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Abstract

In probabilistic assessments, inputs with significant spatial variability should be modeled with random

fields. Random fields can be non-homogeneous with location-specific marginal distributions, for example,

due to site-specific information incorporated through Bayesian analysis or due to spatial trends in the

mean or variance of the uncertain quantity. This paper investigates the spatial averaging method for the

discretization of non-homogeneous random fields. In this approach, the random field is reduced to a set of

random variables representing its local averages over a corresponding set of elemental domains. This is of

particular benefit when coupling the random field model with finite elements for structural analysis. We

extend the application of the method to non-homogeneous Gaussian and non-Gaussian translation random

fields with lognormal, Student’s t- and log-Student’s t-marginal distribution. The latter two distributions

are particularly relevant if spatial data is used in a hierarchical Bayesian random field modeling. Two

numerical investigations assess the ability of the method to efficiently represent the response variability and

probability of failure of structural systems with spatially variable inputs. The investigations include the

effect of different element sizes for the spatial averaging on the system response and applicability of the

spatial averaging method to assessing local and global failure modes.

Keywords: Spatial averaging, Non-homogeneous random fields, Reliability analysis, Spatial variability,

Hydraulic structures, Finite elements

1. Introduction

Many engineering applications require the consideration of physical quantities that vary randomly in

space. Common examples include material properties in large structures [1], soil properties in geotechnical

sites [2] and the apparent properties of composite materials [3]. Spatially variable properties can be modeled
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by random fields (RF) [4]. By definition an RF consists of an infinite number of random variables. Hence,5

numerical treatment of RFs requires their approximation in terms of a finite number of random variables, a

task known as RF discretization. An overview of existing discretization methods can be found in [5] (with

focus on the dimensionality reduction aspect) and, more recently, in [6] (with focus on the simulation cost).

The spatial averaging (SA) method expresses the RF through a set of random variables representing local

averages of the field over a set of elements. The method was originally proposed by Vanmarcke and Grigoriu10

[7] and is extensively described in [4]. SA has been applied to homogeneous RFs in various applications

and is commonly employed in the context of geotechnical analyses to approximate spatially variable soil

properties [8, 9, 10, 11, 12]. Such problems have the advantage that geotechnical failure modes are typically

dominated by average behavior and not by local extrema of the soil properties. Thus, an RF can often be

sufficiently approximated by a small set of random variables or even a single random variable representing15

the averaging behavior of the RF over a spatial domain (e.g., a failure surface). SA has also been applied

to problems in structural analysis to explicitly account for the spatial variability of loads and material

properties [7, 13, 14, 15, 16].

The theory of SA supports the application of the method to non-homogeneous RFs, although it has been

reported that it leads to increased numerical effort [17]. SA for non-homogeneous RFs has recently been20

applied in the context of reliability analysis in [18] and [19]. Non-homogeneous RFs occur, for example,

when the spatial moment functions (mean and variance) follow a trend [e.g., 20, 21], or when a homogeneous

RF is updated with measurement data through a Bayesian analysis [e.g., 22, 23, 1, 24, 25]. While in the first

case it may be possible to express the RF as function of a homogeneous RF by means of a transformation or

standardization [4], this does not hold for the latter case. This paper focuses on the second case, i.e., when25

the non-homogeneous behavior of the RF results from a Bayesian updating of the RF parameters. Such

non-homogeneous RFs are characterized by local changes in the spatial mean function, local reductions of

the spatial standard deviation function and a complex location-specific autocorrelation structure.

One of the advantages of SA over other RF discretization methods applicable to non-homogeneous RFs

is the compact form of the resulting set of averaging random variables. If the RF is Gaussian, the averaging30

random variables are Gaussian random variables fully defined by a mean vector and a covariance matrix

evaluated through spatial integration of the RF moment functions. Hence, it does not require the spectral

decomposition of the covariance operator as is the case, e.g., for the Karhunen-Loève expansion [26, 27].

Moreover, each of the random variables directly represents the RF in a specific domain. That is, coupling

of the method with a finite element model is straightforward, which makes it ideally suited for use in35
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engineering applications [7, 13, 14]. In addition, the method can account for the fact that the response of

structural systems is often determined by regions of high or low values and not by local extrema of random

quantities. Last but not least, the illustrative character of the SA random variables can significantly enhance

understanding and acceptance of spatial variability and thus increase the motivation in the engineering

community for explicit modeling of RFs in engineering assessments. A closely related method, termed local40

average subdivision tackles the problem by using a hierarchical approach from global to local averaging

integrals of RFs to account for spatial variability and the effect of averaging behaviour of properties [28]. It

was originally developed for homogeneous RFs but can be extended to the general non-homogeneous case.

This paper presents the SA method for non-homogeneous Gaussian RFs following the theory in [4]. In

the homogeneous case, the mean is not affected by the averaging operation and, thus, the mean of the45

spatially averaging random variables equals the mean of the random field. The covariance of the spatially

averaging random variables is obtained by integration over the spatial autocorrelation function multiplied

by the constant point-variance of the random field [4]. This is not possible for non-homogeneous random

fields, where the parameters of the averaging random variables need to be calculated from the spatial mean

function and the spatial covariance function. We provide the required expressions for the non-homogeneous50

case of one- and two-dimensional Gaussian random fields. Furthermore, we extend SA to a special class of

non-Gaussian RFs, so-called translation RFs [29], and present application for RF models with lognormal,

Student’s t- and log-Student’s t-marginal distribution. Student’s t- and log-Student’s t-RFs appear as

predictive RFs when learning is performed with spatial data [30]. RFs with lognormal or log-Student’s

t-marginal distribution are advantageous for modeling non-negative quantities, such as strength parameter55

of materials, as the support of these distributions is limited to the positive axis.

The focus of the paper is the applicability of the SA method to forward uncertainty propagation and

reliability analysis. We investigate the SA method by means of an application to a one-dimensional elastic

beam structure with spatially variable beam flexibility. Thereby, we assess the effects of different mesh

choices for the RF discretization with SA on the system response and the structural reliability. In a second60

numerical investigation, the SA method is applied for the reliability analysis of a ship lock chamber wall with

spatial data on the concrete friction coefficient. The effect of varying dimension in the SA approximation on

the accuracy in representing different failure mechanisms is investigated. On this basis, we conclude with

recommendations on the implementation of the SA method for structural reliability analysis.

The remainder of this paper is structured as follows. In Section 2, the spatial averaging method is intro-65

duced and explained in detail for the case of one- and two-dimensional Gaussian random fields. An extension
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to a special class of non-Gaussian random fields can be found in Section 2.3. The presented methodology is

illustrated with two numerical examples in Section 3 followed by short conclusions in Section 4.

2. Random field discretization with the spatial averaging method

An RF X(z) is defined as a collection of random variables indexed by a continuous spatial coordinate70

z ∈ Z, where Z ⊂ Rd is the spatial domain of definition of the RF, i.e., d = 1, 2 or 3. An RF is said to

be Gaussian if the n-th order joint distribution of the random variables corresponding to any collection of

points z = [z1, . . . ,zn] ∈ Z is a multivariate Gaussian distribution. Gaussian RFs are completely defined by

their spatial mean value µX(z), their spatial standard deviation σX(z) and their autocorrelation function

ρ(zi, zj), defining the correlation at two locations zi and zj [31]. Any linear mapping of a Gaussian RF is75

also Gaussian since the Gaussian distribution remains closed under linear transformations [32].

An RF is called homogeneous if its n-th order joint PDF is invariant for a shift in z, which implies that the

marginal PDF fX(z) of the RF and its moments are space-invariant [33]. For Gaussian RFs, homogeneity

is implied by homogeneity of the first two moment-functions, i.e., it suffices to know that µX(z) and σX(z)

are constant in space, i.e., µX(z) = µX ∀ z ∈ Z and σX(z) = σX ∀ z ∈ Z and that the autocorrelation80

function ρ(zi, zj) can be expressed as ρ(di,j), where di,j = zi − zj is the difference in location of zi and zi.

The spatial averaging method approximates the RF X(z) by a set of random variables X̂i, i = 1, . . . , nSA,

where each random variable represents the local average of X(z) over the domain Zi defined by the following

integral [4]:

X̂i =
Ii
Ωi

=
1

Ωi

∫
Zi

X(ζ)dζ, (1)

where Ωi is the volume of the spatial domain Zi. Ii is the local integral of X(z) over the domain Zi.85

All derivations in this study restrict to one- and two-dimensional RFs but the theoretical approach can be

extended to three-dimensional RFs and the general d-dimensional case [4].
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›

Figure 1: Random realization of a one-dimensional RF x(z) (blue line) and its approximation with four averaging elements of
equal length (red lines, x̂i, i = 1, . . . , 4).
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Figure 1 shows a random realization of a one-dimensional RF x(z) in blue and its corresponding real-

ization with an SA discretization of four averaging elements of equal length in red (x̂i, i = 1, . . . , 4). Each

x̂i, i = 1, . . . , 4 represents the average of the RF realization x(z) over the corresponding interval Zi. Fig-90

ure 2 shows a realization of a two-dimensional RF (panel a) and its corresponding realization with an SA

discretization of 16 square averaging elements of equal size. Both figures show that local fluctuations of the

RF average out and thus disappear in the SA realization while on a larger scale the spatial variability of the

RF is identified and represented. An increasing number of averaging elements results in a more accurate

representation of the RF and thus in better representation of local fluctuations.95

If X(z) is a Gaussian RF, the random variables X̂i, i = 1, . . . ,SA, for the discretization with SA are also

Gaussian because of the linearity of the integral operation in Equation (1). It is possible to use SA for non-

Gaussian RFs if the RF can be expressed as function of an underlying Gaussian RF by an isoprobabilistic

marginal transformation [29]. Examples of such translation random fields where the transformation is

available in closed form are presented in Section 2.3.

x
(z

),
 x

›
z2

a) 2D RF X(z) b) SA approximation

z2

z1 z1

max

min

Figure 2: Random realization of a two-dimensional RF X(z) (panel a) and its SA approximation with 16 square averaging
elements of equal size (panel b).

100

The mean of the random variable X̂i can be found by integration of the spatial function for the mean

µX(z) over the averaging domain Zi [4]:

µX̂i
=

1

Ωi

∫
Zi

µX(ζ) dζ. (2)

By integration over the spatial autocovariance function CX(z1, z2) the variance of X̂i can be found [4, 18]:

Var
(
X̂i

)
=

1

Ω2
i

∫
Zi

∫
Zi

CX(ζ1, ζ2) dζ1dζ2. (3)

The integration in Equation (2) is d-dimensional, where d is the spatial dimension of X(z). Accordingly,

the total dimension of the integration in Equation (3) is 2d. The covariance of two random variables X̂i and105
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X̂j cannot be obtained directly from the autocovariance function. Its derivation is presented for the one-

and two-dimensional case in the respective subsections.

If X(z) is a homogeneous RF, the mean and variance are constant over Z. In this case, the mean

is not affected by the averaging integration, i.e., µX̂i
= µX , i = 1, . . . , nSA and the variance is given as

linear function of the RF variance: Var
(
X̂i

)
= γiVar(X), i = 1, . . . , nSA, where γi is the variance function110

representing the average of the autocorrelation function of the field [13, 4]. γi expresses the reduction in

the variance caused by the averaging operation and, hence, decreases with increasing size of the averaging

element. It holds that γi = 1 if Ωi = 0 and γi → 0 for Ωi → ∞ [34, 4]. In the homogeneous case, SA

underestimates the true variance of the RF in each SA element for Ωi > 0 [14, 35]. This property cannot be

directly transferred to the non-homogeneous case on the element level due to a potentially strong fluctuation115

of the spatial variance function, but remains true in a global view of the RF variability.

For homogeneous RFs, the SA method is extensively described in [4]. This paper focuses on non-

homogeneous RFs that have a complex autocorrelation structure and, hence, cannot be transformed into

homogeneous RFs.

2.1. Spatial averaging for one-dimensional Gaussian random fields120

For the discretization of a one-dimensional RF X(z) with nSA spatially averaging domains, Equations (2)

and (3) can be rewritten for element i, i = 1, . . . , nSA as follows [4, 18]:

µX̂i
=

1

Li

∫ zi1

zi0

µX(z) dz, (4)

Var
(
X̂i

)
=

1

L2
i

∫ zi1

zi0

∫ zi1

zi0

CX(z, z′) dzdz′, (5)

where zi0 and zi1 denote beginning and end of the averaging domain Zi and Li is the length of this

domain, i.e., Li = zi1 − zi0 .

L0

Z
i

Z
j

L1

L2

L3

Figure 3: Lengths Lk, k = 0, . . . 3 of the auxiliary intervals for the calculation of the covariance of the random variables X̂i
and X̂j representing the average behavior of the RF X(z) in the local intervals Zi and Zj .
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The calculation of the covariance of two averaging random variables X̂i and X̂j requires four auxiliary125

lengths Lk, k = 0, . . . 3, which are illustrated in Figure 3 together with the averaging domains Zi and Zj .

The following algebraic identity can be defined using the local integrals Ik =
∫
Lk
X(ζ)dζ, (cf. Equation (1))

over the illustrated domains [4]:

2IiIj = I2
0 − I2

1 + I2
2 − I2

3 . (6)

Applying the expectation operator on both sides of Equation (6) gives

2E [IiIj ] = E
[
I2
0

]
− E

[
I2
1

]
+ E

[
I2
2

]
− E

[
I2
3

]
. (7)

Taking the expectation of the individual terms in Equation (6) results in [4]130

2E [Ii] E [Ij ] = E2 [I0]− E2 [I1] + E2 [I2]− E2 [I3] . (8)

Subtracting Equation (8) from Equation (7) gives the following expression for the covariance of Ii and Ij :

C (Ii, Ij) =
1

2

(
Var (I0)−Var (I1) + Var (I2)−Var (I3)

)
. (9)

The covariance of X̂i and X̂j can be calculated making use of their proportionality to Ii and Ij defined in

Equation (1):

C
(
X̂i, X̂j

)
=
C (Ii, Ij)

LiLj
. (10)

Using Equation (9), one gets [4, 18]:

C
(
X̂i, X̂j

)
=

1

2LiLj

3∑
k=0

(−1)
k

∆ (Zk) , (11)

where ∆ (Zk) is given by135

∆ (Zk) = L2
kVar

(
X̂k

)
. (12)

When Zj = Zi, Equation (11) simplifies to L0 = L2 = Li and L1 = L3 = 0 (cf. Figure 3). Accordingly,

∆ (Z0) = ∆ (Z2) = L2
iVar

(
X̂i

)
and ∆ (Z1) = ∆ (Z3) = 0 and hence Equation (11) reduces to Equation (5).

The random variables X̂i, i = 1, . . . nSA are Gaussian random variables and thus the discretization of X(z)

is fully defined by the mean vector µX̂ containing the individual mean values µX̂i
, i = 1, . . . n and the

covariance matrix CX̂ , where CX̂ (i, j) , i = 1, . . . nSA, j = 1, . . . nSA is given by the covariance of X̂i and140
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X̂j .

2.2. Spatial averaging for two-dimensional Gaussian random fields

Let X(z) be a two-dimensional Gaussian RF, where z ∈ Z describes a position in the two-dimensional

domain Z. SA proceeds by dividing Z into nSA rectangular elements with edges parallel to the coordinate

axes z1 and z2. Expressions for the mean and variance of the random variables X̂i, i = 1, . . . nSA representing145

the average of X(z) in the i-th element can be found from Equations (2) and (3) [4]:

µX̂i
=

1

Ai

∫ z2,i1

z2,i0

∫ z1,i1

z1,i0

µX(z1, z2) dz1dz2, (13)

Var
(
X̂i

)
=

1

A2
i

∫ z2,i1

z2,i0

∫ z2,i1

z2,i0

∫ z1,i1

z1,i0

∫ z1,i1

z1,i0

CX(z1, z2; z′1, z
′
2) dz1dz′1dz2dz′2, (14)

where Ai = Z1,iZ2,i denotes the area of the averaging domain. Z1,i and Z2,i are the lengths of the edges in

z1, z2 respectively, i.e., Z1,i = z1,i1 − z1,i0 and Z2,i = z2,i1 − z2,i0 .

A
j
=Z1,j

Z2,j

L2,0

L2,1

L2,2

L2,3

A
i
=

Z1,i
Z2,i

Z
i

Z
j

L1,3

L1,2

L1,1

L1,0

Z2,j

Z2,i

z1Z1,i
Z1,j

z2

Figure 4: Edges L1,k and L2,l of the auxiliary domains Zkl, k = 0, . . . 3, l = 0, . . . 3 for calculating the covariance of the

random variables X̂i and X̂j representing the average behavior of the RF X(z) in the rectangular domains Zi and Zj .

Equations (6) to (11) can be extended to the two-dimensional case (cf. Figure 4) to obtain the following

expression for the covariance of two averaging random variables X̂i and X̂j [4]:150

C
(
X̂i, X̂j

)
=

1

4AiAj

3∑
k=0

3∑
l=0

(−1)
k

(−1)
l
∆ (Z1,k, Z2,l) , (15)

where Ai andAj denote the areas ofZi andZj , which are the averaging domains for X̂i and X̂j . ∆ (Z1,k, Z2,l)
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is defined as

∆ (Z1,k, Z2,l) = A2
klVar

(
X̂kl

)
. (16)

Akl = L1,kL2,l is the area of the rectangular auxiliary domain Zkl, k = 0, . . . , 3, l = 0, . . . , 3. Figure 4

shows the averaging domains Zi and Zj and the edges of the auxiliary domains. The random variables

X̂i, i = 1, . . . nSA are Gaussian random variables. Hence, similar to the one-dimensional case, the mean155

vector µX̂ and covariance matrix CX̂ of the random variables X̂i, i = 1, . . . nSA, are sufficient to discretize

X(z).

Equations (13) to (15) are only applicable for rectangular averaging elements. If the domain Z cannot be

divided into rectangular averaging domains, it needs to be approximated by such a domain [4]. An example

is shown in Figure 5, where Z is approximated by the enveloping domain Z̃. A prescribed degree of accuracy160

for the approximation can be achieved by adjusting the size of the rectangular elements and, if necessary,

introducing a rotation of the coordinate system. The studies in this paper are restricted to the case where

Z can be divided into rectangular averaging elements.

z2

z1

Z Z̃

z2

z1

a) General 2D domain b) SA approximation

Figure 5: Approximation of a non-rectangular two-dimensional domain Z by an enveloping domain Z̃ consisting of rectangular
elements of variable size.

2.3. Spatial averaging for non-Gaussian translation random fields

Although, in theory, the SA method is applicable to non-Gaussian RFs, in practice, the derived equations165

for the parameters of the averaging random variables are only sufficient in the Gaussian case. For most other

cases it is difficult or even impossible to find all required expressions for obtaining a complete probabilistic

description of the resulting RVs X̂i [14]. However, it is possible to extend the applicability of the method

to the class of so-called translation RFs, given by the following marginal transformation [36, 32]:

X(z) = T (U(z)) . (17)
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U(z) is a zero-mean and unit-variance Gaussian RF with autocorrelation coefficient function ρU (z, z′). The170

mapping of Equation (17) is designed to preserve a given marginal cumulative distribution function (CDF)

FX(x) of the RF X(z). Given that FX(x) is strictly increasing, T (·) can be defined as T (·) = F−1
X (Φ(·)),

where F−1
X (·) denotes the inverse CDF of X(z) and Φ(·) is the standard normal CDF [37]. U(z) can

be obtained from X(z) by inversion of Equation (17), i.e., U(z) = T−1 (X(z)). Note that, in order to

approximate the RF with a set of Gaussian random variables, the spatial correlation needs to be modeled175

for the underlying Gaussian RF. Three special cases of translation RFs, for which T (·) is given by an analytic

expression, are presented in the following. The equations are given for a single averaging element over the

entire domain of definition but can be generalized by dividing Z into subdomains and applying the Equations

for mean and covariance derived for the Gaussian case.

2.3.1. Lognormal random field180

In contrast to a Gaussian RF, a lognormal RF can be used to model non-negative quantities, which makes

it preferable, e.g., for modeling mechanical properties. Consider an RF Y (z) on the domain Z defined by

the following function of a zero-mean and unit-variance Gaussian RF U(z):

Y (z) = exp
(
U(z) · σX(z) + µX(z)

)
= exp

(
X (z)

)
. (18)

X(z) is a Gaussian RF with mean function µX(z) and standard deviation function σX(z). FY at any z ∈ Z

is a lognormal distribution, with parameters µlnY (z) = µX(z) and σlnY (z) = σX(z):185

Y (z) ∼ logN (µlnY (z), σlnY (z)) . (19)

Spatial averaging is then performed for X(z) resulting in a Gaussian random variable X̂Z with parameters

µX̂ and σX̂ =

√
Var

(
X̂Z

)
given by Equations (2) and (3). Applying the transformation of Equation (18)

gives

ŶZ = exp

(
1

ΩZ

∫
Z

X(ζ)dζ

)
= exp

(
X̂Z

)
, (20)

where ŶZ is a lognormal distributed random variable with parameters µlnŶ = µX̂ and σlnŶ = σX̂ . Due to

the non-linear transformation, ŶZ does not represent the arithmetic average but the geometric average of190

Y (z) over z. It is noted that the geometric average is always smaller than or equal to the arithmetic average.

Hence, using the geometric average for the SA discretization of a lognormal RF provides a lower bound on

the spatial average of the RF. While this is reasonable and conservative for some modeling cases (e.g., for
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low-strength dominated soil properties [e.g., 9, 10]), it may provide a non-appropriate approximation of the

true RF when the RF represents a load/demand on the structure [e.g., 11].195

2.3.2. Student’s t-random field

The Student’s t-distribution can be used to model a Gaussian quantity accounting for the uncertainty

in the parameters of the Gaussian distribution [e.g., 38]. Consider a Student’s t-RF Y (z), in which FY at

any z ∈ Z is a Student’s t-distribution, with location parameter µY (z), scale parameter σY (z) and degrees

of freedom νY [38, 39, 30]:200

Y (z) ∼ T (µY (z), σY (z), νY ) . (21)

Note that νY is space-invariant. The transformation of Equation (17) is given as [39]:

Y (z) =

√
νY
χ

(
U(z) · σY (z)

)
+ µY (z) =

√
νY
χ
X(z) + µY (z), (22)

where X(z) is a zero-mean Gaussian RF with standard deviation σX(z) = σY (z) and χ is a random variable

that follows the χ2 distribution with νY degrees of freedom. As only X(z) and the function for the mean

value µY (z) are subject to spatial variability, the spatial average ŶZ over the domain Z can be expressed

by the following averaging integral:205

ŶZ =
1

ΩZ

∫
Z

Y (ζ)dζ =
1

ΩZ

∫
Z

√
νY
χ
X(ζ) + µY (ζ)dζ =

=

√
νY
χ

ΩZ

∫
Z

X(ζ)dζ +
1

ΩZ

∫
Z

µY (ζ)dζ =

=

√
νY
χ
X̂Z + µŶ , (23)

where X̂Z is a zero-mean Gaussian random variable with variance calculated according to Equation (3) and

µŶ is the mean of the spatial average of Y (z) over Z as defined in Equation (2).

2.3.3. Log-Student’s t-random field

The log-Student’s t-distribution combines the lognormal and the Student’s t-distribution and thus, can be

used to model non-negative quantities accounting for parameter uncertainty [30]. Consider a log-Student’s210
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t-RF V (z), i.e., FV at any z ∈ Z is a log-Student’s t-distribution [30, 40]:

V (z) ∼ lnT (µlnV (z), σlnV (z), νV ) . (24)

The parametrization of FV is done by means of the parameters of the underlying Student’s t-distribution.

At any z ∈ Z it holds that Y (z) = ln(V (z)) follows a Student’s t-distribution with location parameter

µY (z) = µlnV (z), scale parameter σY (z) = σlnV (z) and degrees of freedom νY = νV [30]. By combining

Equation (18) and (22), the transformation of Equation (17) is given as follows:215

V (z) = exp

(√
νV
χ
· (U(z) · σlnV (z)) + µlnV (z)

)
= exp

(√
νV
χ
X(z) + µlnV (z)

)
. (25)

X(z) is a zero-mean Gaussian RF with standard deviation σX(z) = σlnV (z) and χ is a random variable

that follows the χ2 distribution with νV degrees of freedom. The spatial average V̂Z over the domain Z can

be calculated as follows:

V̂Z = exp

(
1

ΩZ

∫
Z

Y (ζ)dζ

)
= exp


√

νV
χ

ΩZ

∫
Z

X(ζ)dζ +
1

ΩZ

∫
Z

µlnV (ζ)dζ

 =

= exp

(√
νV
χ
X̂Z + µlnV̂

)
. (26)

X̂Z is a zero-mean Gaussian random variable with variance calculated according to Equation (3) and µlnV̂

is the mean of the spatial average of ln(V (z)) = Y (z) over Z. Similar to the lognormal RF in Section 2.3.1,220

V̂Z represents the geometric average of V (z) over Z instead of the arithmetic average.

3. Numerical investigations

In this Section, the accuracy of the SA method for approximating non-homogeneous RFs is investigated

by means of two numerical investigations. The non-homogeneity of the RFs in both cases stems from the

combination of a homogeneous prior RF with measurement data. The first investigation is a one-dimensional225

beam under uniform load with spatially variable beam flexibility analyzed in a statically determinate setting

with analytical solution and a statically indeterminate setting where the system response is evaluated using a

finite element model. Different SA settings regarding element size and number are investigated for different

output quantities of the structural system. The second investigation is a sliding failure mechanism in a

ship lock chamber wall where the friction coefficient in a construction joint is modeled as a two-dimensional230
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RF. Two different failure mechanisms are considered and the effect of the chosen SA discretization on the

reliability estimates is analyzed.

3.1. Measures for the accuracy of the random field discretization

Discretizing an RF X(z) with a finite number of random variables X̂i, i = 1, . . . n, yields an approxi-

mation error. If the X̂i, i = 1, . . . n, are used for uncertainty propagation through a numerical model, this235

error typically propagates through the model and is reflected in the model response. However, depending

on the type of the quantity of interest, the error in the model response may be larger or smaller than the

error in the RF approximation [24]. The point-wise approximation error is defined as the difference of the

quantity of interest Q and its approximation Q̂ at spatial location z, i.e., ε (z) = Q (z) − Q̂ (z). Based on

ε (z), numerous local and global error measures can be defined to assess the accuracy of a RF discretization.240

e.g., the bias, error variance or mean-square error [e.g., 32, 5, 41]. The latter two, include the covariance

of Q (z) and Q̂ (z), which can require the numerical solution of a complex integral equation. In addition,

their interpretation is not always straightforward and hence they are not further discussed here. Instead,

we use the normalized bias εµ(z) and the normalized variance error εV(z) as point-wise error measures in

this study. They are defined as [24]245

εµ(z) =
E [Q(z)]− E

[
Q̂(z)

]
E [Q(z)]

, (27)

εV(z) =
Var (Q(z))−Var

(
Q̂(z)

)
Var (Q(z))

. (28)

Taking the weighted integral of Equations (27) and (28) over the domain Z yields the corresponding global

error measures [41]:

ε̄µ =
1

Ω

∫
Z

|εµ(z)| dz, (29)

ε̄V =
1

Ω

∫
Z

|εV(z)| dz. (30)

In addition, the influence of the RF discretization on the system response is assessed in terms of the

system reliability, or equivalently its probability of failure. The failure event F is expressed in terms of a

limit state function g
(
X(z)

)
, such that failure occurs if g

(
X(z)

)
≤ 0. That is, the probability of failure is250

PF = Pr
(
g
(
X(z)

)
≤ 0

)
. We will be comparing PF with P̂F = Pr

(
g
(
X̂(z)

)
≤ 0

)
. Typically, g

(
X(z)

)
is
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a function of an output quantity of interest Q(z) and F occurs with a small probability. Hence, through

assessing the influence of the RF discretization on the probability of failure, we evaluate the ability of the

discretization to accurately represent the tails of the distribution of Q(z).

3.2. Analysis of a one-dimensional beam255

A one-dimensional beam subject to uniformly distributed vertical load is investigated, whose flexibility

F (z) is modeled by a Gaussian RF that is updated with measurement data. The beam has length L = 2 m

and the applied load is q = 1.4 kNm−1. F̂ (z) is the piece-wise constant SA approximation of F (z) by using

nSA averaging elements. Euler-Bernoulli beam theory is used to evaluate the response of the structural

system. We consider two different settings for the boundary conditions of the beam; a statically determinate260

case and a statically indeterminate case.

3.2.1. Random field model of the beam flexibility

The prior model of F (z) is a homogeneous RF with a mean of µ′F = 0.5 MN−1m−2 and a standard devi-

ation of σ′F = 0.1 MN−1m−2. The prior autocorrelation function is modeled by the exponential correlation

function [31]:265

ρ′(zi, zj) = exp

(
−2 |zj − zi|

ϑ

)
, (31)

where ϑ is the scale of fluctuation, which is set to 1 m.

We assume that measurement data M is available in the form of nm direct measurements of the beam

flexibility xm = [xm,1, . . . , xm,nm ] and the corresponding measurement locations zm = [zm,1, . . . , zm,nm ].

These measurements are associated with an additive zero-mean Gaussian measurement error ε with standard

deviation σ2
ε = 0.05µ′F . In this case, updating of F (z) can be done in closed form by making use of the self-270

conjugacy of the Gaussian distribution, resulting in the following posterior mean and covariance functions

[4, 23, 1]:

µ′′F (z) = µ′F +Rzm
(z) ·R−1

zm,ε · (xm − µ
′
F )

T
, (32)

C ′′F (zi, zj) = (σ′F )
2 ·
(
ρ(zi, zj)−Rzm

(zi) ·R−1
zm,ε ·R

T
zm

(zj)
)
. (33)

Rzm
(z) is a 1 × nm row vector function with element i equal to ρ′(z, zm,i). Rzm,ε = Rzm,zm

+ Rε, where

Rzm,zm is an nm × nm matrix with element (i, j) equal to ρ′(zm,i, zm,j) and Rε =
(
σε

σ′
F

)2

· I, where I is the

nm × nm identity matrix.275
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Figure 6: Posterior spatial mean value (panel a) and standard deviation (panel b) of the RF for the beam flexibility F ′′(z)

(blue) and its approximation with four averaging elements F̂ ′′(z) (red); posterior spatial autocorrelation of the RF F ′′(z) (panel
c) and correlation of the four averaging random variables for the approximation of F ′′(z) with SA (panel d).

A single measurement fm = 0.75 · µ′F = 0.375 MN−1m−2 at measurement location zm = 0.25L = 0.5 m

is considered in the RF update. The resulting posterior RF parameters of the beam flexibility are obtained

by application of Equations (32) and (33). We first set the number of SA elements to nSA = 4. Figure 6

illustrates the posterior RF parameters together with the parameters of the corresponding four spatial

averaging random variables calculated by means of Equations (4), (5) and (11). The measurement leads280

to a reduction in the mean value at the measurement location and in the region around the measurement

compared to the prior mean (blue line in panel a). In addition, the uncertainty and hence the standard

deviation at the measurement location and in its vicinity is reduced (blue line in panel b). These effects

decrease with increasing distance from the measurement location and thus the posterior parameters converge

to the prior parameters. A similar effect can be observed in the posterior correlation structure (panel c).285
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The parameters of the spatial averaging random variables reflect the non-homogeneity, however the local

extrema in the spatial mean and standard deviation average out when applying the averaging operations

for the discretization with SA (red lines in panel a and b). The spatial autocorrelation function of the RF

is approximated by a 4 × 4 correlation matrix (panel d). Again, the SA discretization accounts for the

non-homogeneity of the RF but local effects average out.290

3.2.2. Statically determinate cantilever beam

The statically determinate cantilever beam is illustrated in Figure 7. The internal forces are independent

of the flexibility and hence the bending moment M(z) can be directly calculated as M(z) = − q2 (L− z)2
.

Using the Euler-Bernoulli beam theory, the rotation ϕ(z) and vertical displacement w(z) as illustrated in

Figure 7 are obtained as follows:295

ϕ(z) = −q
2

∫ z

0

(L− t)2
F (t) dt, (34)

w(z) = −q
2

∫ z

0

∫ s

0

(L− t)2
F (t) dtds. (35)

L

q

w(z)

ϕ(z)
z

Figure 7: Statically determinate cantilever beam under uniform vertical load q.

Since F (z) is modeled with a Gaussian RF and ϕ(z) and w(z) are linear functions of F (z), they are also

Gaussian RFs. Based on Equations (34) and (35), spatial functions for the mean and autocovariance of the
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system response RFs can be derived:

µϕ(z) = −q
2

∫ z

0

(L− t)2
µF (t) dt, (36)

Cϕ(zi, zj) =
q2

4

∫ zj

0

∫ zi

0

(L− ti)2
(L− tj)2

CF (ti, tj) dtidtj , (37)

µw(z) = −q
2

∫ z

0

∫ s

0

(L− t)2
µF (t) dtds, (38)

Cw(zi, zj) =
q2

4

∫ zj

0

∫ zi

0

∫ sj

0

∫ si

0

(L− ti)2
(L− tj)2

CF (ti, tj) dtidtjdsidsj . (39)

Replacing µF (t) and CF (ti, tj) in Equations (36) to (39) with the element-wise constant approximations300

obtained by means of Equations (4) and (11) results in µϕ̂(z), Cϕ̂(zi, zj), µŵ(z) and Cŵ(zi, zj), i.e., the

spatial functions for the system response when F (z) is approximated by F̂ (z) with nSA spatial averaging

elements. Due to the linearity of the averaging operations, ϕ̂(z) and ŵ(z) are also Gaussian RFs. The
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Figure 8: Posterior spatial standard deviation of the system response (rotation: panel a; displacement: panel b) for the
cantilever beam. The blue lines mark the analytical RF solution and the red lines mark the SA approximation with nSA = 2
(dashed line), 4 (solid line) and 8 (dotted line).

system response RFs and their SA discretization with nSA = 2, 4 and 8 are evaluated using Equations (36)

to (39). The spatial mean value is approximated well with any chosen SA discretization. For nSA = 2, the305

maximum of the point-wise error εµ(z) is in the order of 5% (close to the fixed end of the beam) and <1%

for most spatial locations z. εµ(z) decreases further for nSA = 4 and nSA = 8. In general, εµ(z) decreases

with increasing distance to the fixed end. Figure 8 shows the spatial standard deviation of the beam rotation

(panel a) and vertical displacement (panel b). The spatial standard deviation of the system response RFs is

underestimated throughout the length of the beam, with decreasing approximation error for increasing nSA.310

The local effect of the measurement appears in the shape of σ′′ϕ(z) and σ′′ϕ̂(z) but not in σ′′w(z) and σ′′ŵ(z)

due to the smoothing caused by the additional integration when calculating the vertical displacement.
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Table 1: Average normalized bias ε̄µ and variance error ε̄V of the beam rotation ϕ′′ and vertical displacement w′′ for varying
number of spatial averaging elements nSA to discretize the posterior beam flexibility RF.

ε̄µ ε̄V

nSA ϕ′′ w′′ ϕ′′ w′′

2 0.009 0.019 0.301 0.458
4 0.010 0.020 0.144 0.240
8 0.003 0.005 0.044 0.063

The average error measures for the system response according to Equations (29) and (30) are listed in

Table 1 for nSA = 2, 4 and 8. The average bias is small for all configurations and the variance error decreases

with increasing nSA. In general, the average error is larger for the displacement than it is for the rotation.315

To investigate the effect of the SA discretization on the failure probability of the system, a maximum

allowable vertical displacement of wlim = −1.5 mm is defined. Since the vertical displacement of a cantilever

beam reaches its maximum at the free end, the following limit state function can be formulated:

g(F (z)) = w′′(z = 2 m)− wlim, (40)

Replacing w′′(z = 2 m) by ŵ′′(z = 2 m) in Equation (40) yields the SA approximation of the failure event.

Both w′′(z = 2 m) and ŵ′′(z = 2 m) are Gaussian random variables with mean value and standard deviation320

directly computable by means of Equations (38) and (39). Thus, PF is given as

PF = Φ

(
wlim − µ′′w(z = 2 m)

σ′′w(z = 2 m)

)
, (41)

where Φ(·) is the cumulative distribution function of the standard normal distribution. The reference solution

is PF = 9.9× 10−4. The SA approximation of PF is obtained by replacing µ′′w(z = 2 m) and σ′′w(z = 2 m) by

the respective SA approximations.

Figure 9 illustrates the approximated mean and standard deviation of the displacement at the free end325

and the corresponding failure probability estimate as function of nSA and compares them to the respective

analytical solutions. It appears that a single averaging element results in a strong overestimation of the

failure probability as P̂F is approximately eight times larger than PF . When increasing nSA, P̂F becomes

negatively biased and converges to the analytical solution PF with increasing nSA. The relative error in the

probability of failure falls below 30% for nSA ≥ 5. The overestimation for nSA = 1 results from the fact330

that the RF F ′′(z) is discretized with a single random variable that averages over the whole length of the

beam, which reduces the local effect of the measurement at zm = 0.5 m and leads to an overestimation of the
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Figure 9: Panel a shows the SA approximation of the mean (solid red line, left ordinate) and standard deviation (dashed red
line, right ordinate) for the tip displacement of the cantilever beam as function of the number of equisized averaging elements
nSA. The blue lines show the analytical mean value µ′′w(z = 2 m) (solid blue line) and standard deviation σ′′w(z = 2 m) (dashed
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Table 2: Average normalized bias ε̄µ and variance error ε̄V of the vertical displacement w′′ and estimated probability of failure

P̂F with eight SA elements of uniform size, a refined mesh at the fixed end and a refined mesh at the measurement location.

ε̄µ ε̄V P̂F

uniform mesh 0.005 0.063 8.4×10−4

fine mesh at fixed end 0.001 0.025 9.6×10−4

fine mesh at zm 0.004 0.044 9.0×10−4

flexibility in that region. This error propagates through the model evaluation and, on the one hand, leads to

a strong bias of the vertical displacement. On the other hand, it leads to an almost perfect approximation

of σ′′w(z = 2 m) with a single averaging element, since it counteracts the underestimation of the variance335

that is typically observed when using a small number of averaging elements.

So far, the SA elements have been equisized, i.e., Li = L
nSA

, i = 1, . . . , nSA independent of the location

within the structural system. In the following, the SA mesh is chosen such that it is finer in regions that

may be critical for the system response, in this case the fixed end of the beam z = 0 m and the measurement

location zm = 0.5 m. Figure 10 shows the parameters of the random variables and their correlation for340

nSA = 8 with equisized elements (left column), refined mesh at the fixed end (middle column) and refined

mesh around the measurement location zm = 0.5 m (right column). As nSA = 8 for all three settings, a

refinement of the SA mesh in one region of the beam necessarily leads to a coarser mesh in other parts of

the domain, in this case towards the free end of the beam. Figure 11 illustrates the effect on the point-wise

error in approximating the vertical displacement.345

Refining the mesh leads to smaller bias and variance error in that region compared to the error with

equisized elements. The coarser mesh towards the free end of the beam leads to slightly larger bias and

variance error for the two adaptive mesh choices. The average error measures are listed in Table 2 showing

the minor effect on the average variance error of the vertical displacement. The investigated adaptive
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mesh choices lead to a failure probability estimate of P̂F = 9.6 × 10−4 (mesh refinement at fixed end) and350

P̂F = 9.0 × 10−4 (mesh refinement at measurement location), respectively compared to P̂F = 8.4 × 10−4

with nSA = 8 equisized averaging elements. It is reminded that the reference solution is PF = 9.9 × 10−4.

However, although the results with the adaptive mesh choices are more accurate, they are also more sensitive

to the analysis at hand and thus should be handled with caution. This sensitivity is illustrated by using

another adaptive SA mesh with nSA = 8, where the refinement is towards the free end of the beam, i.e., the355

region of interest with respect to the limit state function of Equation (40). The SA mesh is a left-to-right

reversion of the adaptive SA mesh with the refinement at the fixed end (cf. middle column of Figure 10).

The resulting failure probability estimate is P̂F = 5.0 × 10−4, which underestimates PF significantly. In

the general case, it might be difficult to find a suitable adaptive SA mesh, especially in cases where the

relation between the RF discretization and the output quantity of interest is hidden by a black box model360

evaluation, as is the case for complex finite element models.

3.2.3. Propped cantilever beam

The structural system is modified by adding an additional vertical support at the free end of the beam

as illustrated in Figure 12. The resulting propped cantilever beam is statically indeterminate and thus,

Equations (34) and (35) cannot be used to evaluate the beam rotation and displacement.

L

q

w(z)

ϕ(z)
z

Figure 12: Statically indeterminate propped cantilever beam under uniform vertical load q.

365

Due to the spatial variability of the beam flexibility, the inner forces of the beam depend on the flexibility.

Therefore, the system response is evaluated with the linear finite element method based on the Euler-

Bernoulli beam theory with a finite element size of lFE = 0.01 m. Since the system response RFs and

their moments cannot be calculated analytically, a numerical reference solution is employed. To this end,

the posterior flexibility RF is discretized with the Karhunen-Loève (KL) expansion with a large number of370

terms (mKL = 500) [27]. The KL expansion is based on a spectral decomposition of the autocovariance

operator of the RF and can be used for homogeneous and non-homogeneous RFs [41, 24, 1]. Using the KL
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Figure 13: Posterior spatial mean value (panel a) and standard deviation (panel b) of the vertical displacement for the propped
cantilever beam. The KL expansion in the reference solution (blue) discretizes the RF F ′′(z) with mKL = 500 terms, the SA
approximation (red) with four averaging elements of equal size.

Table 3: Average normalized bias ε̄µ and variance error ε̄V of the propped cantilever vertical displacement w′′ for varying
number of spatial averaging elements nSA to discretize the posterior beam flexibility RF.

nSA ε̄µ ε̄V

2 0.016 0.322
4 0.023 0.278
8 0.007 0.070

expansion, the mean value of an RF is represented exactly, while there is an approximation error in the

covariance operator. The average variance error of the beam flexibility with the chosen number of terms for

the reference solution is smaller than 1%. The parameters of the posterior flexibility RF F ′′(z) are the same375

as in the previous investigation and its SA discretization is done with four equisized averaging elements (cf.

Figure 6). The reference solution as well as the SA solution for the moments of the vertical displacement are

obtained by running a Monte Carlo simulation with NMCS = 1×104 independent samples and is illustrated

in Figure 13.

Panel a shows that the mean displacement is approximated well with four SA elements, concerning both380

shape and magnitude of the curve. The standard deviation of the displacement is underestimated throughout

the beam and the magnitude increases with increasing distance to one of the supports.

Table 3 lists the average bias and variance error of the vertical displacement for nSA = 2, 4 and 8.

Increasing nSA to eight elements leads to large error reductions while the difference between nSA = 2

and nSA = 4 is comparatively small. Comparison of Table 3 with Table 1 for the statically determinate385

cantilever beam indicates that the average error is larger for the propped cantilever beam than for the

statically determinate cantilever beam.

Due to the non-uniform flexibility of the propped cantilever beam, the inner forces (i.e., bending moment

and shear) are functions of the applied load and the support reactions, which need to be evaluated numer-

ically, e.g., by means of the finite element method. The bending moment in a propped cantilever beam is390
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line, right ordinate) for the bending moment at the fixed end of the propped cantilever beam as function of the number of
equisized averaging elements nSA. The blue lines show the analytical mean value µ′′M (z = 0 m) (solid blue line) and standard

deviation σ′′M (z = 0 m) (dashed blue line). Panel b shows the corresponding SA approximation of the failure probability P̂F
(red line) as function of the number of equisized averaging elements nSA. The blue line shows the analytical failure probability
PF .

calculated as follows:

M(z) = M(z = 0) · L− z
L

+ q ·
(
L · z

2
− z2

2

)
, (42)

where M(z = 0) is the bending moment at the fixed end of the beam. For constant beam flexibility, the

support reactions can be determined analytically and M(z = 0) = −q · L
2

8 . As F (z) is modeled by an RF,

the evaluated bending moment at the fixed end depends on the chosen discretization. To illustrate this, a

reliability analysis with the following limit state function is performed:395

g(F (z)) = M(z = 0 m)−Mlim, (43)

where Mlim is chosen as −1.25 · q · L
2

8 = −750 kNm. It is noted that M(z = 0 m) is not a Gaussian random

variable and thus, evaluation of the probability of failure in terms of the normal integral is not possible.

Instead, a Monte Carlo simulation with NMCS = 1×106 samples is employed to estimate PF , where the full

finite element model of the propped cantilever beam is evaluated for each realization of the beam flexibility.

A reference solution is obtained based on the KL expansion with mKL = 500 terms to discretize the beam400

flexibility in a Monte Carlo simulation with NMCS = 1 × 107 resulting in PF = 2.01 × 10−3. The results

for varying number of averaging elements in the SA discretization are illustrated in Figure 14. The SA

approximations for mean (red line) and standard deviation (dashed red line) are plotted as function of nSA

in panel a and compared to the respective reference solution (blue line and dashed blue line). If nSA = 1,

the beam flexibility is uniform throughout the domain, leading to a deterministic bending moment at the405

fixed end (µ̂′′M (z = 0) = −q · L
2

8 = −600 kNm and σ̂′′M (z = 0) = 0 kNm). The SA method underestimates

both mean µ̂′′M (z = 0) and standard deviation σ̂′′M (z = 0) before converging to the reference solution with
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increase of nSA. Panel b shows the convergence of the estimated failure probability P̂F (red line) towards

the reference solution (blue line). Failure cannot occur for nSA = 1 because the uniform flexibility results

in a deterministic bending moment that does not lead to a failed state of the system. No failure sample410

was observed for nSA = 2 in the Monte Carlo simulation with the chosen sample size, indicating that P̂F

strongly underestimates PF . Choosing nSA ≥ 3 leads to negatively biased estimates of the failure probability

converging towards the reference solution with increasing nSA. P̂F is of the correct order of magnitude for

nSA ≥ 5.

3.2.4. Summary and interpretation of results415

The one-dimensional beam example shows that SA can be used to approximate non-homogeneous RFs

in reliability analyses of simple beam structures. Due to the smoothing effect of the forward operator, local

fluctuations in the beam flexibility average out and thus, the system response can be approximated well

with spatially averaging elements. Not surprisingly, a larger number of averaging elements and thus, a larger

number of random variables to approximate the RF leads to a better global accuracy of the system response420

approximation. However, due to the changing interval bounds when changing the number of SA elements,

this does not necessarily hold for all error measures when the RF is non-homogeneous. The distribution tails

of the system response are especially important when performing reliability analysis. Our results show that

the distribution tails can be sufficiently well approximated with a reasonable number of random variables

for the RF discretization, although the required number is larger than for estimating the mean response.425

The choice of an adaptive size of the averaging elements can lead to a better accuracy of the results, but

at the same time increases the sensitivity of the SA discretization to the behavior of the numerical model.

Hence, it cannot be recommended for general use; in general problems, the underlying numerical model may

be more complex, in which case the choice of an appropriate adaptive mesh is not straightforward. The

influence of the spatial variability of the beam flexibility on the system response depends on the quantity430

of interest and the problem setting. Local failure mechanisms (in our investigation the bending moment)

require a larger number of averaging elements than failure mechanisms dominated by global behavior of the

flexibility (in our investigation the maximum displacement). Other than in statically determinate settings,

the inner forces in a statically indeterminate setting are influenced by spatially variable beam flexibility and

thus are spatially variable functions. This leads to larger approximation error in the spatial system response435

when using SA for the RF discretization.
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3.3. Sliding failure in the construction joint of a shiplock

The chamber of a fictitious ship lock is investigated. It has a length of L = 109 m, a usable width between

the chamber walls of 12 m and is made of unreinforced tamped concrete. Several failure mechanisms can

occur in a ship lock, one of them being sliding of the construction joint between the chamber wall and the440

base slab. The cross section of the wall including the joint with a width of W = 4.5 m and the surrounding

soil are illustrated in Figure 15. In structural verifications, sliding of this joint due to shear is one of the

2.0 m

8.4 m

1.5 m

4.5 m

z1

z2
z3

Construction
joint

Ground water 
level

Soil

Figure 15: Half cross section of a ship lock chamber with construction joint between base slab and chamber wall.

failure mechanisms that are investigated by checking the following condition [42, 43]:

VEd ≤ SRd, (44)

where VEd denotes the applied design shear force at the interface and SRd is the design sliding resistance of

the joint. In practice, both VEd and SRd depend on a number of factors and additional variables to cover445

different effects on the sliding failure. For simplicity, a slimmed-down version is used here. VEd consists of all

forces acting horizontally on the structure, i.e., the horizontal earth and water pressure. SRd is the product

of the vertical forces NEd and the friction coefficient τ of the construction joint. Further contributions to

SRd (e.g., the concrete tensile strength) are neglected at this point. NEd is given by the self weight of the

chamber wall plus the vertical earth and water pressure, wall friction and crack and pore water pressure.450

In this example, two failure events are considered. The first one is a local exceedance of the sliding

resistance along z2, defined by the following limit state function:

g1(z1, τ(z)) = γR · SR (z1)− VE (z1) , (45)

where γR = 1.3 is a deterministic coefficient to account for the spatial load bearing behavior of the chamber

wall in a simplified manner. A detailed mechanical model for the spatial load bearing would go beyond
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the scope of the investigation at this point. SR (z1) is defined as the average sliding resistance along the455

construction joint in z2:

SR (z1) =
NE (z1)

4.5 m

∫ 4.5 m

0 m

τ(z) dz2. (46)

VE (z1) and NE (z1) are the loads acting on the structure in horizontal and vertical direction. The second

limit state function is defined as exceedance of the average sliding resistance of a substantial part of the

chamber wall:

g2 (ζ1, τ(z)) =

∫ ζ1+
z̄1
2

ζ1− z̄1
2

SR (z1) dz1 −
∫ ζ1+

z̄1
2

ζ1− z̄1
2

VE (z1) dz1, (47)

where z̄1 = L
5 is the length in z1 that is assumed critical for the sliding failure mechanism of a substantial460

part of the wall and ζ1 ∈ ( z̄12 , L−
z̄1
2 ) is the location of the potential failure point along the wall.

Failure of the chamber wall occurs if any of the two described limit state functions gives a value smaller

than zero at any point in z1 direction. Thus, the limit state function for system failure is given as a function

of the two individual failure probabilities:

gsys(τ(z)) = min

 minz1 {g1(z1, τ(z))} , z1 ∈ (0 m, L)

minζ1 {g2(ζ1, τ(z))} , ζ1 ∈ ( z̄12 , L−
z̄1
2 )

 . (48)

3.3.1. Two-dimensional random field for the friction coefficient465

The friction coefficient τ in the construction joint is modeled by a two-dimensional RF τ (z) in z1 and z2.

The prior RF τ ′ (z) is homogeneous with lognormal marginal distribution F ′τ . The corresponding parameters

are µ′lnτ and σ′lnτ , which are the mean value and standard deviation of the Gaussian distribution F ′lnτ of the

underlying homogeneous Gaussian RF τln (z). The spatial correlation of τ ′ln (z) is modeled with the Matérn

correlation model with a smoothness parameter of ν = 1.5 [31, 44]:470

ρ′(zi, zj) =

(
1 +

√
3δz
lc

)
· exp

(
−
√

3δz
lc

)
. (49)

The correlation length is chosen as lc = 4 m.

A typical assumption for the friction coefficient in indented construction joints of concrete structures

is τ = 0.9 [42], while in-situ measurements often show significantly higher friction coefficients. Hence, the

prior RF distribution parameters are chosen such that τ = 0.9 approximately equals the 5%-quantile value

of the lognormal distribution. This is achieved by choosing µ′lnτ = 0.25 and σ′lnτ = 0.2. The corresponding475

mean value and standard deviation are µ′τ = 1.31 and σ′τ = 0.26. Note that this prior distribution is based
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Table 4: Measurement values τm of the friction coefficient and corresponding locations in the construction joint of the ship
lock chamber wall.

1 2 3 4 5 6 7 8

z1 [m] 17.80 22.30 46.55 52.05 54.70 54.70 76.25 81.40
z2 [m] 0.75 0.50 1.25 1.45 0.85 1.75 0.35 1.00
τm 2.6 2.1 1.2 1.7 3.1 2.1 2.9 5.0

on relatively strong assumptions and may not hold in practice.

It is assumed that data from concrete core samples of the chamber wall is available including nm = 8

spatial measurements of the friction coefficient τ in the construction joint (i.e., z3 = 0 m). Table 4 lists

the measurements τm = [τm,1, . . . , τm,8] and corresponding locations. It is further assumed that the data480

are associated with a lognormal multiplicative measurement error with median 1 and coefficient of variation

CVε = 0.1, which is equivalent to an additive zero-mean Gaussian measurement error for the logarithmic

transformation of the measurements ln(τm). Equations (32) and (33) can be adapted for the two-dimensional

update of the mean and covariance function of the Gaussian RF τln (z):

µ′′lnτ (z) = µ′lnτ +Rzm(z) ·R−1
zm,ε · (ln(τm)− µ′lnτ )

T
, (50)

C ′′lnτ (zi, zj) = (σ′lnτ )
2 ·
(
ρ(zi, zj)−Rzm

(zi) ·R−1
zm,ε ·R

T
zm

(zj)
)
. (51)

Rzm(z) is a 1× nm row vector function with element i equal to ρ′(z, zm,i). Rzm,ε = Rzm,zm + Rε, where485

Rzm,zm
is an nm × nm matrix with element (i, j) equal to ρ′(zm,i, zm,j) and Rε = σ2

lnε · I, where I is

the nm × nm identity matrix. The resulting posterior mean value and standard deviation of the marginal

lognormal distributions of τ ′′ (z) are plotted in Figure 16.
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Figure 16: Posterior spatial mean value (panel a) and standard deviation (panel b) of the two-dimensional RF for the friction
coefficient in the construction joint of a ship lock chamber wall. The red crosses indicate the locations of the nm = 8
measurements of the friction coefficient.

To approximate τ ′′ (z) with SA, the domain of the construction joint is divided into rectangular averaging

domains. Their length is L
nSA,1

in z1 and W
nSA,2

in z2, resulting in nSA = nSA,1 ·nSA,2 rectangular elements of490

27



0

z1 [m]
0 10 20 30 40 50 60 70 80 90 100

4
2

0

z1 [m]
0 10 20 30 40 50 60 70 80 90 100

4
2

1.23

3.94

0.12

0.46

µʹʹ›τ

σʹʹ›τ

z 2 
[m

]
z 2 

[m
]

a) Mean value

b) Standard deviation

Figure 17: Posterior spatial mean value (panel a) and standard deviation (panel b) of the SA discretization of the two-
dimensional RF for the friction coefficient in the construction joint of a ship lock chamber wall. The number of elements is
nSA = 20 with nSA,1 = 20 and nSA,2 = 1.

equal size. The corresponding parameters of the lognormal averaging random variables and their correlation

are found by application of Equations (13) to (15) in combination with the transformation in Equation (20).

The mean values and standard deviations for nSA,1 = 20 and nSA,2 = 1 are illustrated in Figure 17. It can

be seen that local extrema of the RF parameters resulting from high or low measurement values are not

fully reflected in the SA parameters but regions of high or low values are visible.495

3.3.2. Loads acting on the structure

The vertical forces from self weight, vertical earth and water pressure, wall friction and crack and pore

water pressure are modeled space-invariant and deterministically. They sum up to NE(z1) = 580 kNm−1 per

running length. The horizontal water pressure is assumed deterministic based on the given ground water level

(cf. Figure 15), resulting in a value of VE,w = 353 kNm−1 per running length. The horizontal earth pressure500

consists of a basic value of VE,e = 159 kNm−1 and is multiplied with a location-specific random term. This

term is modeled with a one-dimensional KL representation using a fixed number of terms (mKL = 10). It

has mean value µp = 1, standard deviation σp = 0.05 and exponential spatial correlation (cf. Equation (31))

with a scale of fluctuation of ϑ = 40 m.

3.3.3. Reliability analysis505

The reliability analysis is carried out with MCS using 107 independent samples. A reference solution

is obtained by discretizing the two-dimensional RF τ ′′ (z) with the KL expansion with mKL = 500 terms.

Figure 18 illustrates the resulting failure probability estimates as function of the number of SA elements in

z1 direction nSA,1. Panel a shows that P̂F (red line) strongly underestimates PF (blue line) for small nSA,1

but converges to the reference solution with increasing nSA,1. P̂F = 0 when nSA,1 < 4, confirming the trend510

to underestimate PF for small nSA,1. The system failure probability can be split up into the two individual

failure probabilities PF,1 and PF,2 for failure as defined by Equation (45) and (47), respectively. Panel b
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Figure 18: Failure probability estimates for the sliding failure of the ship lock chamber wall as function of the number of
equisized averaging elements in z1 direction nSA,1. Panel a shows the estimate of the system failure probability P̂F (red line)

and panel b shows the estimates of the individual failure probabilities P̂F,1 (solid red line) and P̂F,2 (dashed red line). The
blue lines mark the corresponding reference failure probabilities PF , PF,1 and PF,2 (dashed blue line).

Table 5: Effect of the number of SA elements in z2 direction nSA,2 on the failure probability estimate P̂F for sliding failure of
the ship lock chamber, exemplarily for nSA,1 = 25, nSA,1 = 50 and nSA,1 = 75.

P̂F

nSA,1 nSA,2 = 1 nSA,2 = 2 nSA,2 = 3

25 8.9 × 10−4 8.4 × 10−4 8.4 × 10−4

50 2.7 × 10−3 2.6 × 10−3 2.6 × 10−3

75 3.8 × 10−3 3.7 × 10−3 3.6 × 10−3

of Figure 18 shows the convergence of the individual probability estimates P̂F,1 (solid red line) and P̂F,2

(dashed red line) to the reference solution (respective blue lines) with increasing nSA,1. For nSA,1 < 5 (4), the

estimated individual failure probability for failure mechanism 1 (2) is 0. The required number of averaging515

elements for obtaining a good approximation of PF,1 is significantly larger than for PF,2. This is related

to the nature of the two considered failure mechanisms. g1(z1, τ(z)) describes a failure mechanism that is

located at a single point in direction z1, i.e., it is sensitive to local spatial variability. g2 (ζ1, τ(z)) on the

other hand describes the average resistance over the length z̄1, which is dominated by regions of high and

low values of the friction coefficient. This type of failure mechanism is less sensitive to local variations of the520

RF approximation error, and thus, can be well approximated with a smaller number of averaging elements.

Increasing the number of elements in z2 direction has a minor effect on the estimated failure probability, as

shown in Table 5 for nSA,1 = 25, nSA,1 = 50 and nSA,1 = 75. The reason is that both failure mechanisms

include an integration of the sliding resistance over W in z2 direction. The minor changes in P̂F can be

attributed to the fact that τ ′′ (z) is approximated by the geometric average in each SA element. Increasing525

the number of elements leads to a smaller difference between the integration of geometric averages (with

SA) and the integration of τ ′′ (z) (in the reference solution).

This example shows that, for an efficient reliability analysis, the number of SA elements should be chosen

depending on the problem at hand. Local failure mechanisms require a larger number of averaging elements
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than failure mechanisms dominated by averages over specific regions or even determined by global averages.530

By an intelligent choice of the SA mesh, the stochastic dimension, i.e., the number of random variables, can

be significantly reduced without loss of accuracy. This is of special interest in multi-dimensional settings,

where on the one hand the number of random variables increases exponentially when the SA mesh is refined

and on the other hand, as illustrated above, the SA mesh might need to be fine in one direction but can be

relatively coarse in the other direction(s).535

4. Conclusion

This paper presents the spatial averaging method for discretizing non-homogeneous random fields with

focus on application in reliability analysis with forward engineering models. Non-homogeneous random

fields can be induced through a spatial Bayesian update of the random field with measurement data. Each

random variable in the discretization with spatial averages represents the average behaviour of the random540

field in a chosen linear (in one dimension) or rectangular (in higher dimensions) spatial domain. Equations to

calculate the mean vector and the covariance matrix of the set of averaging random variables are presented.

These equations enable direct application of the method to Gaussian random fields. Additionally, we present

application of the method to non-Gaussian translation fields and derive the required transformation for fields

with lognormal, Student’s t- and log-Student’s t-marginal distribution.545

The performance of the method is investigated through two numerical examples, a one-dimensional beam

and a two-dimensional ship lock chamber wall. Thereby, the method is assessed in terms of its ability to

accurately represent output quantities of interest and, particularly, the reliability of engineering structures.

It is shown that the spatial averaging method is suitable to approximate non-homogeneous random fields

with a relatively small set of random variables, especially when the numerical model of the system response550

involves integration of the spatially variable quantity. In such cases, even a single random variable can be

sufficient for obtaining a reasonable approximation of the output variability. The examples highlight that

understanding of the mechanical model is essential for efficient application of the spatial averaging method

in conjunction with structural models. It is shown that not only the number of averaging elements but also

the size of the individual elements are critical parameters for the performance of the method. An adaptive555

element size can increase the accuracy of the discretization by increasing the quality of the random field

discretization in regions of special importance. However, it cannot be recommended for general application

as it requires detailed knowledge of the effect of spatial variability in the input on the output quantity of

interest. Thus, a uniform mesh size is to be preferred since it is more robust in terms of the approximation
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error of the random field discretization. In the absence of an insight on the mechanical model, the number560

of elements can be chosen by defining a target average relative bias and variance error on the input random

field.

The method is particularly suitable for coupling with black box models of engineering systems, such as

finite element models, and, hence, enables consideration of spatial variability in practical reliability analyses.

Additionally, the presented method can be used to account for spatial variability in the verification of565

structures, e.g., by determining a conservative estimate for the spatial average of material properties or by

accounting for spatial load bearing behavior but still maintaining the simplifications of a plane structural

model. It is left to future studies to investigate the suitability of the spatial averaging method for practical

application in structural verification.
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Karhunen–Loève expansion, Computer Methods in Applied Mechanics and Engineering 271 (2014) 109 – 129.655

[42] European Committee for Standardization, EN 1992-1-1:2004-12: Eurocode 2: Design of concrete structures - Part 1-1:

General rules and rules for buildings, European standard, European Committee for Standardization (2004).

[43] Bundesanstalt für Wasserbau, Bewertung der Tragfähigkeit bestehender, massiver Wasserbauwerke [Assessment of the

bearing capacity of existing, massive hydraulic structures], BAW guideline, Bundesanstalt für Wasserbau, Karlsruhe,

Germany (2016).660

[44] C. Rasmussen, C. Williams, Gaussian processes for machine learning, Adaptive computation and machine learning, MIT,

Cambridge, MA, 2006.

33


	Introduction
	[id=SG]Random field discretization with the sSpatial averaging method
	[id=SG]Spatial averaging for oOne-dimensional Gaussian random field[id=SG]s
	[id=SG]Spatial averaging for tTwo-dimensional Gaussian random field[id=SG]s
	Spatial averaging for non-Gaussian [id=SG]translation random fields
	Lognormal random field
	Student's t-random field
	Log-Student's t-random field


	Numerical investigations
	Measures for the accuracy of the random field discretization
	[id=SG]Analysis of a oOne-dimensional beam
	Random field model of the beam flexibility
	Statically determinate cantilever beam
	Propped [id=SG]cCantilever beam
	Summary and interpretation of results

	[id=SG]Sliding failure in the construction joint of a shiplockReliability of a ship lock
	Two-dimensional random field for the friction coefficient
	Loads acting on the structure
	Reliability analysis


	Conclusion
	Acknowledgments
	References

