singular value decomposition.137

4. Bayesian parameter updating with FRF data138

Bayesian updating (also termed Bayesian inference) is a statistical framework that can be used to infer model139

parameters and their uncertainty based on measurements. Consider a set of measurements of a dynamic systemYO are140
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available, from which the frequency response can be obtained. YO could include data obtained at different frequencies141

and spatial locations of the structure. The measurements YO can be used to learn the probability distribution of the142

model parameters X by application of Bayes’ theorem, which states143

fX (x|YO) = c−1
E L (x|YO) fX (x) . (10)

Here fX (x) denotes the prior joint PDF of the model parameters, i.e. the joint PDF of X before the measurements YO144

become available, fX (x|YO) is the posterior joint PDF of X, i.e. the conditional PDF of X given YO, and L (x|YO)145

is the likelihood function describing the information in YO. L (x|YO) is proportional to the probability of YO given a146

parameter state, i.e.147

L (x|YO) ∝ Pr (YO|X = x) . (11)

The constant cE is a proportionality constant that ensures that the posterior PDF integrates to 1. It is:148

cE =

∫
Ω

L (x|YO) fX (x) dx , (12)

where Ω ⊆ Rd is the outcome space of the prior PDF of X. cE is a measure of the plausibility of the assumed model149

class and is often referred to as model evidence [45]. The model evidence gives a rational means for selecting the150

most appropriate model to describe the data YO, as the model that maximizes cE among the considered models. In151

the following, we derive the likelihood function that describes measurements of the FRF of a dynamic system through152

relating the measurement outcome with the response of the surrogate model.153

4.1. Likelihood function154

The likelihood function is derived by considering the relation between the response of the surrogate model and155

the measurement outcomes. We assume an error model that relates the surrogate model and measurement FRFs as156

follows157

YO+εO = YS(X) ◦ εM , (13)

where YO ∈ CnO is the measurement data, YS ∈ CnO is the surrogate model outcome, εO and εM are the observa-158

tion and model error, respectively, which we model as random variables, and ◦ denotes the Hadamard product. All159

quantities denote vector quantities. The model error collects all errors that are introduced, e.g., through mathematical160

modelling of a system, the numerical discretization and the surrogate approximation. The model errors are often161

assumed to be multiplicative, see, e.g., [21]. The additive observation error can stem from noise contributions from162

the measurement setup or Fourier transform errors. We make the assumption that the observation error is negligible163

compared to the model error, hence we set εO = 0. This assumption is consistent with the application we consider in164

Section 5. In the following we set ε = εM for notational convenience. The model errors can be expressed as follows:165

ε = |ε|eiθ , (14)

where |ε| denotes the amplitudes and θ the phases of the model errors. We model the amplitudes |ε| with a multivariate166

lognormal distribution and the phases θ with a multivariate normal distribution and assume independence between |ε|167

and θ. This implies that the element-wise natural logarithm of ε,168

log ε = log |ε| + iθ , (15)

follows the improper multivariate complex normal distribution [46]. Taking the logarithm of Eq. (13), we get:169

logYO = logYS(X) + log ε . (16)

This leads to the following expression for the likelihood function:170

L (x|YO) = flog ε
(
logYO − logYS(x)

)
(17)
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The complex normal distribution can be expressed in terms of a joint normal distribution for real and imaginary part.171

For notational convenience we define w = log |ε|. Thus, the real composite random vector [w; θ] follows the normal172

distribution. We finally obtain173 [
w
θ

]
∼ N

([
0
0

]
,

[
σ2

wRw 0
0 σ2

θRθ

])
, (18)

where σw is the global standard deviation of the magnitude of the model error, σθ is the global standard deviation of174

the phase of the model error, and Rw and Rθ are the correlation coefficient matrices. Under this model, it is necessary175

to specify a correlation model for Rw and Rθ. For the remainder of this paper we assume that Rw and Rθ are equal176

and set R = Rw = Rθ. A straightforward choice would be to neglect correlation between observations and to use177

the identity matrix, R = I. However, the prediction error correlation can have significant influence on the posterior178

distribution, especially when densely populated sensor grids and high sampling rates are used [47]. In Section 5 we179

compare the results obtained using the below introduced correlation model and the case when the correlation of the180

model error is neglected. The following stationary exponential correlation model is chosen to model the dependency181

between spatial observation points and frequency domain points:182

ρ
(
∆z,∆ f

)
= r · ρ f

(
∆ f

)
+ (1 − r) · ρz (∆z) , (19)

with183

ρz (∆z) = exp
(
− ∆z

lco,z

)
, (20)

ρ f

(
∆ f

)
= exp

(
− ∆ f

lco, f

)
, (21)

and ∆z =
∥∥∥zi − z j

∥∥∥
2 being the euclidean distances between the accelerometer locations zi and z j, lco,z the corresponding184

spatial correlation length, ∆ f =
∣∣∣ fi − f j

∣∣∣ the absolute difference between two frequency points fi and f j and lco, f the185

corresponding frequency domain correlation length. The ratio r ∈ [0, 1] models the split between the spatial and186

frequency domain correlation. In contrast to multiplying both univariate correlation models, the additive link allows187

for a basic correlation in either of the limits188

lim
∆ f→∞

ρ = (1 − r)ρz (∆z) , (22)

lim
∆z→∞

ρ = rρ f

(
∆ f

)
. (23)

Still, it holds lim
∆ f ,∆z→∞

ρ = 0. Measurement and surrogate model evaluations are arranged in vector format and ordered189

according to the index190

l = i + (s − 1) · nmp, (24)

where i is an index over all accelerometer points nmp and s over all frequency points n f . For simplicity we assume191

a single observation at each point in space and frequency domain (zi, f ). Thus, the number of observations becomes192

nO = nmp · n f . The correlation coefficient matrix R then reads193

R = r
(
R f f ⊗ Inmp

)
+ (1 − r)

(
In f ⊗ Rzz

)
, (25)

with In the n × n-identity matrix, Rzz the nmp × nmp spatial correlation matrix based on Eq. (20), R f f the n f × n f194

frequency domain correlation matrix based on Eq. (21), and ⊗ the Kronecker-product. Thus, µε and Σε have size195

2nO × 1 and 2nO × 2nO, respectively.196

In total, the model error is now described by five hyper-parameters: model error standard deviations σw and σθ,197

spatial correlation length lco,z, frequency correlation length lco, f and ratio r. Since there are no reliable assumptions on198

those quantities, they are also treated as unknown random variables and included in the updating scheme.199

The joint PDF of real and imaginary part of the model error for a complex scalar observation assuming the joint200

lognormal-normal model for absolute value and phase is depicted in Fig. 1 for different combinations of standard201
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Figure 1: Contour plot of the joint PDF of the real and imaginary part of the (scalar) complex model error, Re{ε} and Im{ε}, under the assumption of
lognormally distributed absolute value |ε| and normally distributed phase θ for different combinations of standard deviations σw and σθ, as defined
in Eq. A.9. It can be observed that through the proposed error model the likelihood functions gets a directional characteristic which points away
from the origin of the complex plane.

deviations of the logarithm of the absolute value and the phase of the error σw and σθ, respectively. We derive the202

joint PDF of real and imaginary parts in Appendix A. The illustration of real and imaginary part offers an insight203

into the structure of the model error under the proposed assumptions. One can observe that the shape of the joint PDF204

changes significantly with σw and σθ. For a low standard deviation of the logarithm of the absolute value, most of205

the probability mass lies along a circular arc, the median absolute value is equal to one. The spread of the joint PDF206

along Im{ε} is controlled by the standard deviation of the phase σθ. For a low standard deviation of the phase, most207

of the probability lies along the real line. In the case where both standard deviations are significant, we observe that208

the contours of the joint PDF align along a kidney-like shape. In the vicinity of the origin of the complex plane the209

joint PDF assumes low values, which is due to the fact the error is assumed to be multiplicative. One always obtains210

a directional characteristic whereby the probability mass points away from the origin of the complex plane.211

Remark: Although we neglect the additive error in the derivation it can be easily incorporated when applying212

sampling-based approaches for updating. If one assumes a complex normal distribution for the additive error, this213

can be done through adding noise samples from the additivie error to the measurement observation. This approach214

enables learning the variance hyperparamter of the additive noise.215

4.2. Bayesian updating with subset simulation216

The solution of Eq. (10) requires evaluating a potentially high-dimensional integral. Here, we apply a sampling-217

based approach to approximate the posterior distribution and estimate the model evidence cE that combines the BUS218

approach with subset simulation (SuS). The BUS approach, originally proposed in [21], is based on redefining the219

Bayesian updating problem as a structural reliability problem. Consider the augmented outcome space [x, p], where220

x represents outcomes of the random vector with density equal to the prior density fX(x) and p is the outcome of a221

standard uniform random variable that is independent from X. In structural reliability, one is interested in evaluating222

the probability of failure of a structure. The failure event is described in terms of a limit-state function, h(x, p), as the223

collection of outcomes for which h(x, p) ≤ 0. Consider the limit-state function:224

h(x, p) = p − cL (x|YO) , (26)

where c is a constant that satisfies cL (x|YO) ≤ 1 for all x ∈ Ω. It can be shown that the posterior PDF can be225

retrieved by censoring the prior PDF fX(x) on the domain ΩZ = {h(x, p) ≤ 0} [21]. Therefore samples from the226

posterior distribution can be obtained as the failure samples in the structural reliability problem for evaluating Pr(Z)227

with Z = {[x, p] ∈ ΩZ}. If the likelihood function is concentrated around small areas of Ω (i.e. the likelihood228

is peaky), then the probability Pr(Z) becomes small and standard Monte Carlo is inefficient. Therefore, alternative229

structural reliability methods are used that are able to estimate small failure probabilities more efficiently.230
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Here, we apply SuS, which is an adaptive Monte Carlo method developed for estimation of small failure probabil-231

ities in high dimensions [48]. The basic idea of SuS is to express the event Z as an intersection of a set of intermediate232

nested events, i.e. Z = ∩J
i=1Zi with Z0 ⊃ Z1 ⊃ · · · ⊃ ZJ = Z and Z0 representing the certain event. The probability233

Pr(Z) is then expressed as a product of conditional probabilities:234

Pr(Z) = Pr
(
∩J

i=1Zi

)
=

J∏
i=1

Pr(Zi|Zi−1) . (27)

The first probability Pr(Z1|Z0) = Pr(Z1) is evaluated with standard Monte Carlo. Then MCMC approaches are used235

to sequentially estimate the conditional probabilities Pr(Zi|Zi−1), i = 2, . . . , J [49]. In the final sampling step, an addi-236

tional MCMC step is applied to obtain failure samples conditional on ZJ = Z, which follow the posterior distribution.237

We employ an adaptive version of the BUS-SuS approach, proposed in [23], which adaptively estimates the constant238

c in Eq. (26) as the reciprocal of the maximum over the likelihood function values for all samples. Having estimated239

the probability Pr(Z) and constant c, an estimate of the model evidence cE is obtained as:240

ĉE =
P̂r(Z)

ĉ
. (28)

Details on the implementation of the adaptive BUS-SuS approach can be found in [23]. Throughout this paper, we241

set the intermediate conditional probabilities to p0 = 0.2. The number of samples per level and posterior samples is242

chosen to be Nb = 5 · 104.243

5. Application244

The proposed method is applied to measurements and model of a cross-laminated timber (CLT) plate, depicted in245

Fig. 2. CLT is a novel timber building material made of perpendicularly glued timber beams [50]. The model updating246

problem for the bending vibration properties of CLT was also approached by [51], where model updating was done247

for stripes of CLT, thus neglecting the two-dimensional behavior of plate elements. Therein, modal data is used to248

identify material parameters and investigate homogenized and sandwich models.249

In the following, we first discuss specific aspects of the mechanical modeling of CLT and describe the evaluation250

of the measurements. Subsequently, we introduce the prior PDF and then investigate the proposed updating method.251

The frequency range from 25 to 160 Hz is considered, and uniformly sampled frequencies are used with a frequency252

step size of 1 Hz. For the calculation of the coefficients of the rational approximation in Eq. (4), we use a maximum253

polynomial degree of mp = 3 and mq = 4 for numerator and denominator, respectively. The experimental design254

used to identify the parameters of the surrogate model is generated with LHS from the prior distribution of the input255

random variables. The size of the experimental design N is chosen as three times the number of unknown coefficients256

np + nq.257

5.1. Finite element models of the cross-laminated timber plate258

In Section 2, the general linear structural dynamics problem is presented. Here, structural matrices K (X), C (X)259

and M (X) enter. These depend, inter alia, on the underlying governing equations. Various approaches can be chosen to260

mechanically model the dynamic behavior of CLT structures. We investigate two alternatives, one applying Reissner-261

Mindlin shell theory using homogenized material parameters, as described in [52], and the other derived from three-262

dimensional elasticity theory, where each layer volume is modeled separately. For both models an orthotropic material263

model is applied, which is described by nine parameters, namely three Young’s moduli, three shear moduli and three264

Poisson’s ratios (cf. [52]). All layers are assigned the same stiffness values, i.e. all material parameters are constant265

throughout the plate domain. The cross-wise layering is accounted for by considering the local fiber directions in266

each layer. From here on the models are termed shell and solid model, respectively. Both models are implemented in267

the commercial finite element software ANSYS® [53], using the element formulations SHELL281 for the shell model268

and SOLID 185 for the solid model. For both models a spatial mesh size of h = 0.1 m in the finite element analysis269

is used. We further choose a linear hysteretic damping model, as it supports a frequency-independent energy loss for270
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steady state motion per cycle, which is a realistic assumption for many materials, including cross-laminated timber271

[54]. Under this model, the damping matrix can be expressed through272

C =
η

|ω|K . (29)

Here, η is the hysteretic or structural damping coefficient, which is related to the damping ratio ζ as η = 2ζ.273

5.2. Measurement274

Response location
Excitation point

2.50

0.1

0.46

0.46

0.46

0.46

0.46

0.1

0.1
1.1

0.3
0.35

0.35

0.33 0.475

V

x
y

z

Figure 2: Geometry and setup of CLT-element, all measures in m. The five accelerometers depicted in blue (—) are highlighted for clarity, as we
use data obtained at these locations.

Measurements for the investigations in this paper were available from the University of Applied Sciences in275

Rosenheim [55]. The plate under consideration consists of three cross wise laminated layers of timber with a thickness276

of ti = 0.027 m (total thickness t = 0.081 m), length of l = 2.5 m and breadth of b = 1.1 m, as depicted in Fig.277

2. The plate is hanging freely from two cables attached at the boundary x = 0. Excitation is applied using an278

impedance hammer to create an impulse force at forcing location V. The input force and response acceleration time279

histories are recorded at 18 spatial locations on the depicted grid. Each accelerometer is associated with a tupel280

( j, k) that describes its placement on the plate in x- and y-direction. Indices j and k are ordered in increasing x-281

and y-direction, respectively. Thus, j ∈ {1, . . . , 6} and k ∈ {1, . . . , 3}. A single index is given by i = j + 6 (k − 1)282

with i ∈ {1, . . . , 18} for the nmp = 18 accelerometer positions. The response is measured perpendicular to the plate283

surface. A measurement time of T = 16 s and sampling frequency of fS = 19200 Hz are used and the measurement284

is repeated five times. Subsequently, a Fast Fourier Transform (FFT) is applied to obtain frequency domain data.285

As the signals are transients, and decay within the measurement time, we do not apply windowing to the signal.286

The corresponding Nyquist frequency follows as fS
2 = 9600 Hz (cf. [56]). From the Fourier transformed data we287

evaluate the experimental frequency response function using the H1-estimator, see e.g. in [4]. As an example, the288

resulting estimate of the absolute value of the frequency response from measurement point ( j, k) = (6, 3) as well as289

the individual FRFs obtained from the five repetitions are depicted in Fig. 3 in the frequency range from 0 to 300 Hz.290

It can be observed that above approximately 160 Hz, there are inconsistencies between the individual measurements291

(grey dashed lines). For this reason we restrict the considered frequency range to a maximum frequency of 160 Hz.292

Furthermore, after careful investigation of the measurement data, we choose the locations with a coherence (cf. [4])293

close to one throughout the whole frequency range of interest. The results for k = 1 showed poor coherence, thus we294

did not include any of these points. This leads to five points (i ∈ {7, 10, 12, 14, 18}), indicated in blue in Fig. 2.295
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Figure 3: Experimental frequency response function for CLT plate; load point V; accelerometer ( j, k) = (6, 3), i = 18; (—) H1 estimator of FRF,
(· · · ) individual FRFs obtained seperately from each measurement by dividing the frequency transforms.

5.3. Prior distribution296

The vector of random variables is297

X =
[
Ex, Ey,Gxy, ζ, σw, σθ, lco,z, lco, f , r

]T
. (30)

Here Ex and Ey are the Youngs’s moduli in longitudinal direction and cross-direction, respectively, Gxy is the in-plane298

shear modulus and ζ is the damping ratio. The Young’s modulus in the third direction Ez (the thickness direction)299

has no influence on the response unless the excitation frequency reaches the eigenfrequency of the first thickness300

mode, which can be neglected here [57]. For this reason we insert it deterministically as 3.7 · 108. Furthermore,301

we consider the out-of-plane shear moduli in longitudinal and cross-direction, Gxz and Gyz, as deterministic and do302

not include them in the updating. Initial investigations show that their distributions are not well-identifiable. This303

is related to their low influence on the model outcome in the considered frequency range. For those frequencies304

the shear deformations can be considered to be negligible and the Kirchhoff assumption should hold valid. This is305

further indicated when comparing the wave length and speed for waves in homogeneous orthotropic media, as the306

deviations in these quantities, assuming Kirchhoff or Reissner-Mindlin theory, are quite small. The minor Poisson’s307

ratios and material density are modeled deterministically as νyx = νzx = 1.4 · 10−2, νzy = 0.3 and ρ = 442 kg
m3 . The308

density is calculated from the measured total weight of the plate. A global damping ratio is assumed, whose prior309

distribution is based on engineering judgment. The prior distribution assumptions for the stiffness parameters are310

separately discussed for solid and shell model subsequently. The model choices are summarized in Tab. 1.311

5.3.1. Solid model312

For the solid model, the stiffnesses are given with respect to the local orientation of the single layers and the313

single layers are all modeled by a single stiffness value. The mean values of the material properties for the single314

layers are taken from [58]. The coefficient of variation and distribution type of the single layer properties are chosen315

in accordance with [59]. The coefficients 0.85 and 0.7 for Ey and Gxy, respectively, account for missing gluing on316

narrow edges in cross direction and are taken from [60].317

5.3.2. Shell model318

The prior distribution assumptions of the homogenized material parameters are obtained as follows. First mean319

values of the material properties for the single layers are taken from [58]. Subsequently, these are propagated through320

the homogenization model given in [52] to obtain the corresponding homogenized material parameters. These can321

thus be seen as first-order approximations of the true mean values of the homogenized material properties. The322

homogenized Young’s moduli of the shell model can be interpreted as the weighted arithmetic mean of the single323

layers’ Young’s moduli. Due to the different orientation we observe a more significant difference between the Young’s324

moduli for shell and solid model in y-direction as compared to the Young’s moduli in x-direction. The coefficient of325

variation and distribution type of the homogenized properties are chosen in accordance with [59]. Note that [58, 59]326
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Table 1: Parameters for prior distributions for shell and solid model

Distribution
Mean value

Coefficient of variation
Shell model Solid model

Ex in Nm−2 Lognormal 1.061 · 1010 1.1 · 1010 0.1

Ey in Nm−2 Lognormal 0.85 · 7.605 · 108 = 6.5 · 108 0.85 · 3.667 · 108 = 3.1 · 108 0.1

Gxy in Nm−2 Lognormal 0.7 · 6.9 · 108 = 4, 83 · 108 0.1

ζ Lognormal 2 · 10−2 0.3

σw Lognormal 0.1 1

σθ Lognormal 0.1 1

lco,z in m Lognormal 0.5 1

lco, f in Hz Lognormal 5 1

Distribution Lower bound Upper bound

r Uniform 0 1

give guidelines for choosing distributions of materials of single layers; we assume that these still hold well enough327

after homogenization. This is consistent with the prior distributions of the solid model, where the material parameters328

at each layer are assumed to be fully correlated. The coefficients 0.85 and 0.7 for Ey and Gxy, respectively, account329

for missing gluing on narrow edges in cross direction and are taken from [60]. We emphasize that the Young’s moduli330

represent the individual layer’s material characteristics for the solid model while for the shell model they represent331

the overall plate’s homogenized orthotropic material parameters.332

5.3.3. Error model333

The prior distribution of the error model hyperparameters are chosen based on the authors’ judgement. We choose334

large values for the prior coefficients of variation in order to make the prior distributions less informative.335

5.4. Results336

In the following, we present results for both models. FE model evaluations are done for the chosen n f frequency337

points, and one surrogate model is built for each combination of location and frequency point. Thus, nO = 5·136 = 680338

surrogate models are built. For the generated surrogate models, the relative 4-fold cross-validation error, as defined in339

[41], is depicted in Fig. B.9 in Appendix B. The cross-validation error is evaluated using the N experimental design340

samples. Low error measures are obtained throughout the spatial and frequency range except for few points. It is341

expected that these errors are not significant as long as the posterior probability mass is not too far off the prior sample342

range, since these large errors are caused by outliers in the experimental design [41].343

Estimates of the posterior distribution parameters are summarized in Tab. 2 and scatter plots of the Nb = 5 · 104
344

posterior samples are shown in Figs. 4 and 5 for the shell and solid model, respectively. Figs. 8 shows the posterior345

samples for the shell model in the case, where the model error correlation is neglected.346

Both elastic moduli Ex and Ey are identified with a high degree of certainty as indicated by the low posterior347

coefficients of variation. For the shell model, the posterior coefficient of variation of Ey is 0.3%, which is lower than348

the value 0.9% obtained with the solid model. We note that the results for shell and solid model are different due to349

the underlying homogenization of the material parameters for the shell model. Also the in-plane shear modulus Gxy is350

well-identified. This observation holds for both models. The posterior mean values for the damping parameter ζ are351

similar for both models and are slightly increased relative to the prior mean value; they now have smaller coefficient352

of variation compared to the prior distribution.353

The posterior mean values of the model error standard deviations σw and σθ are larger than the prior mean values.354

Furthermore, the posterior mean values of both correlation lengths are increased. They show very good agreement355

for both models. The mean value of the spatial correlation length lco,z lies well above the physical dimensions of the356

plate, implying highly correlated model errors in the spatial domain. One can observe that the posterior distribution357
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Table 2: Mean, mode and coefficient of variation of posterior distribution.

Mean value Mode Coefficient of variation

Shell model Solid model Shell model Solid model Shell model Solid model

Ex in Nm−2 1.13 · 1010 1.21 · 1010 1.13 · 1010 1.21 · 1010 0.4% 0.4%

Ey in Nm−2 7.52 · 108 2.73 · 108 7.52 · 108 2.73 · 108 0.3% 0.9%

Gxy in Nm−2 4.71 · 108 4.65 · 108 4.71 · 108 4.65 · 108 0.5% 0.5%

ζ 2.48 · 10−2 2.58 · 10−2 2.48 · 10−2 2.59 · 10−2 3.2% 3.4%

σw 0.31 0.33 0.31 0.33 5.5% 4.8%

σθ 0.31 0.33 0.31 0.34 5.4% 4.6%

lco,z in m 49.8 49.6 47.5 50.8 17.8% 15.2%

lco, f in Hz 10.1 11.5 9.9 11.6 13.5% 10.7%

r 0.82 0.82 0.83 0.83 3.2% 2.7%

of the parameter r that controls the split between frequency and spatial domain correlation is shifted towards larger r358

around 0.8 for both models. From this we conclude that the model error behaves similarly for two response locations359

at a given frequency. However, for two distinct frequencies with ∆ f � lco, f , the correlation of the model error at two360

response locations is around 1 − r ≈ 0.2, and thus low.361

Fig. 5 shows that the joint posterior distribution of the solid model Young’s moduli Ex and Ey exhibits significant362

correlation (ρ = −0.74). As the overall bending stiffness can be given by the weighted sum of the Young’s moduli,363

a negative correlation as indicated in the second row and first column of the matrix in Fig. 5 is expected. With364

increasing Ex a decreasing Ey is necessary to obtain a similar overall bending stiffness and vice versa. Due to the365

homogenization of the material parameters for the shell model, this correlation is not observed in Fig. 4.366

No significant correlation or dependence can be identified between the mechanical parameters and the hyper-367

parameters of the error model. However, within the posterior hyperparameter samples, we make the following ob-368

servations. The model error standard deviations for the log-absolute value and phase are positively correlated with369

correlation coefficient 0.66. This can be expected, as for larger errors in the absolute value it is plausible that also370

larger deviations in the phase occur and vice versa. Furthermore the frequency domain correlation length lco, f is371

positively correlated (ρ ≈ 0.8) with both standard deviations of log-absolute value and phase. This indicates that372

whenever the deviation between model and measurement is large, these errors are similar over a larger range of fre-373

quencies. Additionally, a strong dependence can be observed between the factor r and σw, σθ as well as lco, f . Large374

values of r correlate with large value of lco, f and vice versa. This indicates that for large errors the dependence among375

samples in the frequency domain is even larger than compared to smaller errors. The correlation structure among the376

hyperparameters is similar for the shell model.377

The frequency response function evaluated at the mean of the posterior distribution is depicted in Fig. 6a. The378

mode shapes and eigenfrequencies of the solid model, based on the posterior mean values, are depicted in Fig. C.10 in379

Appendix C for completeness. We note that, based on the location of the amplitude peaks, the eigenfrequencies of the380

response are recovered quite well, whereas the amplitudes are not well predicted around the eigenfrequencies. As the381

attenuation in the vicinity of an eigenfrequency can be linked to the damping, we note a contradictory behavior. We382

would have to increase the damping ratio to explain the amplitude for some eigenfrequencies, whereas the damping383

ratio would have to be decreased to obtain the measured amplitude at the other eigenfrequencies. This cannot be384

achieved by a single damping ratio. Thus, we conclude that the applied damping model is too limited to capture the385

damping characteristics of the investigated CLT plate. Similar findings regarding the damping behavior of CLT plates386

were reported in [54]. Additionally to the measurement and model outcome based on the parameter means, Fig. 6387

depicts the 95 % credible-intervals that are found from the posterior samples. We observe that the measurement is388

enclosed in the credible interval for almost all frequencies, except around the eigenfrequencies at around 90 and 105389

Hz. Here, the deviation between measurement and model is very strong, which can again be linked to the damping390

model.391

Estimates of the logarithm of the model evidence, as defined in Eq. (12), are 574.3 and 569.8 for the shell and392
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Figure 4: Posterior distribution for the shell model, described in terms of histograms of the posterior samples on the main diagonal (z), bivariate
scatter plots below the main diagonal (•), and bivariate density contour plots above the main diagonal (�). The correlation coefficients are given in
the top right corner of the density contour plots. Additionally, on the main diagonals, the marginal prior distributions (–·–) are given.

solid model, respectively, thus indicating a higher plausibility of the shell model. This is related to the identifiability393

of the models. As described above, for the solid model the correlation between the two Young’s moduli is significant,394

such that the model is not as uniquely identifiable as compared to the shell model.395

In what follows, we give resulting joint credible regions for the real and imaginary part of the real state of the396

structure with the shell model, based on the error model given in Eq. (13). Let H̃l be the frequency response of the397
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Figure 5: Posterior distribution for the solid model, described in terms of histograms of the posterior samples on the main diagonal (z), bivariate
scatter plots below the main diagonal (•), and bivariate density contour plots above the main diagonal (�). The correlation coefficients are given in
the top right corner of the density contour plots. Additionally, on the main diagonals, the marginal prior distributions (–·–) are given.

system at the l-th observation point. The credible regions are defined as the highest posterior density regions:398 ∫
H̃l: fH̃l

(h̃l |YO)> fαl

fH̃l
(h̃l|YO) dh̃l = 1 − αl . (31)
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(a) Shell model, correlated model error

40 60 80 100 120 140 160
10−3

10−2

10−1

100

Frequency in Hz

A
bs

ol
ut

e
va

lu
e

of
FR

F
in

kg
−1

(b) Shell model, uncorrelated model error

Figure 6: Frequency response functions at location i = 18; (—) FRF with posterior mean values based on FE-model, (–·–) Measured FRF; (×) FRF
with posterior mean values based on surrogate model. The blue shaded area (z) indicates the 95 % credible interval.
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(a) f = 145 Hz, i = 18
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(b) f = 153 Hz, i = 18

Figure 7: 95% credible region for the shell model. The solid iso-contours (}) depict the joint PDF of real and imaginary part of the posterior
predicted FRF. The shaded area ( ), bounded by the dash-dotted line, indicates the 95%-highest posterior density region. The blue marks (x)
depict the actually observed value of the FRF resulting from the measurement.

Here, YO denotes the frequency transformed measurement data. Therefore, based on the posterior samples, we399

approximate the iso-contour fH̃l
(h̃l|YO) > fαl that bounds (1 − αl) · 100% of the posterior probability mass.400

In Fig. 7 the resulting credible regions are depicted for spatial location i = 18 and frequencies f ∈ {145, 153}Hz401

based on the shell model results. For f = 145 Hz (comp. Fig. 7a), the observation lies well within the credible area.402

Furthermore, the observation is close to the mode of the posterior predictive distribution. For f = 153 Hz (comp.403

Fig. 7b), the system is almost in resonance. This is indicated in the depicted posterior predictive distribution of the404

observed state as the average phase of the FRF is approximately π
2 . The observed measurement lies well within the405

95% credible region, however the amplitude is underestimated.406

Out of all 680 observation points, in 611 cases the observation lies within the 95% credible region, i.e. in ap-407

proximately 10% of the cases the observations lie outside of the 95% credible region. For the solid model, around408

9 % of the observations lie outside of the 95% credible region. As discussed above, these points can be linked to the409

observations around the eigenfrequencies of the system. Furthermore, one can observe by comparison with Fig. 1c410

that the shape of the posterior predictive distribution of the real state of the structure is mainly governed by the model411

error (joint lognormal-normal model for absolute value and phase). One can interpret the resulting posterior predic-412

tive distribution approximately as a scaling and rotation of the joint model error PDF by the model prediction in the413

complex plane, since the overall uncertainty is mainly governed by the model error.414
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5.4.1. Results under the Assumption of Uncorrelated Model Errors415

To investigate the effect of the correlation among the model errors, we compute posterior samples for the case416

without a model error correlation in the likelihood function. For this case, the hyperparameters linked to the correlation417

model are not considered. The posterior samples are shown in Figs. 8 for the shell model. Some noticeable differences418

are observed. Under this model, the posterior uncertainties, as reflected in the coefficients of variation (not shown419

here), reduce for all parameters. Furthermore, the identified damping values are significantly lower compared to420

the case with correlation in the model errors. Finally, the posterior standard deviations of the model errors do not421

show any correlation. It is worth mentioning that the different correlation assumptions mostly influence the posterior422

distribution of the damping parameter, while the estimates for the stiffness related parameters are similar to the case423

with error correlation.424

The frequency response function evaluated at the mean of the posterior distribution for this case is depicted in425

Fig. 6b. We observe that due to the lower posterior uncertainty, the credible intervals are narrower compared to426

the result in Fig. 6a. Furthermore, due to the lower posterior mean value of the damping ratio ζ, the amplitudes427

in the FRF peaks are higher in comparison to the results obtained from the correlated case. When neglecting the428

correlation betweeen the model error for different observations, the mechanical model attempts to approximate the429

measurement more closely. This leads to lower identified damping values, which produce larger peak values in the430

FRF throughout the entire frequency range. While almost all peaks in the FRF are more closely captured in the431

uncorrelated case, the overestimation of the first peak around 30 Hz, which corresponds to the first torsional model432

shape, is larger than in the correlated case. In contrast, when considering the correlated error model, the deviations433

around the eigenfrequencies are better explained by the likelihood function and the identified damping value is large434

compared to to the uncorrelated case. Similar conclusions can be drawn for the solid model, but are omitted here for435

brevity.436

6. Conclusion437

This work presents a novel Bayesian updating procedure that utilizes frequency response function information,438

obtained from frequency transformed measurement data, directly. Bayesian updating is performed to infer the pa-439

rameters of the mechanical model as well as the hyperparameters of the multiplicative error model. The likelihood440

formulation is derived in terms of the deviation between model outcome and measurement results in terms of the fre-441

quency response of the system. We propose a multivariate complex normal distribution for the logarithm of the model442

error, leading to a joint normal distribution for the logarithm of the absolute value and the phase of the model error.443

Furthermore an additive joint correlation model is chosen for the spatial and frequency domain, where we adopt expo-444

nential correlation functions and introduce a split-factor that models the share of the correlation in the two domains.445

Due to this correlation structure, the method is able to handle densely and uniformly sampled frequency domain data446

without further need to preselect or reduce the data. We use BUS with subset simulation to compute samples of the447

posterior distribution. To enhance the computational efficiency, we employ a recently introduced surrogate model that448

approximates the frequency response of the dynamic system through a rational of two polynomial chaos expansions449

with complex coefficients. These coefficients are determined with a non-intrusive regression-based approach.450

The method is successfully applied to learn the parameters of the mechanical model of a cross-laminated timber451

plate with frequency transformed measurements. We investigate two different mechanical models, one shell and one452

solid model. For both models a subset of the full orthotropic material parameter set is identified, where for the shell453

model the material parameters describe an equivalent homogeneous material. The damping behavior of the structure is454

modeled by global linear hysteretic damping. The results show that the uncertainty on the mechanical parameters can455

be significantly reduced. It is shown that for the given models we obtain a large model error standard deviation, which456

can be linked to the chosen linear hysteretic damping model. For the given structure the damping characteristics are457

not modeled well by this damping model. The resulting amplitudes in the frequency response function can thus not458

be well explained through a single damping coefficient. We further show that the assumption of correlated samples459

has a noticeable effect on the resulting posterior distributions. Whereas the estimates of the stiffness related terms460

are similar, the estimates of the damping term as well as the model error standard deviations are influenced by the461

correlation model choice.462

Further research could aim at investigating the performance of the method for measurements that use different463

excitation techniques and accelerometers, e.g. [19, 4]. A side benefit could be a better understanding of the non-464
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Figure 8: Posterior distribution for the shell model, when assuming uncorrelated model errors, described in terms of histograms of the posterior
samples on the main diagonal (z), bivariate scatter plots below the main diagonal (•), and bivariate density contour plots above the main diagonal
(�). The correlation coefficients are given in the top right corner of the density contour plots. Additionally, on the main diagonals, the marginal
prior distributions (–·–) are given.

linearities in the systems under investigation. Additionally, the results could be compared to a modal analysis based465

approach. The authors are furthermore working on the influence of different correlation function assumptions and466

more detailed mechanical models of the structure. Finally, an extension of the considered frequency range is of467

interest.468
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Appendix A. Joint PDF of real and imaginary part of the model error472

In order to derive the joint PDF of the real and imaginary part of the model error ε, for the sake of clarity, we473

repeat the definitions of the relevant quantities. In the following we denote by w = log |ε| the logarithm of the absolute474

value of the model error, by θ = arg ε the phase of the model error, by u = Re{ε} the real part of the model error475

and by v = Im{ε} the imaginary part of the model error. From these quantities we derive the real composite vectors476
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z = [u; v] and ξ = [w; θ] The joint distribution of the real and imaginary part of the model error can then be computed477

by478

fZ(z) = fξ
(
T−1(z)

) ∣∣∣∣det
(
Jξ,z

)∣∣∣∣ . (A.1)

Here, fξ (ξ) denotes the joint PDF of w and θ. Recall that we assume this distribution to be a zero-mean Gaussian479

distribution, i.e.:480

fξ(ξ) =
1

(2π)
nO
2
√

det Rww

exp
{
−1

2
wT R−1

www
}
× 1

(2π)
nO
2
√

det Rθθ

exp
{
−1

2
θT R−1

θθ θ

}
. (A.2)

The transformation T : R2nO → R2nO is defined as481

z =

(
u
v

)
= T(ξ) =

(
exp{w} cos(θ)
exp{w} sin(θ) .

)
. (A.3)

from which we find the inverse transformation T−1 : R2nO → R2nO :482

ξ =

(
w
θ

)
= T−1(z) =

(
log
√

u◦2 + v◦2
atan2 (v,u)

)
. (A.4)

where atan2 is an extension of the inverse tangent function that yields the angle of a complex number in the complex483

plane in the range ]−π, π]. Jξ,z denotes the Jacobian matrix of the transformation, defined as:484

Jξ,z =

[
∂ξi

∂z j

]
2nO×2nO

. (A.5)

In order to evaluate the determinant of the Jacobian matrix, we use the identity det
(
Jξ,z

)
= 1

det(Jz,ξ) and find:485

det
(
Jz,ξ

)
= det



ew1 cos(θ1) 0 . . . 0 −ew1 sin(θ1) 0 . . . 0
0 ew2 cos(θ2) . . . 0 0 −ew2 sin(θ2) . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . ewnO cos

(
θnO

)
0 0 . . . −ewnO sin

(
θnO

)
ew1 sin(θ1) 0 . . . 0 ewn1 cos(θ1) 0 . . . 0

0 ew2 sin(θ2) . . . 0 0 ewn2 cos(θ2) . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . ewnO sin

(
θnO

)
0 0 . . . ewnO cos

(
θnO

)


.

(A.6)
We rearrange the columns and rows of the Jacobian matrix and obtain:486

det
(
Jz,ξ

)
= det



ew1 cos(θ1) −ew1 sin(θ1) 0 0 . . . 0 0
ew1 sin(θ1) ew1 cos(θ1) 0 0 . . . 0 0

0 0 ew2 cos(θ2) −ew2 sin(θ2) . . . 0 0
0 0 ew2 sin(θ2) ew2 cos(θ2) . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . ewnO cos
(
θnO

) −ewnO sin
(
θnO

)
0 0 0 0 . . . ewnO sin

(
θnO

)
ewnO cos

(
θnO

)


. (A.7)

Swapping a column or row leads to a multiplication of the determinant by −1. The above rearrangement will result487

in an even number of swapping operations, thus the sign of the determinant will stay unchanged and the equality488

still holds. Since the matrix in the above equation is block-diagonal, we find its determinant as the product of the489

determinant of the nO 2 × 2 submatrices:490

det
(
Jz,ξ

)
=

nO∏
i=1

(ew1 )2
(
cos2(θi) + sin2(θi)

)
=

nO∏
i=1

ew2
1 =

nO∏
i=1

(
u2

i + v2
i

)
. (A.8)

18



Inserting Eqs. (A.2), (A.4) and the inverse of (A.8) into Eq. (A.1), we finally obtain the joint PDF of the real and491

imaginary parts of the model error:492

fZ(z) =
1

(2π)nO det
(
diag

(
u◦2 + v◦2

)) √
det Rww det Rθθ

exp
{
−1

2
log

(
u◦2 + v◦2

)T
R−1

ww log
(
u◦2 + v◦2

)}
×

× exp
{
−1

2
(atan2 (v,u))T R−1

θθ (atan2 (v,u))
}
. (A.9)

It should be noted that this PDF is not defined for any ui or vi equal to zero.493

Appendix B. Error measures494

In order to evaluate the accuracy of the surrogate models, we consider the cross validation error, as defined in [41].495

Therefore, the experimental designX is partitioned into ncv subsets {X1, . . . ,Xncv } of equal size, called the test sets. ncv496

surrogate models M̂\i are built, each based on the reduced experimental designs {X1, . . . ,Xncv } \ {Xi}, i = 1, . . . , ncv,497

called the training sets. For each i, the squared error at the points in {Xi} is evaluated. The jth element in subset498

{Xi} is denoted by x j
i . The cross validation error is then defined by the sum of the squared predicted residuals and is499

calculated as500

errcv =

ncv∑
i=1

card(Xi)∑
j=1

(
M

(
x j

i

)
− M̂\i

(
x j

i

))2
, (B.1)

where card (·) denotes the cardinality of a set. A relative version of the above error can be defined using the empirical501

variance.502

εcv =
errcv

V̂ar [M (x)]
. (B.2)

We use N = 4, i.e. the 4-fold cross validation error.
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Figure B.9: Relative 4-fold cross-validation error for surrogate models.
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Appendix C. Mode shapes of the shell model504

(a) Mode 1, f1 = 30.8 Hz (b) Mode 2, f2 = 64.7 Hz

(c) Mode 3, f3 = 87.0 Hz (d) Mode 4, f4 = 87.7 Hz

(e) Mode 5, f5 = 105.0 Hz (f) Mode 6, f6 = 155.0 Hz

Figure C.10: Mode shapes for the shell model and corresponding eigenfrequencies, based on posterior mean values.
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