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Abstract

Structural verification of concrete structures relies on an underlying probabilistic model of the concrete

strength. This concrete strength exhibits a spatial variability, which is of particular relevance in existing

concrete structures, for which the strength is assessed based on samples. To accurately account for the spatial

variability of the concrete material, a random field modeling approach can be adopted, which includes a

spatial correlation function. Unfortunately, the available literature on spatial variability of concrete strength

is not sufficient to make an educated choice of this correlation function. In this paper, we propose a

hierarchical Bayesian random field model, that enables learning the parameters of a selected correlation

function with in-situ spatially distributed measurements of the concrete strength. We propose a correlation

function that accounts for the composite nature of the material through distinguishing micro-scale and meso-

scale variability. The predictive spatial distribution of the proposed random field model given the spatial

data is then obtained through an analytical random field update, resulting in a non-homogeneous random

field model with log-Student’s t-marginal distribution. The proposed approach provides an effective means

to employ in-situ measurements for updating verification predictions of concrete structures. We apply our

approach to two case studies on chamber walls of ship locks, where measurements of the concrete strength

are available from core samples.
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1. Introduction

Structural analysis and verification requires the specification of material strength parameters. These

parameters are subject to uncertainty, which needs to be accounted for in the analysis. In many instances,

a conservative characteristic value of the strength parameter is employed to account for this uncertainty

[1, 2, 3]. For the design of new structures, such values are given through the material classification, such5

as steel grade or concrete strength class [4, 5]. In contrast, the assessment of existing concrete structures

typically relies on samples taken from the structure to estimate the characteristic value of the concrete

strength [6, 7]. This is done via standardized procedures, which are based on assumptions on the underlying

probability distribution model for the concrete strength [7, 3, 8]. These approaches do not account for a

potential correlation of the measurements as they assume the samples to be drawn independently from a10

certain population (the structure of interest) [9, 10]. Neglecting such a correlation leads to approximate

results. The extent of the approximation error is case-specific; it is larger in older concretes with higher

variability in the concrete strength.

We focus on the assessment of existing structures where concrete strength exhibits higher variability and

is commonly assessed based on samples from the actual structure. The corresponding measurement values15

and their locations provide the basis for a spatial analysis [11]. For these applications, we suggest to model

concrete strength as a random field, whereby a random variable is assigned to each position in the structure.

The dependence among the random variables at all locations is described by a spatial correlation function

[12].

An approach to model the concrete strength as a random field has been proposed in the context of20

the JCSS probabilistic model code [13]. However, this model is not appropriately reflecting the interplay

between inter- and intra-site variability. Generally, the existing literature on random field models for concrete

strength is rather sparse and has mostly found application in initial studies on structural reliability or

response analysis [14, 15] or in investigations of its microstructure [e.g., 16, 17]. An extensive study has

been carried out in [18] to investigate the variability of concrete strength within a structure in the context25

of seismic design of existing structures. Recently, an approach to model concrete strength on multiple

hierarchical levels with focus on the hierarchy originating from the construction process has been proposed,

where it is suggested to model the variability within a structural component with a random field [19]. In

[20], the authors apply a hierarchical random field model to obtain location-specific characteristic values of

the concrete strength. Therein, an assumption on the prior correlation function of the concrete strength is30

made relying on the limited available literature.

The modeling approach in this paper uses Bayesian methods to learn the distribution of the concrete

strength through combining measurements with available prior information [21]. It employs the hierarchical

modeling approach also used in [20], where not only the spatial variability but also the uncertainty of the
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distribution parameters is explicitly modeled and learned from the data [22, 9]. Hence, our model accounts35

for both the intra- and inter-site variability, the latter reflected by the uncertain distribution parameters.

To take into account the nature of concrete as a composite material, a novel spatial correlation model

is developed, whose parameters can also be included in the Bayesian learning, hence, circumventing the

need for an ad-hoc choice of the spatial correlation function. The resulting predictive random field has

log-Student’s t-marginal distribution and can be expressed as function of a Gaussian random field through a40

simple transformation [22]. The derived distribution model can be used in further uncertainty propagation

and reliability analyses as well as to compute the spatial distribution of the characteristic value of the

concrete strength to be used in structural verifications.

The remainder of the paper is structured as follows: Section 2 briefly reviews the definition of the

concrete compressive strength and its characteristic value, before introducing a hierarchical spatial model45

and describing the Bayesian learning of its parameters. Section 3 applies the methodology to two ship lock

data sets, followed by a discussion and interpretation of the obtained results. The analysis of these data sets

provides empirical evidence on concrete strength correlation in practice, but also highlights the challenges

associated with the use of the spatial model in practice. Section 4 gives a brief summary of the results and

conclusions. Some additional information on the log-Student’s t-distribution are collected in the Appendix.50

2. Statistical modeling of concrete compressive strength

The strength of concrete depends on different factors, e.g., the water-cement ratio, the size and shape

of the included aggregate, used admixtures or the quality of workmanship in the production process [e.g.,

23, 13, 24]. The dominating strength parameter of concrete is its compressive strength fc, which is the focus

of this paper. The parameter fc is used to classify concrete into different concrete classes (grades). In the55

following, we propose a spatial probabilistic model for fc, and in Section 2.4 we show how the distribution

can be learned with measurement data.

2.1. Compressive strength of concrete

Concrete is a composite material made of water, cement, aggregate and potential admixtures. After the

hardening process, concrete can be divided into two phases, cement matrix and aggregate. Due to the two-60

phase nature of the concrete material, defining fc as a point-in-space continuous property is not meaningful.

Instead, fc is defined as the compressive strength of a volume of finite size [25]. fc depends not only on

the compressive strengths of cement matrix and aggregate alone, but also on the quality of the connection

between the two phases, which is determined by factors such as the surface of the aggregate and the type

of cement [26]. Furthermore, fc depends on other factors that are not directly related to the material itself,65

such as the direction of stress or the strain constraint due to size effects [27, 26, 1].
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Due to the reasons above, the compressive strength of concrete is assessed in terms of the breaking load

on reference specimens that have the shape of a cylinder (fc,cyl) or a cube (fc,cube) [25, 4, 13, 9]. Nowadays,

typical cylinder specimen have a height-diameter ratio of 2 (e.g., a height of 300 mm and a diameter of

150 mm) and cube specimen have an edge length of 150 mm [25]. Cubical specimen are mostly used for70

verifications during the construction process as part of the quality control process. In contrast, cylindrical

specimen are typically used in verifications of existing structures based on core samples taken from the

structure. Classification of concrete into different strength classes is done with respect to requirements

for fc,cyl and fc,cube [4]. The structural verification format of the Eurocode series is based on fc,cyl as

the critical parameter for all verifications regarding compression [4]. This paper focuses on modeling the75

concrete strength of existing structures and thus we employ fc,cyl to denote the in-situ concrete strength.

Depending on the application at hand, the structural resistance R can differ from fc,cyl, e.g., when

accounting for size effects [e.g., 27, 1] or when fc,cyl is used to infer other concrete parameters. In these

cases, R is a function of fc,cyl, which will introduce additional uncertainty into the model. However, the

focus of this paper lies on the probabilistic model of fc,cyl and such uncertainty is not further investigated.80

To improve readability, fc denotes the compressive strength of a cylindrical core sample for the remainder

of this paper.

2.2. Characteristic values of the concrete strength

Standardized verification formats rely on characteristic values fc,k of the concrete strength. Characteristic

values are generally defined as p−quantile values of an underlying probabilistic model, where p depends on85

the property and the type of analysis. The 5%−quantile value is typically chosen as characteristic value for

the concrete compressive strength [3]:

fc,k = F−1
fc

(p) = F−1
fc

(0.05), (1)

where F−1
fc

(·) is the inverse cumulative distribution function (CDF) of the concrete compressive strength.

When strength data from in-situ concrete samples are available, they can be used to estimate the charac-

teristic value fc,k. Different approaches have been developed and established in the engineering community90

to estimate fc,k from data of in-situ concrete samples. The most common ones are based on sample moment

estimates, i.e., the mean and variance of the samples, which are further used to obtain the characteristic

value based on tabulated values [3, 7, 8]. While the approach in [8] is based on a frequentist perspective

[10], the method in [3] and [7] relies on the Bayesian approach [9, 14, 22].

These approaches only require the number of measurements nm and the measurement values and do not95

account for the spatial locations of the measurements. Moreover, they do not differentiate between the con-

crete strength of a standardized cylinder and the in-situ structural resistance. However, some prerequisites

have to be fulfilled for their application: the measurements must be statistically independent, they have to
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be taken randomly in space and the sample size needs to be representative for the quantity of interest [9, 10].

While the last condition is assumed to be fulfilled by requiring a minimum number of samples for a given100

structure (depending on the size of the structure) [7], little attention is paid to the other two conditions

in practice and these conditions are commonly violated. For example, in many instances multiple samples

are taken from the same drilling core and sample locations are selected based on the perceived criticality

or importance of the material or location. Local clustering of data in limited areas of the structure can

lead to erroneous estimates of the variability of the quantity of interest and, hence, an erroneous estimate105

of its characteristic value. In order to obtain an accurate estimate, it is important to explicitly account for

the locations of the samples. To explicitly consider these locations, the spatial variability of the concrete

material should be modeled by a random field model.

2.3. Hierarchical random field model

Material parameters that vary randomly in space, such as the strength of concrete fc, can be modeled110

by random fields. A random field (RF) represents a random variable at every point z in the spatial do-

main Ω [12]. In practice, the probabilistic description of the RF is parameterized in a way that enables

its definition through a finite set of parameters Θ, the parameters of the marginal RF distribution, and a

spatial correlation function ρ(z, z′). In hierarchical random field models, the parameters in Θ are modeled

by random variables described by a probability density function (PDF) f(θ). Such a modeling approach115

enables distinguishing two different types of uncertainty: (i) the uncertainty associated with the parameters

of the spatial distribution of the material property, and (ii) the spatial variability of the property for fixed

parameters. Uncertainty (i) is related to the inter-structure variability, i.e., the variability of the material

property when comparing different structures, whereas uncertainty (ii) represents the intra-structure vari-

ability, i.e., the variability of the property when comparing different locations within a specific structure.120

Examples of hierarchical random field models in the context of probabilistic material modeling can be found

in [13, 9, 28]. In the following, we describe the two types of uncertainty in detail and set up a hierarchical

RF model for fc.

2.3.1. Intra-structure variability

The intra-structure spatial variability is modeled by a random field, which is a collection of random125

variables indexed by a continuous spatial coordinate z ∈ Ω [12]. To completely define the RF fc(z), one

needs to specify the joint distribution of the random variables corresponding to any selection of points

in Ω. If this joint distribution is the multivariate Gaussian distribution for any collection of points, the

corresponding RF is a Gaussian RF [29]. The use of a Gaussian RF is beneficial in practice due to its simple

definition and the numerous computational advantages of the Gaussian distribution, which facilitate the130

numerical treatment of RFs, i.e., their representation in terms of a finite number of RVs [30, 31]. An RF is
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said to be homogeneous, if the marginal distribution is space-invariant and the joint distribution is invariant

to a shift in z.

If the quantity of interest is non-Gaussian, it is a common practice to define the corresponding RF as

function of a zero-mean and unit-variance Gaussian RF U(z) to simplify its application in practice. This135

type of non-Gaussian RF is termed translation RF and can be defined through the following marginal

transformation [32, 33]:

X(z) = F−1
X(z)|θ(Φ(U(z))), (2)

where F−1
X(z)|θ(·) is the inverse CDF of X(z) conditional on the realization θ of Θ and Φ(·) is the CDF of

the standard normal distribution.

The assumption that fc follows a normal or lognormal distribution has been accepted and applied for140

many years [e.g., 34, 35, 2]. The lognormal distribution is more appropriate in cases of low concrete strengths

or/and large variability of the concrete strength, since it is only defined for non-negative values and, thus,

cannot result in a negative characteristic value. We limit ourselves to the lognormal model, for which the

transformation of Equation (2) in the case of a homogeneous RF is

fc(z) = exp
(
µfc,ln + λ

− 1
2

fc,ln
U(z)

)
. (3)

The parameters Θ = [µfc,ln , λfc,ln ] are the mean value µfc,ln and precision λfc,ln of ln (fc), where λfc,ln is the145

inverse of the variance. Using Equation (3), the spatial variability of fc(z) is implicitly modeled through

the spatial variability of the underlying RF U(z) and, thus, fc(z) is fully defined by the parameters of its

marginal distribution and U(z).

To model the spatial variability, one needs to account for spatial correlation of different locations in a

structure. The correlation between fc at two locations z and z′ is defined by the spatial correlation function150

ρ(z, z′).

When modeling spatial variability of concrete, one can distinguish between two types of spatial variability,

related to two different spatial scales. The first type represents the spatial variability at the meso-scale, where

the two phases of the concrete are not explicitly considered. Reasons for this type of variability are different

concrete batches, local clustering of aggregate or admixtures, decomposition through the vibration procedure,155

voids and factors related to the construction process. The second type is the micro-scale variability of

concrete, which is caused by the composite nature of concrete. The effect of this type of spatial variability is

restricted to a small area and wears off relatively fast. Figure 1 illustrates the two types of spatial variability

through a potential realization of fc in a one-dimensional concrete element of 10 m length (e.g., a core

sample). On the one hand, fc(z) shows fluctuations over short distances due to the micro-scale variability.160

On the other hand, regions of rather large values of fc (e.g., on the left side of the plot) and rather small

values of fc (in the center of the plot) can be detected due to the meso-scale variability.
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Figure 1: Illustration of the spatial behavior of fc, combining the effects from micro-scale and meso-scale spatial variability.

As the spatial variability of fc is affected by micro-scale and meso-scale variability, the correlation

function ρ(z, z′) needs to consider both effects. This can be done by defining ρ(z, z′) as combination of two

correlation functions:165

ρ(z, z′) = γmicro · ρmicro(z, z′) + (1− γmicro) · ρmeso(z, z′), (4)

where γmicro ∈ [0, 1] is the share of correlation associated with the micro-scale variability, ρmicro(z, z′) and

ρmeso(z, z′) are the spatial correlation functions for the micro- and meso-scale variability, respectively. An

example of such a correlation model is given in Figure 2. The rapid decrease of ρ(z, z′) from 1 to values

close to 1 − γmicro for small distances ∆(z, z′) between z and z′ shows the immediate effect of the micro-

scale variability on the spatial correlation. The effect of the meso-scale variability becomes apparent with170

increasing ∆(z, z′).

Δ(z,zʹ)

ρ
(z

,z
ʹ)

1

0
0

1-γmicro

γmicro

Figure 2: Spatial correlation function ρ(z,z′) combining the effect of micro-scale variability and meso-scale variability as

function of the spatial distance ∆(z,z′).

Different parametric models exist for the correlation function. We restrict the range of possible correlation

models for the meso-scale variability to the Matérn correlation model ρν(z, z′), which is chosen due to its

flexibility. It is defined as follows [36, 29]:

ρν(z, z′) =
21−ν

Γ(ν)

(√
2ν ∆w(z, z′)

)ν
Kν

(√
2ν ∆w(z, z′)

)
, (5)

where Γ(·) is the gamma function, Kν(·) is the modified Bessel function of the second kind and order ν, and175

∆w(z, z′) is the weighted distance of z and z′. In case of an isotropic spatial correlation structure, i.e., all

directions are weighted equally, ∆w(z, z′) = ∆(z,z′)
Lc

, where ∆(z, z′) is the Euclidean distance ||z− z′||2. Lc
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is the correlation length determining the decrease of the correlation function. Large values of Lc correspond

to a slow decay of ρν(z, z′) with increasing ∆(z, z′), whereas small values of Lc indicate a fast decay of

ρν(z, z′) with increasing ∆(z, z′). The smoothness of ρν(z, z′) is determined by the smoothness parameter180

ν. For half-integer values of ν, ρν(z, z′) reduces to the product of an exponential term and a polynomial

term [36]. It is noted that for ν = 1
2 , Equation (5) reduces to the exponential correlation model, whereas

for ν →∞, it converges to the square-exponential correlation model:

ρ 1
2
(z, z′) = exp (−∆w(z, z′)) , (6)

ρ∞(z, z′) = exp

(
−1

2
∆w(z, z′)2

)
. (7)

Concrete structures, especially massive structures, are typically built in blocks or layers. Hence, a

transverse anisotropic correlation function is employed to distinguish between spatial directions [37]. This185

results in different correlation lengths Lc,i, i = 1, . . . d, where d is the number of spatial dimensions (i.e., 1,

2 or 3). The vector Lc collects all correlation lengths. In this case, ∆w(z, z′) in Equation (5) is calculated

as follows:

∆w(z, z′) =

√√√√ d∑
i=1

(
∆i(z, z′)

Lc,i

)2

, (8)

where ∆i(z, z
′) denotes the spatial distance of z and z′ in spatial direction i.

The spatial correlation function ρ(z, z′) defines the correlation of any two points {z, z′} ∈ Ω and190

considers the effect of both the spatial variability on the meso-scale and on the micro-scale. In Section 2.4,

we discuss how to employ data in learning the parameters of ρ(z, z′). Due to the spatial dimension of

Δ(z,zʹ)

1

0
0

ρmeso(z,zʹ)

ρ
(z

,z
ʹ)

1-γmicro

γmicro

Figure 3: Approximation of spatial correlation function, where the effect of micro-scale variability is approximated by a Dirac

function.

the cylindrical specimen, it is impossible to learn the parameters of the micro-scale correlation function

ρmicro(z, z′) in practice. However, its exact shape is also not important for predicting the resulting strength

of a structure. We therefore propose to approximate the micro-scale correlation by a Dirac delta function195

and Equation (4) thus reduces to

ρ(z, z′) = γmicro · δz,z′ + (1− γmicro) · ρmeso(z, z′), (9)
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where δz,z′ is the Dirac delta function returning 1 if z = z′ and 0 else. Figure 3 illustrates the approximated

correlation function with a jump of ρ(z, z′) from 1 to 1− γmicro when ∆z,z′ > 0 to account for the effect of

the micro-scale variability on the spatial correlation.

2.3.2. Inter-structure variability200

Inter-structure variability leads to uncertainty of the overall material property at a specific structure

or site. This uncertainty is at the top level of the hierarchical RF model of the concrete strength fc [13].

It is modeled by the marginal random field parameters Θ with joint PDF f(θ). Θ are the mean and the

precision of fc in a specific structure.

Figure 4 illustrates the hierarchical RF model for the concrete compressive strength fc(z) including the205

macro-scale variability and the chosen spatial correlation function ρ(z, z′). Four random realizations of

fc(z) are plotted at the bottom of the figure. The corresponding realizations of Θ and choices of ρ(z, z′)

are indicated in the respective colors.

f
c
(z)

Θ ρ(z,zʹ)

µf
c,ln

f(
µ
  

 )
f c,

ln
f(

λ
  

 )
f c,

ln

λf
c,ln

ρ
(z

,z
ʹ)

∆
z,zʹ

z

f c(
z
)

Figure 4: Hierarchical model of the in-situ concrete compressive strength modeled as random field fc(z) with spatial correlation

function ρ(z,z′). The four colors correspond to four random realizations of fc(z) and fc(z) and choices of ρ(z,z′).

2.4. Learning the random field model from data

Measurements of the in-situ concrete strength form an important part of structural verification of existing210

structures. Although non-destructive test techniques can be used to get indirect measurements of the

concrete strength (e.g., testing with a rebound hammer [38] or measurements of the ultrasonic pulse velocity

[39]), the most accurate results are obtained by taking core samples from the structure and directly testing

the concrete strength of standardized cylindrical specimen [6, 7]. Especially for the verification of existing

massive concrete structures, taking core samples is essential for getting detailed information on the concrete215
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properties [40]. The number of core samples as well as their orientation depends on the investigated structure

and the aim of the investigation [8, 7]. Standardized specimen are visually selected from the available drilling

cores before being extracted, prepared and tested to determine their concrete compressive strength.

2.4.1. Data uncertainty

In-situ data is subject to uncertainty associated with the measured value (measurement uncertainty) and220

- if the measurements are not properly documented - the location of the measurement (position uncertainty).

There are different sources of measurement uncertainty; some are related to the measurement procedure

(e.g., the laboratory operator or the measurement device [11]), others stem from an underlying transfor-

mation (e.g., when inferring the splitting tensile strength via the indirect tensile strength test [41] or from

the conversion of cylindrical core samples with small diameters [7]). Contrary to the field of geotechnical225

engineering, where probabilistic models have been developed to account for this measurement uncertainty

[e.g., 42], only little attention is paid to it in structural engineering applications. The measurement outcomes

of concrete samples from drilling cores are typically set equal to the in-situ concrete parameters, as long as

the test specimen fulfills certain requirements [7]. The only exception to this rule is the case of outliers,

which are eliminated using outlier tests [e.g., 43, 44].230

The main reason for position uncertainty is the lack of documentation, since information about the exact

measurement location is not required in standard methods for estimating characteristic values [3, 7, 8].

Position uncertainty can hinder the applicability of a spatial analysis.

2.4.2. Bayesian random field update

The hierarchical RF model of Section 2.3 forms the basis for explicitly including the spatial locations of235

the data in learning the distribution parameters and the predictive spatial distribution of fc. In the following,

we summarize a Bayesian approach to learn the RF and its parameters based on [22]. The approach reduces

to the Bayesian approach for calculating characteristic values in [3] for specific parameter choices [22].

It is assumed that measurement data M is available from cylindrical specimen extracted from core

samples of an existing concrete structure. M = [xm,Zm], where xm = [xm,1, xm,2, . . . , xm,n]T are the nm240

measurement outcomes and Zm = [zm,1, zm,2, . . . ,zm,n]T the corresponding locations. Figure 5 extends the

hierarchical RF model of Figure 4 by including the data M associated with measurement uncertainty ε.

Due to the hierarchical modeling approach, the updating needs to be done in two steps. The data M is

included in a first step to update the distribution of Θ, by application of Bayes’ rule [21]:

f(θ|M) ∝ f(θ) · L(θ|M), (10)

where f(θ) is the prior distribution of Θ and f(θ|M) is the posterior distribution of Θ given the data245

M, which enters the model via the likelihood function L(θ|M). f(θ|M) can then be used in a second

10



f
c
(z)
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Figure 5: Hierarchical random field model for learning the in-situ concrete compressive strength fc(z) from data M of stan-

dardized cylindrical samples taken from the structure. The measurements in M are associated with measurement uncertainty

ε.

updating step to find the spatial posterior predictive distribution of fc(z). In the general case, the posterior

distribution in Equation (10) needs to be approximated numerically, e.g., through Markov chain Monte

Carlo (MCMC) methods [e.g., 45]. For certain cases, however, closed-form expressions can be found for

updating the hierarchical RF model. The following modeling choices are made in order to enable such a250

closed-form update [46, 9, 22]:

i) The marginal distribution of fc(z) is a lognormal distribution. Then, fc,ln(z) = ln (fc(z)) follows a

normal distribution with mean function µfc,ln(z) and precision function λfc,ln(z). The hierarchical

modeling and updating process is done for the corresponding RF fc,ln(z), a Gaussian RF completely

defined by its spatial functions for the mean µfc,ln(z), the precision λfc,ln(z) and the autocorrelation255

function ρ(z, z′) (cf. Section 2.3.1).

ii) Before including site-specific information, fc,ln(z) is assumed to be homogeneous, i.e., the spatial

moments are space-invariant and the spatial correlation is a function of the difference in location.

That is, µfc,ln(z) = µfc,ln ∀ z ∈ Ω and λfc,ln(z) = λfc,ln ∀ z ∈ Ω. ρ(z, z′) is defined according to

Equation (9) with ρmeso(z, z′) given by the Matérn model of Equation (5).260

iii) The prior distribution of Θ = [µfc,ln , λfc,ln ]T, f(θ) is modeled with a normal-gamma (NG) distribution,

where λfc,ln follows a gamma distribution and µfc,ln follows a normal distribution conditional on

λfc,ln [9].

iv) The measurement uncertainty is defined through a multiplicative error, i.e., the measurement outcome
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fc,m,i at location zm,i is given as265

fc,m,i = fc(zm,i) · εi. (11)

The εi are modeled as independent lognormal random variables with median 1. To retain the analytical

form of the update, it is necessary to account for the measurement error in the correlation function.

This results in a modified correlation function that takes an identical form as Equation (9), i.e,

ρmod(z, z′) = γ · δz,z′ + (1− γ) · ρmeso(z, z′), (12)

where γ ∈ [0, 1] lumps the contribution of both micro-scale variability and measurement error into a

single factor [22]. γ = γmicro + γε − γmicroγε, where γε ∈ [0, 1] is the contribution of the measurement270

error. We work with the lumped factor γ because a distinction of the contribution of the individual

effects is not possible based on spatial data.

Using the assumptions above, the posterior predictive RF for fc(z) has log-Student’s t-marginal distribution

[47]. A log-Student’s t-RF is parameterized in terms of the spatial functions for the parameters of the

underlying Student’s t-RF given by the following equations [22]:275

µt(z) = µn +Rz,mR−1
m (xm − µn1n)T, (13)

λt(z1, z2) =
αn
βn

(
ρ(z1, z2)−Rz1,mR−1

m R
T
z2,m + (1−Rz1,mR−1

m 1T
n)κ−1

n (1−Rz2,mR−1
m 1T

n)
)−1

, (14)

νt = 2αn. (15)

Rz,m : Rd → R1×nm is a row vector function with element i defined as ρmod(z, zm,i) and the parameters

µn, κn, αn and βn are given as [22]

µn =
κ0µ0 + 1nR−1

m x
T
m

κ0 + 1nR−1
m 1T

n

, (16)

κn = κ0 + 1nR−1
m 1T

n, (17)

αn = α0 +
nm
2
, (18)

βn = β0 +
1

2

(
xmR−1

m x
T
m +

κ0µ
2
01nR−1

m 1T
n − 2κ0µ01nR−1

m x
T
m − (1nR−1

m x
T
m)2

κ0 + 1nR−1
m 1T

n

)
. (19)

1n denotes a 1×nm-vector of ones and Rm is the nm×nm correlation matrix of the measurement locations,

where element (i, j) is defined as ρmod(zm,i, zm,j). µ0, κ0, α0 and β0 are the parameters of the prior NG

distribution f(θ). The Appendix gives the PDF and CDF of the log-Student’s t-distribution.280
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2.4.3. Learning the correlation model

The closed-form update in Section 2.4.2 is valid for a fixed correlation function ρmod(z, z′). However,

ρmod(z, z′) is typically not known in practical applications and, hence, is treated as uncertain model input

with parameter vector T. T = [γ, ν,Lc] includes the meso-scale (with the transverse anisotropic Matérn

model) and micro-scale variability (approximated by a Dirac function) for the hierarchical RF model (cf.285

Section 2.3.1) as well as the measurement uncertainty ε, which is included in ρmod(z, z′) through γ. Figure 6

illustrates the extended hierarchical RF model when the parameters of ρmod(z, z′) are treated as random

vector.

f
c
(z)

Θ

ρmod(z,zʹ)

M

T

Figure 6: Hierarchical random field model for learning the in-situ concrete compressive strength fc(z) from data M with

uncertain correlation model ρmod(z,z′) with model parameters T.

Bayes’ theorem can be used to learn the posterior distribution of the correlation parameters from the

data:290

f(τ |M) ∝ f(τ ) · f(M|τ ). (20)

The specific model choices of Section 2.4.2 lead to the following expression for f(τ |M) [22]:

f(M|τ ) =

(
κ0

κn(τ )

) 1
2 Γ(αn)βα0

0

Γ(α0)(βn(τ ))αn
(2π)−

n
2 det(Rm(τ ))−

1
2 , (21)

where κn(τ ), αn, βn(τ ) and Rm(τ ) follow the definitions in Section 2.4.2 conditional on the chosen corre-

lation model parameters.

The maximum a-posteriori (MAP) estimate can be employed to learn a point estimate of the correlation

parameters from the data M [48]. That is, instead of inferring the full posterior distribution f(τ |M), it is295

approximated by its mode, τ ∗. This is done by solving the following optimization problem [22]:

τ ∗ = arg minτ∈T ln(κn(τ )) + 2αnln(βn(τ )) + ln(det(Rm(τ )))− 2ln(f(τ )), (22)
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where f(τ ) is the prior distribution of T. τ ∗ is equivalent to the maximum likelihood estimate of T in the

case of a uniform prior distribution f(τ ) [49]. After selecting the correlation model, the RF model can be

learned from M as described in Section 2.4.2.

Alternatively, the posterior mean µT|M can be used as an approximation for T given M. Unlike the300

MAP estimate, the posterior mean is not dominated by local extrema of the posterior distribution. Given

nT unknown correlation parameters in the vector T, the marginal posterior mean of Ti, i = 1, . . . , nT is

given as

µTi|M = E [Ti|M] =
1

CT

∫
T

τif(τ )f(M|τ )dτ , (23)

where CT is the following normalization constant:

CT =

∫
T

f(τ )f(M|τ )dτ . (24)

If a point-estimate of T is not sufficient, the analytical update to learn the posterior predictive model305

for the concrete strength is not sufficient. However, it can be approximated numerically, e.g., by means of

MCMC algorithms [45]. The analytical update is employed in generating samples from f(τ |M), which are

then used to approximate the posterior predictive distribution. The point-wise marginal posterior predictive

PDF f(fc,z|M), z ∈ Ω can be approximated as follows:

f(fc,z|M) ≈ 1

NMCMC

NMCMC∑
i=1

f(fc,z|M, τi), (25)

where NMCMC is the sample size in the MCMC algorithm and τi, i = 1, . . . , NMCMC are samples from310

f(τ |M). The posterior predictive CDF can be approximated accordingly:

F (fc,z|M) ≈ 1

NMCMC

NMCMC∑
i=1

F (fc,z|M, τi). (26)

The evaluation of F (fc,z|M) requires the analytical Bayesian update for each of the NMCMC samples.

Using the model assumptions of Section 2.4.2, F (fc,z|M, τi) is the CDF of the log-Student’s t-distribution

(cf. Appendix).

2.4.4. Choosing the prior normal-gamma distribution parameters from data315

The parameters of the prior distribution should be chosen based on expertise and literature, or selected

as a non-informative prior. Alternatively, the prior parameters can be determined from available data from

similar structures, which are not part of the analysis at hand. We suggest to employ maximum likelihood

estimation (MLE) to estimate these prior parameters, specifically the parameters µ0, κ0, α0 and β0 of the

prior NG distribution f(θ). Here we consider data sets from nMLE structures, each set consisting of ni320

14



measurements of fc at the specific structure i. The following sample estimators are calculated for each data

set:

µ̄i =
1

ni

ni∑
j=1

ln (fc,m,j) , (27)

λ̄i =

 1

ni − 1

ni∑
j=1

(ln (fc,m,j)− µ̄i)2

−1

. (28)

They are used to define the following:

µ̄ = [µ̄1, . . . , µ̄nMLE
] , (29)

λ̄ =
[
λ̄1, . . . , λ̄nMLE

]
, (30)

Λ̄ = diag
(
λ̄
)
. (31)

Λ̄ is a diagonal matrix with the entries of λ̄ on the main diagonal and zeros elsewhere.

The MLE estimators for the prior NG distribution are then given as [50, 9]:325

µ̂0 =
1Λ̄µ̄T

1Λ̄1T
, (32)

κ̂0 =
nMLE

(µ̄− µ̂01)Λ̄(µ̄− µ̂01)T
, (33)

α̂0 = Ψ−1

(
ln
(
β̂0

)
+

1

nMLE

nMLE∑
i

ln
(
λ̄i
))

, (34)

β̂0 =
nMLE · α̂0

1Λ̄1T
. (35)

1 denotes a 1 × nMLE-vector of ones and Ψ−1(·) is the inverse digamma function. α̂0 and β̂0 have to be

found iteratively, since both parameters appear in Equation (34) and in Equation (35).

The MLE estimators in Equations (32) to (35) are only valid under the assumption that fc conditional on

Θ follows a lognormal distribution. They do not account for potential correlation among the measurements

in the available data sets and can only be applied if nMLE > 1. The spatial update of Section 2.4.2 is directly330

applicable after replacing the prior NG distribution parameters by the respective MLE estimates.

Sometimes, site-specific data (e.g., from previous investigations on the structure) is available but the

measurement locations are not documented, as this information is not needed in the standard methods to

learn the characteristic values of the concrete strength [3, 7, 8]. Such data can be included in the above

MLE procedure for learning the prior NG distribution parameters.335
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2.4.5. Bayesian learning of random field parameters without site-specific data

If no site-specific data is available, but data from similar structures (and site-specific data without

measurement locations) can be used, one can still set up an RF model. Based on the MLE estimators in

Equations (32) to (35), the predictive RF has log-Student’s t-marginal distribution and is parameterized in

terms of the parameters of the underlying Student’s t-RF. Unlike the case where the spatial location of the340

measurements is available, the predictive RF is a homogeneous RF with parameters given by

µt = µ̂0, (36)

λt(z1, z2) =
α̂0

β̂0

(
ρmod(z1, z2) + κ̂−1

0

)−1
, (37)

νt = 2α̂0. (38)

The parameters obtained in this way define the prior predictive RF, since the model is learned without

site-specific information, and can be used for predictions about the spatially variable quantity [21].

3. Data analysis

This section applies the proposed methodology to learn a spatial model for the compressive strength345

of two ship lock chamber walls. The data analysis serves to investigate and demonstrate the proposed

model, shows possible correlation models for specific structures and highlights challenges with the proposed

approach encountered in practice.

The considered walls were built in layers of tamped concrete and, thus, show significant anisotropic

behavior [40, 22]. A transverse anisotropic correlation function, distinguishing between horizontal (z1, z2)350

and vertical (z3) distances is employed to account for this behavior. The resulting ∆w(z, z′) is given by

∆w(z, z′) =

√(
∆h(z, z′)

Lc,h

)2

+

(
∆v(z, z′)

Lc,v

)2

, (39)

where ∆h(z, z′) and ∆v(z, z
′) denote the horizontal and vertical distance respectively between z and z′.

Lc,h and Lc,v denote the horizontal and vertical correlation lengths.

The vector T of correlation parameters is treated as random vector and learned from the data. However,

the prior information on the elements in T is vague, which makes the choice of a prior distribution a355

challenging task. Hence, the multivariate uniform distribution on the domain of definition is chosen as prior

distribution. The measurement uncertainty is acounted for in the correlation function through the factor γ.

3.1. Ship lock Oldenburg

This case study investigates the ship lock at the river Hunte in Oldenburg, Germany. It was built in

the 1920s from unreinforced tamped concrete. The chamber has a length of 128 m and a usable width of360
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12 m between the chamber walls. During an extensive repair in 1983, the upper 2 m of the chamber walls

were replaced by reinforced concrete. The focus of this study is the original concrete of one of the chamber

walls, for which strength measurements are available at three vertical core samples from an investigation in

2014. Figure 7 shows a front view and the cross section of the chamber wall with the two concrete layers

of different age and the position of the core samples. Table 1 lists the 24 measurements of the concrete365

compressive strength and their corresponding measurement location in z1 and z3 (z2 = −1.0 m for all 24

measurements).

Tamped
concrete

CS1 CS2 CS3

32 m 32 m 32 m 32 m
8 m
2 m

z2

z1

z3

z1

z2
z3

8 m

2 m

4.5 m

1 m

CS1,CS2,CS3

Figure 7: Front view (top) and cross section (bottom) of the ship lock wall in Oldenburg including the locations of three

vertical core samples (CS1, CS2 and CS3), from which 24 measurements of the concrete compressive strength have been taken.

Tamped concrete is indicated in light grey, reinforced concrete is shown in dark grey.

The prior parameters for the NG distribution f(θ) are chosen as follows:

[µ0, κ0, α0, β0] =

[
/, 0,−1

2
, 0

]
, (40)

which gives the non-informative prior distribution f(θ) = λ−1
X [46, 22].

3.1.1. Learning the correlation model370

The correlation model contains four unknown parameters, namely the two correlation lengths, the pa-

rameter for the micro-scale variability and the smoothness parameter of the Matérn corrrelation model. The

24 measurements are not sufficient to learn all parameters without the support from an informative prior

distribution. Thus, the Matérn smoothness parameter is set to ν = 0.5, corresponding to the exponential

correlation model. In addition, the parameter for the micro-scale variability γ is not learned from the data375

either. Instead, the analysis is carried out for different values of γ.
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Table 1: Measurements of the concrete compressive strength obtained from three core samples in the north wall of the ship

lock Oldenburg. The locations of the core samples are indicated in Figure 7.

CS1 CS2 CS3

(z1 = 32.00 m) (z1 = 64.00 m) (z1 = 96.00 m)

z3 fc,m z3 fc,m z3 fc,m

[m] [N mm−2] [m] [N mm−2] [m] [N mm−2]

2.40 29.2 2.21 21.2 2.34 18.5

3.24 15.5 3.25 16.0 3.34 10.3

4.25 8.7 4.05 32.0 4.17 13.2

5.15 12.3 5.33 20.7 5.24 14.5

6.12 16.2 6.15 13.8 6.27 25.4

7.33 11.6 7.25 12.1 7.12 14.5

8.15 13.4 8.40 8.6 8.23 13.2

9.05 13.9 9.45 14.8 9.08 33.0

The correlation length estimates are obtained via a solution of the optimization problem of Equation (22)

resulting in the following MAP estimates for Lc,h and Lc,v:

γ = 0.1 :
[
L∗c,h, L

∗
c,v

]
= [2.08 m, 0.62 m] , (41)

γ = 0.3 :
[
L∗c,h, L

∗
c,v

]
= [2.70 m, 0.71 m] , (42)

γ = 0.5 :
[
L∗c,h, L

∗
c,v

]
= [3.75 m, 0.87 m] . (43)

From these values, it appears that an increase in the micro-scale variability leads to an increase in the

MAP estimates of the correlation lengths. Large correlation lengths correspond to RFs with smooth spatial380

variability, while small correlation lengths indicate a highly fluctuating RF. When γ is large, a large portion

of the variability observed in the data is attributed to the micro-scale variability (and the measurement

uncertainty). In this case, a smaller part of the data variability is attributed to spatial variability and the

associated correlation length is larger. To illustrate this, the posterior distribution of the two correlation

lengths is plotted in Figure 8 for varying γ. The respective MAP estimates of Lc are indicated by blue dots.385

In panel a, the micro-scale variability only plays a minor role for the overall variability (γ = 0.1), leading to

a clear mode of the posterior distribution f(Lc|M, γ). Increasing the influence of the micro-scale variability

flattens the posterior distribution and shifts the mode towards larger values for the correlation lengths, as

can be seen in panels b (γ = 0.3) and c (γ = 0.5). All three panels show an additional local maximum

of f(Lc|M, γ) in the bottom right corner, i.e., in regions of large Lc,h and small Lc,v. This behavior is390

caused by the local horizontal clustering of the measurements in three vertical core samples, whereas they
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are approximately evenly distributed in vertical direction. Such an arrangement reduces the learning effect

for Lc,h and makes f(Lc|M, γ) more sensitive to changes in Lc,v.
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Figure 8: Posterior distribution of the correlation lengths in horizontal (Lc,h) and vertical (Lc,v) direction for ν = 0.5 and

varying values of γ. The blue dots indicate the MAP estimates at the respective modes of the posterior distribution. f∗0.1, f
∗
0.3

and f∗0.5 are the values of f(Lc|M, γ) at the respective distribution modes.

3.1.2. Spatial posterior predictive concrete compressive strength

The Bayesian RF update is used to learn the posterior predictive random field of the concrete compressive395

strength. The following posterior NG distribution parameters are calculated from Equations (16) to (19):

γ = 0.1 : [µn, κn, αn, βn] = [2.76, 17.27, 11.5, 1.61] , (44)

γ = 0.3 : [µn, κn, αn, βn] = [2.76, 17.30, 11.5, 1.59] , (45)

γ = 0.5 : [µn, κn, αn, βn] = [2.76, 17.33, 11.5, 1.59] . (46)

Since αn only depends on the number of measurements, it is constant for any choice of γ. Although the

other three NG distribution parameters depend on the spatial correlation of the measurements, they differ

only slightly for different choices of γ. This is due to the fact that an increase in γ automatically decreases

the spatial correlation of two locations in the random field (cf. Equation (4)) and, thus, compensates the400

increased spatial correlation of the measurement locations that comes with larger correlation lengths.

The random field parameters can be determined by application of Equations (13) to (15). With these

parameters, the spatial characteristic value fc,k(z) can be determined as the 5%−quantile value of the

log-Student’s t-RF. It is illustrated in Figure 9 for the z1 − z3 plane in which the core samples have been

taken. While fc,k(z) is strongly influenced by the measurement values in regions close to the measurement405

locations, one can see convergence to a global value in regions away from the measurements. It is noted
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that the extreme values of fc,k(z) are located in the illustrated z1 − z3 plane, the point-wise values tend

towards the global value for a shift in z2. The effect of a variation in γ on the global characteristic value

is negligible, as it is 8.2 MPa for all three cases. The global characteristic value appears in regions without

spatial correlation to the measurement locations and, thus, is determined by the posterior parameters of the410

NG distribution. Those parameters are almost constant for all three choices of γ, leading to a similar global

characteristic value. Using the standardized Bayesian approach of EN 1990 with the 24 measurements from

Table 1 leads to a space-invariant characteristic value of fc,k,EN = 8.4 MPa, i.e., it is slightly higher than

the global characteristic value obtained with the spatial model.

The effect of the different values of Lc can be seen in Figure 9 by comparing the regions of the wall415

where fc,k(z) differs from the global value. In panel a, the spatial effect of the measurement locations is

restricted to regions close to the core sample locations, while these regions become larger in panels b and c,

where Lc takes larger values.
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Figure 9: Spatial characteristic value fc,k(z) of the posterior predictive random field for different choices of γ.

3.1.3. Effect of an informative prior distribution

In addition to the 24 measurements of Table 1, three data sets are available, one from previous inves-420

tigations on the same ship lock and two from similar ship locks (one of which is analyzed in Section 3.2).

The following sample moments are used to obtain the MLE estimates of the prior NG parameters (cf.

Equations (27) to (30)):

µ̄ = [2.83, 2.12, 2.03], (47)

λ̄ = [3.50, 3.78, 2.53]. (48)
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From these, the prior NG parameters are estimated:

[µ̂0, κ̂0, α̂0, β̂0] = [2.35, 2.37, 34.52, 10.56]. (49)

Using an informative prior distribution reduces the uncertainty in the RF parameters and therefore also425

affects the posterior estimates of the spatial correlation structure. Setting γ = 0.1, the following MAP

estimates for Lc,h and Lc,v are obtained:[
L∗c,h, L

∗
c,v

]
= [33.33 m, 2.49 m]. (50)

Both correlation lengths are several times larger than in the case of an uninformative prior distribution.

Figure 10 shows the posterior distribution of Lc and the corresponding MAP estimate at its mode. Although

the uncertainty in Lc remains large, the informative prior distribution has a strong effect on possible regions430

of Lc, as not much of the probability mass of f(Lc|M, γ) remains in regions of extremely small or large

correlation lengths (unlike panel a of Figure 8). The local maxima in the bottom right corner remains

unaffected by the informative prior distribution.
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Figure 10: Posterior distribution of the correlation lengths in horizontal (Lc,h) and vertical (Lc,v) direction for ν = 0.5 and

γ = 0.1 with informative prior NG distribution parameters. The blue dot indicates the MAP estimate at the mode of the

posterior distribution. f∗0.1 is the value of f(Lc|M, γ) at the distribution mode.

The posterior NG parameters corresponding to the MAP estimate are calculated as

[µn, κn, αn, βn] = [2.67, 6.59, 46.52, 13.67]. (51)

While µn is close to the value obtained with the non-informative prior distribution, the other parameters435

differ. The global characteristic value of the posterior predictive RF fc(z) is 5.5 MPa, i.e., it is significantly

smaller than when using the non-informative prior distribution (8.2 MPa). Figure 11 shows the spatial

characteristic value fc,k(z) for the z1 − z3 plane in which the core samples have been taken. The larger

correlation lengths lead to an increased area that is affected by the measurement values, in this case spanning

almost all over the chamber wall.440
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Figure 11: Spatial characteristic value fc,k(z) of the posterior predictive random field with informative prior and γ = 0.1.

3.2. Ship lock Feudenheim

This ship lock is located at the river Hunte in Feudenheim, a district of Mannheim, Germany, and was

built in the 1920s. It consists of two chambers and three chamber walls, which are made of unreinforced

tamped concrete. The chamber walls have a length of 108 m, a height of 14.5 m and are separated into

six construction blocks of equal length. The amount of data in this study is significantly larger than in445

the previous study, with a total of 369 measurement values of the concrete compressive strength from 18

vertical core samples (6 core samples per chamber wall, where one core sample has been extracted from

each construction block). The three walls are analyzed independently, since there is no knowledge about

the construction process available.

As in Section 3.1, a smoothness parameter of ν = 0.5 is employed for the Matérn correlation model. It450

is assumed that the concrete strength in different construction blocks is not spatially correlated. Hence, the

horizontal correlation length cannot be learned because only one vertical core sample is available for each

construction block.

As before, a non-informative NG prior distribution is chosen with parameters given in Equation (40).

3.2.1. Learning the correlation model455

To learn the free correlation parameters, namely γ and Lc,v, the optimization problem of Equation (22)

is solved for each wall, resulting in the following MAP estimates:

left chamber wall :
[
L∗c,v, γ

∗] = [0.64 m, 0.70], (52)

middle chamber wall :
[
L∗c,v, γ

∗] = [2.72 m, 0.86], (53)

right chamber wall :
[
L∗c,v, γ

∗] = [2.32 m, 0.75]. (54)

According to the MAP estimates, the RF variability is dominated by the micro-scale variability and the

meso-scale variability only plays a minor role. The joint posterior distributions of γ and Lc,v are illustrated

in Figure 12. In the left chamber wall (panel a), most of the probability mass of f(Lc,v, γ|M) concentrates460

in a region of small vertical correlation length, while it distributes over a broad range of γ. The situation
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is different for the middle and right chamber wall, where the probability mass is concentrated in a region

of γ ≈ 0.6 − 0.8, while a broad range of Lc,v is covered. It is noted, that the case γ = 1 is equivalent to

a correlation length of 0 m, resulting in a white noise random field without any spatial correlation. This

equivalence is the reason for the tail of f(Lc,v, γ|M) towards small values of Lc,v for small values of γ in465

Figure 12, i.e., the model accounts for the micro-scale variability through Lc,v instead of γ in these regions.
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Figure 12: Posterior distribution of the vertical correlation length Lc,v and the parameter γ for the left, middle and right

chamber wall of the Feudenheim ship lock. The blue dots indicate the MAP estimates at the respective modes of the posterior

distribution. f∗(Lc,v , γ|M) indicates the value of f(Lc,v , γ|M) at the respective distribution modes.

3.2.2. Spatial posterior predictive concrete compressive strength

A horizontal correlation length needs to be chosen for the Bayesian RF update, since it cannot be learned

from the data. The previous results show that the correlation length is a sensitive choice with a strong470

influence on the posterior predictive RF. For illustration purposes, we choose Lc,h = 5 m, as recommended

in [13]. The following posterior parameters for the NG distribution are calculated:

left chamber wall : [µn, κn, αn, βn] = [1.94, 72.51, 46.5, 11.79], (55)

middle chamber wall : [µn, κn, αn, βn] = [2.17, 70.47, 73.5, 16.06], (56)

right chamber wall : [µn, κn, αn, βn] = [2.21, 48.82, 62, 19.28]. (57)

Each chamber wall is split into 6 spatially independent RFs corresponding to the construction blocks. These

are only correlated through the inter-structure variability, i.e., they have the same posterior NG distribution

parameters. The posterior predictive RFs are determined and the resulting 5%−quantile values in the z1−z3475

plane of the measurement locations are illustrated in Figure 13. The left chamber wall (panel a) shows the
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Figure 13: Spatial characteristic value fc,k(z) of the posterior predictive random fields for the three chamber walls of the ship

lock Feudenheim. Each wall is split into six blocks. The locations of the core samples are indicated by the dashed lines.

largest variability in the spatial characteristic value, since it has the smallest vertical correlation lengths.

Regions of high (low) characteristic values can be clearly identified and are located close to high (low)

measurement values. In the middle chamber wall (panel b), the spatial variability of the characteristic value

is small compared to panel a. This is due to the dominance of the micro-scale variability, which reduces the480

impact of the spatial variability. In addition, the vertical correlation length is significantly larger than in

panel a, which leads to a smoother spatial behavior of the RF. The correlation length of the right chamber

wall (panel c) is in the same range as the one in panel b, whereas the micro-scale variability is closer to the

value of panel a. This leads to larger regions of high (low) characteristic values (in vertical direction) than

in panel a and a smooth spatial variability. In general, γ is large in all three chamber walls, which leads to485

a relatively small range of fc,k(z).

3.2.3. Influence of the smoothness parameter

So far, the smoothness parameter of the Matérn correlation model has been set to ν = 0.5. A study

on ν is carried out to investigate the effect of that choice. To this end, two additional choices of ν are

analyzed, namely ν = 2.5 and ν →∞. The following MAP estimates are obtained for the parameters of the490
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correlation model of the left chamber wall:

ν = 2.5 :
[
L∗c,v, γ

∗] = [0.66 m, 0.75], (58)

ν →∞ :
[
L∗c,v, γ

∗] = [0.62 m, 0.75], (59)

which are relatively close to the MAP estimates for ν = 0.5 ([L∗c,v, γ
∗] = [0.64 m, 0.70]). The same holds

for the posterior NG distribution parameters, which result in

ν = 2.5 : [µn, κn, αn, βn] = [1.94, 71.84, 46.5, 11.79], (60)

ν →∞ : [µn, κn, αn, βn] = [1.94, 72.31, 46.5, 11.78], (61)

compared to [µn, κn, αn, βn] = [1.94, 72.51, 46.5, 11.79] for ν = 0.5. We select a single construction block of

the left chamber wall (z1 ∈ [36 m, 54 m]) to perform the spatial update. The resulting 5%−quantile values495

in the z1 − z3 plane of the measurement locations are illustrated in Figure 14. The smoother correlation

model leads to a smoother spatial characteristic value, especially in regions with several measurements close

to each other, as can be seen by the increasing smoothness of the contour lines in panel b and c compared

to panel a. However, the overall contribution of ν to fc,k(z) is minor in this case.
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Figure 14: Spatial characteristic value fc,k(z) of the posterior predictive random field in a single block of the left chamber

wall (z1 ∈ [36 m, 54 m]) for different choices of the smoothness parameter ν. The dashed line indicates the location of the core

sample.

3.3. Interpretation of results500

The two examples in Sections 3.1 and 3.2 demonstrate the ability of the proposed model to learn the

spatial distribution of the concrete strength. The two structures differ in the construction process and the
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availability of data. The results show that the identification of the parameters of the correlation model is

a critical factor of the presented model that significantly impacts the resulting predictions, e.g., the spatial

distribution of the characteristic value. Learning the parameters of the proposed correlation model from the505

data is a challenging task, especially because only limited data is typically available. This is illustrated by

the obtained posterior distributions of the correlation parameters, which are rather flat. A prior reduction

of the uncertainty in the correlation parameters proves difficult, as the relevant literature is scarce. The

anisotropy of the concrete compressive strength RF, confirmed by the data in the first example, results

in an additional parameter of the spatial correlation function, adding further to the problem. Significant510

differences are observed in the estimated correlation parameters, not only for different structures but also

for different structural elements, indicating the difficulty in identifying an appropriate correlation function

with limited data.

The spatial behavior of the posterior predictive characteristic value, defined as the point-wise 5%−quantile

value of the resulting log-Student’s t-distribution, strongly depends on the micro-scale component of the cor-515

relation function. A strong micro-scale variability reduces the spatial correlation and the spatial influence

of the measurements. In the latter case, the characteristic value is dominated by the marginal distribution

away from the measurements, which is determined by the parameters of the marginal distribution of the RF.

If the variability is dominated by a strong micro-scale variability, the choice of the smoothness parameter

for the correlation function only plays a minor role.520

The unidentifiability of the correlation parameters with limited amount of data can partially be attributed

to the equivalence of limiting cases of the parameter values. If the variability is completely defined by the

micro-scale variability, the spatial correlation function and its parameters are irrelevant, the resulting RF

will have no spatial correlation, i.e., it is given by a white noise field. The same result is obtained when the

correlation lengths are zero, in which case the meso-scale correlation function reduces to the Dirac function.525

4. Concluding remarks

We propose a new spatial probabilistic model for the concrete strength, which is hierarchical and dis-

tinguishes micro-scale and meso-scale variability. Our modeling approach enables the use of spatially dis-

tributed measurements of the concrete strength to learn the parameters of its spatial correlation function.

The predictive distribution of the proposed random field given the spatial measurements can be obtained530

in closed form and can be further used in structural verification predictions. The proposed model enables a

detailed probabilistic description of the spatial distribution of the concrete strength in existing structures.

This allows identification of critical regions within the structure, which can be used for further investigation

of the structural condition.

The results show that additional empirical studies are required for effective learning of the correlation535
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function and prior parameters of the concrete compressive strength (prior parameters of the NG distri-

bution). Particularly, a reliable identification of the anisotropic behavior of the concrete strength in the

investigated structures requires additional studies based on horizontal and vertical core samples. Although

learning a random field model without spatial information is possible, much of the potential information is

lost when the measurement values are not assigned a location. Hence, for effective application of the spatial540

modeling approach, detailed documentation of the measurement location is inevitable, which is not always

the case in practical applications.

The resulting predictive random field model offers opportunities for application in advanced modeling

approaches, e.g., in reliability analyses with finite element models accounting for the spatial variability of

the concrete material, which is not possible with the standard approaches for learning concrete strength545

from data. When integrating the random field model in standard structural analysis, spatial averaging of

the random field over the areas associated with the relevant failure modes ensures a consistent treatment of

the spatial variability [51].

The proposed model can be used also to identify regions within the structure, where additional measure-

ments should be taken, e.g., in the context of inspection planning and maintenance schemes. It can also550

help to validate potential outliers in the data set by comparing them to measurements close-by and to avoid

a selection bias originating from the fact that several measurements are taken from a single core sample.
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Appendix A. The log-Student’s t-distribution

The marginal distribution of the predictive RF for the concrete compressive strength fc is the log-

Student’s t-distribution. Thus, fc,ln = ln (fc) follows the Student’s t-distribution with following PDF [52]:560

ft(fc,ln) =
Γ
(
νt
2 + 1

2

)
Γ
(
νt
2

) (
λt
πνt

) 1
2

(
1 +

λt (fc,ln − µt)2

νt

)− νt2 − 1
2

. (A.1)

Therein, Γ(·) is the gamma function, and µt, λt and νt are the location parameter, scale parameter and

degrees of freedom of the Student’s t-distribution. The PDF of fc can then be derived as [47, 22]

ft,ln(fc) =
1

fc
ft (ln (fc)) . (A.2)
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The CDF of fc is defined in terms of the CDF of fc,ln:

Ft,ln(fc) = Ft (ln (fc)) . (A.3)

Ft(ln (fc)) can be written in closed form in terms of the regularized incomplete beta function. Alternatively,

it can easily be evaluated numerically. We note that the log-Student’s t-distribution has infinite moments565

of any order [22].
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[50] S. Pöhlmann, R. Rackwitz, Zwei Schätzprobleme bei Gauß’schen Folgen [Two estimation problems with Gaussian se-

quences], Berichte zur Zuverlässigkeitstheorie der Bauwerke, Sonderforschungsbereich 96, Heft 53, Technische Universität

München (1981).

[51] S. Geyer, I. Papaioannou, L. Graham-Brady, D. Straub, The spatial averaging method for non-homogeneous random fields660

with application to reliability analysis, Engineering Structures 253 (2022) 113761.

[52] C. M. Bishop, Pattern recognition and machine learning, Information science and statistics, Springer, New York City, NY,

2006.

30


	Introduction
	Statistical modeling of concrete compressive strength
	Compressive strength of concrete
	Characteristic values of the concrete strength
	Hierarchical random field model
	Intra-structure variability
	Inter-structure variability

	Learning the random field model from data
	Data uncertainty
	Bayesian random field update
	Learning the correlation model
	Choosing the prior normal-gamma distribution parameters from data
	Bayesian learning of random field parameters without site-specific data


	Data analysis
	Ship lock Oldenburg
	Learning the correlation model
	Spatial posterior predictive concrete compressive strength
	Effect of an informative prior distribution

	Ship lock Feudenheim
	Learning the correlation model
	Spatial posterior predictive concrete compressive strength
	Influence of the smoothness parameter

	Interpretation of results

	Concluding remarks
	Acknowledgments
	The log-Student's t-distribution

