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ABSTRACT: This paper draws upon recent work of the authors (Kamariotis et al. 2022),
which establishes a framework for the quantification of the Value of Information (VoI) from
long-term vibration-based structural health monitoring (SHM). Within the proposed VoI anal-
ysis, a classical Bayesian model updating framework exploiting modal data identified from
an Operational Modal Analysis (OMA) is implemented in a sequential setting to identify the
parameters of stochastic deterioration models. Assumptions about the magnitude of the total
prediction error in the OMA and the number of sensors can significantly affect the Bayesian
updating results. In this work, we show that these effects can be quantified via the VoI.

1 INTRODUCTION

Widespread adoption of SHM systems on
real-world structures and infrastructure sys-
tems is hampered by the lack of convinc-
ing demonstrations on how realistic monitor-
ing data can instigate optimal maintenance
decisions over the life-cycle of a structure.
Value of information (VoI) analysis offers a
framework for quantifying and optimizing the
effect of SHM systems on life-cycle costs
(Pozzi & Der Kiureghian 2011, Straub 2014).

In this direction, the authors have recently
presented a preposterior Bayesian decision
analysis tailored for quantifying the value of
long-term vibration-based SHM (Kamariotis
et al. 2021, 2022). In the proposed method-
ology, dynamic acceleration data are sampled
at different time instances over the life-cycle
of the structure and subsequently fed into an
OMA procedure (Peeters & De Roeck 1999)
to identify the modal data, i.e., system eigen-
frequencies and mode shape displacements at
the sensor locations. A classical Bayesian

model updating (BMU) framework (Simoen
et al. 2015), which relies on the OMA-
identified modal data, is implemented in a se-
quential setting to identify the damage evolu-
tion at potential damage locations. This sub-
sequently leads to sequential updating of the
estimated reliability of the system, and in turn
allows for life-cycle optimization via use of
a heuristic reliability threshold that triggers a
repair action on the deteriorating structure.

Within the BMU framework, prior to in-
stalling the monitoring system, usually little
(if anything) is known about the structure or
magnitude of the total prediction error when
constructing the likelihood function. Further-
more, the choice of the number and posi-
tions of employed sensors on the structure is
important, especially in cases when damage
localization is desired. This has motivated
the authors to look at these assumptions and
choices from the VoI perspective.

The mathematical details of the described
VoI analysis will not be presented in this pa-
per, and the interested reader is referred to
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(Kamariotis et al. 2022). Herein, we demon-
strate the VoI analysis via adoption of a nu-
merical benchmark (Tatsis & Chatzi 2019),
established as part of COST Action TU1402.
It consists of a simulator for creating dynamic
response measurement samples from a two
span bridge system subject to corrosion de-
terioration in two hotspot locations over its
lifespan. Using this case study, we compute
the VoI that one obtains with the SHM i) for
different assumptions about the magnitude of
the total prediction error, ii) for different num-
ber of accelerometers uniformly distributed
along the structure.

2 BAYESIAN MODEL UPDATING

2.1 Bayesian formulation

A vector θ ∈ IRd contains all the d ran-
dom variables (RVs) driving the uncertainty
in the employed stochastic structural deteri-
oration models. We employ a classical BMU
framework in a sequential setting, which aims
at sequentially inferring the parameters θ

given noisy OMA-identified modal eigenval-
ues λ̃tm = (2π f̃tm)

2 and mode shape vector
components Φ̃tm ∈ IRNs at the Ns degrees of
freedom (DOFs), which correspond to the
sensor locations, where m = 1, ...,Nm is the
number of the lower modes identified at time
instance t. Typically, an OMA procedure,
such as the Stochastic Subspace Identifica-
tion (SSI) algorithm (Peeters & De Roeck
1999), can identify the m lower modal eigen-
values quite accurately, even when a rela-
tively small number of acceleration sensors is
deployed on the structure. However, the ac-
curacy of the identification and the represen-
tation of the mode shape displacements de-
pends heavily on the number of deployed sen-
sors. Furthermore, quantities derived from
the modal characteristics, as the mode shape
curvatures K̃tm ∈ IRNs , are shown to enhance
the damage localization capabilities of the
BMU framework. For a successful derivation
of the mode shape curvatures via a finite dif-
ference scheme, a dense arrangement of the
accelerometers is required.

A linear finite element (FE) model, pa-
rameterized with θ , is employed for obtain-
ing the FE model-predicted modal eigenval-
ues λtm(θ) and mode shape displacements
Φtm(θ), or mode shape curvatures Ktm(θ).

The aim of the BMU framework is the esti-
mation of parameters θ , and their uncertainty,
such that the FE model predicted modal quan-
tities best match the OMA-identified modal
data. Long-term vibration-based SHM is sup-
posed to provide sensor measurement data in
a continuous fashion, therefore we are inter-
ested in a sequential implementation of the
BMU framework. The goal is to learn at
any time step ti the posterior distribution of θ

given all measurement data up to time ti, i.e.
the distribution πpos(θ | λ̃1:i,Φ̃1:i). Applying
Bayes’ rule, this is proportional to the likeli-
hood function L(θ ; λ̃1:i,Φ̃1:i) multiplied with
the prior probability density function (PDF)
of the model parameters πpr(θ):

πpos(θ | λ̃1:i,Φ̃1:i)∝ L(θ ; λ̃1:i,Φ̃1:i)πpr(θ) (1)

The measurement uncertainty, including ran-
dom measurement noise and variance or bias
errors in the OMA procedure, and the model
uncertainty, which together constitute the to-
tal prediction error (Simoen et al. 2015), have
to be taken into account when constructing
the likelihood function. The total prediction
error for the eigenvalues and the mode shape
vectors (accordingly for the mode shape cur-
vatures), are in most state-of-the-art works
formulated as follows:

ηλtm
= λ̃tm −λtm(θ) ∈ IR (2)

ηΦtm
= γtmΦ̃tm −Φtm(θ) ∈ IRNs (3)

where γtm is a normalization constant, which
is computed as in equation (4). Γ is a bi-
nary matrix for selecting the FE degrees of
freedom, which correspond to the sensor lo-
cations.

γtm =
Φ̃T

tmΓΦtm∥∥∥Φ̃tm

∥∥∥2 (4)
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The eigenvalue prediction error is assumed
to follow a Gaussian distribution with zero
mean and standard deviation proportional to
the measured eigenvalues:

ηλtm
∼ N

(
0,c2

λtm
λ̃

2
tm

)
(5)

The mode shape prediction error vector is as-
sumed to follow a multivariate Gaussian dis-
tribution with zero mean vector and diago-
nal covariance matrix, where all the Ns com-
ponents in the vector ηΦtm

are assigned the
same standard deviation, proportional to the
L2-norm of the measurement vector:

ηΦm ∼ N (0,ΣΦm)

ΣΦm = diag
(

c2
Φm

∥∥∥γmΦ̃m

∥∥∥2
)

(6)

Assuming statistical independence among the
Nt modal data sets obtained at different time
instances and among the m identified modes
at time instance t, the likelihood function is
written as:

L
(

θ ; λ̃1...λ̃Nt ,Φ̃1...Φ̃Nt

)
=

Nt

∏
t=1

Nm

∏
m=1

N
(

λ̃tm −λtm(θ);0,c2
λmλ̃

2
tm

)
N
(

γtmΦ̃tm −Φtm(θ);0,ΣΦtm

) (7)

The factors cλm and cΦm are assigned co-
efficients of variation, whose chosen values
represent an assumed deviation on the nomi-
nal model-predicted values, as induced due to
the total prediction error (Simoen et al 2015).
Even if some researchers have attempted to
partially quantify the magnitude of this to-
tal prediction error (Reynders et al 2016), in
practical applications usually little is known
about the structure or the magnitude of the to-
tal prediction error prior to installing a mon-
itoring system. The choice of an uncorre-
lated zero mean Gaussian model for the er-
rors can be justified from the maximum en-
tropy principle, but in the experience of the
authors, most published literature contains a
rather heuristic and unjustified choice of the
magnitude of the factors cλm and cΦm, which
affects the BMU results.

2.2 Laplace approximation of the posterior

For details, the interested reader is referred
to the work of Beck & Katafygiotis (1998).
The main idea is that for globally identifiable
cases, and for large enough number of exper-
imental data, the posterior distribution can be
approximated by a multivariate Gaussian dis-
tribution N(µ,Σ). The mean vector µ is set
equal to the most probable value, or maxi-
mum a-posteriori (MAP) estimate, of the pa-
rameter vector, which is obtained by minimiz-
ing the negative logposterior:

µ =θMAP = argmin
θ

(− lnπpos(θ | λ̃ ,Φ̃)) =

argmin
θ

(− lnL(θ ; λ̃ ,Φ̃)− lnπpr(θ))

(8)

and the covariance matrix Σ is equal to the in-
verse of the Hessian of the log-posterior eval-
uated at the MAP estimate.

3 LIFE CYCLE COST OPTIMIZATION

This section is meant to provide a brief, high-
level description of the preposterior Bayesian
decision analysis methodology that is used
herein to quantify the VoI. It is presented in
full mathematical and algorithmic detail in
(Kamariotis et al. 2022).

We assume some prior stochastic model(s)
to describe the deterioration evolution over
the lifetime at specific hotspot locations of
a given structure. We employ the following
simple decision model: At every time step
of the decision problem, one has to choose
whether or not a repair action should be per-
formed on the structure. A repair action has
an associated cost, which is subject to dis-
counting over the lifetime. The event of fail-
ure of the structure at a specific time step is
also associated with a cost. The total life-
cycle cost is equal to the total cost of repair
and the risk of failure cost over the lifetime
of the structure. We make the simplifying
assumption that a repair action results in re-
placing the damaged components and bring-
ing them back to the initial state, and that
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no failure will occur after a repair. This re-
pair can also be interpreted as a replacement.
The final goal is to find the optimal time to
perform the repair/replacement over the life-
cycle of the structure.

How do we decide at every time step of the
decision problem whether a repair is neces-
sary? Given the knowledge on the stochastic
parameters of the deterioration model(s), it is
possible to compute the accumulated proba-
bility of failure over time, and the correspond-
ing hazard rate (Straub et al 2020, Melch-
ers & Beck 2017). At the time step when
the hazard rate exceeds a predefined thresh-
old, a repair action is necessary. How do we
choose the value of this predefined threshold?
Employing a heuristic-based solution of the
LCC optimization problem (Bismut & Straub
2021), the threshold on the hazard rate actu-
ally becomes the heuristic parameter which
we seek to optimize, which results in the op-
timal trepair.

3.1 Value of Information

A prior decision analysis is based solely on
prior knowledge of the stochastic deteriora-
tion parameters θ , which is used to estimate
the lifetime probability of failure and the haz-
ard rate. On this basis, we estimate the
optimal expected total life-cycle cost via a
heuristic-based optimization.

In a preposterior decision analysis, the
SHM information is accounted for, thus up-
dating our prior assumptions. The process is
described as follows. We draw samples from
the prior distribution of θ . Each realization of
the vector θ corresponds to one specific real-
ization of the deterioration model(s), describ-
ing the structural damage evolution over time.
For each possible realization of the deterio-
ration model(s), we simulate corresponding
modal data that one would obtain at each time
step from an operational modal analysis us-
ing SHM acceleration measurements. Using
the continuously obtained actual SHM data,
we perform Bayesian analysis to sequentially
learn the different posterior distributions of
θ . We then use the estimated posteriors of

θ to estimate the updated lifetime probabil-
ity of failure and the hazard rate. We even-
tually solve the LCC optimization to obtain
the optimal time to perform the repair action
for this specific deterioration and monitoring
data realization. This procedure is performed
for all samples of θ , resulting in the optimal
expected LCC in the preposterior case.

The VoI is then straightforwardly com-
puted as the difference between the optimal
expected LCC in the prior case and the pre-
posterior case.

3.2 Value of Partial Perfect Information

In a hypothetical scenario, where a perfect
SHM system is assumed, at every time in-
stance one acquires perfect knowledge on the
true value of the parameters θ of the deterio-
ration models, and the optimal repair decision
is found conditional on this perfect knowl-
edge. Since the SHM system cannot measure
the load acting on the system, this informa-
tion is only partially perfect. It is much sim-
pler to perform a Value of Partial Perfect In-
formation (VPPI) analysis, and it can provide
an upper limit to the value that the VoI may
assume.

4 NUMERICAL INVESTIGATIONS

4.1 Numerical benchmark for SHM data
creation on deteriorating structure

In Figure 1 we show the numerical bench-
mark that is employed as a simulator for cre-
ating dynamic response measurement sam-
ples from the two span-bridge system, which
is subjected to deterioration due to corro-
sion in the bottom elements of each midspan.
It is assumed that there are 24 deployed
accelerometers measuring vertical accelera-
tions. Since we are interested in application
of SHM on an operational level, the absence
of knowledge on the load is simulated by as-
suming a distributed Gaussian white noise ex-
citation acting on the structure. A dynamic
time history analysis of the model results in
the measured vertical acceleration signals at
the 24 locations. These are contaminated with
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F(x): Gaussian white noise excitation

L1=12m L2=13m

Kx
(1)

Ky
(1) Kx

(2)
Ky

(2) Kx
(3)

Ky
(3)

h=0.6m

Corrosion damage D1 Corrosion damage D2

w=0.1m

Ky
(i)= 107 N/m , Kx

(i) = 108 N/m

E=30GPa, ν=0.2, ρ=2000kg/m3 200X6 plane stress elements

Figure 1: Bridge system subject to corrosion damage in two locations

Table 1: Parameters of the stochastic deterioration
models

Parameters Distribution Mean CV
A1,A2 Lognormal 0.506 0.4
B1,B2 Normal 0.5 0.15

noise, simulating sensor (measurement) error,
and then fed into the SSI to obtain the m lower
eigenvalues and mode shape displacements at
the 24 sensor locations.

4.2 Deterioration models

We assume that the bridge structure is sub-
jected to gradual deterioration from corro-
sion in the mid-section of both midspans (el-
ements in black in Figure 1). At both lo-
cations, damage is introduced as a progres-
sive reduction of stiffness at the bottom 2 el-
ements of the FE mesh. The evolution of
the stiffness reduction over the lifespan of the
bridge is described by employing the damage
model of equation (9). E(0) is the initial un-
damaged value of the Young’s modulus, and
D1(t), D2(t) are the deterioration models (re-
duction of stiffness) employed for each loca-
tion. The random variables of the deteriora-
tion models are summarized in Table 1.

E j(t) = E(0)/(1+D j(t)) = E(0)/(1+A jtB j),

j = 1,2
(9)

4.3 Effect of the likelihood function on the
BMU results

The FE model predicting the eigenvalues and
mode shape displacements within the BMU
process is the same FE model as the one in
Figure 1 used for creating the synthetic noisy

monitoring data. Even though an artificial
noise is added, the use of the same model par-
tially neglects the model uncertainty. Never-
theless, this is a built-in feature of preposte-
rior analysis.

For the depicted scenario of 24 accelerom-
eters uniformly distributed along the struc-
ture, we can accurately identify the lower
Nm=6 eigenvalues and mode shape displace-
ments with the use of the SSI. Conditional
on the good representation of the mode shape
displacement vector that we can obtain with
this dense sensor arrangement, a finite differ-
ence scheme is applied and the lower Nm=6
mode shape curvatures are obtained (Figure
2), which can be used in the likelihood func-
tion instead of the mode shape displacements.

It is assumed that the underlying "true"
deterioration parameter values correspond to
A∗

1 = 0.503, B∗
1 = 0.459, A∗

2 = 0.637 and B∗
2 =

0.584. For the "true" deterioration curves
that these parameters define, we generate one
set of OMA-identified modal data per year
over the T =50 years of the lifetime, and us-
ing those we employ the sequential Bayesian
deterioration model updating framework to
learn the different posterior distributions of
interest. In this simple example, the effect
of environmental and operation variability on
the structural properties are neglected.

4.3.1 Effect of the assumed total prediction
error magnitude

The goal of this section is to illustrate the ex-
tent to which the assumed magnitude of the
total prediction error, i.e., the choice of cλm
and cΦm in the likelihood function, can affect
the results of the Bayesian updating.

Figures 3, 4, 5 show the final posterior den-
sities πpos(θ | λ̃ 1:50, K̃1:50) for each of the four
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Figure 2: Mode shape curvatures in initial undamaged
state
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Figure 3: Final posteriors for cλm=cΦm=2%, 24 sensors

uncertain variables of the two deterioration
models (in red), together with the prior den-
sities (in green), for three different choices of
cλm and cΦm. One can directly observe that
the results differ significantly among the three
choices. For cλm=cΦm=2%, the uncertainty
in the posterior densities is reduced compared
to the prior densities, and the posterior densi-
ties peak around the underlying "true" values
for which the data was created. However, for
cλm=cΦm=5% or 10%, the posterior densities
that we obtain seem to be biased, i.e., they do
not peak around the "true" values of the pa-
rameters, and the deterioration models one is
learning do not correspond to the underlying
"true" models. Since the posterior samples
are eventually used within a structural relia-
bility calculation, this means that also the es-
timate of the accumulated probability of fail-
ure and the hazard rate will have a large dif-
ference for the different choices of cλm=cΦm,
as shown in Figure 8.
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Figure 4: Final posteriors for cλm=cΦm=5%, 24 sensors
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Figure 5: Final posteriors for cλm=cΦm=10%, 24 sen-
sors
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Figure 6: Final posteriors for cλm=cΦm=2%, 8 sensors
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Figure 7: Final posteriors for cλm=cΦm=2%, 16 sensors

4.3.2 Effect of the number of uniformly dis-
tributed sensors

The results of the previous section correspond
to a case when 24 sensors are uniformly dis-
tributed along the length of the bridge struc-
ture. In that case, as can be seen in Figure 2,
one can obtain a smooth representation of the
mode shape curvatures, which is used in the
likelihood function. However, when fewer
sensors are available, it is no longer wise to
extract the mode shape curvatures, since the
finite difference scheme with a rather coarse
sensor placement will not perform well. In
that case, we use the mode shape displace-
ments in our likelihood function for the BMU.

Figure 6 shows the final posterior densi-
ties obtained via the BMU framework for the
case when only 8 sensors are uniformly dis-
tributed along the structure, while Figure 7
corresponds to the case of 16 sensors. Both
results are obtained for cλm=cΦm=2%. Com-
paring Figures 6, 7 to Figure 3, one can see
the effect of the number of sensors on the per-
formance of the BMU for detecting and local-
izing the damage at the two different deterio-
ration hotspots. In Figure 8, the correspond-
ing estimated hazard rate curves are shown.

Performing a VoI analysis for each of the
three choices of the sensor placement, one
can investigate the effect of this choice on
the VoI result. Ultimately, such a parametric
study can form the basis for optimal sensor
placement.
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Figure 8: Hazard rate curves updated at each time step
using the posterior distributions of the deterioration
model parameters obtained via BMU for one "true" re-
alization A∗

1, B∗
1, A∗

2 and B∗
2.

Figures 3 - 7 show the posterior distribu-
tions of θ inferred via BMU using sampled
modal data corresponding to one underlying
"true" realization of the deterioration model
parameters A∗

1, B∗
1, A∗

2 and B∗
2. Within a VoI

analysis, the posterior analysis via BMU has
to be performed multiple times, for different
sample realizations of the parameter vector θ .

4.4 Effect of the likelihood function on the
VoI results

Finally, in this section we document the VPPI
result and the different VoI results that we
obtain for the various choices of the sensor
placement and the assumed total prediction
error magnitude.

In the context of the decision problem, we
assume that the cost of failure is ĉF = 107

units and the cost of repair is ĉR = 3.5× 104

units, while the discount rate is 2%.
For the computation of the VoI, we draw

1000 samples of θ , which we use for execut-
ing both the prior and the preposterior deci-
sion analysis. In the preposterior case, for
each of the θ samples, we create one con-
tinuous set of SSI-identified modal data, thus
jointly sampling the system state space and
monitoring data space.

Table 2 documents the optimal heuristic
value and the optimal time to perform the re-
pair, which minimize the total expected life-
cycle cost in the prior decision analysis. The
results of the preposterior decision analysis
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for the different sensor arrangements and er-
ror magnitudes are shown in the following
two subsections.

Table 2: Heuristic-based life-cycle optimization in the
prior case.

w∗
0 t∗repair

6.1×10−5 21

4.4.1 Effect of the number of sensors on the
VoI results

Table 3 documents the optimal value of the
heuristic threshold w, which leads to an opti-
mization of the total expected life cycle cost
in the preposterior case, with Table 4 docu-
menting the VPPI and VoI values for the three
different numbers of uniformly distributed
sensors. It is observed that the optimal heuris-
tic threshold (the value of the hazard rate
which instigates a repair action) takes larger
values in the cases of fewer sensors. The VoI
result yielded via the BMU process is high-
est for 24 sensors, and decreases when fewer
sensors are deployed. Such a result would be
expected. The coefficient of variation (CV) of
the estimated mean value of the VoI also in-
creases for fewer sensors, revealing the pres-
ence of larger noise in the estimation, when
data from only few sensors are employed.

Table 3: Heuristic-based life-cycle optimization in the
preposterior case (cλm=cΦm=2%). Different number of
sensors.

sensors w∗

24 1×10−4

16 2.8×10−4

8 3.9×10−4

Table 4: Effect of the number of sensors on the VoI
extracted via BMU (cλm=cΦm=2%). Different number
of sensors.

VPPI (CV) sensors VoI (CV) VoI
VPPI

24 4614 (5.3%) 60%
7681 (2.6%) 16 2801 (13%) 37%

8 2543 (16%) 33%

4.4.2 Effect of the assumed total prediction
error magnitude on the VoI

Table 5 documents the optimal heuristic
threshold value that we compute in the LCC
optimization for the three different cases of
error magnitude in the likelihood function
used in the BMU. The optimal heuristic
threshold that we obtain for cλm=cΦm=5%
and 10% drops compared to the case of
cλm=cΦm=2%. This is in line with the ob-
served behavior of the updated hazard rate
curves that are shown in Figure 8 for the dif-
ferent cases.

Table 5: Heuristic-based life-cycle optimization in the
preposterior case (24 sensors). Different values of
cλm=cΦm.

cλm=cΦm w∗

2% 1×10−4

5% 5.5×10−5

10% 2.65×10−5

Table 6: Effect of the total prediction error magnitude
on the VoI extracted via BMU (24 sensors). Different
values of cλm=cΦm.

VPPI (CV) cλm=cΦm VoI (CV) VoI
VPPI

2% 4614 (5.3%) 60%
7681 (2.6%) 5% 4272 (6.8%) 55%

10% 5489 (4.5%) 71%

The VoI results in Table 6 come at a sur-
prise at a first glance. We showed in Section
4.3.1 that the choice of cλm=cΦm largely af-
fects the BMU results, with the posterior esti-
mates that we obtain being increasingly "off"
as the magnitude of cλm=cΦm increases. Yet
the VoI that we compute is large also for these
cases. How can this be explained?

The posterior estimates obtained for
cλm=cΦm=5% and 10% seem to be character-
ized by a large bias. This bias seems to be
present as a systematic error in all BMU anal-
yses required within a preposterior Bayesian
decision analysis. Our heuristic-based so-
lution of the decision problem operates by
optimizing the hazard rate threshold value,
which instigates a repair action. The VoI
analysis framework can compensate for this



The 13th International Conference on Structural

Safety and Reliability (ICOSSAR 2021),

June 21-25, 2021, Shanghai, P.R. China

J. Li, Pol D. Spanos, J.B. Chen & Y.B. Peng (Eds)

completely systematic error that is present
in the different posterior BMU analyses. In
the end, by adjusting the optimal value of
the heuristic threshold, the decisions on the
optimal time to repair do not differ much
between the different cλm=cΦm cases.

For demonstration purposes, we assume
the following scenario, which is probably
close to what would happen in practice: We
assume that a decision on a repair is taken
when the hazard rate exceeds a predefined
threshold of 1× 10−4. This value is not sub-
ject to further optimization. Using this prede-
fined threshold, we compute the expected to-
tal life-cycle cost in a prior decision analysis
as well as in the different preposterior deci-
sion analyses. The VoI results yielded in this
scenario are documented in Table 7. Here, it
is observed that for this fixed threshold, the
VoI resulting from a BMU analysis with large
assumed values of the total prediction error
is much smaller than the VoI result for lower
values.

Table 7: Effect of the total prediction error magnitude
on the VoI extracted via BMU (24 sensors) without
an optimization of the heuristic threshold, which is set
equal to 1×10−4. Different values of cλm=cΦm.

cλm=cΦm VoI
2% 5492
5% 4101

10% 539

5 CONCLUSIONS

This paper employs a preposterior Bayesian
decision analysis framework for the quan-
tification of the VoI yielded via adoption
of vibration-based SHM on a deteriorating
bridge structure. A key ingredient within this
framework is the BMU, which aims at se-
quentially identifying the uncertain deterio-
ration model parameters. It has been shown
that the performance of the BMU in identi-
fying and localizing structural deterioration
is crucially affected by the employed like-
lihood function. The BMU leads to erro-
neous results for certain choices of the to-

tal prediction error magnitude in the likeli-
hood function and - as expected - the BMU
performance is decreasing when fewer sen-
sors are deployed on the structure. The ef-
fect of these choices on the resulting VoI from
SHM is quantified herein. The fewer the de-
ployed sensors, the larger is the noise present
in the damage identification and subsequently
the lower is the VoI that results from the pre-
posterior Bayesian decision analysis. Surpris-
ingly, the heuristic-based solution of the deci-
sion problem compensates for what appears
to be a consistent bias present in the BMU
when the assumed magnitude of the total pre-
diction error is large, and the resulting VoI is
a large value, even when the posterior predic-
tions are off.
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