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Abstract. In inverse problems, the parameters of a model are estimated based on observations of the model5
response. The Bayesian approach is powerful for solving such problems; one formulates a prior6
distribution for the parameter state that is updated with the observations to compute the posterior7
parameter distribution. Solving for the posterior distribution can be challenging when, e.g., prior and8
posterior significantly differ from one another and/or the parameter space is high-dimensional. We9
use a sequence of importance sampling measures that arise by tempering the likelihood to approach10
inverse problems exhibiting a significant distance between prior and posterior. Each importance11
sampling measure is identified by cross-entropy minimization as proposed in the context of Bayesian12
inverse problems in Engel et al. (2021). To efficiently address problems with high-dimensional13
parameter spaces we set up the minimization procedure in a low-dimensional subspace of the original14
parameter space. The principal idea is to analyse the spectrum of the second-moment matrix of15
the gradient of the log-likelihood function to identify a suitable subspace. Following Zahm et al.16
(2021), an upper bound on the Kullback-Leibler-divergence between full-dimensional and subspace17
posterior is provided, which can be utilized to determine the effective dimension of the inverse18
problem corresponding to a prescribed approximation error bound. We suggest heuristic criteria19
for optimally selecting the number of model and model gradient evaluations in each iteration of the20
importance sampling sequence. We investigate the performance of this approach using examples21
from engineering mechanics set in various parameter space dimensions.22
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1. Introduction. We consider inverse problems in the context of a computational model26

f with y = f(θ). That is, we want to characterise a cause (parameters of the computa-27

tional model, θ) based on observations of the corresponding effects or consequences of said28

cause (output of the computational model y). An example is a structural system represented29

with a finite element model that is parameterized by loads, geometric and material properties30

θ ∈ X ⊆ Rd and that produces outputs such as stresses and deflections y ∈ Y ⊆ Rm. In the31

majority of applications, we cannot expect the inverse problem to be well defined, i.e., there32

need not be a solution, the solution may not be unique or it might be very sensitive to the33

observations [54]. To further complicate the matter, in practice, observations are often incom-34
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plete and/or contaminated with noise. Here, we focus on the Bayesian approach to inverse35

problems, which offers a consistent framework for incorporating both noisy and incomplete36

observations as well as addressing ill-posedness by regularizing the problem using prior infor-37

mation [29, 54]. [29, 54] discuss the Bayesian inverse problem (BIP) in infinite-dimensional38

settings, while in practice, we usually retreat to the finite-dimensional case by means of dis-39

cretizing infinite-dimensional random objects such as random fields and processes. Hence, we40

focus on finite-dimensional BIPs in this work.41

42

We represent θ and y as real-valued random vectors Θ : X ,B(X )→ R and Y : Y,B(Y)→ R,43

where B(·) is the Borel σ-algebra, and we assume the probability measures PΘ, PY to be44

absolutely continuous with respect to the respective Lebesgue measures on B(X ) and B(Y).45

We then may use the associated probability density functions (PDF) p(θ) and p(y) to char-46

acterize Θ and Y .47

48

We start by placing a prior distribution on θ by defining the prior PDF p0(θ) : Rd → R≥0. As49

the name suggests, p0(θ) formalizes any information one may have on θ prior to considering50

any observations. This information may come as the outcome of an expert elicitation, selection51

rules [41] and/or guiding principles to construct noninformative priors such as Jeffreys’s priors52

[26] or priors satisfying the maximum entropy principle [25]. While many of these principles53

rest on the idea to minimize the influence the prior exerts on the posterior distribution and54

thus aim at ‘letting the data speak’, it is flat/weak priors in particular that can lead to overly55

confident inference results [18]. A single layer of priors may not do justice to complex models56

with a large number of unobserved variables, in which case hierarchical models with several57

layers of prior distributions can be utilized [17, Section 2.8].58

59

Next, one or several observations of y that we refer to as ỹ, are represented by the likeli-60

hood L(θ) := p(ỹ|θ) : Rd → R≥0, which states how likely these observations are to occur61

under any given set of parameters θ. In Bayesian inverse problems, the likelihood will be a62

function of f , thereby facilitating the backpropagation of information on outputs of f , y, to63

its parameters θ. With this, the posterior PDF of θ conditional on observations ỹ follows64

from Bayes’ theorem as65

(1.1) py(θ) := p(θ|ỹ) =
p(ỹ|θ)p0(θ)

p(ỹ)
=
L(θ)p0(θ)

Z
,66

where67

(1.2) Z =

∫
X
L(θ)p0(θ)dθ68

is the marginal likelihood of the data also known as the model evidence. We assume the69

evidence is finite Z < ∞ and the likelihood is Borel-measurable. In the Bayesian approach,70

solving the inverse problem amounts to computing the posterior distribution of θ and gener-71

ating samples from py(θ). In many instances, the posterior distribution cannot be computed72

exactly. Instead, sampling approaches such as importance sampling (IS) [19] or Markov Chain73

Monte Carlo (MCMC) [22] are used to sample from the posterior and construct estimates of74
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posterior expectations. If prior and posterior distributions differ from one another signif-75

icantly, constructing efficient biasing or proposal densities for IS or MCMC, respectively,76

becomes difficult. Such problems can be addressed by repeatedly applying sampling methods77

on an artificial sequence of distributions that gradually approach the posterior starting from78

the prior, namely sequential Monte Carlo methods (SMC) [13, 37, 11]. In adaptive SMC79

[30, 24, 32], the distribution sequence is determined during runtime based on intermediate80

samples.81

82

In SMC approaches, the distributions appearing in the sequence are characterized by samples83

that are obtained through resample-move steps; samples from each previous distribution are84

moved via MCMC sampling to obtain samples from the next distribution. However, MCMC85

produces dependent samples. Alternatively, in cross-entropy importance sampling (CE-IS)86

[50], a sequence of parametrized distributions is defined such that each new distribution in87

the sequence is identified through solving an optimization (cross-entropy minimization) prob-88

lem. Estimation of the target distribution is then performed with IS using the final fitted89

parametric density. Hence, CE-IS avoids MCMC sampling and dependent samples. CE-IS90

was introduced in the context of rare event estimation in [48] and was recently applied to91

solve the BIP in [15].92

93

Both acceptance rate and mixing time — and hence, computational efficiency — of many94

MCMC algorithms deteriorate as the problem dimension d increases [46, 36]; notable ex-95

ceptions include the preconditioned Crank-Nicholson (pCN) sampler [3, 8] and Hamiltonian96

MCMC [38]. Therefore, different approaches have been proposed to reduce the dimension of97

the inverse problem by identifying low-dimensional subspaces on which the solution to the98

original problem may be identified in good approximation. While their existence cannot be99

guaranteed independent of the inverse problem, low-dimensional subspaces frequently occur in100

BIPs as a result of f being a smoothing operator applied to the input vector θ, e.g., in the form101

of solutions to a set of partial differential equations (PDEs). In [35, 57] the problem dimen-102

sion is reduced by representing the prior with a truncated Karhunen-Loéve-expansion. In the103

context of linear BIPs, [16, 51] construct low-rank approximations of the prior-preconditioned104

Hessian of the log-likelihood thereby exploiting structure in both prior and likelihood. The105

likelihood-informed subspace method of [9] extends this approach to nonlinear BIPs based on106

a low-rank approximation of the posterior-preconditioned Hessian of the log-likelihood. [7]107

propose a similar approach in which they identify an active subspace of the BIP, i.e., a low-108

rank approximation of the prior-preconditioned negative log-likelihood gradient. Building on109

the idea of likelihood-informed subspaces, [60] proposes certified dimension reduction for non-110

linear BIPs and derives an upper bound on the Kullback-Leibler-divergence between reduced111

and full space posterior in function of the subspace dimension.112

113

While the CE-IS approach to BIPs of [15] circumvents MCMC altogether, its performance114

deteriorates with increasing parameter dimension. This is both due to an increasing degener-115

acy of the IS weights that are used in the context of CE-IS [49] as well as the rapidly growing116

number of parameters in the employed distribution models. For example, in Gaussian models117

with full covariance structure, the number of parameters is p = d(d+ 3)/2, implying that the118
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number of f -evaluations required to obtain an accurate fit scale quadratically with d. Solving119

BIPs with CE-IS is therefore only suitable for low parameter dimension. [58] uses CE-IS120

for estimating rare event probabilities of models with large parameter dimension by applying121

certified dimension reduction.122

123

In this work, we devise a scheme to efficiently solve nonlinear BIPs using CE-IS and cer-124

tified dimension reduction. Our method extends the approaches of [15, 58] to address high-125

dimensional BIPs. Moreover, we introduce heuristic rules for adaptively selecting the number126

of model and model gradient evaluations during the simulation. Section 2 recapitulates CE-IS127

for BIPs following [15]. Section 3 details the certified dimensionality reduction approach for128

CE-IS and Subsection 3.4 contains a discussion on methodology, algorithmic details and a129

summary of the final procedure. In Section 4, we investigate the efficacy of our method on130

two structural engineering examples both featuring large parameter dimensions. Concluding131

remarks are given in Section 5.132

2. Cross-entropy-based importance sampling for Bayesian updating.133

2.1. Importance sampling and the cross-entropy method. In this chapter, we briefly134

describe the CE-based IS method for Bayesian updating (CEBU) proposed in [15]. Importance135

sampling is a variance reduction method for estimating expectations of a function G(θ),136

Ep[G(Θ)] [50, Chapter 5]. Note that we use lowercase letters for deterministic variables. We137

use uppercase letters for matrices and random variables/vectors with the exception of random138

samples, which are denoted with lowercase letters yet treated as random variables. Throughout139

this work we assume all random vectors to be real-valued, i.e., X : (X ,B(X )) → R, where140

(X ,B(X )) is a measurable space consisting of the outcome space X and its associated Borel141

σ-algebra B(·). Further, we assume probability measures PX to be absolutely continuous with142

respect to the respective Lebesgue measures on B(X ) so that we may use the associated PDFs143

p(x) to describe X. Let q(θ) be a PDF on X such that q(θ) > 0 whenever p(θ) > 0 and144

suppose we only know ψ(θ) = cp(θ) pointwise with unknown normalizing constant c. Then145

we can write146

(2.1) µ := Ep[G(Θ)] =
1

c
Eq
[
G(Θ)ψ(Θ)

q(Θ)

]
=

Eq [G(Θ)w(Θ)]

Eq [w(Θ)]
, [40,Chapter 9]147

where q is termed the importance, auxiliary, instrumental or biasing density and w(θ) =148

ψ(θ)/q(θ) is referred to as the likelihood ratio or IS weight. ?? leads to the self-normalized IS149

estimate150

(2.2) µ̂IS,q =
1

nĉ

n∑
k=1

G(θk)w(θk), θk
i.i.d.∼ q(θ),151

where an estimate of the normalizing constant is given as ĉ = n−1
∑n

k=1w(θk). For many152

problems q can be chosen such that (2.2) has lower variance V̂[µ̂IS,q] than the crude Monte153

Carlo estimate [40, Chapter 9].154

155

In the context of BIPs p is a posterior distribution py and the normalizing constant c in156
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(2.1) is the model evidence Z. py is the optimal IS density to estimate the model evidence as157

V[Ẑ] = 0 if q = py. Since sampling from the posterior is usually difficult, we continue with a158

discussion of how to get a parametric q close to py.159

160

[48] proposed finding a parametric IS density q(θ,v) with parameters v ∈ V by minimiz-161

ing the Kullback-Leibler divergence (KLD) between q(θ,v) and an optimal IS density in the162

context of rare event probability estimation. [15] builds on this principle to estimate a para-163

metric distribution that is close to the posterior py as follows. The KLD between the posterior164

and the parametric density DKL(py(θ)||q(θ,v)) is defined as [50]165

DKL(py(θ)||q(θ,v)) = Epy
[
ln

(
py(Θ)

q(Θ,v)

)]
=

1

Z
Ep0 [L(Θ) ln(py(Θ))]− 1

Z
Ep0 [L(Θ) ln(q(Θ,v))]︸ ︷︷ ︸

cross entropy H(py ,q(·,v))

.
(2.3)166

The first summand on the right-hand side of (2.3) is not a function of v so that minimizing167

DKL(py(θ)||q(θ,v)) is equivalent to maximizing the negative cross entropy:168

(2.4) v = arg max
v∈V

Ep0 [L(Θ) ln(q(Θ,v))],169

which conveniently does not depend on the unknown Z. An approximate solution of this170

optimization problem based on samples from p reads171

(2.5) v̂ = arg max
v∈V

1

n

n∑
k=1

L(θk) ln(q(θk,v)), θk
i.i.d.∼ p0(θ).172

The optimization problem in (2.5) is usually convex, continuous and the objective function173

is differentiable with respect to v such that identifying v̂ is straight-forward. Closed-form174

solutions of (2.5) exist in various situations, e.g., if q(θ,v) is any member of the exponential175

family [50, Chapter 8]. [31, 20] use a Gaussian mixture model in order to capture several dis-176

connected failure regions. [59] and [43] use von Mises-Fisher and von Mises-Fisher-Nakagami177

(vMFN) mixture models, respectively, to overcome the poor performance of Gaussian models178

in high-dimensional rare event probability estimation problems. [15] test the performance179

of both Gaussian mixture and vMFN mixture models in the context of the CE method for180

BIPs and show that although the latter has superior performance in certain high-dimensional181

settings, the former possesses higher flexibility and is thus able to accurately describe compli-182

cated posteriors. In all these works, different variants of expectation maximization are used183

to solve for v̂.184

185

How well q(θ, v̂) approximates py(θ) hinges on how well samples from p can inform the186

objective function about L(θ). In other words, if prior and likelihood are not close to one187

another, we cannot expect the solution of (2.5) to yield a satisfying approximation to py(θ)188

independent of the parametric model choice. This problem can be overcome by tempering the189

likelihood as described in the following section.190
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2.2. Tempering the likelihood. In order to bridge the distance between prior and likeli-191

hood one may break down the single CE problem into several smaller ones. To this end, we192

define a sequence of PDFs {qt(θ)}mj=1 with193

(2.6) qt(θ) :=
Lβt(θ)p0(θ)

Zt
,194

where Zt =
∫
X L

βt(θ)p0(θ)dθ and ensuring 0 =: β0 < β1 < · · · < βm−1 < βm := 1 such that195

q0(θ) := p0(θ) and qm(θ) := py(θ). The idea is to start with samples from p0(θ) and select β1196

small enough to facilitate an accurate estimate v̂1. Next, upon selecting β2 ∈ (β1, 1], samples197

from q(θ, v̂1) can be used to estimate v̂2. This procedure is repeated until βm = 1 after m198

steps and the CE problem is solved for the target posterior density. The t-th CE minimization199

problem reads200

(2.7) v̂t = arg max
v∈V

1

n

n∑
k=1

ln(q(θk,v))wt(θk), θk
i.i.d.∼ q(θ, v̂t−1),201

with wt(θ) = Lβt(θ)p0(θ)/q(θ, v̂t−1).202

203

In (2.7), the likelihood ratio or weight wt(θ) accounts for the fact that the t-th PDF pa-204

rameter estimate v̂t is based on samples from the (t−1)th PDF q(θ, v̂t−1). The variance of v̂t205

depends on the variance of the weights wt(θ). In particular, if the numerator PDF of w has206

fatter tails than its denominator PDF, the weight variance blows up and the parameter esti-207

mate v̂t deteriorates. The normalized effective sample size (nESS) is a common performance208

metric of IS that is directly related to the variance of the weights [40, Chapter 9]:209

(2.8) neff =
1

1 + δ2
w

with δw =

√
V[w(Θ)]

E[w(Θ)]
210

the coefficient of variation of the weights. Therefore in [15], βt is computed adaptively in211

each step such as to achieve a target nESS n∗eff by utilizing a sample-based estimate of the212

coefficient of variation of the weights δ̂w:213

(2.9) βt = arg min
βj−1<β≤1

(
n∗eff −

1

1 + δ̂w(β)2

)2

= arg min
βj−1<β≤1

(
n∗eff −

(
∑n

k=1w(θk;β))2∑n
k=1w

2(θk;β)

)2

.214

The weights on the right-hand side of (2.9) can be evaluated approximately by assuming215

q(θ, v̂t−1) = qt−1(θ) in each step, such that w(θ) ∝ L(θ)βt−βt−1 (the factor Zt−1 required here216

for equality cancels out in (2.9) and is immaterial to its solution).217

2.3. Method. In [15], CEBU is implemented in the d-dimensional standard-normal space218

(U ,B(U),PU ) with U = Rd, so that the standard-normal random vector U ∼ ϕd(u), where ϕd219

denotes the d-dimensional standard-normal PDF. Under a suitable isoprobabilistic transfor-220

mation T : Θ → U , e.g., using the inverse CDF transform, the Rosenblatt transform [47] or221

copula models [34, 39, 55], arbitrary priors p0(θ) are transformed to ϕd(u) while the likelihood222
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in standard-normal space is given as L̃ := (L◦T−1)(u). Similarly, we define p̃y := L̃(u)ϕ(u)/Z223

where the evidence Z is invariant under the transformation T [15, Appendix A].224

225

The CEBU loop terminates once βt = 1. Then, a set of n samples is drawn from the fi-226

nal parametric density corresponding to βt = 1. These samples are subsequently reweighted227

to generate samples from the true posterior distribution p̃y. To this end, a final set of weights228

wfinal(u) = L̃(u)ϕd(u)/q(u, v̂t) is computed as the likelihood ratio of the unnormalized poste-229

rior in standard-normal space L̃(u)ϕd(u) and the parametric density corresponding to βt = 1,230

q(u, v̂t). The evidence can be written as231

(2.10) Z = Eϕd [L̃(U)] = Eq(u,v̂t)[L̃(U)ϕd(U)/q(U , v̂t)] = Eq(u,v̂t)[wfinal],232

which suggests estimating Z as233

(2.11) Ẑ =
1

n

n∑
k=1

wfinal(uk), uk
i.i.d.∼ q(u, v̂t).234

A desired number of N weighted posterior samples {uk}Nk=1 may then be obtained by resam-235

pling the last set of n samples corresponding to βt = 1 with replacement and weighted with236

the normalized final weights {wfinal(uk)/(nẐ)}nk=1. In [15], the authors use a stratified version237

of this resampling step based on [14]. In a final step, these samples are transformed back to238

Θ-space through applying the inverse transform T−1. The entire procedure is summarized in239

Alg. 2.1.240

Algorithm 2.1 CE-BU

Input Likelihood L, transform T , target nESS n∗eff , # post. samples N , # samples/level n

Output posterior samples Θpost, estimated evidence Ẑ

1: Set t← 0, β0 ← 0, v̂0 (so that q0(u) = ϕd(u))
2: while βt < 1 do
3: t← t+ 1

4: Sample U ∈ Rn×d ← {uk
i.i.d.∼ q(u, v̂t−1)}nk=1

5: Evaluate ` ∈ Rn×1 ← (L ◦ T−1)(U)
6: Compute βt with (2.9)
7: Evaluate w ∈ Rn×1 ← `βt−βt−1

8: Compute v̂t with (2.7)
9: end while

10: Sample U ∈ Rn×d ← {uk
i.i.d.∼ q(u, v̂t)}nk=1

11: Evaluate wfinal ∈ Rn×1 ←
{

(L◦T−1)(uk)ϕd(uk)
q(uk,v̂t)

}n
k=1

12: Estimate evidence Ẑ ← 1
n

∑n
k=1 wfinal,k

13: Normalize weights w̄final ← wfinal/(nẐ)
14: Upost ← Resample (with replacement) N times from U with weighting w̄final

15: Θpost ← T−1(Upost)

16: return Θpost, Ẑ
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3. CEBUred: Certified dimension reduction for CEBU.241

3.1. Linear subspaces of U . [15] test both Gaussian and vMFN mixture models for q. A242

K-component Gaussian mixture requires fitting Kd(d + 3)/2 + K − 1 parameters whereas a243

K-component vMFN mixture features only K(d+3)+K−1 parameters. In spite of the more244

advantageous linear scaling in d offered by vMFN mixtures, the required number of samples245

per CE-level can quickly exceed the computational budget if d is large.246

In [15], it is shown that the CE method with the Gaussian mixture model is able to ob-247

tain accurate representations of posterior densities in various problem settings. However, the248

Gaussian mixture model performs poorly in high-dimensional IS [20]. This is due to the fact249

that IS weights with respect to Gaussian densities tend to degenerate in high dimensions.250

Further, the number of parameters of the GM model increases quadratically with the input251

dimension. The latter implies that the required number of samples per CE-level to obtain252

accurate parameter estimates becomes prohibitively large in high dimensions. To alleviate253

these problems, we draw on the ideas presented in [60] to determine a low-dimensional linear254

subspace of X in which an effective IS density can be constructed. The resulting approach can255

be viewed as an extension of the CE method with failure-informed dimension for rare event256

estimation, proposed in [58].257

258

In each step of CEBU, for the tempered posterior distribution p̃y,β(u) = Z−1
β L̃β(u)ϕd(u)259

with Zβ =
∫
Rd L̃

β(u)ϕd(u)du we seek an approximation of the form260

(3.1) p̃
(r)
y,β ∝ (g ◦Pr)(u)ϕd(u),261

where g : Rd → R>0 is a Borel-measurable function referred to as profile function in the262

following. Pr ∈ Rd×d is a rank-r projection matrix, i.e., Pr ◦ Pr = Pr. Any u ∈ Rd can be263

decomposed as u = Pru+P⊥u = ur+u⊥ with the complementary projection P⊥ := Id−Pr264

satisfying Im(P⊥) = Ker(Pr). We call Ur := Im(Pr) the likelihood-informed subspace (LIS)265

and U⊥ := Im(P⊥) the complementary subspace (CS). The LIS and CS are at this point266

still subsets of the ambient space Rd so that no effective dimension reduction is achieved by267

their introduction. However, they correspond to lower-dimensional spaces we refer to as local268

LIS Ūr and local CS Ū⊥, where in standard-normal space Ūr = Rr and Ū⊥ = Rd−r. We269

discuss the mapping to these local subspaces in more detail in Subsection 3.4. The profile270

function g is only a function of ur ∈ Ur and is constant in u⊥ ∈ U⊥. Following [58], we first271

define an optimal g for the tempered posterior distributions of CEBU given a projection Pr272

in Subsection 3.2. Next, we identify the projection that minimizes the KLD between full and273

low-rank posterior in Subsection 3.3 and lay out the certified dimensionality reduction for274

CEBU in Subsection 3.4.275

3.2. Optimal profile function g. [60] show that for a given projection matrix Pr, the276

optimal profile function g?β(u) that minimizes the KLD DKL(p̃y,β||p̃
(r)
y,β), is the following con-277

ditional expectation278

(3.2) Ep[L̃β(U)|Pru] : u→
∫
Rd−r

L̃β(Pru+ Φ⊥ū⊥)p⊥(ū⊥|Pru)dū⊥,279
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where Φ⊥ ∈ Rd×d−r such that span(Φ⊥) = Ker(Pr) and ū⊥ ∈ Rd−r. The conditional PDF280

p⊥(ū⊥|Pru) reads281

(3.3) p⊥(ū⊥|Pru) =
ϕd(Pru+ Φ⊥ū⊥)∫

Rd−r ϕd(Pru+ Φ⊥ū
′
⊥)du′⊥

,282

which, by convention, equals zero whenever the denominator of (3.3) equals zero. Following283

from the optimality of (3.2), the optimal reduced posterior reconstruction in standard-normal284

space reads285

(3.4) p̃
(r,?)
y,β ∝ Ep[L̃β(U)|Pru]ϕd(u).286

[60] also remarks that the conditional expectation (3.2) is not only optimal with respect to287

the KL divergence but also minimizes the mean-square reconstruction error of the likelihood288

function with respect to the prior measure Ep[(L̃β(U)− (g ◦Pr)(U))2].289

3.3. Optimal projection Pr. Under assumptions on the prior distribution that hold in290

the standard-normal setting [60, Example 2.6], the subspace logarithmic Sobolev inequality in291

[60, Theorem 2.9] states that
∫
Rd‖∇h(u)‖2ϕd(u)du ≤ ∞ for any continuously differentiable292

function h : Rd → R and for any projection Pr ∈ Rd×d,293

(3.5)

∫
Rd
h2(u) ln

(
h2(u)

Eϕd [h(U)|Pru]

)
ϕd(u)du ≤ 2

∫
Rd
‖(I−PT

r )∇h(u)‖2ϕd(u)du.294

By choosing h2(u) = Z−1
β L̃β(u) we obtain the KLD DKL(p̃y,β||p̃

(r,?)
y,β ) on the left-hand side of295

(3.5). With ∇h(u) = 1
2(Z−1

β L̃β(u))
1
2∇ ln L̃β(u), an upper bound on DKL(p̃y,β||p̃

(r,?)
y,β ) emerges296

on the right-hand side of (3.5) as297

DKL(p̃y,β||p̃
(r,?)
y,β ) ≤ 1

2

∫
Rd
‖(I−PT

r )∇ ln L̃β(u)‖2p̃y,β(u)du298

=
1

2

∫
Rd

tr
[
(I−PT

r )β2∇ ln L̃(u)(∇ ln L̃(u))T(I−Pr)
]
p̃y,β(u)du299

=
1

2
tr
[
(I−PT

r )H(I−Pr)
]

=:
1

2
R(Pr,H),300

301

whereR(Pr,H) is the mean-squared error incurred by approximating∇ ln L̃(U) with PT
r ∇ ln L̃(U)302

when U ∼ p̃y,β(u) and we define303

(3.6) H := β2Ep̃y,β
[
∇ ln L̃(U)(∇ ln L̃(U))T

]
.304

Our goal is to find the rank-r projection that minimizes R(Pr,H). [60, Proposition 2.11]305

states that a minimizer of R(Pr,H) over all viable projections of rank r is given by the r306

eigenvectors of H corresponding to its r leading eigenvalues. Let the solutions of the eigen-307

problem Hφi = φiλi, {φi, λi}di=1, be ordered so that λ1 ≥ λ2 ≥ · · · ≥ λd, then collecting308

Φr := [φ1,φ2, . . . ,φr] ∈ Rd×r, the optimal projector is given as Pr = ΦrΦ
T
r . With this309
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definition of the projection and since the standard-normal prior satisfies inequality (3.5), the310

accuracy of the reduced posterior can be controlled using a tolerance ε as311

(3.7) DKL(p̃y,β||p̃
(r,?)
y,β ) ≤ β2

2

d∑
i=r+1

λi ≤ ε.312

Upon selecting ε and computing the eigenpairs of H, we choose r as small as possible so that313

(3.7) holds. Efficient dimension reduction is therefore contingent on a sharp decay of the314

H-spectrum, which is a property of the computational model f and the observation model315

p(u,y) (i.e., prior and likelihood).316

3.4. Method. Φr is the eigenspace of the symmetric matrix H and thus is an orthogonal317

basis of Ur. Φr maps the ambient LIS coordinate ur ∈ Ur to its local counterpart ūr ∈ Ūr = Rr318

as ūr = ΦT
r ur. In the same way, we define Φ⊥ := [φr+1,φr+2, . . . ,φd] ∈ Rd×d−r, so that the319

ambient CS coordinate u⊥ is mapped to its local counterpart ū⊥ ∈ Ū⊥ = Rd−r as ū⊥ = ΦT
⊥u⊥.320

Thus, we can write any u ∈ Rd as u = Φrūr + Φ⊥ū⊥ and collect the ambient coordinate of321

Rd with respect to the basis defined by Φ = [Φr,Φ⊥] as322

(3.8) ū =

[
ūr
ū⊥

]
= ΦT · u =

[
ΦT
r

ΦT
⊥

]
· u.323

The LIS and CS in local and ambient coordinates are illustrated in Fig. 1. Due to orthogonality

P⊥u = u⊥

Pru = ur

u

Ur ⊆ Rd

U⊥ ⊆ Rd

U = Ur ⊕ U⊥

ūr

ū⊥

Ūr ⊆ Rr

Ū⊥ ⊆ R(d−r)

ΦT
r

Φr

ΦT
⊥

Φ⊥

Figure 1. Ambient space Rd along with the LIS Ur and CS U⊥ as defined by Pr and P⊥ (left) and their
local counterparts Ūr and Ū⊥ (right).

324

of ur and u⊥ and the rotatinal symmetry of the standard-normal PDF, we may factorize the325

prior as ϕd(u) = ϕr(ūr)ϕd−r(ū⊥). With this local coordinate prior, the reduced tempered326

posterior (3.4) reads327

(3.9) p
(r,?)
y,β (ū) ∝ Eϕd [L̃

βt(U)|Φrūr]ϕr(ūr)︸ ︷︷ ︸
reduced tempered

posterior

ϕd−r(ū⊥).︸ ︷︷ ︸
complementary

prior

328
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By analogy with CEBU, in the t-th step of CEBUred, we approximate the reduced tempered329

posterior in (3.9) with a parametric model q(r)(ūr,vr,t) : Ūr → R>0. The parametric, tempered330

posterior is331

(3.10) q(ū,vr,t) = q(r)(ūr,vr,t)ϕd−r(ū⊥).332

Following [58], we select a Gaussian model for q(r)(ūr,vr,t), although more complicated PDFs333

such as mixture models may be used as well here. The parameter set vr,t = {µr,t ∈ Rr,Σr,t ∈334

Rr×r} contains the mean vector µr,t and covariance matrix Σr,t of the Gaussian model.335

336

In the t-th step of CEBUred, the new temperature βt is computed according to (2.9). If t > 1,337

the likelihood in ambient space is evaluated by plugging samples from the previous’ step’s338

reduced biasing density ūr,k ∼ q(r)(ūr,vr,t) and the complementary prior ū⊥,k ∼ ϕd−r(ū⊥) in339

uk = Φr,t−1ūr,k + Φ⊥,t−1ū⊥,k. Thereafter, the gradient covariance matrix H of the likelihood340

function with respect to the tempered posterior is estimated to determine the current LIS and341

CS projections In each step but the first (t > 1), a self-normalized IS estimate of Ht based on342

samples from the previous biasing density q(ū, v̂t−1) is computed as343

(3.11) Ĥt =
β2
t

∑nH
k=1∇ lnL(uk)(∇ lnL(uk))

Twt(ūk)∑nH
k=1wt(ūk)

{
ūr,k

i.i.d.∼ q(r)(ūr,vr,t−1)

ū⊥,k
i.i.d.∼ ϕd−r(ū⊥)

.344

If t = 1, the weights equal 1 and samples are drawn from the d-dimensional prior in ambient345

space, ϕd(u) by setting Φr = Id and Φ⊥ = 0d. For any t > 1 the weights are computed as346

(3.12) wt(ū) =
L̃βt(Φrūr + Φ⊥ū⊥)ϕr(ūr)ϕd−r(ū⊥)

q(ū,vr,t−1)
=
L̃βt(Φrūr + Φ⊥ū⊥)ϕr(ūr)

q(r)(ūr,vr,t−1)
.347

Upon computing the spectrum of Ĥt, the LIS-dimension r is selected according to (3.7).348

Once the projections Φr and Φ⊥ are defined, the parameters of q(r)(ūr,vr,t) are computed349

by minimizing the KLD DKL(p̃
(r,?)
y,β (ū)||q(ū,vt)). As in (2.3), this is equivalent to maximizing350

the negative cross-entropy between the two distributions, i.e.,351

vr,t = arg min
v∈V

DKL

(
p̃

(r,?)
y,β ‖q(·,v)

)
= arg max

v∈V
−H

(
p̃

(r,?)
y,β , q(·,v)

)
= arg max

vr∈Vr

∫
Ūr

∫
Ū⊥

Eϕd [L̃
βt(U)|Φrūr] ln

(
q(r)(ūr,vr)

)
ϕr(ūr)ϕd−r(ū⊥)dū⊥dūr

= arg max
vr∈Vr

∫
Ūr

Eϕd [L̃
βt(U)|Φrūr] ln

(
q(r)(ūr,vr)

)
ϕr(ūr)dūr

= arg max
vr∈Vr

Eϕd
[
L̃βt(ΦrŪr + Φ⊥Ū⊥) ln

(
q(r)(ūr,vr)

)]
.

(3.13)352

Throughout (3.13) the normalization constant Z̃t has been dropped as it is irrelevant for353

solving the optimization problem. The final equality in (3.13) is a consequence of the factorized354
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prior in standard-normal space, i.e.,355

Eϕd [L̃
βt(U)|Φrūr] =

∫
Ū⊥
L̃βt(Φrūr + Φ⊥ū⊥)

ϕr(ūr)ϕd−r(ū⊥)∫
Rd−r ϕr(ūr)ϕd−r(ū

′
⊥)dū′⊥

dū⊥

=

∫
Ū⊥
L̃βt(Φrūr + Φ⊥ū⊥)ϕd−r(ū⊥)dū⊥.

(3.14)356

An IS estimate of vr,t based on samples from q(ū, v̂r,t−1) reads357

(3.15)

v̂r,t = arg max
vr∈Vr

1

n

n∑
k=1

ln
(
q(r)(ūr,k,vr)

)
wt,adj(ūr,k, ū⊥,k),

{
ūr,k

i.i.d.∼ q(r)(ūr,vr,t−1)

ū⊥,k
i.i.d.∼ ϕd−r(ū⊥)

358

and requires the computation of the adjusted weights wt,adj359

(3.16) wt,adj(ūr, ū⊥) =
L̃βt(Φr,tūr + Φ⊥,tū⊥)ϕr(ūr)ϕd−r(ū⊥)

q(d)(ū, v̂t,adj)
.360

Therein, v̂t,adj = {µt,adj ∈ Rd,Σt,adj ∈ Rd×d} represents the parameters of the d-dimensional361

Gaussian density q(ū, v̂t−1) expressed with respect to the updated orthogonal basis Φt. Com-362

puting adjusted weights with the transformed parameters is necessary to address non-matching363

bases in the numerator and denominator of (3.16). That is, if the new basis Φt differs from364

the basis Φt−1, the complementary prior will no longer be standard-normal with respect to365

Φt. The transformation from Φt−1 to Φt is linear whereby q(ū, v̂t,adj) is Gaussian again and366

its parameters with respect to Φt can be expressed as367

(3.17) µt,adj = ΦT
t Φr,t−1µr,t−1︸ ︷︷ ︸

µt−1

, Σt,adj = ΦT
t [Φr,t−1Σr,t−1Φ

T
r,t−1 + Φ⊥,t−1Φ

T
⊥,t−1]︸ ︷︷ ︸

Σt−1

Φt.368

µt−1 and Σt−1 are the mean and covariance vector in ambient space that are subsequently369

transformed to the reduced spaces given the novel basis Φt. This transformation between370

local and global and subsequent subspaces in steps t− 1 and t is illustrated in Fig. 2.371

3.5. Choosing nH and n adaptively. nH is the number of log-likelihood gradient evalua-372

tions used to compute Ĥt in (3.11). n on the other hand is the number of direct evaluations of373

the tempered likelihood used to estimate the parameters of the t-th biasing density in (3.15).374

In the absence of f -solvers that are specifically geared towards efficient gradient evaluation375

such as adjoint solvers [1], computing ∇ lnL(u) is considerably more expensive than evaluat-376

ing L(u).377

378

[6] suggests a heuristic for determining nH when estimating the second-moment matrix of379

the gradient ∇f of a Lipschitz-continuous function f , i.e., ∇f ≤ a, in order to discover an380

active subspace of f . They use work of [23] on the spectrum of sums of (nH) random matrices381

to establish bounds on the relative accuracy of the estimated spectrum of C = Ep[∇f(∇f)T].382

In the context of CEBUred, we have f = β log L̃ and p = p̃y,β.383

384
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Pr,tu

ΦT
⊥,t−1

ΦT
⊥,t

ΦT
r,t−1

ΦT
r,t

u

Pr,t−1u

P⊥,t−1u

P⊥,tu

Ūr

q(r)(ūr,vr,t−1)

Ū⊥

ϕd−r(ū⊥)

U⊥,t−1U⊥,t

Ur,t−1

Ur,t

Figure 2. Left: Mapping between two subsequent orthogonal bases Φt−1 and Φt in ambient space. Right:
Mapping from the two ambient bases to the local LIS (upper right) and CS (lower right).

[6, Corollary 3.5] states that for ε ∈ (0, 1], P[|λ̂r − λr|/λr ≤ ε] ≤ 2d−b if the spectrum of385

Ĥ, {λ̂i}di=1, is computed with nH ≥ 4(b + 1)aλ1 ln(d)/(λrε)
2 log-likelihood gradient sam-386

ples. Drawing on a matrix Bernstein inequality in [56], [6, Corollary 3.8] states that for387

ε ∈ (0, 1], P[H − Ĥ‖2/‖H‖2≤ ε] ≤ 2m1−3c/8 (the 2-norm of a matrix here is its spectral388

norm, which also corresponds to its largest singular value) when estimating Ĥ with at least389

nH ≥ ca2 ln(d)/(λ1ε
2) samples. Finally, choosing ε such that ε ≤ (λr − λr+1)/(5λ1) and390

using this last lower bound on nH, the distance between the image of the local estimated391

and true LIS projections is bounded with high probability as well: the distance as measured392

with the spectral norm d(Im(Φr), Im(Φ̂r)) = ‖ΦrΦ
T
r − Φ̂rΦ̂

T
r ‖2= ‖ΦT

r Φ̂⊥‖2 is bounded as393

P[‖ΦT
r Φ̂⊥‖2≤ 4λ1ε/(λr − λr+1)] ≤ 2m1−3c/8 according to [6, Corollary 3.10]. [6] translates394

this bound into a heuristic on account of c, a and the true spectrum {λi}di=1 being unknown395

in many use cases involving numerical/simulation models f . The heuristic emerges by sum-396

marizing all unknown constants in a fudge factor αH resulting in397

(3.18) nH = αHr ln(d),398

where [6] recommends αH ∈ [2, 10] and the target rank r corresponds to the smallest eigen-399

value λr that shall be estimated with the desired relative accuracy ε. Remarkably, the effort400

scales logarithmically with the ambient space dimension d suggesting that we can hope to401

estimate H with relatively few log-likelihood gradient samples even in very high-dimensional402

settings. As the target rank r is not known a priori, we detail an iterative procedure to jointly403

determine r and nH in Alg. 3.1.404

405

The required number of samples in each level of the CEBU procedure in turn depends on406

the adaptively selected LIS-rank r through the number of parameters that have to be fitted407

in the Gaussian reduced biasing density npar. In particular, an r-variate Gaussian requires408

fitting npar = r(r + 3)/2 parameters. To select the number of samples required to accurately409
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estimate v̂r,t in (3.15), we use the following heuristic:410

(3.19) n(r) = αpar︸︷︷︸
fudge
factor

1

2
r(r + 3)︸ ︷︷ ︸

number of
parameters

(1 + δ2
w)︸ ︷︷ ︸

inverse
nESS

,411

where [6] recommend to chose αpar ∈ [2, 10]. In case an adjoint solver is used for f , the412

estimation of Ĥt as in (3.11) will return nH likelihood evaluations as a byproduct that can be413

utilizied in estimating v̂r,t so that only an effective n(r)− nH new samples need to be drawn414

and evaluated at each level. The CEBUred algorithm is summarized in Alg. 3.2.

Algorithm 3.1 adapt H

Input Likelihood and log-gradient L̃ and ∇ ln L̃, reduced biasing density q(r)(ūr,vr), local
LIS & CS projections Φr & Φ⊥, fudge factor αH, error tolerance ε, temperature β0

Output Subspace samples Ūr, Ū⊥, Likelihood samples `, local LIS & CS projections Φr

& Φ⊥, temperature β, LIS-rank r, # of H-samples nH

1: Set r ← 1, d← rowdim(Φr), nH ← αH ln(d), ∆n← nH, Ūr, Ū⊥, `, d`← [ ]
2: while ∆n > 0 do
3: Sample Ūr,add ∈ R∆n×r ← {ūr,k

i.i.d.∼ q(r)(ūr,vr)}∆nk=1

4: Sample Ū⊥,add ∈ R∆n×(d−r) ← {ū⊥,k
i.i.d.∼ ϕd−r(ū⊥)}∆nk=1

5: Append vertically Ūr ← [Ūr, Ūr,add], Ū⊥ ← [Ū⊥, Ū⊥,add]
6: Compute `add ← L̃(ŪT

r,addΦr + ŪT
⊥,addΦ⊥) and d`add ← ∇L̃(ŪT

r,addΦr + ŪT
⊥,addΦ⊥)

7: Append vertically `← [`, `add], d`← [d`, d`add]
8: Evaluate β and w in function of β0, Ūr, Ū⊥, `, q(r)(Ūr,vr) with (2.9) & (3.12)
9: Evaluate Ĥ in function of β, w and d` with (3.11)

10: Evaluate {φi, λi}di=1 ← solve{φ ∈ Rd, λ ∈ R : Ĥφ = φλ}
11: Select r in function of ε and {φi, λi}di=1 with (3.7)
12: Set ∆n = αHr ln(d)− nH

13: end while
14: Define Φr ← [φ1, . . . ,φr], Φ⊥ ← [φr+1, . . . ,φd]
15: return Ūr, Ū⊥, `, Φr, Φ⊥, β, r, nH

415

4. Experimental results. We perform two numerical examples to demonstrate the capa-416

bility and test for potential limitations of CEBUred. In the first example, we compare the417

computational cost and accuracy of CEBUred and CEBU in dependency of the ambient space418

dimension and verify the results with an analytical solution. In the second example, we ex-419

amine the performance of CEBUred for different error thresholds as defined by (3.7). Both420

methods are implemented with a Gaussian model as parametric IS density. In both exam-421

ples, we infer a material parameter random field based on model output observations. We422

measure the quality of posterior random field approximations Ŷ against a reference solution423

Y (either analytical or numerical) in terms of the following spatially averaged relative mean424

and variance errors:425

(4.1) εµY =
‖µY (x)− µ̂Y (x)‖2
‖µY (x)‖2

and εσ2
Y

=
‖σ2

Y (x)− σ̂2
Y (x)‖2

‖σ2
Y (x)‖2

.426
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Algorithm 3.2 CE-BU-red

Input Likelihood and log-gradients L̃ and ∇ ln L̃, transform T , parameters n∗eff , αH, αpar, ε,
# post. samples N ,

Output posterior samples Θpost, estimated evidence Ẑ

1: Set t← 0, β0 ← 0, Φr,0 ← Id×d, Φ⊥,0 ← 0, v̂r,0 = {0d, Id×d},
2: while βt < 1 do
3: t← t+ 1
4: Ūr,0, Ū⊥,0, `0,Φr,t,Φ⊥,t, βt, rt, nH

← adapt H(L̃,∇ ln L̃, q(r)(ūr,vr,t−1),Φr,t−1,Φ⊥,t−1, βt−1, αH)
5: Compute the required number of samples n in function of rt with (3.19)

6: Sample Ūr,add ∈ R(n−nH)×rt ← {ūr,k
i.i.d.∼ q(r)(ūr,vr,t−1)}n−nH

k=1

7: Sample Ū⊥,add ∈ R(n−nH)×(d−rt) ← {ū⊥,k
i.i.d.∼ ϕd−rt(ū⊥)}n−nH

k=1

8: Compute `add ∈ R(n−nH)×1 ← L̃(ŪT
r,addΦr,t + ŪT

⊥,addΦ⊥,t)

9: Join vertically Ūr ← [Ūr,0, Ūr,add], Ū⊥ ← [Ū⊥,0, Ū⊥,add], `← [`0, `add]
10: Compute v̂t,adj(v̂r,t−1,Φr,t−1,Φr,t,Φ⊥,t−1,Φ⊥,t) according to (3.17)
11: Compute the adjusted weights wt,adj ∈ Rn×1 ← wt,adj(Ūr, Ū⊥, `, v̂t,adj) with (3.16)
12: Compute v̂r,t with (3.15)
13: end while

14: Evaluate wfinal ∈ Rn×1 ←
{
L̃(ŪT

r Φr,t+ŪT
⊥,tΦ⊥)ϕr,t(ŪT

r Φr,t)

q(r)(ŪT
r Φr,t,v̂r,t)

}n
k=1

15: Estimate evidence Ẑ ← 1
n

∑n
k=1 wfinal,k

16: Normalize weights w̄final ← wfinal/(nẐ)
17: Upost ← Resample (with replacement) N times from ŪT

r Φr,t + ŪT
⊥,tΦ⊥ with weighting

w̄final

18: Θpost ← T−1(Upost)

19: return Θpost, Ẑ

4.1. 1D Cantilever beam.427

4.1.1. Problem description. We consider an Euler-Bernoulli beam with one clamped and428

one free end. It has length L = 5 m and a point load of P = 20 kN acting on the free end429

(Fig. 3). Its bending moment M(x) can be obtained from the Euler-Bernoulli equation and430

reads [5]431

(4.2) M(x) = −E(x)I(x)
d2w(x)

dx2
,432

where E(x) is the beam’s Young’s modulus and I(x) is its moment of inertia. Both can be433

summarized as the beam’s axial flexibility F (x) = 1/E(x)I(x). The bending moment of the434

cantilever beam is computed as M(x) = −P (L− x). Hence, the vertical deformation is given435

by436

(4.3) w(x, F (x)) = P

∫ x

0

∫ s

0
(L− x)F (x)dtds.437
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The axial flexibility F (x) is considered uncertain and spatially variable along the beam axis.438

We assign a homogeneous Gaussian prior random field with mean µF = 10−4kN−1m−2, stan-439

dard deviation σF = 3.5 · 10−5kN−1m−2 and exponential autocorrelation kernel440

(4.4) ρ(x, x′; l) = exp

(
−‖x− x

′‖1
l

)
,441

where l is the correlation length. The correlation length of the random field of the axial flex-442

ibility is lF = 2m. The forward model is given by a finite element (FE) model employing 100

Figure 3. Cantilever beam with point load. Figure 4. True deformation and measurements.

443
Euler-Bernoulli beam elements with cubic shape functions. The goal is to obtain samples of444

the posterior distribution of the axial flexibility given nobs = 50 equally spaced measurements445

{xmeas,i}nobs
i=1 of the vertical deformation along the beam axis (see Fig. 4). Adjoint methods [1]446

are a computationally efficient tool for obtaining the model gradients required to compute ∇L̃447

as long as the number of model outputs of which derivatives are computed (nobs) is smaller448

than the number of model inputs (d) with respect to which derivatives are computed. In the449

context of this example, the adjoint method is thus used for the setting d = 100 only and the450

direct method is used in all other settings.451

452

We assume the measurements to be corrupted by the additive, centered Gaussian noise vector453

η ∼ N (0,Σηη). The noise covariance matrix is defined as [Σηη]ij = σ2
ηρ(xmeas,i, xmeas,j) with454

noise standard deviation ση = 0.001m, exponential correlation kernel ρ(·, ·; lη) and correlation455

length lη = 1m. The random vector describing the vertical deformations in data space Rnobs ,456

i.e., at the nobs measurement locations {xmeas,i}nobs
i=1 is defined as457

(4.5) w̃ = w + η.458

Given a set of realizations of w̃, i.e., observational data ỹ, the likelihood function reads459

(4.6) L(F ) =
1√

(2π)nobs det(Σηη)
exp

(
[ỹ − G(F )]Σ−1

ηη [ỹ − G(F )]T
)
,460

This manuscript is for review purposes only.



CERTIFIED DIMENSION REDUCTION FOR BAYESIAN UPDATING WITH THE CROSS-ENTROPY
METHOD 17

where G(·) represents the FE-model and returns the vertical deformations of the beam at the461

nobs measurement locations.462

463

The measurements for this example are obtained by generating a single random realization of464

the prior random field of the axial flexibility, solving (4.3) numerically at 1001 equally spaced465

discretization points and then adding randomly generated noise according to (4.5) to the466

solutions at the locations of the measurements {xmeas,i}nobs
i=1 . By using the analytical expres-467

sion instead of the FE-model for the generation of the measurements, we avoid the so-called468

’inverse crime’ [29].469

4.1.2. Analytical posterior. The following derivations closely follow [57] where the exam-470

ple is investigated as well. Since F (x) is Gaussian and w(x, F (x)) is a linear function of F (x)471

(4.2), the prior distribution of w(x) is also Gaussian. Its mean and covariance read472

(4.7a) µw(x) = P

∫ x

0

∫ s

0
(L− t)F (t)dtds =

PµF
6

x2(3L− x) and473

474

(4.7b) Σww(x, x′) = P

∫ x′

0

∫ x

0

∫ s′

0

∫ s

0
(L− t)(L− t′)ΣFF (t, t′)dtdt′dsds′.475

The explicit expression of (4.7b) is obtained using a computer algebra system and omitted476

here due to its tedious form.477

478

An analytical solution of the posterior of the axial flexibility can be derived, since both479

the prior and the likelihood are Gaussian [45]. To this end, the Gaussian random vector480

F ′ = [F ; w̃] is considered, which contains the discretized random flexibility field, F ∈ Rn and481

the nobs deformation measurements w̃ ∈ Rnobs . The mean vector and covariance matrix of482

F ′ may be partitioned as483

(4.8) µF ′ =

[
µF
µw̃

]
and ΣF ′F ′ =

[
ΣFF ΣFw̃

ΣT
Fw̃ Σw̃w̃

]
.484

As F ′ is jointly Gaussian, the posterior F |ỹ is Gaussian as well and has PDF485

(4.9) p(f |ỹ) =
1√

(2π)n det(ΣFF |ỹ)
exp

(
−1

2
[f − µF |ỹ]TΣ−1

FF |ỹ[f − µF |ỹ]
)
.486

The posterior mean and covariance matrix are equal to the following conditional mean µF |ỹ487

and covariance matrix ΣFF |ỹ:488

(4.10) µF |ỹ = µF + ΣFw̃Σ−1
w̃w̃(ỹ − µw̃) and ΣFF |ỹ = ΣFF −ΣFw̃Σ−1

w̃w̃ΣT
Fw̃.489

All quantities in (4.10) are computed within the partition in (4.8) except from µw̃, which is490

obtained by E[w̃] = E[w + η] = µw.491
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4.1.3. Parameters of numerical study. The flexibility random field is discretized in space492

using a midpoint method [12] with d collocation points. d is therefore the ambient space dimen-493

sion of the Bayesian inverse problem, where scenarios d = {10, 25, 50, 100} are investigated.494

We use CEBU and CEBUred to obtain samples from the d-dimensional posterior distribu-495

tion of the axial flexibility given a set of nobs = 50 measurements. We use δv,target = 1.5496

and n = 1000 samples per level for all CEBU runs. For CEBUred we chose δv,target = 1.5,497

αpar = 4, αH = 6 and ε = 1.0. Results are averaged over 54 repeated runs of both CEBU and498

CEBUred.499

4.1.4. Discussion of results. Fig. 5 shows the posterior flexibility fields obtained with500

both CEBU and CEBUred at varying ambient dimension. At d = 5, the results obtained501

with both CEBU and CEBUred coincide with the analytical reference posterior as indicated502

by the almost congruent scatter points in the top left panel of Fig. 5. However, discretizing503

the flexibility field with only 5 subparts does not allow for an accurate representation of the504

posterior field at the clamping. There, the axial flexibility exerts the strongest influence on505

the beam deformation thus requiring a finer discretization.

CEBUred CI CEBUred CEBU CI CEBU analyt. CI analyt. truth

Figure 5. Axial flexibility posterior field: mean and 95% credible intervals. CEBU and CEBUred solutions
are plotted at the random field collocation points (midpoints).

506

507
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As d increases, the results obtained by CEBU deteriorate, as indicated by both an increas-508

ing deviation of the CEBU solution from its analytical counterpart in both mean and 95%509

posterior credible bounds. At d > 11, CEBU has too few samples available to accurately fit510

all biasing density parameters in ambient space. CEBUred, on the other hand, agrees closely511

with the analytical solution if the chosen discretization is fine enough.

Figure 6. Left: Average number of selected LIS dimension
with increasing CEBUred step index. Right: Average number of
evaluated samples per step with increasing CEBUred step index.
The solid and the dashed lines represent the total number of model
and model gradient evaluations, respectively.

Figure 7. Relative posterior mean error
for different combinations of αH and αpar

at d = 100.

512

513

Fig. 6 shows the number of selected ranks r (corresponds to the dimension of the effectively514

used subspace (LIS) in CEBUred) and number of samples plotted over the CEBUred step515

index. The number of LIS dimensions reduces to r = 1 within the first step for all tested516

d. The number of runs per number of steps for different d are shown in Table 1. At d = 5,517

one of the 54 runs terminated after 6 steps, whereas all other simulations terminated after a518

maximum of 5 steps. Table 1 suggests that for the given FE-discretization, finer random field519

discretizations tend to stabilize the simulation in the sense that most runs require the same520

number of steps.521

Table 1
Number of runs broken down according to required number of CEBUred steps at varying d.

# of steps d = 5 d = 25 d = 50 d = 100
2 1 0 0 0
3 15 5 1 1
4 29 43 42 46
5 8 6 11 7
6 1 0 0 0

522

For all investigated ambient dimensions d and in each CEBUred step, the beam problem523

possesses very low-dimensional (likelihood-informed) subspaces, in which the inverse problem524
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Table 2
Likelihood and gradient evaluations for the beam example per run of CEBU and CEBUred (CEBUred:

averaged over 54 runs).

Problem CEBU CEBUred CEBUred
dimension (Likelihood calls) (Likelihood calls) (Gradient calls)

d = 5 3796 170.0 54.3
d = 10 3870 181.0 115.8
d = 25 3833 184.6 143.5
d = 100 3833 182.7 168.6

can be solved efficiently (r = 1 − 2). In this LIS, significantly less samples are required to525

accurately characterize biasing densities compared to CEBU, which operates in d-dimensional526

ambient space. Fig. 6 (solid lines) illustrates the correspondence of the number of required527

samples in CEBUred with the reduced space dimension (rank r). As d increases, more gradi-528

ents are evaluated (Fig. 6, right, dashed lines). This is due to the factor ln d in (3.18).529

530

In Table 2 we list the average number of required likelihood and likelihood gradient evalu-

Table 3
Relative posterior mean and variance error at varying d averaged over 54 repeated runs of CEBUred.

error d = 5 d = 25 d = 50 d = 100
εµF

0.0588 0.0219 0.0167 0.0142
εσ2

F
0.2168 0.1039 0.1090 0.0907

531

ations for both CEBU and CEBUred. The number of required likelihood evaluations within532

CEBUred remains approximately constant across all investigated dimensions and is more than533

an order of magnitude lower compared to number of evaluations required by CEBUred. The534

numbe of likelihood gradient evaluations grows with d but remains below the number of like-535

lihood evaluations. Depending on the method of evaluating these gradients, a gradient call536

may however be considerably more expensive than a likelihood call.537

538

µF (x) and σ2(x) are the analytical posterior mean and variance, respectively, evaluated at539

the discretization points and µ̂F (x) and σ̂2
F (x) are their sample-based counterparts obtained540

with CEBUred. Table 3 shows the relative error of the mean and the variance for the differ-541

ent dimensions d. What is not immediately obvious from the plots in Fig. 5 is that a finer542

discretization indeed leads to smaller relative errors. However, the decrease slows down from543

d = 25 and is rather small between d = 50 and d = 100. Fig. 7 shows the relative posterior544

mean error εµF for different combinations of the fudge factors αH and αpar at d = 100. The545

relative posterior mean error decreases signifcantly between αH = 2 and αH = 6 and remains546

constant as αH is increased from 6 to 10. This is likely due to the fixed error threshold547

of ε = 1.0, which prescribes the approximation quality of the optimal projector. Once the548

relevant part of the H-spectrum (corresponding to the choice of ε) is estimated accurately,549

increasing αH bears no further effect. In this case, larger values of αpar only lead to a larger550

number of model evaluations, which in turn can lead to a better fit of the biasing density. At551
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αH = 2, the error decreases with increasing αpar, whereas it remains approximately constant552

when increasing αpar at αH ≥ 6. In the latter case, the large number of gradient evaluations553

(each of which also yields a model evaluation) are already sufficient to accurately estimate the554

parameters of the reduced biasing density such that increasing αpar will not further reduce555

the error.556

4.2. 2D plate in plane stress. The example was first presented in [33] in the context of557

uncertainty quantification. We consider the adapted version from [57]. Through this example,558

we investigate how the accuracy of the resulting posterior improves by using different error559

thresholds ε as defined by (3.7).560

4.2.1. Problem description. We consider a 2D square steel plate in plane-stress with side561

length 32 cm, thickness t = 1 cm and a hole with radius r = 2 cm located at its center (Fig. 8).562

The plate is clamped at the left-hand side and loaded with a constant line load q = 6 kN cm−2563

acting on its right-hand side. The plate has density ρ = 7850 kg m−3, which is required to564

account for body forces (oriented in negative x2-direction), and the Poisson ratio is ν = 0.29.565

q

Figure 8. Left: FE-model of the plate. The red squares mark the positions of the strain gauges. Center
and right: True fields of the strains in x1- and x2-direction.

566

Assuming plane stress, the displacement field u(x1, x2) = [ux1(x1, x2), ux2(x1, x2)]T can be567

computed implicitly based on elasticity theory through a set of elliptic PDEs (Cauchy-Navier568

equations) [28]:569

(4.11) G(x1, x2)∇2u(x1, x2) +
E(x1, x2)

2(1− ν)
∇(∇ · u(x1, x2)) +B = 0.570

G(x1, x2) := E(x1, x2)/(2(1 + ν)) is the shear modulus, E(x1, x2) is Young’s modulus, and571

B = [b(x1), b(x2)]T is the vector of body forces acting on the plate. In order to solve (4.11),572

an FE model with 282 eight-noded quadrilateral finite elements is used (Fig. 8).573

574

In this example, the plate’s Young’s modulus is considered uncertain and spatially variable.575

We assign a homogeneous random field prior with log-normal marginal distributions with576

mean µE = 2 · 104 kN cm−2 and standard deviation σE = 3 · 103 kN cm−2. The mean and577

standard deviation of the underlying Gaussian field lnE(x1, x2) follow as µlnE = 9.89 and578

σlnE = 0.15, respectively, and its correlation structure is modelled with the exponential kernel579

of (4.4) and correlation length llnE = 10 cm.580
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581

We discretize lnE by means of a Karhunen- Loève-expansion (KL-expansion). To this end,582

we solve the following homogeneous Fredholm integral equation of the second kind [21]583

(4.12) σ2
lnE

∫
D
ρ(x,x′; llnE)φk(x

′)dx′ = λkφk(x)584

for the covariance kernel’s set of eigenpairs {λk, φk}. Consequently, we can express the log-585

normal Young’s modulus prior as the exp of a KL-expansion [21] like586

(4.13) E(x1, x2;θ) = exp

[
µE +

∞∑
k=1

√
λkφk(x1, x2)θk

]
,587

where the coefficients θk are pairwise independent standard-normal Gaussian random vari-588

ables.589

590

We estimate the set of eigenpairs {λk, φk} for the KL-expansion by solving (4.12) using the591

Nyström method on a grid of 160 × 160 Gauss-Legendre quadrature points. The eigenfunc-592

tions are interpolated at the numerical integration points of the elements of the FE-model [44].593

594

Truncating the KL-expansion (4.13) after M terms results in an M -order KL-approximation595

of E, which we denote as Ê(x;θ). This approximation recovers the random field mean ex-596

actly, however is associated with an under-representation of its variance lnσ2
E . This under-597

representation is often measured with the global relative variance error of the M -order KL-598

approximation:599

(4.14) ε̄lnσ2 =
1

|D|

∫
D

∣∣∣∣∣V[E(x;θ)]− V[Ê(x;θ)]

V[E(x;θ)]

∣∣∣∣∣dx = 1− 1

|D| · lnσ2
E

M∑
k=1

λk.600

Therein, D is the spatial domain of the random field E. The inference task for the example601

consists in learning the Young’s modulus’ posterior distribution based on strain measurements602

at nobs = 10 positions on the plate. At each position, two gauges measure the strain in x1-603

and x2-direction (Fig. 8, left, red squares), respectively. Hence, a set of 20 measurements are604

available to solve the inference task. We generate the measurements artificially by using a605

FE-model on a finer mesh of 779 elements, in order to once again avoid the ’inverse crime’606

[29]. The true strains are depicted in the center and right plot in Fig. 8.607

608

The strain measurements are generated by solving the forward problem based on a single609

Young’s modulus prior random field realization. This realization is generated using a midpoint610

method discretized at the numerical integration (Gauss) points of the plate FE model rather611

than a KL-approximation. Consequently, noise is added to the computed strains at the mea-612

surement locations. We model the noise as a centered Gaussian random vector η ∼ N (0,Σηη).613

The noise standard deviation is set to ση = 10−4 and the autocorrelation of both x1- and x2-614

strain measurements is modelled with the exponential kernel (4.4) using a correlation length615

of lη = 10 cm. The cross-correlation function between x1- and x2-strain measurements is616

taken as the autocorrelation function multiplied by a cross-correlation coefficient of 0.25.617
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4.2.2. Numerical reference posterior. We use adaptive Bayesian Updating with Subset618

Simulation (aBUS-SuS) to verify the solution obtained with CEBUred. aBUS-SuS has been619

tested on a variety of engineering applications, e.g., in [52, 53, 4, 27]. aBUS-SuS recasts the620

Bayesian inverse problem as a structural reliability problem [57]. Subset simulation (SuS) [2]621

is a robust and efficient method for solving such structural reliability problems and within622

aBUS-SuS, SuS is employed to solve general Bayesian inverse problems. SuS itself requires623

carrying out an MCMC sampling step for which we use a pCN sampler [8] with adaptive624

scaling [42].625

4.2.3. Parameters of numerical study. We discretize the Young’s modulus random field626

by a KL-approximation (4.13) with 879 terms producing a Bayesian inverse problem with627

ambient dimension d = 879. The chosen number of terms accounts for at least 97% of the628

spatial variance of the random field meaning the average variance error (4.14) is ≤ 3%.629

630

The inference task is solved by using CEBUred with different error tolerances ε. We choose631

ε = {1.0, 10−1, 10−2, 10−3}. The remaining parameters are set as δv,target = 1.5, αpar = 3,632

and αH = 4. The gradients of the likelihood function required at each step of CEBUred are633

evaluated with the adjoint method [1] (derived for this particular problem in [58, Appendix634

A]). In the final step, we draw N = 10000 samples from the approximate posterior distri-635

bution. The parameters for the numerical reference posterior generated with aBUS-SuS are636

n = 20000 for both samples per subset level and final samples of the approximated posterior637

and intermediate conditional probability p = 0.1. Except for the reference posterior, which is638

computed once only, we repeat each analysis with CEBUred 40 times and average all results639

over the individual runs.640

4.2.4. Discussion of results. Fig. 9 compares the posterior fields obtained with CEBU-641

red using an error threshold of ε = 10−2 and the reference posterior obtained with aBUS-SuS642

along six sections across the plate. Along each section, the CEBUred-based posterior means643

are in good agreement with the reference posterior mean. For all other tested error thresholds644

(ε ∈ {1, 10−1, 10−2}), similar results are obtained for the average posterior means and vari-645

ances taken over 40 repeated CEBUred runs (see Table 5). The coefficients of variation of the646

posterior mean and variance estimates are rather large for ε ≥ 10−1, but decrease significantly647

between ε = 10−1 and ε = 10−2 based on the results given in Table 5.648

649

The numbers of required likelihood and likelihood gradient evaluations for aBUS-SuS and650

CEBUred at the four tested error threshold are listed in Table 4. At ε = 10−2, CEBUred651

reduces the number of required likelihood calls by roughly two orders of magnitude compared652

to the reference aBUS-SuS run, which comes at the cost of 642 additional gradient calls.653

654

Fig. 10 shows the mean ranks and the corresponding number of model and gradient evalua-655

tions. To ensure an accurate construction of the LIS, the eigenvectors corresponding to the r656

largest eigenvalues of H must be reasonably well estimated. The number of samples required657

for the estimation is determined with the heuristic formula given by (3.18). According to this658

formula, the number of samples for the estimation of H linearly depends on r. Therefore, the659

lines in the left plot and the dashed lines in the right plot in Fig. 10 are linearly dependent.660
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Figure 9. Posterior Young’s modulus random field obtained with aBUS-SuS and with CEBUred using
ε = 10−2: Means (solid lines) and 95% credible intervals (CI, dashed lines) at three vertical (top row) and three
horizontal (bottom row) cross-sections.

Table 4
Likelihood and gradient evaluations for the plate example per run of aBUS-SuS and CEBUred (CEBUred:

averaged over 40 runs).

aBUS-SUS CEBUred CEBUred CEBUred CEBUred
(ε = 1) (ε = 10−1) (ε = 10−2) (ε = 10−3)

Llikelihood calls 120000 76 276 1313 10621
Gradient calls - 105.3 254.5 642.0 1975.1

For ε ≥ 10−1, we obtain LIS dimensions of r ≤ 5 in all steps.661

Fig. 10 (right) depicts the number of gradient and model evaluations per CEBUred step662

for varying ε exposing that for ε = 1, the number of gradient evaluations performed to esti-663

mate the LIS exceeds the overall number model evaluations required to perform the parameter664

update of the biasing density. This is due to the fact that the number of required model evalu-665

ations quadratically depends on the LIS dimension r through (3.19), where in turn r decreases666
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Table 5
Relative posterior mean and variance error at varying ε averaged over 40 runs with coefficient of variation

in round brackets

error ε = 1 ε = 10−1 ε = 10−2 ε = 10−3

εµE
(CoV) 0.017(1.66) 0.019(0.98) 0.003(0.32) 0.002(0.17)

εσ2
E

(CoV) 0.174(0.52) 0.201(0.75) 0.039(0.33) 0.027(0.10)

with increasing ε.667

668

Fig. 11 displays the nESS of the final posterior sample along with the target nESS, n∗eff =

Figure 10. Left: Average number of selected LIS dimension with in-
creasing CEBUred step index (95% CI indicated as shaded area). Right:
Average number of evaluated samples per step with increasing CEBUred
step index. The solid and the dashed lines represent the total number
of model and model gradient evaluations, respectively.

Figure 11. Mean of the
normalized effective sample size
(nESS) (95% CI indicated as
shaded area) plotted over the
tested error thresholds along with
the target nESS (solid red line).

669
0.3077, that is related to the target coefficient of variation of the IS weights δw = 1.5 through670

(2.8). The simulations with ε = 1.0 and ε = 10−1 exhibit small nESS well below the target.671

In these cases, the dimensionality of the LIS is too low to accurately represent the posterior672

of the random field and, consequently, the IS weights have large variance. This leads to larger673

posterior mean and variance errors and larger associated coefficients of variation of these error674

measures for ε = 1.0 and ε = 10−1 as documented in Table 5.675

676

Compared to the beam application, where n∗eff was achieved for all investigated ambient di-677

mensions with ε = 1.0, the plate obviously requires a stricter error threshold. According to678

Table 5 and Fig. 11, ε = 10−2 is a good choice for the present example. However, if the679

threshold is chosen very small, e.g., ε = 10−3, no significant improvement is observed. In this680

case, the marginally increased accuracy will not justify the additional computational expenses681

incurred by reducing the threshold.682

683
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Fig. 12 (top) depicts the spectrum of H at each step of CEBUred and each predefined

Table 6
Number of runs broken down according to required number of CEBUred steps at varying ε.

# of steps ε = 1 ε = 10−1 ε = 10−2 ε = 10−3

2 3 0 0 0
3 30 39 40 40
4 7 1 0 0

Figure 12. Top: H-spectra plotted versus CEBUred step number for each error threshold ε. Bottom: Upper
bound of the KLD between the tempered, full posterior and the tempered, optimally reduced posterior as defined
by (3.7). For each ε and CEBUred step, the largest scatter point corresponds to r = 1, the second-largest
corresponds to r = 2 and so on to r = d− 1. Solid lines indicate the four tested values of the error threshold ε.

684
error threshold. As shown in Table 6, all runs with ε ≤ 10−2 required three steps, whereas685

only few runs with ε ≥ 10−1 required four steps. For this reason, no spectra appear in the686

rightmost panels of Fig. 12 at step 4 for ε ≤ 10−2. All displayed spectra share two dominant687

eigenvalues of comparable magnitude followed by a sharp decay. The main difference amongst688

spectra associated with different ε is the number of samples used to estimate H, nH. While689

nH has no influence on the dominant eigenvalues, it bears some effect on a gap in the center690

of the spectrum, that becomes narrower and eventually closes as nH increases. This effect,691

however, is negligible for the LIS construction as it takes place at eigenvalue magnitudes well692
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below that of the smallest eigenvalue whose corresponding eigenvector is included in the LIS693

for any choice of ε.694

695

In Fig. 12 (bottom), we show the criterion (3.7) for each possible choice of r = 1 . . . d − 1696

along with the tested error thresholds ε = {1.0, 10−1, 10−2, 10−3}. At any given step t, we697

can directly compare the scatter points belonging to different error thresholds since they have698

equal βt on average. The number of scatter points that lie above the horizontal solid lines699

indicating ε determine the LIS dimension r. The upper scatter points are approximately equal700

for any choice of ε and any t as the corresponding summations are dominated by their leading701

term.702

703

Using the heuristic given in (3.18) leads to a good estimate of the desired first eigenvalues and704

vectors. This is important because the accuracy of the LIS depends on these eigenvectors.705

However, for the computation of the upper bound of the KLD between the full posterior and706

the optimal reduced posterior (3.7) and the subsequent determination of the rank, all eigen-707

values are needed. For problems with rapidly decaying eigenvalue spectra of their H matrix,708

as we see in this example, this is not a concern in practice, since their smallest eigenvalues709

have little effect on the computation of (3.7).710

5. Concluding remarks. We present CEBUred (Cross-Entropy-based IS method for Bayesian711

Updating in reduced space), an algorithm for approximating posterior distributions that are712

the solutions of nonlinear Bayesian inverse problems. Such problems often arise in the con-713

text of finding inverse solutions to computationally expensive numerical models and solvers.714

Thus, computational efficiency is of the essence, which translates to minimizing the number715

of required samples (evaluations of the numerical model) to approximate the sought posterior716

distribution at a prescribed accuracy. We address high-dimensional problem settings that717

arise, e.g., if the inference target is represented by random fields or processes, by identifying718

low-dimensional linear subspaces [60] in which we perform cross-entropy-based importance719

sampling [15]. These subspaces are obtained as truncated eigenspaces of the second-moment720

matrix of the gradient of the log-likelihood H.721

722

We investigate CEBUred using two benchmark problems from engineering mechanics. In723

the first example, the material parameter random field of a cantilever beam subject to a point724

load is inferred from noise-distorted deflection measurements. We examine the performance725

of CEBU versus CEBUred versus a known analytical posterior reference solution at varying726

dimension of the material parameter random field discretization. We find that the dimen-727

sionality reduction is vital to ensure the posterior approximation accuracy is independent of728

the problem dimension by comparing CEBU and CEBUred. The second problem consists729

of inferring the material parameter random field of a clamped steel plate under load from730

a strain measurement at 10 locations on the plate. The inference problem is set in a 879-731

dimensional space as the parameter random field is discretized with a 879-term KLE. We find732

that the quality of the posterior approximation produced by CEBUred is closely connected to733

the choice of the error threshold ε that controls the number of dimensions retained in reduced734

space. As ε decreases, CEBUred is able to recover the reference posterior solution accurately735
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both in mean and credible intervals. We further compare the performance of CEBUred to736

that of aBUS-SUS (adaptive Bayesian updating with subset simulation, [4]), which is a well-737

established method for nonlinear BIPs in high-dimensions.738

739

The results of our numerical investigations show that CEBUred is a powerful method for740

solving high-dimensional nonlinear BIPs if the underlying computational model admits a low-741

dimensional representation, i.e., if the spectrum of H exhibits fast decay. From a computa-742

tional perspective, CEBUred is particularly useful if the model allows for the cheap evaluation743

of gradients, e.g., if an adjoint solver is used and the the number of BIP inputs exceeds the744

number of available observations. In these cases, CEBUred achieves the same accuracy as745

aBUS-SuS at considerably lower computational expense.746

747

Conversely, if an adjoint solver is not available or not efficient in the sense described above,748

the gain in computational efficiency provided by dimensionality reduction may be overcom-749

pensated by expensive gradient evaluations. In such case, the number of required gradient750

evaluations could be significantly reduced by using ’data-free likelihood-informed dimension751

reduction‘ as recently proposed in [10]. There, H is constructed in expectation over the data752

such that no knowledge about the posterior density is needed. Consequently, the upper bound753

between the exact and approximated posterior is controlled in expectation over the data. Fol-754

lowing this method, the algorithm of CEBUred could be modified such that H is constructed755

at the beginning and therefore, only at this stage model gradient information would be re-756

quired. Alternatively, one may turn to gradient-free supervised dimension reduction methods757

in order to identify sutaible subspaces to solve the Bayesian inverse problem.758
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