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ABSTRACT 

Many preventive maintenance schemes for managing structural deterioration rely on stochastic deterioration models. In this 

context, continuous structural health information can be employed within a Bayesian framework to update the distributions of 

the time-invariant deterioration model parameters. Bayesian parameter estimation can be performed either in an online or an 

offline fashion. In this contribution, we investigate different online and offline algorithms implemented for learning the 

model parameters, and their uncertainty, considering a probabilistic model of fatigue crack growth that is updated with 

continuous crack monitoring measurements. The numerical investigations provide insights on the performance of the 

different algorithms in terms of accuracy of the posterior estimates and computational cost.    
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INTRODUCTION 

The tracking and tackling of deterioration is a major challenge throughout the structural life-cycle. To address this challenge, 

stochastic models describing the various deterioration processes can be employed, which typically contain time-invariant 

parameters with prior uncertainty. The deployment of sensors on structures allows for a continuous monitoring of such 

deterioration processes. Efficient use of continuous monitoring data within a Bayesian framework can lead to posterior 

estimates of the time-invariant deterioration model parameters, which is indispensable for the task of performing informed 

predictions on the deterioration process evolution. An important distinction can be made between online and offline Bayesian 

parameter estimation [1], which is the main focus of this contribution. Although the typical use of online methods, such as 

the particle filter [2], targets the tracking of the system’s response (dynamical state) by means of a state-space formulation, 

these can also be used in pure recursive estimation of time-invariant parameters, such as the system properties. The task of 

estimating time-invariant parameters is most commonly performed with the use of offline Markov chain Monte Carlo 

(MCMC) methods. However, use of offline methods in setups where the measurements are obtained sequentially at different 

points in time can become computationally unaffordable. 

OFFLINE AND ONLINE BAYESIAN PARAMETER ESTIMATION 

This work is based on the premise that a stochastic deterioration model is available, with 𝜽 ∈ ℝ𝑑 a vector containing the 𝑑 

unknown time-invariant parameters. In a Bayesian framework, 𝜽 is modeled as a vector of random variables (RVs), with 

their prior uncertainty described by a prior distribution 𝜋𝑝𝑟(𝜽). Monitoring of the deterioration process leads to a set of noisy 

measurements {𝑦1, 𝑦2 , … } obtained in a sequential manner at different points in time {𝑡1, 𝑡2, … }. The measurements can be 

used to learn the posterior distribution of 𝜽 through application of Bayes’ rule. Different posterior distributions might be of 

interest; for instance, one might be interested in updating the distribution of 𝜽 in a sequential manner, i.e., at every time step 

𝑡𝑛 when a new measurement 𝑦𝑛 is obtained (given all the set of measurements {𝑦1, 𝑦2, … , 𝑦𝑛} available up to 𝑡𝑛, denoted as 

𝑦1:𝑛). In such settings, the use of offline MCMC algorithms is not practical, as a different chain needs to be generated for 

each posterior 𝜋𝑝𝑜𝑠(𝜽|𝑦1:𝑛), and the previously obtained posterior 𝜋𝑝𝑜𝑠(𝜽|𝑦1:𝑛−1) is not accounted for. In a static scenario, 



one might seek estimation of a single posterior density 𝜋𝑝𝑜𝑠(𝜽|𝑦1:𝑁). Using Bayes’ rule, this posterior distribution of interest 

can be estimated 

 𝜋𝑝𝑜𝑠(𝜽|𝑦1:𝑁) ∝ 𝜋(𝑦1:𝑁|𝜽) 𝜋𝑝𝑟(𝜽) (1) 

   

where 𝜋(𝑦1:𝑁|𝜽) is the likelihood function. For the latter task, typically offline MCMC methods can be employed to obtain 

the posterior distribution. In structural deterioration setups, where each measurement is obtained at a different point in time, 

each evaluation of the likelihood function within the MCMC process requires the whole set of measurements to be processed, 

which induces a significant computational cost.  

Online particle filter methods operate in a sequential fashion, i.e., they use 𝜋𝑝𝑜𝑠(𝜽|𝑦1:𝑛−1) to obtain 𝜋𝑝𝑜𝑠(𝜽|𝑦1:𝑛) via 

importance resampling [2], having to account only for the new measurement 𝑦𝑛. They can be used in exactly the same way 

both for updating the distribution of 𝜽 in an online sequential manner, as well as for static scenarios, where only a single 

posterior density 𝜋𝑝𝑜𝑠(𝜽|𝑦1:𝑁) is of interest. In the latter case, they use the sequence of measurements to sequentially arrive 

to the final posterior density of interest via estimating all the intermediate distributions. Online particle filtering methods 

suffer from two distinct issues. In most cases, after a certain number of update steps, almost all the particles comprise zero (or 

close to zero) weights, the so-called degeneracy problem [2]. This problem is alleviated by the use of adaptive resampling 

procedures based on the effective sample size. When using online particle filters to estimate a posterior distribution of 

interest for time-invariant parameters, for which the process noise is formally zero, one runs into the issue of sample 

impoverishment [2]. This means that after the resampling step, most (or in extreme cases all) of the particles in the sample set 

end up having the exact same value, i.e., the particle set consists of only few (or one) distinct particles. The degeneracy and 

sample impoverishment issues render estimation of static parameters with online particle filters a challenging task. 

Herein, we implement an offline MCMC-based particle filter (SMC), an online particle filter (PF), which performs Gaussian 

mixture (GM)-based resampling to counteract the degeneracy and sample impoverishment, and the online iterated batch 

importance sampling algorithm (IBIS) [3], which employs offline MCMC steps after resampling for counteracting the above-

mentioned issues. We apply these three algorithms on the numerical example that is described below. 

NUMERICAL INVESTIGATION 

A fracture mechanics-based model serves as a use-case. This describes the crack growth evolution under increasing stress 

cycles [4]. The crack growth follows an ordinary differential equation, known as the Paris-Erdogan law, with solution:  
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(2) 

𝑎 [mm] is the crack length, 𝑛 [-] is the number of stress cycles, 𝛥𝑆 [Nmm-2] is the stress range per cycle when assuming 

constant stress amplitudes, 𝐶𝑙𝑛 [N] and 𝑚 [mm] represent empirically determined model parameters. To express the crack 

size as a function of the number of stress cycles 𝑛, the boundary condition 𝑎(𝑛 = 0) = 𝑎0 is imposed. We assume that noisy 

measurements of the crack 𝑦𝑛 are obtained sequentially at different values of 𝑛. A multiplicative error is assumed for the 

measurement equation, i.e., 𝑦𝑛 = 𝑎𝑛exp(𝜀𝑛). Under this assumption, the likelihood function for a measurement at a given 𝑛 

is shown in Equation (3). Table 1 shows the prior probability distribution model for each of the random variables 𝜽 of the 

deterioration model of Equation (2), as well as the assumed probabilistic model of the measurement error. 
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Table 1: Prior model for the deterioration model parameters and the measurement error  

(3) 

Parameter Distribution Mean Standard deviation Correlation 

𝑎0 Exponential 1 1 - 

𝛥𝑆 Normal 60 10 - 

𝐶𝑙𝑛, 𝑚 Bi-normal (-33; 3.5) (-0.47; 0.3) 𝜌𝐶𝑙𝑛,𝑚 = −0.9 

exp(𝜀𝑛) Lognormal 1.0 0.1508 - 



An underlying “true” deterioration process 𝑎∗(𝑛) for 𝑛 = 𝑘𝛥𝑛, with 𝑘 = 1, … ,100 and 𝛥𝑛 = 105 is generated for 𝑎0
∗=2.0, 

𝛥𝑆∗=50.0, 𝐶𝑙𝑛
∗= -33.5 and 𝑚∗=3.7, and a synthetic noisy crack measurement 𝑦𝑛 is generated at each 𝛥𝑛 = 105. We are 

interested in estimating the complete set of 100 posterior densities 𝜋𝑝𝑜𝑠(𝜽|𝑦1:𝑛). A reference posterior solution for each of 

the 𝜋𝑝𝑜𝑠(𝜽|𝑦1:𝑛) is generated using acceptance-rejection sampling [5].  

We apply the offline MCMC-based SMC filter with 5000 particles, the online GM-based PF filter with 5000 and 50000 

particles, and the online IBIS filter which performs resampling using offline MCMC steps with 5000 particles to estimate all 

the 100 𝜋𝑝𝑜𝑠(𝜽|𝑦1:𝑛) posterior densities. We evaluate the performance of each filter by taking the mean absolute percentage 

error (MAPE) with respect to the reference posterior solution. Figure 1 reveals that SMC and IBIS yield superior 

performance, with similar results, as expected, since they both use MCMC steps in their solution. However, the IBIS is an 

intrinsically online algorithm, which performs offline MCMC steps only when the effective sample size drops below a 

threshold, hence it has a much lower computational cost. The online PF with 5000 particles performs worst, however at the 

lowest computational cost. Using 50000 particles, the online PF performance increases significantly and it provides results of 

a quality comparable with the SMC and IBIS results. The IBIS with 5000 particles and the PF with 50000 particles have 

comparable computational costs. 

 
Figure 1: Comparison of the MAPE evaluated for the three different applied filters. The full lines show the mean and the shaded areas the 

90% credible intervals from 50 different runs of the different algorithms. 

CONCLUSION 

For the specific low-dimensional numerical investigation presented herein, it is demonstrated that online particle filters lead 

to time-invariant deterioration model parameters posterior results of comparable quality to the results obtained with an offline 

MCMC-based filter, but at a significantly lower computational cost. In problems with higher dimensionality, it should be 

expected that the use of purely online filters will lead to posterior estimates of reduced quality.  
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