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Abstract

Non-destructive evaluation (NDE) inspections are an integral part of asset integrity management.
The relationship between the condition of interest and the quantity measured by NDE is described
with probabilistic models such as PoD or ROC curves. These models are used to assess the quality
of the information provided by NDE systems, which is affected by factors such as the experience
of the inspector, environmental conditions, ease of access, and the precision of the measurement
device. In this paper, we review existing probabilistic models of NDE and show how they are
connected within a unifying framework. This framework provides insights into how these mod-
els should be learned, calibrated, and applied. We investigate and highlight how the choice of
the model can affect the maintenance decisions taken on the basis of NDE results. In addition,
we analyze the impact of experimental design on the performance of a given NDE system in a
decision-making context.
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1. Introduction

Probabilistic models have been developed to measure the quality and performance of non-
destructive evaluation (NDE) methods. These models include probability of detection (PoD)
curves, receiver operating characteristic (ROC) curves, or simply a probability of false posi-
tives/false negatives. In specific application domains, one of these models typically prevails (e.g.,
Packman et al., 1968; Hovey and Berens, 1988; Somoza et al., 1990; Sarkar et al., 1998), since
they historically emerged independently in different disciplines to address specific problems. PoD
curve models were formulated in the 1950s as a statistical method to investigate the dose-response
effect in biological tests (Finney, 1978; Rudemo et al., 1989; Ritz et al., 2015). ROC curve models
grew out of the signal detectability theory developed in the 1940s (Shannon, 1948; Woodward and
Davies, 1952; Peterson and Birdsall, 1953), aimed at measuring the capacity of a receiver to dis-
tinguish the presence of a signal from noise. The purpose of this paper is to review and investigate
these models for NDE quality by means of a unifying framework, which shows formally how they
are connected. This enables us to provide insights into how they should be used and learned.

Historically, a first major application of NDE was the identification of flaws with system-
atic inspections during the manufacturing process of parts. This was especially a concern in the
nuclear industry, which strived to improve quality assurance in the fabrication of pressure vessel
components (International Atomic Energy Agency, 1965). In the aeronautic industry, the high cost
associated with discarding parts with small defects during manufacture motivated the use of NDE
also during the service life. By the 1970s, the US Air Force had launched detailed investigations on
quantifying the performance (also called reliability) of defect detection measures (Packman et al.,
1968; National Materials Advisory Board, 1969). Its program "Have-Cracks-Will-Travel" laid the
foundation for systematic inspection and maintenance of aircraft (Berens and Hovey, 1981; Hovey
and Berens, 1988; Singh, 2000), where fatigue cracks are allowed to develop as long as they are
monitored and repaired regularly. These studies provide the analytical framework to derive PoD
curves from NDE data.

In parallel, the research on lifetime extension of aircraft structures (Graham and Tetelman,
1974; Yang and Trapp, 1974), nuclear reactor components (Harris and Lim, 1983), and large
deteriorating civil infrastructures (Frangopol et al., 1997; Hong, 1997; Sheils et al., 2012) started
to incorporate these probabilistic NDE models into Bayesian reliability analysis of the structure.
This was also coupled with inspection and maintenance plans, notably in risk-based inspection
(RBI) planning (Yang and Chen, 1985; Madsen et al., 1987; Straub, 2004). In the context of highly
reliable structures, optimizing the time and location of an inspection and the eventual subsequent
repair can result in significant savings (Nielsen and Sørensen, 2010; Goulet et al., 2015; Luque
and Straub, 2019; Bismut and Straub, 2021). This explains why NDE studies now also focus on
quantifying the added value of a specific NDE method on the expected total life-cycle cost.

The accuracy and reliability of NDE depends on environmental conditions (humidity, temper-
ature, experimental setting) and inspector expertise, among other factors (e.g., Lentz et al., 2002).
NDE quality models establish a probabilistic relationship between the condition of the structure
and the testing outcome (or outcome assessment). They can be used to rate NDE methods and
ensure their compliance with norms and standards in place (e.g., Deutsches Institut für Normung,
2014; Pavlovic et al., 2008).
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In this contribution, we give an overview of the existing types of models for NDE quality,
and show how they are connected within a unifying framework. While some existing literature
does discuss relationships between two NDE quality models, we are not aware of any previous
attempt to formalize the relationship between all these models. This framework enables a better
understanding of the assumptions associated with each model type and, as we demonstrate, can
help in obtaining better models for NDE quality for specific applications. We particularly draw
attention to the dependence of the NDE quality model on the experimental design and the risks
of misinterpreting and generalizing quality indicators of NDE quality models from experimental
studies. This formalization allows us to identify systematically issues and potential pitfalls when
establishing and applying these models. Decision analysis and the concept of value of information
(VoI) (Raiffa and Schlaifer, 1961) shed further light on what the implications are of not choosing
the optimal model. The joint optimization of the calibration of the NDE system and the repair
actions is formally addressed.

After some definitions in Section 2.1, Section 2.2 introduces the framework and the models
and their connections are reviewed and discussed in Sections 2.3 to 2.6. Considerations on model
availability and uncertainty are made in Section 2.7. Section 3 focuses on the exploitation of the
NDE data within decision analysis. The findings are illustrated with two examples: In Section 4,
we apply the framework and solve a basic decision problem for a purely theoretical NDE system;
In Section 5 we consider a real NDE technique, the half-cell potential, and we analyze the effect of
model choice on the outcomes of optimal decision making for a one-step and a two-step decision
problem.

2. A unifying framework for NDE quality

2.1. NDE systems
NDE quality models establish a relationship between the true condition and the measurement,

which we call the observed signal. The latter includes noise. Fig. 1 depicts this relationship,
inspired by Shannon’s diagram of a communication system (Shannon, 1948).

Observed 
signal

Condition

Noise

Signal
Likelihood
Pr	(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑠𝑖𝑔𝑛𝑎𝑙|𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)

Figure 1: The observed signal measures the signal emitted by the condition and is also affected by noise. The model
for NDE quality expresses the relationship between the observed signal and the condition, in the form of a likelihood.

The relationship between the true condition and the observed signal can be expressed proba-
bilistically with NDE quality models. Here the term "NDE" covers all non-destructive information
collection methods, ranging from visual inspection to automated data collection. An NDE quality
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model is defined by the conditional probability Pr(observed signal|condition), which in statistics
is known as the likelihood function. This relationship can be derived empirically by performing
a number of tests (Packman et al., 1968; Berens and Hovey, 1981; Berens, 2000). While the pri-
mary purpose of these models was to establish a measure of reliability and performance of NDE
techniques, they can be used for Bayesian analysis and decision analysis, see Section 3.

The NDE system encapsulates the process of collecting the data (type of data collected, inspec-
tion technique) and the interpretation of this data (Berens, 2000). The NDE system can encompass
several measuring devices and data processors or interpreters (Sheils et al., 2010). The observed
signal is the quantity on which the repair decision is taken. An example of an NDE system is an
inspector going on-site, visually inspecting a wall, and appraising its state of damage (here, the
condition) with a rating (here, the observed signal) (Quirk et al., 2018). The NDE quality model
characterizes the NDE system.

2.2. Unifying NDE quality models
The NDE quality model probabilistically relates the observed signal with the condition. The

condition can take continuous values (e.g., a crack size), or discrete values (e.g., "functioning" or
"not functioning"). The observed signal can similarly take continuous (e.g., maximum vibration
amplitude, measured crack length) or discrete values (e.g., "red" or "green", "suitable" or "not
suitable"). Here, we limit the consideration of the discrete case to binary states. As the number of
discrete states increases, the multinomial case approaches the continuous state.

We denote the continuous observed signal by S and the binary observed signal by I. Similarly,
if the condition takes continuous values, it is denoted by X , and when it takes binary states, by Y .
The condition can express a degree of damage or failure, although this remains an abstract concept
and might not be related to anything failing as such. Here, the observed signal is considered as
a scalar quantity, which can result from processing a multivariate signal, e.g., a time-series or an
image (Kurz et al., 2012; Webb et al., 2015). Table 1 gives an overview of the four main NDE
quality model categories for the possible combinations of continuous or binary condition X /Y and
observed signal S/I.

Table 1: Monitoring models for binary or continuous signal and condition

Condition
Continuous X Binary Y

Signal Continuous S
Binary I

(1) fS|X=x(s)
(2) PoD(x) curve

(3) ROC curve
(4) PoD / PFA

The connection between the models comes from the fact that the binary/discrete variables are
the result of imposing one or more thresholds on the underlying continuous variables. Specifically,
a binary signal I is the result of a classification of the underlying continuous signal S, by means of
a threshold sth, that assigns I = 1 for S > sth. A binary condition Y represents two domains of a
continuous condition X , classified such that Y = 1 when X > xth.

If one has access to the full continuous/continuous description of NDE quality, one can es-
tablish the link between all four models, as illustrated by Fig. 2. Model (1) is the base model.
Models (2–4) are derived by imposing thresholds sth and xth on continuous signal S and condition
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X , respectively. As we discuss in Section 2.7, almost all NDE systems and applications can be
connected to the base model.

Model (3): ROC curves obtained from different imposedthresholds !!" and distributions "#(!). A point on thecurve corresponds to a threshold on the signal %!".

Model (4): Confusion matrices giving Pr((|*) for thebinary classification ( of a signal + with %!"	and thebinary condition * with imposed threshold !!" on -,and for the imposed distribution of -.
Model (2): POD curves for two binary classifications ofsignal + with threshold %!" as a function of continuouscondition -.

Model (1): Contours of probability density function 
"$|#&'	(%)	of a continuous signal + conditional on continuous condition -.

Impose a threshold !!" 	 on #

Impose a threshold $!" on % and impose a distribution &#($) of %

! < #!" ! > #!"
% < &!" 1 − )*+ = 0.62 1 − )12 = 0.08
% > &!" )*+ = 0.38 )12 = 0.92

67!~9 −2.5,0.5 , #!" = 0.2, &!" = 0.02

! < #!" ! > #!"
% < &!" 1 − )*+ = 0.46 1 − )12 = 0.15
% > &!" )*+ = 0.54 )12 = 0.85

67!~9 −2.5,0.5 , #!" = 0.1, &!" = 0.01

Figure 2: Unifying framework of models for NDE quality. Models (2–4) with a binary signal or condition can in
principle be linked to Model (1). This link is established by fixing a threshold either on the signal, sth, or on the
condition, xth, to classify the continuous signal or condition into binary states. The link between Models (1–2) to
(3–4) requires additional information on the distribution of the continuous condition X . The specific NDE quality
model depicted here is defined in Section 4.1.
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The mathematical formulation of this unifying framework is derived in Sections 2.3 to 2.6.
Importantly, we show that the links between models require an understanding of the population
of defects in the experimental design. This affects the validity of the NDE models outside of the
experimental setting in which they are learned. This has ramifications on the optimal interpretation
of data and the decisions taken based on NDE.

2.3. Model (1): Base model – S continuous, X continuous
Many NDE methods relate a continuous condition to a continuous observed signal. For exam-

ple, ultrasonic testing (UT) detects discontinuities inside a metal plate by emitting a high frequency
ultrasonic pulse towards the plate and recording the echo. The amplitude of this echo (the observed
signal) relates to the thickness (the condition) of defect-free material (Lavender, 1976). Another
example described by this model is crack detection and measurement using magnetic particle in-
spection (MPI): MPI reveals the crack to the inspector who must then perform a visual inspection
under UV lights and evaluate the crack size (Clark et al., 1987).

In the configuration of Model (1), the NDE system is fully characterized by the probability
distribution of the observed signal S given the condition X , through the conditional probability
density function (pdf), fS|X(s|x), or the associated cumulative distribution function (cdf), FS|X(s|x).
Fig. 2 gives an example of such a conditional pdf.

This probabilistic model can be obtained from experimental data (experimental test blocks),
if possible in different experimental settings. A traditional approach, which would allow to find
such a model, is called "â vs. a," where â is the continuous observed signal and a the continuous
condition (Berens, 2000). A relationship of the form â= f (a)+ε(a) has been proposed, where f is
the mean response function with some fixed parameters and ε(a) is a random variable representing
the measurement noise. A linear log-logistic relationship is a common choice for the function f
(Berens and Hovey, 1981; Annis, 2009). It originates from biological tests investigating the dose-
response effect (Finney, 1978; Rudemo et al., 1989; Ritz et al., 2015). ε(a) is commonly modeled
as a Gaussian random variable (e.g., Kurz et al., 2012; Goulet et al., 2015). Annis (2009) provides
some guidance as to how the noise should be considered.

Simulation and meta-models of NDE processes have also given rise to model-assisted PoD
(MAPOD) (Aldrin et al., 2013; Calmon, 2012; Calmon et al., 2016). In this procedure, physics-
based models are used to determine the relationship f and are validated with the experimental
data. One of the advantage of MAPOD is that it does not require large datasets and can include
numerous experimental settings and influential parameters.

Our review of the existing literature on NDE models shows that continuous/continuous prob-
abilistic models are often learned in an ad-hoc manner. An example is the probability of (correct)
sizing (POS), which describes the error in the measurement by an inspector of the continuous con-
dition (e.g., a crack length) (Brennan, 2013; da Silva and de Padua, 2012; Granville and Charlton,
2016; Visser, 2002; Nath, 2021). Models for POS are continuous/continuous, but definitions vary
and no application to reliability analysis is documented in the literature.

For many NDE techniques, this model remains abstract, as a continuous signal or a continuous
condition might not be easily identifiable. In this case, the NDE quality model is chosen among
the other three categories described below.

6



2.4. Model (2): PoD curve – I binary, X continuous
The probability of detection curve, or PoD curve, has been adopted for many NDE techniques,

such as UT, MPI, Eddy current testing, or impulse radar, which aim at identifying cracks or more
generally defects in structures (Berens and Hovey, 1981; Hovey and Berens, 1988; Sarkar et al.,
1998; Feistkorn and Taffe, 2011). It is

PoD(x) = Pr(I = 1|X = x). (1)

As previously noted, one can interpret I as a classification of a continuous signal S by fixing a
threshold sth, i.e., {I = 1}= {S > sth}. In NDE literature pertaining to PoD curves, sth is called the
decision or detection threshold (Berens and Hovey, 1981; Sheils et al., 2012). The PoD function
in Eq. (1) can thus be written as a function of the continuous/continuous Model (1).

PoD(x) = Pr(S > sth|X = x) =
∫ +∞

sth

fS|X(s|x)ds = 1−FS|X(sth|x). (2)

By changing the threshold sth, the PoD curve changes (Sarkar et al., 1998); at the limit, it is
PoD(x,sth =−∞) = 1 and PoD(x,sth =+∞) = 0 for any value x.

PoD curves have indeed been obtained from "â vs. a" models (Berens, 2000; Annis, 2009;
Virkkunen et al., 2019). In aircraft integrity management, the threshold sth is chosen so that a
critical crack size fixed by expert judgment (Wood and Engle Jr, 1979) is detected with a 90%
probability, with a 95% confidence level (Berens, 2000). According to Wood and Engle Jr (1979),
the basis for these target probability and confidence level is arbitrary and relates to a required
degree of conservatism and to the practical implementation of NDE testing programs. The charac-
terization of a PoD curve with this 90/95 target value is considered best practice, until today (e.g.,
Annis, 2009; Tschöke et al., 2021). However, as we show below in Section 3, calibrating the PoD
curve and fixing sth in this way without a comprehensive decision analysis may not ensure that the
test is exploited to its full potential. Furthermore, although the term decision threshold originally
refers to the fact that a repair action systematically follows the detection of a defect with S > sth,
it may not be optimal to do so in all circumstances.

Eq. (2) does not preclude the PoD curve from taking a non-zero value when x= 0. A PoD curve
for which PoD(0) = 0.3 is depicted in Fig. 2 for sth = 0.01. Straub (2004) notes that PoD curves
typically proposed in the literature, such as those obtained from the log-logistic model mentioned
in Section 2.3, pass through the point PoD(0) = 0, and thus do not include the possibility of
false detection. (Packman et al., 1968; Berens and Hovey, 1981) have motivated this choice with
damage tolerant design philosophy by presuming that unnecessary repairs can only improve the
reliability of the system. However, Heasler and Doctor (1996) argues that for risk-based decision
analysis it is more appropriate to consider PoD models for which PoD(0) > 0 since unnecessary
repairs lead to additional costs. Straub (2004) has proposed the term probability of indication (PoI)
for PoD curves that include false alarms, i.e., those for which PoD(0)> 0, which include the effect
of noise on the indication of the condition. Nevertheless, we use the term PoD curve throughout
this paper.
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2.5. Model (3): ROC curve – S continuous, Y binary
This model is commonly used to describe how the continuous observed signal S from NDE

can be interpreted to discriminate between the absence (Y = 0) and presence (Y = 1) of a flaw.
Most traditional NDE methods can be described by this model (Olin and Meeker, 1996), which
can also be used to compare the ability of inspectors (human or machine) to interpret NDE results
(Swets, 1983). Recently, image processing techniques for crack detection and monitoring systems
of pipe corrosion have been evaluated with this model (Pakrashi et al., 2010; Jarvis et al., 2018).

In this framework, the discrete condition Y is defined by setting a threshold on the continuous
condition X such that {Y = 1} = {X > xth} and {Y = 0} = {X ≤ xth}. xth is called the critical
threshold (Sheils et al., 2010; Schoefs et al., 2012). The likelihood function is formed by the two
conditional pdfs of the observed signal S. They are represented in Fig. 3 and can be derived from
the base Model (1):

fS|Y=1(s) =
1

1−FX(xth)
·
∫ +∞

xth

fS|X(s|x) fX(x)dx, (3)

fS|Y=0(s) =
1

FX(xth)
·
∫ xth

−∞

fS|X(s|x) fX(x)dx, (4)

where fX(x) and FX(x) are the pdf and cdf of the condition X .

Figure 3: Conditional probability density functions. The indicated areas under the two curves defined by the threshold
sth corresponds to a point PoD(sth = 7), PFA(sth = 7) on the ROC curve shown in Fig. 4.

This model is commonly visualized by the corresponding receiver (or relative) operating char-
acteristic (ROC) curve, which plots the PoD against the PFA. This curve is parametrized by a
threshold on the signal sth, also called the cut-off point (Fluss et al., 2005). Note that the PoD is
not expressed as a function of the continuous condition X as in Section 2.4 above, but is here a
function of sth. The PoD and PFA as a function of sth are
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PoD(sth) = Pr(S > sth|Y = 1) =
∫ +∞

sth

fS|Y=1(s)ds, (5)

PFA(sth) = Pr(S > sth|Y = 0) =
∫ +∞

sth

fS|Y=0(s)ds. (6)

The ROC curve is illustrated in Fig. 4, wherein the PoD and PFA for threshold values sth are
obtained from the conditional pdfs of Fig. 3. Note that studies often derive the ROC curve for
a single flaw size X = x, rather than for a domain defined by threshold xth (e.g., Rajesh, 1993).
This can be useful to qualitatively compare NDE methods on a standardized flaw size but does not
provide a complete model linking the observed signal with the condition.

Figure 4: Each point on the ROC curve corresponds to a value of the signal threshold sth.

One can alternatively express the PoD and PFA as a function of the conditional cdf FS|X from
Model (1):

PoD(sth) = Pr(S > sth|X > xth) =
1

1−FX(xth)
·
∫ +∞

xth

(
1−FS|X(sth|x)

)
fX(x)dx, (7)

PFA(sth) = Pr(S > sth|X < xth) =
1

FX(xth)
·
∫ xth

−∞

(
1−FS|X(sth|x)

)
fX(x)dx. (8)

Several indicators have been proposed to qualify the performance of an NDE system with a
ROC curve (Taner and Antony, 2000; Greiner et al., 2000; Fluss et al., 2005). They include the
area under the curve (AUC), the shortest distance between the curve and (0,1), also expressed
in polar coordinates (Schoefs et al., 2012), and the Youden Index (Youden, 1950). The latter
is computed as the maximum vertical distance between the ROC curve and the 45 degree line
starting at (0,0).
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Eqs. (3) to (8) show that the PoD and PFA on the ROC curve are a function of the distribution of
the condition X . This signifies that even if the ROC curve is evaluated directly from experiments,
it is only strictly valid for the distribution of the defects from which it is derived. Therefore,
the ROC curve for the same NDE method can vary when applied to different situations. Boero
et al. (2009) illustrates this effect for NDE of deteriorating structures, where the ROC curves
change over time along with the distribution of the progressing damage condition. A problem
appears when the given ROC curve is derived from a previous experiment because the distribution
of X in the experiment, which we call experimental design, might not match the distribution of
X in the specific application. To formally represent this, we distinguish between the pdf fX(x)
and associated cdf FX(x) of the condition X for a specific application, and the pdf fX ,exp(x) and
associated cdf FX ,exp(x) of X for the experiment from which the ROC curve is derived. Although
mentioned in earlier studies (Berens and Hovey, 1981), the effect of the experimental design has
largely been ignored in the recent literature. To show this effect, we consider three experimental
designs and show that the resulting ROC curves change significantly in Fig. 5. An ROC curve
from an NDE system provider should therefore be associated with information of the underlying
experimental design.

Experimental designs Resulting ROC curves

Figure 5: ROC curves for the same NDE derived for different experimental designs, ED1, ED2, and ED3. The model
and distributions are presented in the example of Section 4 and their impact is investigated in Section 4.8. Here,
xth = 0.1.

2.6. Model (4): PoD/PFA – I binary, Y binary
This is the most elementary NDE quality model associated with an NDE, which identifies

whether the system is in a certain state or not. It is obtained by fixing thresholds both on the con-
dition X and the signal S. The associated likelihood is described by a confusion matrix, involving
the operating PFA and PoD, as presented in Table 2.

An example of an NDE system that is described by such a model is ultrasonic flooded member
detection, which detects the presence/absence of water in tubular steel members of underwater
support structures as an indication of through-thickness cracks or other severe defects (Hayward
et al., 1993; Visser, 2002). The performance of inspectors for visual inspection or using NDE
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Table 2: Likelihood of the binary–binary case: The confusion matrix Pr(I|Y ).

Pr(I|Y )
Y = 0 Y = 1

I 0
1

1−PFA
PFA

1−PoD
PoD

devices is also typically represented through the PoD/PFA model (Swets, 1992; Sheils et al., 2010;
da Silva and de Padua, 2012; Quirk et al., 2018).

The transition between Model (3) to Model (4) corresponds to calibrating the NDE system to
an operating point on an ROC curve, by fixing the threshold sth. The PoD and PFA are obtained
from Eqs. (5) and (6).

The transition from Model (2) to (4) is obtained by combining Eqs. (7) and (8) with Eq. (2).
The PoD and PFA for Model (4) are

PoD = Pr(I = 1|X > xth) =
1

1−FX(xth)
·
∫ +∞

xth

PoD(x) fX(x)dx, (9)

PFA = Pr(I = 1|X < xth) =
1

FX(xth)
·
∫ xth

−∞

PoD(x) fX(x)dx. (10)

The transition from Model (1) to (4) is obtained by transitioning from Model (1) to (3), then
from Model (3) to (4), by fixing thresholds sth and xth. Depending on the nature of the condition
and the observed signal, it is possible that both thresholds sth and xth are assigned the same value
(Sheils et al., 2012), however they play very distinct roles in the NDE system and should not be
confused with one another.

2.7. Some comments on learning the models
In the ideal case, one would learn the continuous/continuous Model (1) directly, giving a prob-

abilistic relationship between condition X and signal S. From this base model, the three other
model categories could be derived for specific applications. Surprisingly, review of the existing
literature reveals that, when continuous/continuous probabilistic models are obtained from exper-
imental or simulated data (see Section 2.3), they are often not used for reliability analysis, or for
explicitly deriving PoD curves or other models.

Fig. 6 summarizes how the four continuous or binary variables X , Y , S, and I interact through
the four model types.

It is not always possible to reveal a continuous condition or a continuous signal, in which
case the NDE system is described by one of Models (2) to (4). Still, the base model linking X
to S can be considered at an abstract level to ensure correct interpretation of the signal and good
experimental design.

The correct interpretation of the observed signal is also affected by the uncertainties associated
with the model of NDE considered. Several studies point to the fact that experimental data and
NDE performance obtained from this experimental data do not translate into similar performance
once in-situ (e.g., Rouhan and Schoefs, 2003). The reasons given typically involve aleatoric and
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Model 1 Model 2 (PoD curve) Model 3 (ROC curve) Model 4 (confusion matrix)

Figure 6: Interaction of the four continuous or binary variables X , Y , S, I through the NDE quality Models (1–4).
The continuous edges illustrate the relationships between condition and observed signal described by the models. The
grayed-out nodes designate the variables hidden when the models are directly evaluated from the experiments. For
each model, the link between these hidden variable and the variables of the model can be expressed with Model (1)
and an imposed threshold sth or xth.

epistemic uncertainties in influential parameters affecting the NDE quality, which cannot always
be reproduced in an experimental context (Wall and Wedgwood, 1994; Straub, 2004). For instance,
temperature, humidity or lighting can affect the performance of an NDE technique (Annis, 2009)
and introduce a bias in the model. Boero et al. (2009) investigated the spatial variability of NDE
models. These model uncertainties can be partly quantified by assigning a probability distribution
to the model parameters, thus explicitly accounting for the model uncertainty in the NDE quality
model performance (Straub, 2004). This hierarchical dependence in the NDE models can also be
used to update the models and their parameters with the information collected through Bayesian
inference (Aldrin et al., 2013; Hamida and Goulet, 2020).

However, even if model uncertainties can be mitigated, the derivations in Sections 2.5 and 2.6
show that incorrect assumptions on the distribution of the true condition X lead to erroneous ROC
curves and misinterpretation of the performance of NDE systems. In Section 4.8 we investigate
the effect of such errors on the optimality of decisions.

3. NDE systems and decision analysis

3.1. Possibility of improved decision-making
Section 2 shows that several choices are made when modeling the performance of an NDE

system. There is no unique description of NDE quality and the quality models depend on thresh-
old values on the measured signal and on the condition, sth and xth. These thresholds are set
by either the designer or the user of the NDE system, often according to standard practice and
predefined requirements (Wood and Engle Jr, 1979; Annis, 2009; Kurz et al., 2012). When the
decision context is specifically considered for the choice of the thresholds, it is usually through
the minimization of mis-classification rates or through minimum requirements on the detection
performance of the NDE method (Rajesh, 1993). In some studies, the consequences of actions or
failure are accounted for (e.g., Swets, 1992). In general, it is acknowledged that the thresholds
affect the quality of the NDE system and that they should be calibrated (Kurz et al., 2012; Webb
et al., 2015). Furthermore, the repair decision is often directly conditioned on the NDE outcome
(recall the name "decision threshold" for sth), and the quality of NDE systems is usually assessed
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without optimizing this decision (Berens and Hovey, 1981; Sheils et al., 2010). In this paper, we
distinguish between the interpretation of observed signal S (or calibration of the NDE system) and
the decision and scrutinize these choices with a formal analysis.

This section employs formal decision analysis and the value of information (VoI) concept to
investigate how NDE quality models affect the decisions taken based on NDE results. As is shown
in the numerical results, employing Models (2) to (4) can lead to suboptimal decisions relative to
using Model (1).

To evaluate the performance of NDE systems with Bayesian decision analysis, we introduce
the following:

– F is the critical condition, e.g., a system failure.

– The decision maker can choose among a set of actions {a0,a1, ...}, typically to mitigate the
consequences of failure. The "do nothing" action is denoted by a0.

– All actions ai have an associated cost; we assume here that action a0 "do nothing" has an
associated cost of 0. The consequence of F is cF . To be directly comparable, all costs and
consequences are expressed in monetary terms.

3.2. Bayesian analysis
As stated in Section 2.1, the probabilistic NDE quality models are likelihood functions. When

a probabilistic model of the system state is available, Bayesian analysis can be performed, and the
reliability of the structure can be evaluated in light of the NDE results. Such reliability updating
with likelihoods from NDE quality models was first investigated by Tang (1973), and many studies
integrating reliability analysis with inspection models have been published (e.g., Madsen, 1987;
Sindel and Rackwitz, 1996; Onoufriou and Frangopol, 2002; Straub, 2011).

With Bayesian analysis, the posterior probability distribution of the condition Θ is

p(θ|z) ∝ L(θ;z)p(θ), (11)

where Θ is either X or Y depending on the setting. z is the measurement, which is either s or
i. L(θ;z) is the likelihood function, i.e., one of the NDE quality models of Section 2.2. The
normalizing constant of Eq. (11) is the model evidence, p(z):

p(z) = EΘ [L(θ;z)] , (12)

where EΘ[·] is the expectation with respect to p(θ).
One is typically interested in identifying a critical condition, or failure. Conditional on the

NDE outcomes, one obtains the posterior probability of this critical condition Pr(F |Z = z) as

Pr(F |Z = z) =
1

p(z)
EΘ [Pr(F |θ)L(θ;z)] . (13)
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3.3. Optimal decision and value of information
While the methods developed in the NDE community focus on comparing inspection tech-

niques, the actual value added is related to how the information from NDE leads to better decisions
(Raiffa and Schlaifer, 1961; Straub, 2014). In decision analysis, it is assumed that the decision
maker selects an action that maximizes the expected utility after obtaining information Z through
NDE. Here we consider utility to be negatively proportional to costs. Hence, the optimization
problem is written in as

aopt(z) = arg min
a∈{a0,a1...}

EΘ|z[CT (a,Θ)]. (14)

The total cost CT includes the cost of the actions and consequences of failure. EΘ|z[·] is the
expectation with respect to the conditional distribution p(θ|z) from Eq. (11).

The influence diagram of Fig. 7 represents the probabilistic relationships between the true
condition, the observation and the failure event (round nodes), the actions and choice of NDE
system (square nodes), as well as the costs incurred (diamond nodes). For example, e can be a

𝐹𝚯

𝑍

𝑎

𝐶!

𝐶"

Mitigating 
actions

Costs of 
actions

Consequence 
of failure

NDE system 𝑒

Figure 7: Influence diagram for the basic decision problem. The true condition, the observation, and the failure event
are represented by round nodes, the actions and choice of NDE system by square nodes, and the costs incurred as
diamond nodes.

visual inspection of a crack, the outcome Z can be the signal I "detection" or "no detection," and
the possible actions a "repair" or "no repair."

The observation Z is unknown a priori and is described by the distribution of Eq. (12). Hence,
the expected cost resulting from implementing the NDE system e, Ce, is obtained by deriving an
expected value with respect to p(z), i.e.,

Ce = EZ
[
EΘ|Z[CT (aopt(Z),θ)]

]
. (15)

Raiffa and Schlaifer (1961) denote with e0 the case where no information is collected and the
decisions are based on the prior knowledge of the system. The optimal action and expected cost
under e0 are
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ae0 = argmin
a

EΘ[CT (a,Θ)], (16)

C0 = EΘ[CT (ae0 ,Θ)]. (17)

The value of information (VoI) (also called expected value of sample information) for an NDE
system e is the difference between the total expected prior cost associated with e0 and the total
expected cost associated with e.

VoI(e) =C0 −Ce. (18)

Notably, if for any outcome z obtained through e, the optimal action aopt(z) = ae0 , then
VoI(e) = 0. In other terms, an NDE system only brings value if it changes the decision on which
action to take. The VoI does not include the cost of implementing the NDE system e (e.g., cost
of mobilizing a team of inspectors). This cost can be added to Ce in Eq. (18) to obtain the net
VoI (NVoI). In the Bayesian decision analysis framework, an NDE system with a positive NVoI
is worth implementing, and the higher the NVoI the better. Somoza et al. (1990) employed this
concept to calibrate an NDE system for optimal maintenance planning.

Although the concept of VoI appeared in the mid-20th century, it was not used to support in-
spection and maintenance decisions until recently, mainly because of the complexity associated
with its calculation. Reliance on established processes also explains why it was left aside. Histori-
cally, the primary focus of NDE performance evaluation has been to support systematic inspection
plans or condition-based maintenance, where monitoring outcomes systematically result in one
action, of the "find nothing, do nothing" and "find a defect then repair" type (Berens and Hovey,
1981; Kerntechnischer Ausschuss, 2016). The performances of NDE techniques are codified by
standards, based on traditional rule-of-thumb criteria, that are not specific to the problem. An
example of NDE for systematic maintenance is the automated Eddy current inspection system for
detecting and repairing cracks in engine components which has been used by the US air force since
the 1980s (Berens, 2000). In the nuclear industry, standards prescribe fixed time intervals between
inspections and the NDE techniques to adopt, assuming that any detected defect is systematically
repaired (Kerntechnischer Ausschuss, 2016). The conservative conditions for inspection and repair
are adopted without a risk-based decision analysis. In this context, false alarms and unnecessary
repairs are judged as negligible when compared to preserving the safe operation of the system.

Currently, NDE is used for integrity management and service life extension of large infrastruc-
ture such as bridges. The cost of unnecessary repair is not negligible and can vary greatly with the
accessibility of the structure. The VoI allows accounting for the economic aspects in the decision
process. The computational and theoretical advances in the computation of the VoI in recent years
provide the opportunity to evaluate the performance of an NDE system in the real decision-making
context.

In Sections 4 and 5 we perform optimizations using Eqs. (14) to (18), where the decision maker
can decide whether or not to repair the system based on observations provided by an NDE system.
In the one-step decision problem, Eq. (14) reduces to a simple condition that links the likelihood
L(θ;z) with the different costs and prior probabilities.
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4. Example 1: Hypothetical NDE system

The purpose of this example is to demonstrate the unifying framework and investigate the
impact of each of the four NDE models on the optimal decision outcome and cost in a basic
decision problem. We highlight the effect of experimental design on the assessment of NDE
performance.

4.1. Base model
We consider a hypothetical NDE system which measures a continuous condition and outputs

a continuous signal, in analogy with crack detection systems such as UT.
The conditional pdf of the continuous measurement signal S given true condition X is

fS|X(s|x) =
1

s
√

2π
exp

(
−
(
lns− ln

(
2x3 + x2 +10−2 exp(−1/2)

))2

2

)
. (19)

This is the lognormal distribution with parameters [ln
(
2X3 +X2 +10−2 exp(−1/2)

)
,1]. This

conditional probability density is shown in Fig. 2 (Model (1)).
In the following we consider a basic decision problem, where one needs to decide on a repair

action. We adopt the four different NDE quality models described in Section 2.2 in turn and assess
their impact on the repair decision. We additionally investigate the effect of learning the NDE
models with different experimental designs.

4.2. Solution of the one-step decision problem
The decision problem consists in selecting a repair action to mitigate the consequence of fail-

ure, after obtaining imperfect NDE outcome Z on state Θ. It is illustrated in Fig. 7. The condition
Θ is either X or Y . The observation variable is Z, which is either the continuous signal S or the
binary signal I. L(Θ;z) indicates the likelihood function. In this setup, we consider two possible
actions: either do nothing a0, for a cost cA(a0) = 0, or repair aR, for a cost cA(aR) = cR. The prob-
ability of system failure F is defined conditional on the state Θ and the action A. The consequence
of failure is cF .

The a priori optimal action ae0 is the one that minimizes the total expected cost as given by
Eq. (17). Here,

EΘ[CT (a,Θ)] = cA(a)+ cF Pr(F |a) with Pr(F |a) = EΘ [Pr(F |Θ,a)] . (20)

From Eq. (16), one finds that

ae0 = aR ⇐⇒ cF Pr(F |a0)> cR + cF Pr(F |aR). (21)

As per Eq. (14), the a posteriori optimal action is the one that minimizes the conditional expected
total cost,
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EΘ|z[CT (a,Θ)] = cA(a)+ cF Pr(F |Z = z,a), with Pr(F |Z = z,a) = EΘ|z [Pr(F |Θ,a)] . (22)

Making the likelihood L(Θ;z) explicit in the conditional expectation, one obtains that

aopt(z) = aR ⇐⇒ EΘ [L(Θ;z)cF Pr(F |Θ,a0)]> EΘ [L(Θ;z){cR + cF Pr(F |Θ,aR)}] . (23)

When the condition is binary, i.e., Θ = Y , L(Y ;z) is the likelihood for Models (3) or (4). The
condition of the above equation can be transformed into a condition on L(Y=1;z)

L(Y=0;z) , also called the
"likelihood ratio test" (Peterson and Birdsall, 1953; Green and Swets, 1966). If ae0 = aR,

aopt(z) = aR ⇐⇒ L(Y = 1;z)
L(Y = 0;z)

>
{cR + cF Pr(F |Y = 0,aR)− cF Pr(F |Y = 0,a0)}Pr(Y = 0)
{cF Pr(F |Y = 1,a0)− [cR + cF Pr(F |Y = 1,aR)]}Pr(Y = 1)

.

(24)

The expected total cost associated with the optimal action following an NDE is given by Eq. (15).
When the observation is binary, i.e., Z = I and {I = 1}= {S > sth}, the expected cost depends on
the choice of threshold sth.

4.3. Condition model and a priori optimal action
The prior pdf of X is the exponential pdf with mean 0.03.

fX(x) =
1

0.03
exp
(
− x

0.03

)
. (25)

We fix the cost of repair cR = 1. Under the do-nothing action a0, the probability of failure of
the system is defined conditional on X (Fig. 8),

Pr(F |X = x) = 10−5 +(1−10−5) ·
(

1
2
+

1
2

erf
(

logx−0.1√
2

))
, (26)

where erf is the error function.
When the system is repaired, the probability of failure is reduced such that ∀x, Pr(F |X =

x,aR) = pF |R = 10−4. The cost of failure is cF = 800.
Eq. (21) gives the condition to identify the a priori best decision. The probability of failure of

the system conditional on action a0 is evaluated as Pr(F |a0) = 1.2 · 10−3, and the probability of
failure conditional on action aR is Pr(F |aR) = pF |R = 10−4. Since cF Pr(F |a0) = 0.94 is smaller
than cR + cF pF |R = 1.08, the a priori best decision is therefore to do nothing, ae0 = a0, with
associated cost 0.94.

4.4. A posteriori optimal actions with Model (1)
The likelihood L(x;s) is given by Eq. (19). By solving Eq. (23) for z = s, we find that the

optimal action is aopt(s) = a0 for s < sth,1 = 1.6 ·10−2, and aopt(s) = aR for s > sth,1. Here, sth,1
is effectively a repair threshold. The comparison of expected costs for both actions as a function
of the measured signal S is depicted in Fig. 9. The expected total cost computed with Eq. (15) is
0.65. The VoI of this NDE system is 0.94−0.65 = 0.29.
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Figure 8: Probability of system failure conditional on the condition X .

Figure 9: Expected cost for action a0 and aR conditional on the observed signal S.

4.5. A posteriori optimal actions for a given PoD curve
We now determine the optimal a posteriori action identified with the PoD curve (Model (2))

and the associated VoI. We remind that in Model (2), a binary signal I is considered, which is
related to the continuous signal S by {I = 1} = {S > sth}. The likelihood L(x; I) is given by the
PoD curve of Eq. (2), which depends on the fixed threshold sth. PoD curves for different thresholds
are depicted in Fig. 10.

PoD curves are typically given and not specific to the application, and hence are likely subopti-
mal for a given decision context. For example, if the given PoD curve is calibrated with sth = 0.03,
the optimal actions are aopt(I = 0) = a0, aopt(I = 1) = aR and the expected cost is 0.70. The re-
sulting the VoI is 0.94−0.70 = 0.24, which is below the potentially achievable VoI= 0.29.

For each imposed threshold sth and associated PoD curve, Fig. 11 indicates the optimal actions
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Figure 10: PoD curves for different thresholds sth, including sth,2.

aopt(I) and the expected cost calculated with Eq. (15). A threshold exists that maximizes the VoI
and minimizes the expected cost for this case study. It is the decision threshold 1.6 · 10−2, with
the associated expected cost of 0.65, which corresponds to the result obtained with Model (1).
However, when describing the NDE by the PoD curve, this optimal solution will only be obtained
by coincidence. In general, the PoD curve leads to a suboptimal decision.

Figure 11: Expected cost using the PoD curve model as a function of the fixed signal threshold sth.

4.6. A posteriori optimal actions for a given ROC curve
When ROC curves are utilized to represent the quality of NDE, the continuous condition X is

replaced by the binary condition {Y = 1}= {X > xth}. Here we fix xth = 0.1. The corresponding
ROC curve is depicted in Fig. 5, where the distribution of X corresponds to the experimental design
ED1.

To compare the performance of Models (1) and (3), we must first ensure that the relationships
between binary condition Y and failure F are compatible with the relationship between continuous
condition X and failure F . This compatibility is ensured by the following equations,
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Pr(Y = 1) = 1−FX(xth) = 3.6 ·10−2, (27)

Pr(F |Y = 1,a0) =

∫+∞

xth
Pr(F |X = x) fX(x)dx

1−FX(xth)
= 1.7 ·10−2, (28)

Pr(F |Y = 0,a0) =

∫ xth
0 Pr(F |X = x) fX(x)dx

FX(xth)
= 5.8 ·10−4. (29)

Additionally, it is ∀y ∈ {0,1}, Pr(F |Y = y,aR) = pF |R.
The solution of the decision problem is derived from Eq. (24):

aopt(s) = aR ⇐⇒ L(Y = 1;s)
L(Y = 0;s)

=
fS|Y=1(s)
fS|Y=0(s)

> 1.31. (30)

The likelihoods L(Y ;s) = fS|Y (s) are computed with Eqs. (3) and (4). Both Models (1) and (3)
provide the same model evidence p(s).

From Eq. (30), we find the optimal action aopt(s) is a0 when s < 1.7 ·10−2 and aR otherwise.
This threshold sth,3 = 1.7 · 10−2 is shown as the optimal operating point on the ROC curve in
Fig 12. Furthermore, Fig. 12 indicates that ROC performance indices, such as the Youden Index,
are associated with certain operating points. But using either of these points, as proposed in some
references (e.g., Schoefs and Clement, 2004), is not optimal in view of the specific decision.

The total expected cost for the optimal operating point is 0.76. The VoI of this NDE system is
0.18, lower than for Model (1). Even though the actions are optimized, their efficiency are limited
by the fixed threshold xth and associated "failure" domain of the NDE device, through Eq. (30).
Other values of xth can yield a higher or lower VoI: E.g., with xth = 0.2 the associated optimal
expected cost is 0.91 and the VoI is only 0.03. However, the threshold xth can typically not be
influenced for a given NDE device.

4.7. A posteriori optimal actions for a given point on the ROC curve
Here, the NDE system is described by a point on the ROC curve defined above in Section 4.6,

such that {I = 1}= {S > sth}. The likelihood of Model (4) L(Y ; I) is given by a confusion matrix
as per Table 2, with L(Y = 1; I = 1) = PoD and L(Y = 0; I = 1) = PFA. As in Eq. (30), the
likelihood ratio verifies the conditions

aopt(I = 1) = aR ⇐⇒ L(Y = 1; I = 1)
L(Y = 0; I = 1)

> 1.31 ⇐⇒ PoD
PFA

> 1.31, (31)

aopt(I = 0) = aR ⇐⇒ L(Y = 1; I = 0)
L(Y = 0; I = 0)

> 1.31 ⇐⇒ 1−PoD
1−PFA

> 1.31. (32)

For example, for sth = 1 ·10−2 (and xth = 0.1 as above), PoD= 0.82, PFA= 0.37, aopt(I = 1)= aR,
aopt(I = 0) = a0 and the expected cost is 0.79.
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Fig. 12 shows the expected cost for any fixed PoD and PFA as well as the optimal actions
aopt(I). Two zones can be distinguished: (a) for any (PFA,PoD) in the yellow zone, the optimal
course of action is to do nothing, whatever the observation outcome; this is what the prior optimal
action also prescribes, therefore the VoI at these points is 0; (b) for any (PFA,PoD) to the left of
this yellow zone, detection triggers repair aR, and no detection entails a0.

Figure 12: Optimal expected cost as a function of PFA and PoD. Zone (b) corresponds to VoI = 0: this means that for
any decision threshold sth on the ROC curve that falls within that zone, the best course of action is the prior optimal
action, i.e., do nothing. The hatched area corresponds to the situation where the significance of I = 0 and I = 1 are
inverted.

4.8. Influence of the experimental design
We investigate how the experimental design fX ,exp used to learn the ROC curve can affect

the decision taken and the resulting expected total cost and VoI. We consider three experimental
designs ED1, ED2, and ED3, where the test conditions follow an exponential, lognormal, and
uniform distribution, respectively (Eqs. (33) to (35)). The imposed threshold on the condition
remains xth = 0.1 as above, with {Y = 1}= {X > xth}.

fX ,exp,1(x) =
1

0.03
exp
(
− x

0.03

)
, (33)

fX ,exp,2(x) =
2

x
√

2π
exp
(
−2(lnx+2.5)2) , (34)

fX ,exp,3(x) = 2 if 0 ≤ x ≤ 0.5, 0 otherwise. (35)
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The corresponding likelihoods fS|Y ,exp,i(s) are obtained with Eqs. (3) and (4). The resulting
ROC curves for xth = 0.1 are plotted in Fig. 5.

For each likelihood fS|Y ,exp,i(s), the model evidence pexp,i(s) is evaluated with Eq. (12), where
the prior probability of the condition Y is obtained with Eq. (27):

pexp,i(s) =
1

∑
y=0

fS|Y=y,exp,i(s)Pr(Y = y) =
1−FX(xth)

1−FX ,exp,i(xth)
·
∫ +∞

xth

fS|X(s|x) fX ,exp,i(x)dx (36)

+
FX(xth)

FX ,exp,i(xth)
·
∫ xth

−∞

fS|X(s|x) fX ,exp,i(x)dx.

The posterior probabilities Pr(Y |s) and Pr(F |s) are similarly computed with Eqs. (11) to (13).
The first experimental design ED1= fX ,exp,1(x) corresponds to the distribution of the condi-

tion in this application fX(x) defined in Eq. (25). Eq. (36) shows that in this case the model
evidence pexp,1(s) and the posterior probabilities coincide with the model evidence and posterior
probabilities obtained by applying Model (1) and the continuous/continuous likelihood fS|X=x(s).
fS|Y ,exp,1(s) is therefore the true likelihood and provides the correct evaluation of expected costs.
This case is examined in Sections 4.6 and 4.7, and is called the reference case here.

When the experimental design differs from the distribution in the application, i.e., when fX ,exp(x) 6=
fX(x), the model evidence and posterior probabilities deviate from the reference case and the con-
ditional expected costs calculated with Eq. (22) are incorrect. This in turn affects the results of
the decision problem and changes the optimal action attributed to each observation outcome by
Eq. (23). It also impacts the expected cost calculated with Eq. (15).

One can evaluate this impact by overlaying the corresponding ROC curves on Fig. 12 and by
plotting the expected cost and optimal actions of the decision problem with binary observation
{I = 1}= {S > sth} as a function of the fixed signal threshold sth, as in Fig. 13.

Fig. 13 shows that each experimental design gives a different evaluation of the expected cost
for a given sth. The constant part of each curve corresponds to the portion of the ROC curve in
zone (a), and the other part falls in zone (b) (see Fig. 12). These actions zones differ for each ROC
curve. For example, when the ROC curve is learned from experiments with ED2= fX ,exp,2(x),
one finds that imposing a threshold 3.5 · 10−3 < sth < 6 · 10−3 leads to the action "do nothing,"
whatever the outcome s. In contrast, under the reference case the optimal action is to repair if
the signal is higher than the fixed threshold, and do nothing otherwise. By misevaluating the
conditional expected costs, the experimental design leads to suboptimal actions.

Another problem is that the optimal calibration, in the form of a threshold sth,exp,i, minimizes
the wrong expected cost function. The effective expected cost at this threshold, obtained with
the reference case, can in fact be higher or lower. In Fig. 13, the optimal threshold for ED2 is
sth,exp,2 = 2.6 · 10−2. At this point, the effective expected cost given by ED1 is lower than the
perceived expected cost for ED2. Table 3 summarizes these results for all investigated likelihoods.

In summary, ignoring the underlying experimental design of a given ROC curve can lead to
suboptimal decisions and to an NDE system that is not used to its full potential. Additionally, the
expected costs can be over- or underestimated, hence they affect the perceived VoI. Ultimately, this
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Figure 13: Expected cost calculated for experimental designs ED1, ED2, and ED3. ED1 corresponds to the distri-
bution of the condition in this application fX (x). ED2 and ED3 differ from fX (x). For a fixed threshold sth, only
ED1 provides the correct values for PoD and PFA and the associated expected cost. ED2 and ED3 give wrong PoD
and PFA, thus the perceived expected cost associated with sth is also wrong. The vertical lines of corresponding line
style locate the perceived optimal threshold sth,exp,i for each experimental design, where optimal action aopt is a0 if
s < sth,exp,i and aR otherwise. The effective expected cost for these thresholds are read on the reference curve (ED1):
The perceived expected cost for the optimal threshold for ED2 overestimates the effective expected cost; the perceived
expected cost for the optimal threshold for ED3 underestimates it (see Table 3).

Table 3: Effect of the experimental design on recommended actions and on the assessment of expected cost.

Experimental design Optimal threshold Perceived expected cost Effective expected cost
fX ,exp,1(x) – Reference 1.7 ·10−2 0.76 0.76

fX ,exp,2(x) 2.6 ·10−2 0.80 0.77
fX ,exp,3(x) 4.0 ·10−2 0.63 0.81

can lead the decision maker to favor one or another NDE system based on an erroneous evaluation
of the NVoI of the NDE systems.

5. Example 2: Half-cell potential measurement for corrosion detection

The purpose of this example is the investigation of the effects of different model choices on a
real NDE technique. We consider the half-cell potential measurement of reinforcement corrosion
in concrete structures, and we analyze the effect of choosing Model (3) or Model (4), with different
calibration choices, on the outcomes of optimal decision making for a one-step and a two-step
decision problem.
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5.1. Description and model of the inspection technique
Corrosion of reinforcement bars (rebars) in concrete structures is one of the leading deteriora-

tion mechanisms in civil infrastructure. Visible signs of corrosion on the concrete surface occur
when corrosion of the rebars is already extensive and major repairs are needed. This demonstrates
the need for early detection of rebar corrosion.

As the rebars are encased in the concrete, NDE methods are required to monitor their condition.
Half-cell potential measurement is such a method and it is used to detect whether corrosion has
initiated. This test measures the difference of electric potential between an electrode, directly
connected to an exposed rebar, and a half-cell (reference electrode) placed on the concrete surface.
The intensity of the chemical reaction responsible for corrosion at the half-cell is translated into
a negative potential. The higher the amplitude of this electric potential, the higher the probability
that corrosion has initiated in the rebar under the concrete cover (Elsener et al., 2003).

Empirical testing has revealed that the amplitude of the signal is clearly affected by envi-
ronmental factors including humidity, chloride content, temperature, concrete cover, or concrete
strength (e.g., Lentz et al., 2002; Kessler and Gehlen, 2017). This is why obtaining relevant and
accurate probabilistic models a priori is a challenge. In practice, the electric potentials are mea-
sured on a regular grid on the concrete structure and are summarized in a frequency plot. The
measurement data is then classified into two sets, "corroded" and "not corroded," by applying a
threshold on the potential. This is typically done by expert judgment. The downside of this method
is that it relies on relatively few sample measurements and misclassification can occur at a high
rate.

Some studies have proposed to model the performance of this NDE method with a non-site-
specific likelihood (Lentz et al., 2002; Faber and Sorensen, 2002). Typically, the chosen model
involves a continuous signal (the potential) and a binary measured condition (corrosion initiated/no
corrosion), thus follows Model (3) described in Section 2.2. However, these distributions are not
used as such to perform Bayesian analysis. Instead, a threshold value on the potential is proposed,
and the continuous signal transformed into a binary one (Lentz et al., 2002). Interestingly, the
ROC representation is not common in this domain, even if it highlights best how the PoD and PFA
vary with the chosen threshold.

This example uses the NDE quality model proposed by Faber and Sorensen (2002). The
absence and presence of corrosion is represented by Y = 0 and Y = 1, respectively. We adopt
normal pdfs for the likelihood after (Faber and Sorensen, 2002). The parameters of the normal
distribution of the measured electric potential S given that no corrosion has initiated (Y = 0) are
µ0 = −0.207[Volt] and σ0 = 0.0804[Volt]. The parameters of the normal distribution given that
corrosion has initiated (Y = 1) are µ1 = −0.354[Volt] and σ1 = 0.08[Volt]. The distributions are
shown in Fig. 14a and the corresponding ROC curve in Fig. 14b. These distributions are (where ϕ

is the standard normal) pdf:

fS|Y=0(s) = L(Y = 0;s) = ϕ

(
s−µ0

σ0

)
, (37)

fS|Y=1(s) = L(Y = 1;s) = ϕ

(
s−µ1

σ1

)
. (38)
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(a) (b)

Figure 14: (a):The two likelihoods are depicted. (b): Corresponding ROC curve.

We first investigate the one-step decision problem, where a repair action is taken based on
the NDE result. In the second part, we consider a two-step decision problem, where information
about the condition of the rebar is collected in two separate instances and repairs can be carried
out each time. For both problems, we find the optimal course of action considering the continuous
signal with Model (3). We show that fixing a threshold for Model (4), irrespective of the specific
application is not optimal, for instance the one recommended by Faber and Sorensen (2002). We
demonstrate how this fixed threshold can be optimized for both problems.

5.2. One-step decision problem
5.2.1. Decision model and a priori optimal action

Corrosion of the system (Y = 1) can eventually lead to failure. The decision maker has the
opportunity to repair, aR, at a cost cR = e5 million, or to do nothing, a0, at cost of e0. If the
system is repaired, there are no further consequences. If the system is corroded (Y = 1) but not
repaired, the consequences are cF = e50 million. If the system is not corroded (Y = 0), there are
no consequences. The prior probability of corrosion is Pr(Y = 1) = 0.05.

The results are obtained following Section 4.2. Without inspections, the expected total cost
conditional on action a0 is cF Pr(Y = 1) = e2.5 million. Conditional on action aR, it is cR = e5
million. Hence, the a priori optimal action is ae0 = a0, do nothing.

5.2.2. Optimal a posteriori action considering the continuous signal
Eq. (24) applied with Z = S is here adapted to

aopt(s) = aR ⇐⇒ L(Y = 1;s)
L(Y = 0;s)

>
cR Pr(Y = 0)

(cF,0 − cF,R − cR)Pr(Y = 1)
= 2.11. (39)
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We derive

aopt(s) = aR ⇐⇒
(

s−µ0

σ0

)2

−
(

s−µ1

σ1

)2

> 2log
(

σ1

σ0

1
2.11

)
. (40)

Finally,
aopt(s) = aR ⇐⇒ s ∈ [s∗1 =−29.72[Volt];s∗2 =−0.31[Volt]]. (41)

We see here that the signal domain is divided into three action zones. This is due to a mathe-
matical artifact caused by the fact that the likelihoods are normal pdfs with unequal (although very
similar) standard deviations. In practice, it does not make sense to not repair when the observed
potential is very negative. The unsuitability of normal likelihoods for some NDE systems has been
highlighted by Green and Swets (1966). The left bound s∗1 in Eq. (41) is, however, very far from
the expected values of the signal S, and does not significantly affect the results.

The expected cost associated with the a posteriori optimal action is evaluated by numerical
integration from Eq. (15) and is e1.4 million.

The VoI of this NDE system is 2.5−1.4 = e1.1 million, equivalent to a gain of 45% relative
to the a priori expected cost.

5.2.3. Optimal a posteriori action for a binary signal with decision threshold sth
Here, the continuous signal S is processed to a binary outcome {I = 0} = {S > sth} (no de-

tection) and {I = 1} = {S < sth} (detection), i.e., Z = I, and L(Y = 1; I = 1) = PoD(sth) and
L(Y = 0; I = 1) = PFA(sth).

As in Eq. (39), the optimal actions are determined by a condition on PoD and PFA:

aopt(I = 1) = aR ⇐⇒ PoD
PFA

> 2.11, (42)

aopt(I = 0) = aR ⇐⇒ 1−PoD
1−PFA

> 2.11. (43)

Fig. 15 shows the expected cost given by Eq. (15) as a function of PFA and PoD. It also
represents the ROC curve obtained from the pdfs of Eqs. (37) and (38).

Fig. 15 also locates the cut-off point of the Youden Index, sth =−0.28[Volt], which coincides
for this ROC curve with the point closest to the origin. These are suboptimal operating points
with an associated expected cost of e1.5 million, which is higher than the optimal cost found with
Model (1).

The optimal threshold on the ROC curve that minimizes the expected cost is sth, f ix =−0.31[Volt],
with associated cost e1.4 million. We note that this threshold is equal to bound s∗2 found in Sec-
tion 5.2.2. For this setup, Model (3) and Model (4) achieve the same performance without loss of
information if the threshold is optimized for the problem at hand.

We can also evaluate the NDE system with cut-off point −0.2515[Volt] that Faber and Sorensen
(2002) directly apply on the measured potential for the repair decision criteria. It is shown on
Fig. 15. The expected total cost associated to that threshold is e1.9 million, which is 34% more
than the cost found with Model (3). It still yields a non-zero VoI.
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Figure 15: Expected cost as a function of PFA and PoD, corresponding optimal actions, and the ROC curve in white.
In zone (b), the selected action is a0, hence the VoI is 0. The hatched area corresponds to a monitoring system where
the significance of I = 0 and I = 1 are inverted. The optimal point on the ROC curve obtained by Bayesian analysis
differs from the Youden Index threshold and the point closest to (0,1). As a comparison, the threshold −0.2515[Volt]
recommended by Faber and Sorensen (2002) is indicated.

5.3. Two-step decision problem
5.3.1. Decision model and a priori optimal actions

We now consider a two-step decision problem. The repair actions are taken at each step based
on the NDE data obtained up to that step. Additionally, the actions affect the state of the system
at the next step.The initial condition of the system is Y1. The effect of the action A1 ∈ {a0,aR} at
time step 1 on the state of the system is reflected in Y ′

1. The condition of the system can evolve
from Y ′

1 to Y2 at time step 2. Both Y1 and Y2 are binary, with states "corroded" or "not corroded."
Similarly, an action A2 is taken that affects the state of the system, resulting in Y

′
2. The immediate

consequence of the concrete being corroded at time step i is CF,i(Y ′
i = 1) = cF , where cF = e50

million. If Y ′
i = 0, there are no associated consequences, i.e., CF,i(Y ′

i = 1) = e0. The action cost
is CA,i(aR) = cR = e5 million and CA,i(a0) = e0.

The random variable Y1 is characterized by Pr(Y1 = 1) = 0.1. The conditional probabilities
reflecting the decision taken at time step i are given by Pr(Y ′

i |Ai = a0,Yi ∈ {0,1}) = 1Y ′
i =Yi

, where
1 is the indicator function, and Pr(Y ′

i = 1|Ai = aR,Yi ∈ {0,1}) = 0. The transition from Y ′
1 to Y2 is

expressed by the conditional probability in Table 4.
We solve the two-step decision problem assuming three models of NDE quality. First, the NDE

quality is described by Model (3) (Fig. 16a) and the thresholds and actions are optimized sequen-
tially. The second quality model is Model (4), where a fixed point on the ROC curve in Fig. 14b
is given (Fig. 16b). Finally, we optimize the point on the ROC curve for this specific applica-
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Table 4: Conditional probability Pr(Y2|Y ′
1).

Y ′
1 = 0 Y ′

1 = 1
Y2 = 0 0.95 0
Y2 = 1 0.05 1

tion (Fig. 16c). The details of the derivations are omitted here but are included as Supplementary
Material.
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Figure 16: Influence diagrams of the two-step decision problem where the quality of NDE is described: (a) by Model
(3), where the thresholds sth,i such that {Ii = 1} = {Si < sth,i} are optimized sequentially; (b) by Model (4) with a
given threshold defining the likelihood Pr(I|Y ); and (c) by Model (4), where the fixed threshold is optimized for the
specific application.
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The optimal actions based only on prior knowledge are to first repair at time step 1, and then
do nothing at time step 2, i.e., (a1,a2)e0 = (aR,a0). The associated expected cost is e7.5 million.

5.3.2. Optimal a posteriori actions considering the continuous signal
The actions are first optimized sequentially, based on the continuous half-cell potential mea-

surements S1 and S2 at time step 1 and 2, respectively. This means that the NDE method is
represented by Model (3).

This multi-step sequential decision problem with NDE results is in general difficult to resolve.
A heuristic approach to the optimization can provide an approximate solution (Bismut and Straub,
2021). For this two-step problem, an analytical solution is obtained by backward induction (Bell-
man, 1957).

The optimal actions are shown in Fig. 17, as a function of the measured signal S1 and S2
obtained sequentially. We can see that the optimal solution is equivalent to applying a threshold
sth,1 =−0.28[Volt] on S1, then a threshold sth,2 on S2 that depends on S1, as illustrated by Fig. 16a.
We see that if S1 > sth,1, the optimal threshold at time step 2 depends on the outcome at time step 1.
When the system is repaired at time step 1, the optimal decision a2,opt is independent of outcome
S1.

[Volt]

[Volt]

Figure 17: Optimal policy given monitoring history S1 and S2. The optimal threshold on signal S1 is sth,1 =
−0.27[Volt]. The optimal threshold sth,2 on signal S2 depends on the observation S1.

The expected total cost of reacting optimally at each time step to the continuous signal is
e3.7 million. The VoI for this NDE system is 7.5− 3.7 = e3.8 million. This result shows that
considering the continuous signal is more optimal compared to classifying the signal according to
a fixed rule.
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5.3.3. Optimal a posteriori actions for a binary signal with decision threshold
In this configuration, the NDE system is described by Model (4). The corresponding influence

diagram is drawn in Fig. 16b. We investigate, for example, the fixed threshold −0.2515[Volt]
from Faber and Sorensen (2002). The NDE system is described by the point PoD = 0.90 and
PFA = 0.29 on the ROC curve (Fig. 14b). The expected total cost is e4.2 million and the VoI is
7.5− 4.2 = e3.3 million. This fixed threshold −0.2515[Volt] is not optimal when compared to
the VoI of Model (3) above.

Using Model (3) for the considered NDE method provides the optimal actions for the two-
step decision problem. However, one can optimize the fixed threshold and point on the ROC
curve for Model (4), as illustrated by the modified influence diagram of Fig. 16c. To do so, we
first determine sequentially the optimal actions a1,opt(I1) and a2,opt(I1, I2), for any PFA and PoD
values. The resulting expected cost is depicted in Fig. 18. The optimal threshold is found on the
ROC curve that maximizes the expected cost along the curve. One finds sth, f ix =−0.28[Volt] and
the associated expected cost is e3.8 million. The VoI for this NDE system is 7.5− 3.8 = e3.7
million. The ROC curve and optimal operating point are also shown in Fig. 18. As a comparison,
the previously evaluated threshold −0.2515[Volt] is also plotted on the ROC curve.
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Figure 18: Expected total cost as a function of PFA and PoD. The ROC curve is in white. The areas numbered 1
to 5 correspond to action zones. In zone 1, ai,opt(Ii = 1) = aR, ai,opt(Ii = 0) = a0; in zone 2, a1,opt(I1 = 1) = aR,
a1,opt(I1 = 0) = a0, a2,opt(I2 = 1, I1 = 0) = aR, a2,opt(I2 = 0, I1 = 0) = a0, a2,opt(I1 = 1) = a0; in zone 3, a1,opt = aR,
a2,opt(I2 = 0) = a0, a2,opt(I2 = 1) = aR; in zone 4, a1,opt(I1 = 1) = aR, a1,opt(I1 = 0) = a0, a2,opt = a0; in zone 5,
a1,opt = aR, a2,opt = a0. Zone 5 corresponds to VoI = 0. The red asterisk locates the optimal fixed operating point
with threshold sth, f ix = −0.28[Volt]. As a comparison, the cross locates the point for threshold −0.2515[Volt] from
(Faber and Sorensen, 2002).

For given PFA and PoD values, the optimal actions of the two-step problem with Model (4)
are defined by the zone, numbered 1 to 5, to which the PFA and PoD values belong in Fig. 18. In
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zone 1, the optimal actions are condition-based and memoryless, which corresponds to aopt,i(Ii =
1) = aR and aopt,i(Ii = 0) = a0. This is not true when the PFA and PoD values belong to zones 2
to 5. It is therefore necessary to solve the decision problem, as any point on the ROC curve does
not result in optimal actions that are condition-based and memoryless. This conclusion echoes
the results by Bertovic (2016), who warns that the outcomes of mechanized NDE may be blindly
trusted and interpreted as a call to action, to the detriment of a formal information assessment.

The effect of ignoring the different action zones is illustrated in Fig. 19. This figure compares
the optimal expected total costs along the ROC curve and the expected total cost of following a
condition-based and memoryless maintenance strategy (as in zone 1). The curve corresponding to
the optimal expected cost along the ROC curve stays within the lower and upper bounds, which
are respectively the optimal expected cost with Model (3) at e3.7 million (Section 5.3.2) and
the optimal a priori expected cost of e7.5 million (Section 5.3.1). In contrast, implementing a
condition-based and memoryless maintenance strategy with a fixed NDE threshold, for example
−0.4[Volt] in zone 3, results in an expected cost of e8 million. This cost is higher than the
expected cost of e6.9 million associated with the optimal actions for Model (4) with this same
threshold, and even higher than the a priori expected cost.

€

5 3 1 42 5
Figure 19: Expected cost associated with a condition-based and memoryless maintenance strategy and with the opti-
mal actions for Model (4). The action zones, 1 to 5, of Fig. 18 are indicated as a function of the threshold value. For
certain threshold values, the expected cost associated with the condition-based memoryless maintenance strategy is
higher than the prior expected cost.

6. Concluding remarks

This paper reviews existing models NDE quality in the context of a unifying framework .
We have clarified the connection between the different models of NDE quality, such as PoD

curves or ROC curves, through a base model in which both the condition and the NDE outcome are
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modeled continuously. The models with a binary observed signal or binary condition are derived
by imposing thresholds on the observed signal and the condition. For models that use a binary
condition, one must also impose a distribution on the underlying continuous condition.

In practice, there currently is no systematic approach to choose and calibrate NDE models
and handle NDE data for reliability assessment or maintenance planning (Kurz et al., 2012). The
presented framework can support the development and appropriate application of NDE models to
real-life settings. Ideally, the base model is learned from experimental data and any other model
can then be derived from this base model. When the base model is not available, it can still be
considered at an abstract level to appraise the quality of given NDE models. As we demonstrate,
the use of given PoD curves or ROC curves are likely to yield suboptimal actions for a specific
decision context, since the signal and condition thresholds are fixed without considering the de-
cision problem. The framework also highlights the importance of explicitly accounting for the
experimental design conditions that underlie ROC curve models, which should be assessed within
the decision context.

Calibration of an NDE system in function of the decision settings (e.g., cost model) is bene-
ficial. Such a calibration is often done implicitly. In particular, on-site inspectors tend to report
a larger damage when the occurrence of failure is cost-critical, and vice-versa will be more cau-
tious to diagnose damage when the costs of repair are very high (da Silva and de Padua, 2012;
Bertovic, 2016). This paper derives the formal analysis associated with these decisions. Bayesian
decision analysis provides the means to compute the VoI, which allows direct comparison between
NDE systems. This analysis gives the opportunity to calibrate an NDE system to suit the decision
parameters such as the cost of mitigating actions and the expected consequences of failure. In
Sections 4 and 5 we have evaluated the VoI in simple one-step and two-step decision problems.
We find that using the model with continuous variables leads to the best decisions. In contrast, sys-
tematically associating NDE system outcomes with maintenance actions can lead to sub-optimal
decisions and a detrimental use of the inspection data.

Finding the VoI of NDE systems in sequential decision problems remains, however, a chal-
lenging task. The formal and complete decision analysis for an NDE system applied to continuous
monitoring is not tractable (Papadimitriou and Tsitsiklis, 1987). As an alternative, a decision rule,
or heuristic, can be applied for the treatment of information, and some heuristic parameters opti-
mized such that the information from NDE system is collected, interpreted and exploited in a good
manner (Sheils et al., 2010; Bismut and Straub, 2021).
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