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Abstract

Data-informed predictive maintenance planning largely relies on stochastic deterioration models. Monitoring
information can be utilized to update sequentially the knowledge on time-invariant deterioration model pa-
rameters either within an off-line (batch) or an on-line (recursive) Bayesian framework. With a focus on the
quantification of the full parameter uncertainty, we review, adapt and investigate selected Bayesian filters for
parameter estimation: an on-line particle filter, an on-line iterated batch importance sampling filter, which
performs Markov chain Monte Carlo (MCMC) move steps, and an off-line MCMC-based sequential Monte
Carlo filter. A Gaussian mixture model is used to approximate the posterior distribution within the resam-
pling process in all three filters. Two numerical examples serve as the basis for a comparative assessment
of off-line and on-line Bayesian estimation of time-invariant deterioration model parameters. The first case
study considers a low-dimensional, nonlinear, non-Gaussian probabilistic fatigue crack growth model that
is updated with sequential crack monitoring measurements. The second high-dimensional, linear, Gaussian
case study employs a random field to model corrosion deterioration across a beam, which is updated with
sequential measurements from sensors. The numerical investigations provide insights into the performance
of off-line and on-line filters in terms of the accuracy of posterior estimates and the computational cost, when
applied to problems of different nature, increasing dimensionality and varying sensor information amount.
Importantly, they show that a tailored implementation of the on-line particle filter proves competitive with
the computationally demanding MCMC-based filters. Suggestions on the choice of the appropriate method
in function of problem characteristics are provided.

Keywords: Bayesian filtering, particle filter, Markov Chain Monte Carlo, uncertainty quantification,
Gaussian mixture, structural deterioration

Impact Statement

Stochastic models describing time-evolving processes are widespread in science and engineering. In the
modern data-rich engineering landscape, Bayesian methods can exploit monitoring data to sequentially
update knowledge on underlying model parameters. The quantification of the full posterior uncertainty of
these parameters is indispensable for several real-world tasks, where decisions need to be taken in view of
the evaluated margins of risk and uncertainty. This work contributes to these tasks by rigorously reviewing
the off-line and on-line Bayesian framework for the purpose of parameter estimation. On-line and off-line
Bayesian filters are adapted and compared on a set of numerical examples of varying complexity related to
structural deterioration. This results in suggestions regarding the suitability of each algorithm to specific
applications.
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1. Introduction

Structural deterioration of various forms is present in most mechanical and civil structures and infras-
tructure systems. Accurate and effective tracking of structural deterioration processes can help to effectively
manage it and minimize the total life-cycle costs [1, 2, 3, 4]. The deployment of sensors on structural com-
ponents/systems can enable long-term monitoring of such processes. Monitoring data obtained sequentially
at different points in time must be utilized in an efficient manner within a Bayesian framework to enable
data-informed estimation and prediction of the deterioration process evolution.

Monitored structural deterioration processes are commonly modeled using Markovian state-space repre-
sentations [5, 6, 7], whereby the deterioration state evolution is represented by a recursive Markov process
equation, and is subject to stochastic process noise [8]. Monitoring information is incorporated by means
of the measurement equation. The deterioration models further contain time-invariant uncertain param-
eters. The state-space can be augmented to include these parameters, if one wishes to obtain updated
estimates thereof conditional on the monitoring information [9, 10, 11, 8, 12, 13, 14]; this is referred to as
joint state-parameter estimation [15, 16].

The formulation of a Markovian state-space representation of the deterioration process is not strictly
required. The uncertain structural deterioration state is often defined solely as a function of uncertain time-
invariant model parameters [17, 18, 19, 20], which can be updated in view of the monitoring data. This
updating, referred to herein as Bayesian parameter estimation, is often the primary task of interest. In this
case, the deterioration state variables are obtained as outputs of the calibrated deterioration model with
posterior parameter estimates [21, 22]. In spite of this, the problem of parameter estimation only can still
be cast into a Markovian state-space representation. Quantifying the full posterior uncertainty of the time-
invariant model parameters is essential for performing monitoring-informed predictions on the deterioration
process evolution, the subsequent monitoring-informed estimation of the time-variant structural reliability
[23, 24] or the remaining useful life [11, 3], and eventually for predictive maintenance planning.

Bayesian parameter estimation is the main focus of this paper. In long-term deterioration monitoring
settings, where data is obtained sequentially at different points in time, Bayesian inference can be performed
either in an on-line or an off-line framework [25, 16, 26]. In literature, these are also referred to as recursive
(on-line) and batch (off-line) estimation [15]. Parameter estimation is cast into a state-space setup to render
it suitable for application with on-line Bayesian filtering algorithms [16], such as the Kalman filter [27] and
its nonlinear variants [28, 29, 30, 31], the ensemble Kalman filter [32], and particle filters [33, 34, 15, 35].
We employ on-line particle filter methods for pure recursive estimation of time-invariant deterioration model
parameters, which is not the typical use case for such methods, and can lead to degenerate and impoverished
posterior estimates [36, 15]. Taking that into account, we provide a formal investigation and discussion on
the use of such methods for quantifying the full posterior uncertainty of time-invariant model parameters.

In its most typical setting within engineering applications, Bayesian parameter estimation is commonly
performed with the use of off-line Markov Chain Monte Carlo (MCMC) methods, which have been used
extensively in statistics and engineering to sample from complex posterior distributions of model parameters
[37, 38, 39, 40, 41, 42, 43, 44]. However, use of off-line methods for on-line estimation tasks is computation-
ally prohibitive [36, 16]. Additionally, when considering off-line inference, in settings when measurements
are obtained sequentially at different points in time, off-line MCMC methods tend to induce a larger compu-
tational cost than on-line particle filter methods, which can be important, e.g., when optimizing inspection
and monitoring [45, 46, 14]. Questions that we investigate in this context include: Can one accurately quan-
tify the uncertainty in the posterior parameter estimates when employing on-line particle filter methods for
parameter estimation only purposes? How does this estimation compare against the posterior estimates
obtained with off-line MCMC methods? How does the estimation accuracy depend on the nature of the
problem, i.e., dimensionality, nonlinearity, or non-Gausssianity? What is the computational cost induced by
the different methods? Ideally, one would opt for the method which can provide sufficiently accurate poste-
rior results at the expense of the least computational cost. To address these questions, this paper reviews,
adapts and selects algorithms in view of parameter estimation, and performs a comparative assessment of
selected off-line and on-line filters specifically tailored for off-line and on-line Bayesian parameter estima-
tion. The innovative comparative assessment results in a set of suggestions on the choice of the appropriate
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algorithm in function of problem characteristics.
The paper is structured as follows. Section 2 provides a detailed description of on-line and off-line

Bayesian inference in the context of parameter estimation only. Three different selected and adapted meth-
ods are presented in full algorithmic detail, namely an on-line particle filter with Gaussian mixture-based
resampling (PFGM) [47, 48], the on-line iterated batch importance sampling filter (IBIS) [49], which per-
forms off-line MCMC steps with a Gaussian mixture as a proposal distribution, and an off-line MCMC-based
sequential Monte Carlo (SMC) filter [36], which enforces tempering of the likelihood function (known as sim-
ulated annealing) to sequentially arrive to the single final posterior density of interest [50, 51]. The tPFGM
and tIBIS variants, which adapt the PFGM and IBIS filters by employing tempering of the likelihood func-
tion of each new measurement, are further presented and proposed for problems with high sensor information
amount. Section 3 describes the two case studies that serve as the basis for numerical investigations, one
non-linear, non-Gaussian and low-dimensional and one linear, Gaussian and high-dimensional. MATLAB
codes implementing the different algorithms and applying them on the two case studies introduced in this
paper are made publicly available via a GitHub repository1. Section 4 summarizes the findings of this
comparative assessment, provides suggestions on choice of the appropriate method according to the nature
of the problem, discusses cases which are not treated in our investigations, and concludes this work.

2. On-line and off-line Bayesian filtering for time-invariant parameter estimation

This work assumes the availability of a stochastic deterioration model D, parametrized by a vector
θ ∈ IRd containing the d uncertain time-invariant model parameters. We collect the uncertain parameters
influencing the deterioration process in the vector θ. In the Bayesian framework, θ is modeled as a vector of
random variables with a prior distribution πpr(θ). We assume that the deterioration process is monitored via
a permanently installed monitoring system. Long-term monitoring of a deterioration process leads to sets
of noisy measurements {y1, . . . , yn} obtained sequentially at different points in time {t1, . . . , tn} throughout
the lifetime of a structural component/system. Such measurements can be used to update the distribution
of θ; this task is referred to as Bayesian parameter estimation. Within a deterioration monitoring setting,
Bayesian parameter estimation can be performed either in an on-line or an off-line framework [16], depending
on the task of interest.

In an on-line framework, one is interested in updating the distribution of θ in a sequential manner, i.e., at
every time step tn when a new measurement yn becomes available, conditional on all measurements available
up to tn. Thus, in an on-line framework, inference of the sequence of posterior densities {πpos(θ|y1:n)}n≥1 is
the goal, where y1:n denotes the components {y1, . . . , yn}. We point out that in this paper the term on-line
does not relate to “real-time” estimation, although on-line algorithms are also used in real-time estimation
[52, 53].

In contrast, in an off-line framework, inference of θ is performed at a fixed time step tN using a fixed
set of measurements {y1, . . . , yN}, and the single posterior density πpos(θ|y1:N ) is sought, which can be
estimated via Bayes’ rule as

πpos(θ|y1:N ) ∝ L(y1:N |θ)πpr(θ), (1)

where L(y1:N |θ) denotes the likelihood function of the whole measurement set y1:N given the parameters
θ. With the assumption that measurements are independent given the parameter state, L(y1:N |θ) can be
expressed as a product of the likelihoods L(yn|θ) as

L(y1:N |θ) =

N∏
n=1

L(yn|θ). (2)

MCMC methods sample from πpos(θ|y1:N ) via simulation of a Markov chain with πpos(θ|y1:N ) as its
stationary distribution, e.g., by performing Metropolis Hastings (MH) steps [37]. MCMC methods do not

1https://github.com/antoniskam/Offline_online_Bayes
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require estimation of the normalization constant in Equation (1). However, in the on-line framework, MCMC
methods are impractical, since they require simulating anew a different Markov chain for each new posterior
πpos(θ|y1:n), and the previously generated Markov chain for the posterior estimation of πpos(θ|y1:n−1) is
not accounted for, except when choosing the seed for initializing the new Markov chain. This implies that
MCMC methods quickly become computationally prohibitive in the on-line framework, already for a small
n. An additional computational burden stems from the fact that each step within the MCMC sampling
process requires evaluation of the full likelihood function L(y1:n|θ), i.e., the whole set of measurements y1:n

needs to be processed. This leads to increasing computational complexity for increasing n, and can render
use of MCMC methods computationally inefficient even for off-line inference, especially when N is large.

On-line particle filters [15, 16] operate in a sequential fashion by making use of the Markovian property
of the employed state-space representation, i.e., they compute πpos(θ|y1:n) solely based on πpos(θ|y1:n−1)
and the new measurement yn. The typical use of particle filters targets the tracking of a system’s response
(dynamic state) by means of a state-space representation [54, 15], while they are often also used also for joint
state-parameter estimation tasks, wherein the state-space is augmented to include the model parameters
to be estimated [15, 16]. In addition, particle filters can also be applied for pure recursive estimation of
time-invariant parameters, for which the noise in the dynamic model is formally zero [36, 15], although this is
not the typical setting for application of particle filters. A model of the Markovian discrete time state-space
representation for the case of time-invariant parameter estimation only is given in Equations (3a), (3b)

θn = θn−1 (3a)

yn = Dn (θn) exp (εn) (3b)

where εn models the error/noise of the measurement at time tn, and θn denotes the time-invariant parameter
vector at time step n. The dynamic equation for the time-invariant parameters (3a) is introduced for the
sole purpose of casting the problem into a state-space representation. Since the measurements are assumed
independent given the parameter state, the errors εn in Equation (3b) are independent. It should be noted
that the measurement error, which is introduced in multiplicative form in Equation (3b), is commonly
expressed in an additive form [8]. Indeed, Equation (3b) can be reformulated in the logarithmic scale,
whereby the measurement error is expressed in an additive form. All target distributions of interest in
the sequence πpos(θn|y1:n) are defined on the same space of θ ∈ IRd. In the remainder of this paper, the
subscript n will therefore be dropped from θn. As previously discussed, particle filters are mainly used for
on-line inference. However, these can also be used in exactly the same way for off-line inference, where
only a single posterior density πpos(θ|y1:N ) is of interest. In this case, particle filters use the sequence of
measurements successively to sequentially arrive to the final single posterior density of interest via estimating
all the intermediate distributions.

2.1. On-line Particle Filter

Particle filter (PF) methods, also referred to as sequential Monte Carlo (SMC) methods, are importance

sampling-based techniques that use a set of weighted samples {(θ(i)
n , w

(i)
n ) : i = 1, . . . , Npar}, called particles,

to represent the posterior distribution of interest at estimation time step n, πpos(θ|y1:n). PFs form the
following approximation to the posterior distribution of interest:

πpos(θ|y1:n) ≈
Npar∑
i=1

w(i)
n δ(θ − θ(i)

n ) (4)

where δ denotes the Dirac delta function.
When a new measurement yn becomes available, PFs shift from πpos(θ|y1:n−1) to πpos(θ|y1:n) by im-

portance sampling using an appropriately chosen importance distribution, which results in a reweighting
procedure (updating of the weights). An important issue that arises from this weight updating procedure is

the sample degeneracy problem [15]. This relates to the fact that the importance weights w
(i)
n become more

unevenly distributed with each updating step. In most cases, after a certain number of updating steps, the
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weights of almost all the particles assume values close to zero (see Figure 1). This problem is alleviated by

the use of adaptive resampling procedures based on the effective sample size Neff = 1/
∑Npar

i=1

(
w

(i)
n

)2

[55].

Most commonly, resampling is performed with replacement according to the particle weights whenever Neff

drops below a user-defined threshold NT = cNpar, c ∈ [0, 1]. Resampling introduces additional variance to
the parameter estimates [15]. In the version of the PF algorithm presented in Algorithm 1, the dynamic
model of Equation (3) is used as the importance distribution, as originally proposed in the bootstrap filter
by [54].

Algorithm 1 Particle Filter (PF)

1: generate Npar initial particles θ(i) from πpr(θ), i = 1, . . . , Npar

2: assign initial weights w
(i)
0 = 1/Npar, i = 1, . . . , Npar

3: for n = 1, . . . , N do

4: evaluate likelihood of the particles based on new measurement yn, L
(i)
n = L

(
yn | θ(i)

)
5: update particle weights w

(i)
n ∝ L(i)

n · w(i)
n−1 and normalize s.t.

∑Npar

i=1 w
(i)
n = 1

6: evaluate Neff = 1∑Npar
i=1

(
w

(i)
n

)2

7: if Neff < NT then
8: resample particles θ(i) with replacement according to w

(i)
n

9: reset particle weights to w
(i)
n = 1/Npar

10: end if
11: end for

Prior particle distribution

Posterior particle distribution (sample degeneracy)

Resampled posterior particle distribution (sample impoverishment)

Ideal posterior particle distribution

Prior distribution
Posterior distribution

Figure 1: Sample degeneracy and impoverishment

When using PFs to estimate time-invariant parameters, for which the process noise in the dynamic
equation is zero, one runs into the issue of sample impoverishment [15]. The origin of this issue is the
resampling process. More specifically, after a few resampling steps, most (or in extreme cases all) of the
particles in the sample set end up assuming the exact same value, i.e., the particle set consists of only few
(or one) distinct particles (see Figure 1). The sample impoverishment issue poses the greatest obstacle for
time-invariant parameter estimation with PFs. A multitude of techniques have been suggested in literature
to alleviate the sample impoverishment issue in joint state-parameter estimation setups [see, e.g., 56, 57, 58,
25, 59, 60, 61, 62]. Fewer works have proposed solutions for resolving this issue in parameter estimation only
setups [see, e.g., 49, 36]. One of the simplest and most commonly used approaches consists of introducing

5



artificial dynamics in the dynamic model of the parameter vector, i.e., the dynamic model θn = θn−1 +εn−1

is employed, where εn−1 is a small artificial process noise [63]. In this way, the time-invariant parameter
vector is transformed into a time-variant one, therefore, the parameter estimation problem deviates from the
original one [15, 16]. This approach can introduce a bias and an artificial variance inflation in the estimates
[16]. For these reasons, this approach is not considered in this paper.

To resolve the sample impoverishment issue encountered when using the PF Algorithm 1 for parameter
estimation only, this work employs the particle filter with Gaussian mixture resampling (PFGM), described
in Algorithm 2. The PFGM algorithm relates to pre-existing concepts [47, 64], and is here specifically
suggested for the parameter estimation only task, with its main goal being, in contrast to previous works,
the quantification of the full posterior parameter uncertainty. A comparison between Algorithms 1 and 2
shows that the only difference lies in the way that the resampling step is performed. PFGM replaces the
standard resampling process of PF by first approximating the posterior distribution at estimation step n
by a Gaussian mixture model (GMM), which is fitted via the Expectation-Maximization (EM) algorithm
[48, 65] on the weighted particle set. The degenerating particle set is then rejuvenated by sampling Npar

new particles from the GMM of Equation (5),

p (θ | y1:n) ≈
NGM∑
i=1

φiN (θ;µi,Σi) (5)

where φi represents the weight of the Gaussian component i, while µi and Σi are the respective mean vector
and covariance matrix. The number of Gaussians in the mixture NGM, has to be chosen in advance, or
can be estimated by use of appropriate algorithms [66, 67, 68]. In the numerical investigations of Section
3, we set NGM=8. We point out that the efficacy of PFGM strongly depends on the quality of the GMM
posterior approximation. The reason for applying a GMM (and not a single Gaussian) is that the posterior
distribution can deviate from the normal distribution, and can even be multimodal or heavy-tailed.

Algorithm 2 Particle Filter with Gaussian mixture resampling (PFGM)

1: generate Npar initial particles θ(i) from πpr(θ), i = 1, . . . , Npar

2: assign initial weights w
(i)
0 = 1/Npar, i = 1, . . . , Npar

3: for n = 1, . . . , N do

4: evaluate likelihood of the particles based on new measurement yn, L
(i)
n = L

(
yn | θ(i)

)
5: update particle weights w

(i)
n ∝ L(i)

n · w(i)
n−1 and normalize s.t.

∑Npar

i=1 w
(i)
n = 1

6: evaluate Neff = 1∑Npar
i=1

(
w

(i)
n

)2

7: if Neff < NT then
8: EM: fit a Gaussian mixture proposal distribution gGM(θ) according to {θ(i), w

(i)
n }

9: sample Npar new particles θ(i) from gGM(θ)

10: reset particle weights to w
(i)
n = 1/Npar

11: end if
12: end for

The simple reweighting procedure used in the on-line PFs is based on the premise that πpos(θ|y1:n−1)
and πpos(θ|y1:n) are likely to be similar, i.e., that the new measurement yn will not cause a very large change
in the posterior. However, when that is not the case, this simple reweighting procedure is bound to perform
poorly, leading to very fast degeneration of the particle set. In cases where already the first measurement
set y1 is strongly informative relative to the prior, the PF is bound to strongly degenerate already in the
first weight updating step (e.g., we observe this in the second case study of Section 3.2 in the case of 10
sensors). To counteract this issue, in this paper we incorporate the idea of simulated annealing (enforcing
tempering of the likelihood function) [50] when needed within the on-line PFGM algorithm, which we term
the tPFGM Algorithm 3. The tPFGM algorithm draws inspiration from previous works [69, 70], but is
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here suggested for the parameter estimation only task, opting for the quantification of the full posterior
parameter uncertainty. The algorithm operates as follows: At estimation time step n, before performing the
reweighting operation, the algorithm first checks the updated effective sample size for indication of sample
degeneracy. If no degeneracy is detected, tPFGM operates exactly like PFGM. When sample degeneracy
occurs, tPFGM employs adaptive tempering of the likelihood L (yn | θ) of the new measurement yn in order
to “sequentially” sample from πpos(θ|y1:n−1) to πpos(θ|y1:n) by visiting a sequence of artificial intermediate
posteriors, as defined by the tempered likelihood function Lq (yn | θ). The tempering factor q takes values
between 0 and 1. When q = 0, the new measurement yn is neglected, while q = 1 entails considering the
whole likelihood function of yn, thus reaching to πpos(θ|y1:n). The intermediate values of q are adaptively
selected via solution of the optimization problem in line 11 of Algorithm 3, which ensures that the effective
sample size does not drop below the threshold NT for the chosen q value. Naturally, use of tPFGM can
trigger more resampling events than PFGM, as resampling can occur more than once within a time step n.

Algorithm 3 Particle Filter with Gaussian mixture resampling and likelihood tempering (tPFGM)

1: generate Npar initial particles θ(i) from πpr(θ), i = 1, . . . , Npar

2: assign initial weights w
(i)
0 = 1/Npar, i = 1, . . . , Npar

3: for n = 1, . . . , N do

4: evaluate likelihood of the particles based on new measurement yn, L
(i)
n = L

(
yn | θ(i)

)
5: set q = 0 and create auxiliary particle weights w

(i)
a = w

(i)
n−1

6: while q 6= 1 do

7: if Neff =
(∑Npar

i=1 w
(i)
a · L(i)

n

1−q)2

/
∑Npar

i=1

(
w

(i)
a · L(i)

n

1−q)2

> NT then

8: update auxiliary particle weights w
(i)
a ∝ w(i)

a · L(i)
n

1−q
and normalize s.t.

∑Npar

i=1 w
(i)
a = 1

9: set q = 1
10: else

11: solve

(∑Npar

i=1 w
(i)
a · L(i)

n

dq
)2

/
∑Npar

i=1

(
w

(i)
a · L(i)

n

dq
)2

−NT = 0 for dq

12: set qnew = min [q + dq, 1]
13: set dq = qnew − q and q = qnew

14: update auxiliary particle weights w
(i)
a ∝ w(i)

a · L(i)
n

dq
and normalize s.t.

∑Npar

i=1 w
(i)
a = 1

15: EM: fit a Gaussian mixture proposal distribution gGM(θ) according to {θ(i), w
(i)
a }

16: sample Npar new particles θ(i) from gGM(θ)

17: reset auxiliary particle weights to w
(i)
a = 1/Npar

18: end if
19: end while
20: set w

(i)
n = w

(i)
a

21: end for

The PFGM and tPFGM filters rely entirely on the posterior approximation via a GMM for sampling Npar

new particles during the resampling process. However, there is no guarantee that these new particles follow
the true posterior distribution of interest. The IBIS filter of the following Section 2.2 aims at addressing
this issue.

2.2. Iterated Batch Importance Sampling

Implementing MCMC steps within PF methods to move the particles after a resampling step was orig-
inally proposed by [56], in the so-called resample-move algorithm. [49] introduced a special case of the
resample-move algorithm, specifically tailored for application to static parameter estimation only purposes,
namely the iterated batch importance sampling (IBIS) filter. IBIS was originally introduced as an iterative
method for solving off-line estimation tasks by incorporating the sequence of measurements one at a time.

7



In doing this, the algorithm visits the sequence of intermediate posteriors within its process, and can there-
fore also be used to perform on-line estimation tasks. An on-line version of the IBIS filter is presented in
Algorithm 5, used in conjuction with the MCMC routine of Algorithm 4.

The core idea of the IBIS filter is the following: At estimation step n, if sample degeneracy is identified,
first the particles are resampled with replacement, and subsequently the resampled particles are moved with
a Markov chain transition kernel whose stationary distribution is πpos(θ|y1:n). More specifically, each of the
Npar resampled particles is used as the seed to perform a single MCMC step. This approach is inherently
different to standard applications of MCMC, where a transition kernel is applied multiple times on one
particle.

A question that arises is how to choose the Markov chain transition kernel. [49] argues for choosing a
transition kernel that ensures that the proposed particle only weakly depends on the seed particle value. It
is therefore recommended to use an independent Metropolis-Hastings (IMH) kernel, wherein the proposed
particle is sampled from a proposal distribution g, which has to be as close as possible to the target distribu-
tion πpos(θ|y1:n). In obtaining such a proposal distribution, along the lines of what is described in Section
2.1, in this work we employ a GMM approximation (see Equation (5)) of the target distribution as the pro-
posal density gGM(θ) within the IMH kernel [71, 72]. The IMH kernel with a GMM proposal distribution
is denoted IMH-GM herein. The acceptance probability (line 6 of Algorithm 4) of the IMH-GM kernel is a
function of both the initial seed particle and the GMM proposed particle. The acceptance rate can indicate
how efficient the IMH-GM kernel is in performing the MCMC move step within the IBIS algorithm. It is
important to note that when computing the acceptance probability, a call of the full likelihood function
is invoked, which requires the whole set of measurements y1:n to be processed; this leads to a significant
additional computational demand, which pure on-line methods are not supposed to accommodate [33].

The performance of the IBIS sampler depends highly on the mixing properties of the IMH-GM kernel.
If the kernel leads to slowly decreasing chain auto-correlation, the moved particles are bound to remain in
regions close to the particles obtained by the resampling step. This can lead to an underrepresentation of the
parameter space of the intermediate posterior distribution. It might therefore be beneficial to add a burn-in
period within the IMH-GM kernel [36]. Implementing that is straightforward and is shown in Algorithm 4,
where nB is the user-defined number of burn-in steps. Naturally, the computational cost of the IMH-GM
routine increases linearly with the number of burn-in steps.

Algorithm 4 Independent Metropolis Hastings with GM proposal (IMH-GM)

1: IMH-GM Input: {θ(i), L(i) · πpr(θ
(i))}, πpr(θ), L(y1:n|θ) and gGM(θ)

2: for i = 1, . . . , Npar do

3: for j = 1, . . . , nB + 1 do

4: sample candidate particle θ
(i)
c,j from gGM(θ)

5: evaluate L
(i)
c,j = L(y1:n|θ(i)

c,j) for candidate particle

6: evaluate acceptance ratio α = min

[
1,

L
(i)
c,j ·πpr(θ

(i)
c,j)·gGM(θ(i))

L(i)·πpr(θ(i))·gGM(θ
(i)
c,j)

]
7: generate uniform random number u ∈ [0, 1]
8: if u < α then
9: replace {θ(i), L(i) · πpr(θ

(i))} with {θ(i)
c,j , L

(i)
c,j · πpr(θ

(i)
c,j)}

10: end if
11: end for
12: end for
13: IMH-GM Output: {θ(i), L(i) · πpr(θ

(i))}

Algorithm 5 details the workings of the IMH-GM-based IBIS filter used in this work. In line 11 of
this algorithm, the IMH-GM routine of Algorithm 4 is called, which implements the IMH-GM kernel for
the MCMC move step. Comparing Algorithms 2 and 5, it is clear that both filters can be used for on-
line inference within a single run, but the IBIS filter has significantly larger computational cost, as will
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also be demonstrated in the numerical investigations of Section 3. In the same spirit as the proposed
tPFGM algorithm 3, which enforces simulated annealing (tempering of the likelihood function) in cases
when πpos(θ|y1:n−1) and πpos(θ|y1:n) are likely to be quite different, the same idea can be implemented also
within the IBIS algorithm. That leads to what we refer to as the tIBIS algorithm in this paper.

Algorithm 5 IMH-GM-based Iterated Batch Importance Sampling (IBIS)

1: generate Npar initial particles θ(i) from πpr(θ), i = 1, . . . , Npar

2: assign initial weights w
(i)
0 = 1/Npar, i = 1, . . . , Npar

3: for n = 1, . . . , N do

4: evaluate likelihood of the particles based on new measurement yn, L
(i)
n = L

(
yn | θ(i)

)
5: evaluate the new target distribution, L(y1:n|θ(i)) · πpr

(
θ(i)
)

= L
(i)
n · L(y1:n−1|θ(i)) · πpr

(
θ(i)
)

6: update particle weights w
(i)
n ∝ L(i)

n · w(i)
n−1 and normalize s.t.

∑Npar

i=1 w
(i)
n = 1

7: evaluate Neff = 1∑Npar
i=1

(
w

(i)
n

)2

8: if Neff < NT then
9: EM: fit a Gaussian mixture proposal distribution gGM(θ) according to {θ(i), w

(i)
n }

10: resample Npar new particles {θ(i), L(y1:n|θ(i)) · πpr(θ
(i))} with replacement according to w

(i)
n

11: IMH-GM step with inputs {θ(i), L(y1:n|θ(i)) · πpr(θ
(i))}, πpr(θ), L(y1:n|θ) and gGM(θ)

12: reset particle weights to w
(i)
n = 1/Npar

13: end if
14: end for

2.3. Off-line Sequential Monte Carlo sampler

In Section 4 of [36], the authors presented a generic approach to convert an off-line MCMC sampler into
a sequential Monte Carlo (SMC) sampler tailored for performing off-line estimation tasks, i.e., for estimating
the single posterior density of interest πpos(θ|y1:N ). The off-line SMC sampler used in this work is presented
in Algorithm 6 based on [36] and [51]. The key idea of this sampler is to adaptively construct the following
artificial sequence of densities,

πj(θ|y1:N ) ∝ Lqj (y1:N |θ)πpr(θ) (6)

where qj is a tempering parameter which obtains values between 0 and 1, in order to “sequentially” sample
in a smooth manner from the prior to the final single posterior density of interest. Once qj = 1, πpos(θ|y1:N )
is reached. Similar to what was described in tPFGM, the intermediate values of qj are adaptively found via
solution of the optimization problem in line 5 of Algorithm 6. The GMM approximation of the intermediate
posteriors and the IMH-GM kernel of Algorithm 4 in order to move the particles after resampling are also key
ingredients of this SMC sampler. Unlike PFGM and IBIS, this SMC algorithm cannot provide the on-line
solution within a single run, and has to be rerun from scratch for every new target posterior of interest. In
this regard, use of Algorithm 6 for on-line inference is impractical.

2.4. Computational remarks

The algebraic operations in all presented algorithms are implemented in the logarithmic scale, which
employs evaluations of the logarithm of the likelihood function and, hence, ensures computational stability.
Furthermore, the EM step for fitting the GMM is performed after initially transforming the prior joint
probability density function of θ to an underlying vector u of independent standard normal random variables
[73]. In standard normal space, the parameters are decorrelated, which enhances the performance of the
EM algorithm.

9



Algorithm 6 IMH-GM-based Sequential Monte Carlo (SMC)

1: generate Npar initial particles θ(i) from πpr(θ), i = 1, . . . , Npar

2: evaluate for every particle the full likelihood L(i) = L(y1:N | θ(i)) and the prior πpr(θ
(i))

3: set q = 0
4: while q 6= 1 do

5: solve
(∑Npar

i=1 L(i)dq
)2

/
∑Npar

i=1 L(i)2·dq −NT = 0 for dq

6: set qnew = min [q + dq, 1]
7: set dq = qnew − q and q = qnew

8: evaluate particle weights w(i) ∝ L(i)dq and normalize s.t.
∑Npar

i=1 w(i) = 1
9: EM: fit a Gaussian mixture proposal distribution gGM(θ) according to {θ(i), w(i)}

10: resample Npar new particles {θ(i), L(i)q · πpr(θ
(i))} with replacement according to w(i)

11: IMH-GM step with inputs {θ(i), L(i)q · πpr(θ
(i))} , πpr(θ), Lq(y1:N |θ) and gGM(θ)

12: reset particle weights to w(i) = 1/Npar

13: end while

3. Numerical investigations

3.1. Low-dimensional case study: Paris-Erdogan fatigue crack growth model

A fracture mechanics-based model serves as the first case study. This describes the fatigue crack growth
evolution under increasing stress cycles [74, 17]. The crack growth follows the following first-order differential
Equation (7), known as Paris-Erdogan law,

da (n)

dn
= exp (Cln)

[
∆S
√
πa (n)

]m
(7)

where a [mm] is the crack length, n [−] is the number of stress cycles, ∆S
[
Nmm−2

]
is the stress range

per cycle when assuming constant stress amplitudes, C and m represent empirically determined model
parameters; Cln corresponds to the natural logarithm of C.

The solution to this differential equation, with boundary condition a (n = 0) = a0, can be written as
a function of the number of stress cycles n and the vector θ = [a0,∆S,Cln,m] containing the uncertain
time-invariant model parameters as

a (n,θ) =
[(

1− m

2

)
exp (Cln) ∆Smπm/2n+ a

(1−m/2)
0

](1−m/2)−1

(8)

We assume that noisy measurements of the crack yn are obtained sequentially at different values of n.
The measurement Equation (9) assumes a multiplicative lognormal measurement error, exp (εn).

yn = an(θ) exp (εn) (9)

Under this assumption, the likelihood function for a measurement at a given n is shown in Equation
(10).

L
(
yn; an (θ)

)
=

1

σεn
√

2π
exp

−1

2

(
ln (yn)− µεn − ln

(
an (θ)

)
σεn

)2
 (10)

Table 1 shows the prior probability distribution model for each random variable in the vector θ [17, 9],
as well as the assumed probabilistic model of the measurement error. In this case study we are dealing with
a non-linear model and a parameter vector with non-Gaussian prior distribution.
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Table 1: Prior distribution model for the fatigue crack growth model parameters and the measurement error

Parameter Distribution Mean Standard Deviation Correlation

a0 Exponential 1 1 −
∆S Normal 60 10 −

Cln, m Bi-Normal (−33; 3.5) (0.47; 0.3) ρCln,m = −0.9
exp (εn) Log-normal 1.0 0.1508 −
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Figure 2: Reference posterior solution: mean and credible intervals for the sequence of posterior distributions πpos (θ|y1:k)

3.1.1. Markovian state-space representation for application of on-line filters

A Markovian state-space representation of the deterioration process is required for application of on-
line filters. The dynamic and measurement equations of the discrete-time state-space representation of the
fatigue crack growth model with unknown time-invariant parameters θ = [a0,∆S,Cln,m] are shown below.

θk = θk−1

yk = ak (θk) exp (εk) =
[(

1− mk

2

)
exp (Clnk

) ∆Smk

k πmk/2n+ a
(1−mk/2)
0k

](1−mk/2)−1

exp (εk)
(11)

The subscript k denotes the estimation time step. More specifically, the number of stress cycles is
discretized as n = k∆n, with k = 1, . . . , 100 and ∆n = 1 × 105. The state-space model of Equation 11 is
nonlinear and the prior is non-Gaussian. For reasons explained in Section 2, the subscript k in θk is dropped
in the remainder of this section.

3.1.2. Reference posterior solution

For the purpose of performing a comparative assessment of the different filters, an underlying “true”
realization of the fatigue crack growth process a∗(n) is generated for n = k∆n, with k = 1, . . . , 100 and
∆n = 1 × 105. This realization corresponds to the randomly generated “true” vector of time-invariant
parameters θ∗ = [a∗0 = 2.0,∆S∗ = 50.0, C∗

ln = −33.5,m∗ = 3.7]. Sequential synthetic crack monitoring
measurements yk are sampled from the measurement Equation (9) for ak(θ∗), and for randomly generated
measurement noise samples exp (εk). These measurements are scattered in green in Figure 3.

Based on the generated measurements, the sequence of reference posterior distributions πpos (θ|y1:k)
is obtained using the prior distribution as an envelope distribution for rejection sampling [75, 76]. More
specifically, for each of the 100 posterior distributions of interest πpos (θ|y1:k), 105 independent samples are
generated. The results of this reference posterior estimation of the four time-invariant model parameters
are plotted in Figure 2. With posterior samples, the reference filtered estimate of the crack length an at
each estimation step is also obtained via the model of Equation (8) and plotted in Figure 3. In the left
panel of this figure, the filtered state is plotted in logarithmic scale. In an off-line estimation, a single
posterior density is of interest. One such reference posterior estimation result for the last estimation step,
πpos (θ|y1:100), is plotted for illustration in Figure 4.
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Figure 4: Reference final posterior: prior and single posterior distribution of interest πpos (θ|y1:100)

3.1.3. Comparative assessment of the investigated on-line and off-line filters

We apply the PFGM filter with 5000 and 50000 particles, the IBIS filter with 5000 particles, and the
SMC filter with 5000 particles for performing on-line and off-line time-invariant parameter estimation tasks.
We evaluate the performance of each filter by taking the relative error of the estimated mean and standard
deviation of each of the four parameters with respect to the reference posterior solution. For example, the
relative error in the estimation of the mean of parameter a0 at a certain estimation step k is computed as

|µa0,k−µ̂a0,k

µa0,k
|, where µa0,k is the reference posterior mean from rejection-sampling (Section 3.1.2), and µ̂a0,k

is the posterior mean estimated with each filter. Each filter is run 50 times, and the mean relative error of
the mean and the standard deviation of each parameter, together with the 90% credible intervals (CI), are
obtained. These are plotted in Figure 5.

Figure 6 plots the L2 relative error norm of the mean and the standard deviation of all four parameters,
i.e., the quantity of equation (12) (here formulated for the mean at estimation step k)√√√√∑d

i=1 (µi,k − µ̂i,k)
2∑d

i=1 (µi,k)
2

(12)

where d is the dimensionality of the time-invariant parameter vector θ (in this example d = 4). More
specifically, Figure 6 plots the mean and credible intervals of the L2 relative error norm of the estimated
mean and standard deviation, as obtained from 50 runs of each filter.

Figures 5 and 6 reveal that, when all three filters are run with the same number of particles, the IBIS
and SMC filters yield superior performance over PFGM. When the number of particles in the PFGM filter
is increased to 50000, the PFGM filter performance is comparable to the one of the IBIS and SMC filters. In
estimating the mean, the mean L2 relative error norm obtained from the PFGM filter with 50000 particles
is slightly larger than the corresponding error obtained from IBIS and SMC with 5000 particles, while the
90% credible intervals of the PFGM filter estimation are still wider. In estimating the standard deviation,
the PFGM filter with 50000 particles proves competitive.
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Figure 5: Comparison of the relative error of the mean and standard deviation of the parameters evaluated for each filter. The
solid lines show the mean and the shaded areas the 90% credible intervals inferred from 50 repeated runs of each filter. In the
horizontal axis, n is the number of stress cycles

Figure 6: Comparison of the L2 relative error norm of the mean and the standard deviation of the parameters evaluated for
each filter. The solid lines show the mean and the shaded areas the 90% credible intervals inferred from 50 repeated runs of
each filter. In the horizontal axis, n is the number of stress cycles

Figures 5 and 6 show the estimation accuracy of each filter when used for on-line inference, i.e., for
estimating the whole sequence of 100 posterior distributions πpos (θ|y1:k), k = 1, . . . , 100. The PFGM and
IBIS filters, being intrinsically on-line filters, provide the whole posterior sequence with one run. On the
other hand, the off-line SMC filter is run anew for each of the 100 required posterior estimations. Hence,
Figures 5 and 6 enclose the results of both the on-line and the off-line inference. If one is interested in the
off-line estimation accuracy at a specific stress cycle n, one can simply consider a vertical “cut” at n.

Table 2 documents the computational cost associated with each filter, expressed in the form of required
model evaluations induced by calls of the likelihood function. By model we here refer to the model of
Equation (8), which is an analytical expression with negligible associated runtime. However, unlike the
simple measurement equation that we have assumed in this example, in many realistic deterioration mon-
itoring settings, the deterioration state cannot be measured directly (e.g., in vibration-based structural
health monitoring [4]). In such cases, each deterioration model evaluation often entails evaluation of a finite

Table 2: Average number of model evaluations for the fatigue crack growth model parameter estimation

method PFGM 5000 PFGM 50000 IBIS SMC (final posterior) SMC (all posteriors)

model evaluations 5 × 105 5 × 106 3.4 × 106 4.5 × 106 1.9 × 108
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element (FE) model, which has substantial runtime. It therefore appears appropriate to evaluate the filters’
computational cost in terms of required model evaluations. The on-line PFGM filter with 5000 particles
requires 5 × 105 model evaluations, and yields by far the smallest computational cost, while at the same
time providing the solution to both on-line and off-line estimation tasks. However, it also yields the worst
performance in terms of accuracy of the posterior estimates. Running the IBIS filter with 5000 particles,
which performs MCMC move steps, leads to 3.4× 106 model evaluations. Comparing this value against the
5 × 105 model evaluations required by the PFGM filter with 5000 particles for performing the same task
distinctly shows the computational burden associated with MCMC move steps, which require a complete
browsing of the whole measurement data set in estimating the acceptance probability. However, the IBIS
filter also leads to enhanced estimation accuracy, which might prove significant when the subsequent tasks
entail prognosis of the deterioration evolution, the structural reliability or the remaining useful lifetime,
and eventually the predictive maintenance planning. Using 50000 particles, the PFGM filter performance
increases significantly with a computational cost that is comparable to the IBIS filter with 5000 particles.
For the off-line SMC algorithm, 4.5 × 106 model evaluations are required only for the task of estimating
the final posterior density. The 1.9 × 108 model evaluations required by the SMC for obtaining the whole
sequence of posteriors πpos (θ|y1:k), k = 1, . . . , 100, clearly demonstrate that off-line MCMC techniques are
unsuited to on-line estimation tasks.

3.2. High-dimensional case study: Corrosion deterioration spatially distributed across beam

4m

Figure 7: Structural beam subjected to spatially and temporally varying corrosion deterioration. The deterioration process is
monitored from sensors deployed at specific sensor locations (in green)

As a second case study, we employ the deterioration model of Equation (13), which describes the spatially
and temporally varying corrosion deterioration across the structural beam shown in Figure 7.

D(t) = AtB , t = 0, . . . , 50 (13)

A is a random field modeling the deterioration rate, while B is a random field related to the nonlinearity
effect of the deterioration process in terms of a power law in time. The corrosion deterioration D(t) is
therefore also a spatial random field.

A random field, by definition, contains an infinite number of random variables, and must therefore be
discretized [77]. One of the most common methods for discretization of random fields is the midpoint method
[78], whereby the domain is discretized in m elements, and the two random fields can be approximated by
using the random variables that correspond to the values of the random fields at the discrete points in the
domain (the midpoints of each element). In that case, the uncertain time-invariant deterioration model
parameter vector is θ = [A1, . . . , Am, B1, . . . , Bm], where Ai, Bi, i = 1, . . . ,m are the random variables
corresponding to the midpoint of the i-th element.

We assume that noisy measurements of the corrosion deterioration state Dt,l at time t and at certain
locations l of the beam are obtained sequentially (summarized in one measurement per year) from nl
sensors deployed at these locations (nl = 10 sensor locations are shown in Figure 7). The measurement
Equation (14), describing the corrosion measurement at time t and sensor location l, assumes a multiplicative
measurement error, exp (εt,l).

yt,l = Dt,l (θ) exp (εt,l) = Ailt
Bil exp (εt,l) , (14)

where il returns the discrete element number of the midpoint discretization within which the measurement
location l lies. Table 3 shows the prior distribution model for the two random fields of the deterioration
model of Equation (13) and the assumed probabilistic model of the multiplicative measurement error. Since
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Table 3: Prior distribution model for the corrosion deterioration model parameters and the measurement error

Parameter Distribution Mean Standard Deviation Corr. length (m)

A Lognormal 0.8 0.24 2
B Normal 0.8 0.12 2

exp (εt,l) Lognormal 1.0 0.101 -

A models a lognormal random field, ln(A) follows the normal distribution. For both random fields ln(A)
and B, the exponential correlation model with correlation length of 2m is applied [79].

The goal is to update the time-invariant deterioration model parameters θ = [A1, . . . , Am, B1, . . . , Bm]
given sequential noisy corrosion measurements yt,l from nl deployed sensors. The dimensionality of the
problem is d = 2×m. Hence, the more elements in the midpoint discretization, the higher the dimensionality
of the parameter vector.

The main goal of this second case study is to investigate the effect of the problem dimensionality and
the amount of sensor information on the posterior results obtained with each filter. We choose the following
three midpoint discretization schemes:

1. m = 25 elements: d = 50 time-invariant parameters to estimate.
2. m = 50 elements: d = 100 time-invariant parameters to estimate.
3. m = 100 elements: d = 200 time-invariant parameters to estimate.

Furthermore, we choose the following three potential sensor arrangements:
1. nl = 2 sensors (the 4th and 7th sensors of Figure 7).
2. nl = 4 sensors (the 1st, 4th, 7th and 10th sensors of Figure 7).
3. nl = 10 sensors of Figure 7.

We therefore study nine different cases of varying problem dimensionality and number of sensors.

3.2.1. Markovian state-space representation for application of on-line filters

A Markovian state-space representation of the deterioration process is required for application of on-line
filters. The dynamic and measurement equations are shown in Equation (15). The measurement equation is
written in the logarithmic scale. Time t is discretized in yearly estimation time steps k, i.e., k = 1, . . . , 50,
and the subscript l = 1, . . . , nl corresponds to the sensor location.

θk = θk−1

ln (yk,l) = ln (Dk,l(θk)) + εk,l ⇒ ln (yk,l) = ln (Ak,il) +Bk,il ln (tk) + εk,l
(15)

In the logarithmic scale, both the dynamic and measurement equations are linear functions of Gaussian
random variables. For reasons explained in Section 2, the subscript k in θk is dropped in the following.

3.2.2. Underlying “true” realization

To generate a high-resolution underlying “true” realization of the two random fields A and B, and the
corresponding synthetic monitoring data set, we employ the Karhunen-Loeve (KL) expansion [79] using
the first 400 KL modes. These realizations are shown in the left panel of Figure 8. Given these A and B
realizations, the underlying “true” realizations of the deterioration process at ten specific beam locations are
generated, which correspond to the ten potential sensor placement locations shown in Figure 7. Subsequently,
a synthetic corrosion sensor measurement data set (one measurement per year) at these 10 locations is
generated from the measurement Equation (14). These are shown in the right panel of figure 8. The KL
expansion is used for the sole purpose of generating the underlying “truth”.

3.2.3. Reference posterior solution

For the investigated linear Gaussian state space representation of Equation 15, we create reference on-line
posterior solutions for each of the nine considered cases by applying the Kalman filter (KF) [27], which is
the closed form solution to the Bayesian filtering equations. The process noise covariance matrix in the KF
equations is set equal to zero. The linear Gaussian nature of the chosen problem ensures existence of an
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Figure 8: Left: the blue solid line plots the underlying “true” realization of ln(A) and B created using the KL expansion. Right:
the blue solid line plots the underlying “true” realization of ln (D(t)) at 10 specific sensor locations and the corresponding
synthetic sensor monitoring data are scattered in black. In both figures, the black dashed lines plot the prior mean and the
black solid lines the prior 90% credible intervals

analytical reference posterior solution obtained with the KF. One such reference on-line posterior solution
for the case described by m = 25 elements (d = 50) and nl = 4 sensors is shown in Figure 9.

Figure 9: Case with m = 25, nl = 4: reference on-line posterior solution at 10 locations across the beam obtained with the
Kalman filter. The solid blue horizontal line represents the underlying “true” values of ln(A) and B at these locations. The
black dashed lines plot the posterior mean and the black solid lines the posterior 90% credible intervals. Locations 1,4,7,10
correspond to the four assumed sensor placement locations

3.2.4. Comparative assessment of the investigated on-line and off-line filters

We apply the tPFGM filter, the tIBIS filter, and the SMC filter, all with Npar=2000 particles, for estimat-
ing the time-invariant parameter vector θ. For each of the nine cases of varying problem dimensionality and
number of sensors described above, we compute the L2 relative error norm of the estimated means, correla-
tion coefficients, and standard deviations of the parameters with respect to the corresponding KF reference
posterior solution, i.e., we estimate a quantity as in Equation (12) for all estimation steps k = 1, . . . , 50.
In Figures 10, 11, 12 we plot the mean and credible intervals of these relative errors as obtained from 50
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different runs. The off-line SMC filter, which does not provide the on-line solution within a single run, is
run anew for estimating the single posterior density of interest at years 10, 20, 30, 40, 50, and in between,
the relative error is linearly interpolated. Although each of the nine panels in the figures corresponds to a
different case with a different underlying KF reference solution, their y axes have the same scaling. Table
4 documents the computational cost of each filter in each considered case, measured by average number of
evaluations of the model of Equation (13).

Figures 10 and 11 show that the off-line IMH-GM-based SMC filter yields the best performance in
estimating the KF reference posterior mean and correlation, for all nine considered cases, while at the same
time producing the narrowest credible intervals. Comparison of the relative errors obtained with the SMC
and tIBIS filters reveals that, although they are both reliant on the IMH-GM MCMC move step, the on-line
tIBIS filter leads to larger estimation errors. The on-line tPFGM and tIBIS filters generate quite similar
results in estimating the reference posterior mean and correlation, thus rendering the benefit of the MCMC
move step in tIBIS unclear, except in cases with more sensors and lower parameter dimension. Figures
10 and 11 reveal a slight trend, indicating that for fixed dimensionality, availability of more sensors (i.e.,
stronger information content in the likelihood function) leads to a slight decrease in the relative errors
when using the SMC and tIBIS filters, whereas the opposite trend can be identified for the tPFGM filter.
Increasing problem dimensionality (for fixed number of sensors) does not appear to have strong influence on
the posterior results in any of the columns of Figures 10, 11 and 12, a result that initially appears puzzling.

Figure 10: Comparison of the L2 relative error norm of the means of the parameters evaluated for each filter. The solid lines
show the mean and the shaded areas the 90% credible intervals inferred from 50 repeated runs of each filter

Table 4: Average number of model evaluations for the high-dimensional case study. For the SMC, the required model evaluations
for obtaining the single final posterior density are reported.

elements 25 50 100

sensors 2 4 10 2 4 10 2 4 10

tPFGM 129,480 154,000 194,440 129,440 155,560 195,760 130,480 157,120 199,040

tIBIS 602,400 1,038,440 1,878,000 603,240 1,049,400 1,909,880 567,720 1,017,280 1,876,240

SMC 1,130,000 1,596,000 2,298,000 1,108,000 1,582,000 2,250,000 1,100,000 1,504,000 2,150,000

Figure 12 conveys that the tPFGM filter, which entirely depends on the GMM posterior approximation,
induces the smallest relative errors for the estimation of the standard deviation of the parameters in all
considered cases. This result reveals a potential inadequacy of the single application of the IHM-GM kernel
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Figure 11: Comparison of the L2 relative error norm of the correlation coefficients of the parameters evaluated for each filter.
The solid lines show the mean and the shaded areas the 90% credible intervals inferred from 50 repeated runs of each filter

Figure 12: Comparison of the L2 relative error norm of the standard deviations of the parameters evaluated for each filter.
The solid lines show the mean and the shaded areas the 90% credible intervals inferred from 50 repeated runs of each filter

for the move step within the tIBIS and SMC filters in properly exploring the space of θ. In all 50 runs of the
tIBIS and SMC filters, the standard deviation of the parameters is consistently underestimated compared
to the reference, unlike when applying the tPFGM filter.

Based on the discussion of Section 2.2, we introduce a burn-in period of nB=5 in the IMH-GM kernel
of Algorithm 4 and perform 50 new runs of the tIBIS and SMC filters. One can expect that inclusion of a
burn-in is more likely to ensure sufficient exploration of the intermediate posterior distributions. However, at
the same time the computational cost of tIBIS and SMC increases significantly, with a much larger number
of required model evaluations than in Table 4. In Figures 13, 14 we plot the mean and credible intervals
for the relative errors in the estimation of the mean and standard deviation of the parameters. Comparing
Figures 10 and 13, inclusion of burn-in is shown to lead to an improved performance of tIBIS and SMC
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in estimating the mean of the parameters in all cases. This improvement is more evident in the lower-
dimensional case with 25 elements, and lessens as the problem dimension increases. Hence, with burn-in
one observes a deterioration of the tIBIS and SMC filters’ performance with increasing dimensionality. This
point becomes more evident when looking at the relative errors of the estimated standard deviation in Figure
14. With burn-in, the tIBIS and SMC filters provide better results than the tPFGM filter in estimating
the standard deviation in the case of 25 elements, but perform progressively worse as the dimensionality
increases, where they underestimate the KF reference standard deviation. This underestimation is clearly
illustrated in Figure 15. The reason for this behavior is the poor performance of the IMH-GM algorithm in
high dimensions, which is numerically demonstrated in [71]. We suspect that this behavior is related to the
degeneracy of the acceptance probability of MH samplers in high dimensions, which has been extensively
discussed in the literature for random walk samplers, e.g., in [80, 81, 82, 83, 84, 42]. Single application of
the IHM-GM kernel without burn-in yielded acceptance rates of around 50% for all cases. With inclusion
of burn-in, in higher dimensions, the acceptance rate in IMH-GM drops significantly in the later burn-in
steps, leading to rejection of most proposed particles. To alleviate this issue, one could consider using the
preconditioned Crank Nicolson (pCN) sampler to perform the move step within the IBIS and SMC filters,
whose performance is shown to be independent of the dimension of the parameter space when the prior is
Gaussian [84].

Increase of dimensionality does not seem to have any influence on the results obtained with the tPFGM
filter. The illustrated efficacy of the tPFGM filter in estimating the time-invariant parameters in all consid-
ered cases of increasing dimensionality is related to the nature of the studied problem. The tPFGM filter
relies entirely on the GMM approximation of the posterior distribution within its resampling process, in that
it simply “accepts” all the Npar GMM-proposed particles, unlike the tIBIS and SMC filters, which contain
the degenerating acceptance-rejection step within the IMH-GM move step. Clearly, the worse the GMM
fit, the worse the expected performance of the tPFGM filter. The particular case investigated here has a
Gaussian reference posterior solution, hence the GMM fitted by EM proves effective in approximating the
posterior with a relatively small number of particles, even when going up to d=200 dimensions, thus lead-
ing to a good proposal distribution for sampling Npar new particles in tPFGM. As reported in Table 4, the
tPFGM filter is associated with a significantly lower computational cost than its MCMC-based counterparts.

Figure 13: Comparison of the L2 relative error norm of the mean of the parameters evaluated for each filter. The solid lines
show the mean and the shaded areas the 90% credible intervals inferred from 50 repeated runs of each filter. Burn-in nB=5
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Figure 14: Comparison of the L2 relative error norm of the standard deviation of the parameters evaluated for each filter. The
solid lines show the mean and the shaded areas the 90% credible intervals inferred from 50 repeated runs of each filter. Burn-in
nB=5

Figure 15: Updating of the random field ln (D(t = 50)) in three different cases of varying problem dimensionality. The solid
lines show the mean and the shaded areas the 90% credible intervals inferred from 10 repeated runs of each filter. The black
dashed line represented the posterior mean obtained via the KF, and the black solid lines the KF 90% credible intervals
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4. Concluding remarks

In this article, we present in full algorithmic detail three different on-line and off-line Bayesian filters,
specifically tailored for the task of parameter estimation only of time-invariant deterioration model param-
eters in long-term monitoring settings. More specifically, these are an on-line particle filter with Gaussian
mixture resampling (PFGM), an on-line iterated batch importance sampling (IBIS) filter, and an off-line
sequential Monte Carlo (SMC) filter, which applies simulated annealing to sequentially arrive to a single
posterior density of interest. The IBIS and SMC filters perform Markov Chain Monte Carlo (MCMC) move
steps via application of an independent Metropolis Hastings kernel with a Gaussian mixture proposal dis-
tribution (IMH-GM) whenever degeneracy is identified. A simulated annealing process (tempering of the
likelihood function) is further incorporated within the update step of the on-line PFGM and IBIS filters
for cases when each new measurement is expected to have a strong information content; this leads to the
presented tPFGM and tIBIS filters. The SMC filter can be employed only for off-line inference, while the
PFGM, tPFGM, IBIS and tIBIS filters can perform both on-line and off-line inference tasks.

With the aid of two numerical examples, a rigorous comparative assessment of these algorithms for off-
line and on-line Bayesian filtering of time-invariant deterioration model parameters is performed. In contrast
to other works, the main focus here lies on the efficacy of the investigated Bayesian filters in quantifying the
full posterior uncertainty of deterioration model parameters, as well as on the induced computational cost.

For the first non-linear, non-Gaussian and low-dimensional case study, the IBIS and SMC filters, which
both contain IMH-GM-based MCMC move steps, are shown to consistently outperform the purely on-
line PFGM filter in estimating the parameters’ reference posterior distributions. However, they induce a
computational cost of at least an order of magnitude larger than the PFGM filter, when the same initial
number of particles is used in all three filters. With similar computational cost, i.e., when increasing the
number of particles in PFGM, it achieves enhanced posterior accuracy, comparable to the IBIS and SMC
filters.

For the second case study, involving a linear, Gaussian and high-dimensional model, the results vary with
increasing problem dimensionality and number of sensors. The on-line tPFGM filter achieves a consistently
satisfactory quality with increasing dimensionality, a behavior explained by the linear Gaussian nature of the
problem, while a slight drop in the posterior quality is observed for increasing amount of sensor information.
The tIBIS and SMC filters are shown to consistently outperform the tPFGM filter in lower dimensions, they
however perform progressively worse in higher dimensions, a behavior likely explained by the degeneracy of
the acceptance probability of MH samplers in high dimensions. The computational cost of the tIBIS and
SMC filters is an order of magnitude larger than the tPFGM filter.

Some general conclusions drawn from the delivered comparative assessment are listed below.
• The IBIS (and its tIBIS variant) and SMC filters, which contain MCMC move steps, offer better

approximations of the posterior mean of the model parameters than the purely on-line PFGM (and
its tPFGM variant) filter with the same number of samples, as shown in both studied examples.

• The independent Metropolis Hastings (IMH)-based MCMC move step performed within the IBIS,
tIBIS and SMC filters proves inadequate in properly exploring the posterior parameter space in high-
dimensional problems.

• The purely on-line PFGM (and its tPFGM variant) filter is competitive with MCMC-based filters,
especially for higher-dimensional well-behaved problems.

Finally, to support the reader with the selection of the appropriate algorithm for a designated scenario,
we provide Table 5, which contains an assessment of the methods presented in this paper in function of
problem characteristics.

This paper does not investigate the performance of these filters when applied to high-dimensional and
highly non-Gaussian problems. Such problems are bottlenecks for most existing filters and we expect the
investigated filters to be confronted with difficulties in approximating the posterior distributions.
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Table 5: Set of suggestions on choice of the appropriate method in function of problem characteristics.

Criterion
PFGM

(tPFGM)
IMH-GM-based
IBIS (tIBIS)

IMH-GM-based
SMC

On-line inference X ◦ ×
Computational cost C1 C2 C3

A
p
p
li
ca

b
il
it

y
to

d
iff

er
en

t
p
ro

b
le

m
s

Mean estimation
in low-dimensional, nonlinear,

non-Gaussian problems
Q3 Q4 Q4

Uncertainty quantification
in low-dimensional, nonlinear,

non-Gaussian problems
Q3 Q4 Q4

Mean estimation
in high-dimensional,

well-behaved problems
Q2 Q3 Q4

Uncertainty quantification
in high-dimensional,

well-behaved problems
Q3 Q1 Q1

Increasing sensor
information amount

× (X) × (X) X

Q1: low quality
Q2: moderate quality
Q3: moderate to high quality
Q4: high quality

X: applicable
◦: partly applicable
×: not applicable

C1: moderate
C2: moderate to high
C3: high
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