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Abstract

Bayesian analysis enables a consistent updating of the failure probability of engineering
systems when new data is available. To this end, we introduce an adaptive importance
sampling (IS) method based on the principle of cross entropy (CE) minimization. The key
contribution is a novel IS density associated with the posterior probability density function
(PDF) of the uncertain parameters, that facilitates efficient sampling from the important
region of the failure domain, especially when the failure event is rare. The IS density
is designed via a two-step procedure. The first step involves construction of a sample-
based approximation of the posterior, which we build using the CE method. Here the aim
is to determine the parameters of a chosen parametric distribution family that minimize
its Kullback-Leibler divergence from the posterior PDF. The second step of the proposed
method constructs the desired IS density for sampling the failure domain through a second
round of CE minimization, starting from the approximate posterior obtained in the first
step. An adaptive, multi-level approach is employed to solve the two CE optimization
problems. The IS densities deduced in the two steps are then applied to construct an
efficient estimator for the posterior probability of failure. Through numerical studies, we
investigate and demonstrate the efficacy of the method in accurately estimating the reliability
of engineering systems with rare failure events.
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1. Introduction1

The prediction of reliability lies at the heart of model-based safety assessment of engineer-2

ing systems. An accurate assessment requires appropriate characterization of the uncertain3

model parameters, taking into account all available data. Once an engineering system comes4

into existence, it is possible to obtain information on the system properties and performance5

through measurements, monitoring and other means of observations. This information can6
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be used to update the model parameters to provide improved estimates of the system’s re-7

liability. A consistent framework for assimilating the new information into the models is8

provided by Bayesian analysis.9

Consider the model, M, of an engineering system, characterized by a set of model pa-10

rameters and boundary conditions that describe the geometry, material properties, loads11

etc. In many practical applications, some of these parameters are uncertain. Uncertain12

parameters are modeled by random variables gathered in a random vector Θ of dimension13

nθ. Let the probability density function (PDF) pΘ(θ) denote one’s prior belief about the14

distribution of Θ, i.e., before new information becomes available. The prior probability of15

failure is given by the multi-dimensional integral16

PF =

∫
θ∈Rnθ

IF (θ)pΘ(θ)dθ, (1)

where F = {θ ∈ Rnθ : g(θ) ≤ 0} is the failure event, defined in terms of the so called limit17

state function g(θ), and IF (θ) is the indicator function such that IF (θ) = 1 if g(θ) ≤ 018

and IF (θ) = 0 otherwise. Computation of the limit state function for an outcome θ of the19

uncertain parameters requires evaluation of the system model M. The probability of the20

complement of F is the reliability of the system.21

When new data from the engineering system is available, it can be used to learn the22

uncertain parameters, thereby updating the prior PDF. The data can be direct observations23

of the uncertain parameters, Θ, or measurements of the system response, e.g., measurements24

of stress condition or deformation. Let d denote the data that is available in the form of25

measurements or observations. The updated/posterior PDF of Θ that incorporates the data26

information in the context of M is given by Bayes’ theorem as27

pΘ|d(θ) = c−1
E L(θ|d)pΘ(θ). (2)

L(θ|d) is the likelihood function that expresses the plausibility of observing d given a certain28

θ and cE is the normalizing constant that ensures that pΘ|d(θ) integrates to one. It is29

commonly referred to as the marginal likelihood (or evidence) and is defined as30

cE =

∫
θ∈Rnθ

L(θ|d)pΘ(θ)dθ. (3)

When the data contains measurements of the system response, L(θ|d) includes the system31

model M and Eq. (2) is termed a Bayesian inverse problem.The probability of failure32

conditional on the data d is obtained by replacing the prior PDF in Eq. (1) by the posterior33

PDF34

PF |d =

∫
θ∈Rnθ

IF (θ)pΘ|d(θ)dθ (4)

Evaluation of the posterior probability of failure requires repeated computation of the35

limit state function and the likelihood over the outcome space of Θ, and is challenging due to36
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several reasons. The functions L(θ|d) and g(θ) are typically evaluated numerically, i.e., they37

are treated as black-box models. As a consequence, it is impossible to analytically evaluate38

PF |d except for some special cases. Additionally, numerical integration of the integrals39

in Eqs. (3) and (4) is often not feasible due to the large number of random variables40

involved. Approaches to approximate the posterior probability of failure using the first- and41

second- order reliability methods [30] or Laplace’s asymptotic approximation [32] have been42

suggested. These methods require evaluations of the first and second derivatives of L(θ|d)43

and g(θ), and, hence, might be computationally challenging, especially if the number of44

model parameters is large or evaluation ofM is costly. Moreover, they are often inaccurate45

in cases where the data is not informative.46

Monte Carlo simulation (MCS) methods offer a robust alternative to numerically evaluate47

PF |d. Here one can first perform a Bayesian analysis to learn the posterior PDF pΘ|d(θ) of the48

uncertain parameters, and then use samples generated from pΘ|d(θ) to evaluate PF |d. Beck49

and Au [5] propose an adaptive Metropolis-Hastings algorithm to generate samples from50

pΘ|d(θ) and then use these samples to update the reliability by evaluating the reliability51

conditional on each of these samples. This approach becomes inefficient when the number52

of uncertain model parameters nθ is high and the posterior probability of failure is small.53

Ching and Hsieh [9] propose a method to update the reliability by combining Bayes’ theorem54

with maximum entropy theory. This approach uses standard MCS to fit a set of sampling55

distributions by the maximum entropy method. The method is suited for high dimensions56

nθ, but it remains inefficient for small target probabilities.57

The limitation of the aforementioned simulation-based approaches in estimating small58

posterior failure probabilities can be overcome by combining the methods for Bayesian anal-59

ysis with advanced Monte Carlo methods for rare event estimation. Ching and Beck [7]60

propose a method for online reliability updating based on an efficient importance sampling61

technique of Au and Beck [2]. Sundar and Manohar [41] suggest an approach to estimate62

the posterior probability of failure by applying Girsanov’s transformation based importance63

sampling [29]. The methods in [7, 41] are applicable only if the system is dynamic and the64

model uncertainties are due to the unknown loading. Efficient approaches to update the reli-65

ability in the presence of both structural parameter and loading uncertainties are suggested66

in [21, 19, 4]. Jensen et al. [21] and Hadjidoukas et al. [19] propose to first update the67

prior PDF of the model parameters by applying the transitional Markov chain Monte Carlo68

method [8]. Subsequently, subset simulation [1] is employed for evaluating the conditional69

probability in Eq. (4) starting from samples of the posterior. The application of subset sim-70

ulation in conjunction with a Gibbs sampling-based method for Bayesian model updating71

[6] is explored in Bansal and Cheung [4]. Straub et al. [39, 40] present an approach that72

enables estimation of the updated failure probability without resorting to posterior samples.73

In this procedure, termed BUS (Bayesian updating with structural reliability methods), the74

integrals appearing in the definition of PF |d in Eq. (4) are converted into equivalent reliabil-75

ity integrals by means of appropriate transformations. These integrals can then be evaluated76

with any sampling-based reliability estimation method, such as importance sampling [39] or77

other advanced Monte Carlo techniques [33, 40]78

In this contribution, we introduce a novel simulation-based method to update the re-79
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liability of engineering systems using data. The proposed procedure uses an importance80

sampling (IS) method that is developed based on the principle of cross entropy (CE) mini-81

mization. The key contribution is a novel IS density associated with the posterior PDF of82

the uncertain parameters, which facilitates efficient sampling of the important region of the83

failure domain, particularly for a small posterior probability of failure. The IS density is84

designed via a two-step procedure. The first step involves construction of a sample-based85

approximation of the posterior PDF, which we build using the CE method. Here the aim86

is to determine the parameters of a chosen parametric distribution family that minimize87

its Kullback-Leibler divergence from pΘ|d(θ). The approximation leads to an efficient IS88

density for estimating the marginal likelihood. In the second step of the proposed method,89

we use the approximation of pΘ|d(θ) as a building block to construct the desired IS density90

for sampling the failure domain, through a second round of CE minimization. An adaptive,91

multi-level approach is employed to solve the CE optimization problem in each step. The92

IS densities deduced in the two steps are then applied to construct an efficient estimator for93

the posterior failure probability.94

2. Importance sampling approach for reliability updating95

The posterior probability of failure is defined in terms of the marginal likelihood, cE, and96

the likelihood function, L(θ|d), as97

PF |d =
1

cE

∫
θ∈Rnθ

IF (θ)L(θ|d)pΘ(θ)dθ. (5)

One can evaluate PF |d by standard Monte Carlo simulation, via a rejection sampling scheme,98

wherein independent samples of the uncertain parameters Θ generated from the prior PDF99

are used to estimate cE and the posterior probability PF |d. When the posterior PDF of100

Θ differs significantly from the prior, or the failure event under the posterior probability101

measure is a rare event, this method requires a large number of samples to yield accurate102

estimates. A classical approach to address this drawback is to apply importance sampling.103

Design of an efficient importance sampling scheme to evaluate the posterior probability104

of failure requires two main ingredients: (i) an IS density to estimate the marginal likelihood,105

and (ii) an IS density to integrate the un-normalized posterior PDF over the failure domain.106

Let q
(1)
Θ (θ) and q

(2)
Θ (θ) denote these two IS densities, respectively. Accordingly, Eq. (4) is107

written in the modified form108

PF |d =
1

cE

∫
θ∈Rnθ

IF (θ)W2(θ)q
(2)
Θ (θ)dθ, (6)

with109

cE =

∫
θ∈Rnθ

L(θ|d)W1(θ)q
(1)
Θ (θ)dθ. (7)

In the preceding equations, W1(θ) = pΘ(θ)

q
(1)
Θ (θ)

and W2(θ) = L(θ|d)pΘ(θ)

q
(2)
Θ (θ)

are the importance110
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weight functions.111

We develop an adaptive sampling strategy to determine the IS densities q
(1)
Θ (θ) and112

q
(2)
Θ (θ). The method is built on the principle of cross entropy (CE) minimization [36], a113

classical approach for constructing near-optimal IS densities for Monte Carlo integration.114

In the subsequent sections, we put forward a novel procedure to adapt this principle for the115

reliability updating problem. The proposed method is comprised of two steps. In the first116

step, described in Section 3, we determine the IS density q
(1)
Θ (θ). We construct q

(1)
Θ (θ) as a117

near-optimal approximation of the posterior PDF, pΘ|d(θ). We adopt the approach devel-118

oped in our recent work [15], where we approximate pΘ|d(θ) by a parametric density that119

minimizes the cross entropy (CE) loss between pΘ|d(θ) and a chosen family of parametric120

distributions. In the next step, we construct q
(2)
Θ (θ) as an approximation of the optimal IS121

density for integrating the un-normalized posterior PDF over the failure domain. The pro-122

cedure requires a second round of CE minimization. The approach, developed in Section 4,123

leverages upon the approximation of pΘ|d(θ) of the first step, and a smooth approximation124

of the indicator of the failure event, used earlier by [34, 35], to efficiently solve the CE opti-125

mization problem. We provide the proposed IS estimator of the posterior failure probability126

and discuss its statistical properties. In Section 5, we discuss the choice of the parametric127

density in the CE method, which is followed by numerical investigations in Section 6 that128

demonstrate the performance of our method.129

3. Approximation of the posterior PDF130

As already noted, it is straightforward to evaluate the marginal likelihood, cE, by stan-131

dard Monte Carlo simulation (MCS): one generates independent samples
{
θ(i), i = 1, . . . , N1

}
132

from the prior PDF pΘ(θ) and computes the sample mean of the likelihood function values133 {
L
(
θ(i)|d

)
, i = 1, . . . , N1

}
. However, if the data is highly informative, the posterior PDF134

tends to differ significantly from the prior PDF, necessitating a very large number of sam-135

ples N1 to obtain an accurate estimate, i.e., an estimate with a small coefficient of variation136

(CoV). Importance sampling provides a path to overcome the drawback of standard MCS.137

The IS density should be selected such that the IS estimator has a smaller coefficient of138

variation (CoV) compared to the estimator in standard Monte Carlo. Following (7), one139

can show that if the posterior PDF is selected as the IS density, i.e., if q
(1)
Θ (θ) = pΘ|d(θ),140

the CoV of the IS estimator of the marginal likelihood reduces to zero. In the context of141

importance sampling, such a density is termed the optimal IS density [36]. The optimal IS142

density pΘ|d(θ) requires knowledge of the target quantity cE, and hence cannot be directly143

applied. However, it is possible to construct an IS density that closely resembles pΘ|d(θ),144

and subsequently apply it to estimate cE. In [15], we construct an approximation of the145

posterior PDF by fitting parametric density models using the CE method. The approach is146

summarized in the following.147
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3.1. Multi-level cross entropy method for posterior approximation148

Consider a family of parametric densities qΘ(θ;ν) defined by the parameter vector ν ∈ V .149

We select qΘ(θ;ν) such that it contains the prior PDF of the uncertain parameters, i.e.,150

qΘ(θ; ν̂0) = pΘ(θ) for ν̂0 ∈ V . The choice of the family qΘ(θ;ν) is detailed in Section 5.151

The CE method aims at constructing a near-optimal IS density by minimizing the Kullback-152

Leibler (KL) divergence between the optimal IS density and the chosen parametric family153

[36]. The KL divergence between pΘ|d(θ) and qΘ(θ;ν) is a measure of distance between the154

two PDFs and is defined as155

DKL

(
pΘ|d(θ)||qΘ(θ;ν)

)
= EpΘ|d

[
ln

(
pΘ|d(θ)

qΘ(θ;ν)

)]
=

1

cE
EpΘ

[
L(θ|d) ln

(
pΘ|d(θ)

)]
− 1

cE
EpΘ [L(θ|d) ln (qΘ(θ;ν))]

(8)
Since the first expectation on the right-hand side of Eq. (8) is not a function of ν, minimizing156

DKL

(
pΘ|d(θ)||qΘ(θ;ν)

)
is equivalent to solving the stochastic optimization problem:157

ν∗cE = argmax
a∈V

EpΘ [L(θ|d) ln (qΘ(θ;a))] (9)

The parametric density defined by ν∗cE is a near-optimal approximation of the posterior PDF158

pΘ|d(θ). The above optimization can be solved by approximating the expectation in Eq. (9)159

with a set of samples drawn from pΘ(θ). However, the number of samples required to obtain160

a good sample approximation is large when pΘ|d(θ) differs significantly from pΘ(θ). In such161

cases, directly solving Eq. (9) is computationally challenging. To address this challenge, in162

[15] we develop a multi-level version of the CE method that approaches the target density163

pΘ|d(θ) step-wise through a sequence of parametric densities defined by {νk, k = 1, . . . , L1}.164

We consider a sequence of intermediate target densities {hk1(θ), k = 0, . . . , L1} that165

starts from the prior PDF pΘ(θ) and gradually approaches the posterior PDF pΘ|d(θ). The166

distribution sequence is constructed by tempering the likelihood function (i.e., by taking it167

to be the power of γk):168

hk1(θ) =
1

Ck
L(θ|d)γkpΘ(θ). (10)

Here Ck is the normalizing constant of hk1(θ) and 0 = γ0 < γ1 < · · · < γL1 = 1 are169

tempering parameters which ensure a smooth transition between the prior and posterior170

PDFs of Θ. Note that h0
1(θ) = pΘ(θ) and hL1

1 (θ) = pΘ|d(θ). This distribution sequence171

has been used in [31, 10, 8] to design Markov chain-based sequential Monte Carlo samplers172

for Bayesian analysis. We approach the posterior PDF pΘ|d(θ) gradually, by solving the173

CE optimization problem sequentially for each intermediate target density. This leads to174

a sequence of parameter vectors {νk, k = 1, . . . , L1} such that the final parameter νL1 is a175

good approximation of the optimal parameter ν∗cE . We determine νk by minimizing the KL176

divergence between hk1(θ) and qΘ(θ;ν):177
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νk = argmin
a∈V

DKL

(
hk1(θ)||qΘ(θ;ν)

)
= argmax

a∈V
EpΘ [L(θ|d)γk ln (qΘ(θ;a))]

(11)

The objective function of the corresponding optimization problem, i.e., the expectation178

EpΘ [L(θ|d)γk ln (qΘ(θ;a))], is approximated by importance sampling using a set of samples179

{θ(i), i = 1, . . . , N} distributed according to qΘ(θ; ν̂k−1), where ν̂k−1 is the estimate of νk−1180

determined in the previous level. At k = 0, the sampling density qΘ(θ; ν̂0) corresponds to181

the prior PDF pΘ(θ). This leads to the following stochastic optimization problem to be182

solved in each intermediate level :183

ν̂k = argmax
a∈V

1

N

N∑
i=1

W̃ 1
k

(
θ(i), ν̂k−1

)
ln
(
qΘ

(
θ(i);a

))
, (12)

where W̃ 1
k

(
θ(i), ν̂k−1

)
= L

(
θ(i)|d

)γk pΘ(θ(i))
qΘ(θ(i);ν̂k−1)

is the importance weight of a sample θ(i).184

The accuracy and computational cost of this procedure depends on the choice of the185

tempering parameters {γk, k = 1, . . . , L1}, which determine the change between the respec-186

tive target densities. In order to obtain a good estimate of ν̂k with a limited number of187

samples, the intermediate PDF hk1(θ) should not differ largely from the parametric density188

qΘ(θ; ν̂k−1). To ensure this, we adopt the criterion suggested in [34] and select the tem-189

pering parameter γk adaptively, on the fly, such that the sample CoV δ̂W̃ 1
k

of the weights190 {
W̃ 1
k

(
θ(i)
)
, i = 1, . . . , N

}
adheres to a target value δ∗γ = 1.5:191

γk = argmin
γ∈(γk−1,1)

(
δ̂W̃ 1

k
(γ)− δ∗γ

)2

. (13)

The adaptive procedure terminates when the value of γk determined based on Eq. (13)192

equals 1. After termination, the final parameter vector ν̂L1 is determined by solving Eq.193

(12) with γL1 = 1. ν̂L1 closely approximates the optimal parameter ν∗cE in Eq. (9). Thus,194

qΘ(θ; ν̂L1) is a close approximation of the posterior PDF for the chosen parametric family,195

and is taken as the IS density for estimating the marginal likelihood, cE.196

4. Estimation of the posterior probability of failure197

The parametric density qΘ(θ; ν̂L1) describing the posterior PDF could be applied to198

estimate the posterior probability of failure by importance sampling. However, if the failure199

event, F , is rare under the posterior probability measure, the samples from qΘ(θ; ν̂L1) do200

not represent well the failure domain, resulting in a high sampling CoV of the associated IS201

estimator. In contrast, the optimal IS density that perfectly describes F , and leads to an IS202

estimator with sampling CoV equal to zero, is given by203
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q∗PF |d(θ) =
1

PF |d
IF (θ)pΘ|d(θ). (14)

The above IS density, however, cannot be applied in practice, as it requires knowledge of the204

target probability of failure. We develop an extension of the multi-level CE method described205

in the previous section, to construct an IS density q
(2)
Θ (θ) that is a close approximation of206

the optimal IS density q∗PF |d(θ). The proposed IS density is able to adequately describe the207

rare failure region, and, together with qΘ(θ; ν̂L1), it leads to an efficient IS estimator for the208

posterior failure probability.209

Consider the parametric density family qΘ(θ;ν);ν ∈ V introduced in the previous sec-210

tion. An approximation of the optimal IS density q∗PF |d(θ) is deduced by the CE method,211

by minimizing the KL divergence between q∗PF |d(θ) and qΘ(θ;ν), i.e., by solving the CE212

optimization problem213

ν∗PF |d = argmin
a∈V

DKL

(
q∗PF |d(θ)||qΘ(θ;a)

)
= argmax

a∈V
EpΘ|d [IF (θ) ln (qΘ(θ;a))] .

(15)

One can solve the above optimization in a single step, after approximating the expectation214

through importance sampling using samples from the parametric density qΘ(θ; ν̂L1) describ-215

ing the posterior PDF, pΘ|d(θ). This approach, however, requires a large number of samples216

when the failure event is rare. By analogy with Section 3, we lay out a multi-level procedure217

that approaches the target density q∗PF |d(θ) step-wise, by approximating a sequence of target218

densities {hk2(θ), k = 1, . . . , L2} residing between the posterior PDF pΘ|d(θ) and q∗PF |d(θ).219

The approach, described in Section 4.1, results in an extended sequence of parameter vectors220

{ν̂k+L1 , k = 1, . . . , L2} where the final parameter ν̂L2+L1 is a good approximation of ν∗PF |d .221

The parametric density qΘ(θ; ν̂L2+L1), which is close to the optimal IS density q∗PF |d(θ), is222

then applied to estimate the posterior probability of failure by importance sampling.223

4.1. Multi-level CE method for estimation of the posterior failure probability224

In the standard multi-level CE method for rare event estimation [36], the intermediate225

target densities correspond to the optimal IS densities of intermediate reliability integrals,226

defined by a sequence of failure events that gradually approach the rare failure event F . To227

enable better use of the samples generated at each level, Papaioannou et al. [35] proposed to228

characterize the intermediate densities using a smooth approximation of IF (θ) based on the229

standard normal cumulative distribution function Φ(·). We follow the distribution sequence230

suggested in [35] and define the intermediate target densities for estimating the posterior231

failure probability as232

hk2(θ) =
1

Pk
Φ

(
−g(θ)

σk

)
pΘ|d(θ), (16)

where σ1 > σ2 > · · · > σL2 > 0 are smoothing parameters and Pk is the normalizing constant233
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of hk2(θ). Note that limσ→0 Φ
(
−g(θ)

σ

)
= I{g(θ) ≤ 0}. Hence, with decreasing σ, the above234

sequence converges to the optimal IS density q∗PF |d(θ) in Eq. (14).235

Starting from the parametric density qΘ(θ; ν̂L1) approximating the posterior PDF pΘ|d(θ),236

we construct a sequence of densities {qΘ(θ;νk+L1), k = 1, . . . , L2} such that qΘ(θ;νk+L1)237

has the minimum KL divergence from hk2(θ) within the parametric family. The parameter238

vector ν̂k+L1 is determined by solving the sample counter-part of the CE optimization:239

νk+L1 = argmax
a∈V

EpΘ|d

[
Φ

(
−g(θ)

σk

)
ln (qΘ(θ;a))

]
. (17)

We approximate the expectation in Eq. (17) through importance sampling using samples240 {
θ(i), i = 1, . . . , N

}
generated from qΘ(θ; ν̂k+L1−1), to arrive at the following optimization241

problem:242

ν̂k+L1 = argmax
a∈V

N∑
i=1

W̃ 2
k

(
θ(i), ν̂k+L1−1

)
ln
(
qΘ

(
θ(i);a

))
, (18)

with W̃ 2
k (θ; ν̂k+L1−1) = Φ

(
−g(θ)

σk

)
L(θ|d)pΘ(θ)
qΘ(θ;ν̂k+L1−1)

. To ensure that a good estimate of νk+L1243

is obtained with a reasonable number of samples drawn from qΘ(θ; ν̂k+L1−1), in each level the244

smoothing parameter is selected such that the sample CoV δ̂W̃ 2
k

of the weights
{
W̃ 2
k

(
θ(i), ν̂k+L1−1

)
, i = 1, . . . , N

}
245

adheres to a target value δ∗σ:246

σk = argmin
σ∈(0,σk−1)

(
δ̂W̃ 2

k
(σ)− δ∗σ

)2

. (19)

We select δ∗σ = 1.5 [34]. The adaptive procedure terminates when the CoV of the weights of247

the current smooth approximation with respect to the optimal IS density

 I{g(θ(i))≤0}
Φ

(
−
g(θ(i))
σk

) , i = 1, . . . , N

248

is smaller than δ∗σ.249

4.2. Estimator for the posterior probability of failure250

The fitted IS density qΘ(θ; ν̂L2+L1) is applied to evaluate the posterior probability of251

failure by importance sampling. Accordingly, we write Eq. (4) in the modified form252

PF |d =

∫
θ∈Rnθ

IF (θ)
pΘ|d(θ)

qΘ(θ; ν̂L2+L1)
qΘ(θ; ν̂L2+L1)dθ

=
1

cE

∫
θ∈Rnθ

IF (θ)
L(θ|d)pΘ(θ)

qΘ(θ; ν̂L2+L1)
qΘ(θ; ν̂L2+L1)dθ.

(20)

The marginal likelihood, cE, is evaluated by importance sampling using the IS density253
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qΘ(θ; ν̂L1). This leads to254

PF |d =

∫
θ∈Rnθ IF (θ)W2(θ)qΘ(θ; ν̂L2+L1)dθ∫
θ∈Rnθ L(θ|d)W1(θ)qΘ(θ; ν̂L1)dθ

, (21)

where W1(θ) = pΘ(θ)
qΘ(θ;ν̂L1

)
and W2(θ) = L(θ|d)pΘ(θ)

qΘ(θ;ν̂L2+L1
)

are IS weights. The corresponding255

estimator is256

P̂ IS
F |d =

1
NIS,2

∑NIS,2

i=1 IF

(
θ(2,i)

)
W2

(
θ(2,i)

)
1

NIS,1

∑NIS,1

i=1 L
(
θ(1,i)|d

)
W1

(
θ(1,i)

) , (22)

where
{
θ(1,i), i = 1, . . . , NIS,1

}
and

{
θ(2,i), i = 1, . . . , NIS,2

}
are independent samples gener-257

ated from the IS densities qΘ(θ; ν̂L1) and qΘ(θ; ν̂L2+L1), respectively.258

4.3. Statistics of the proposed estimator259

The bias and CoV of the estimator of the posterior failure probability are given by the260

following two propositions. We denote the estimators in the denominator and numerator of261

Eq. (22) by P̂1 and P̂2, respectively. Let P1 and P2, respectively, denote the true values of262

P̂1 and P̂2, i.e., PF |d = P2

P1
. For simplicity we set NIS,1 = NIS,2 = N .263

264

Proposition 1. P̂ IS
F |d is biased for finite N . The fractional bias is given by:265

E

[
P̂ IS
F |d − PF |d
PF |d

]
= δ2

1 − ρ12δ1δ2 + o(1/N) = O(1/N), (23)

where δ1 and δ2, respectively, denote the CoV of P̂1 and P̂2, and ρ12 denotes the correlation266

coefficient between the estimators. P̂ IS
F |d is thus asypmtotically unbiased and the bias is267

O(1/N).268

269

Proof. Since P̂ IS
F |d = P̂2

P̂1
and PF |d = P2

P1
, it follows that270

P̂ IS
F |d − PF |d
PF |d

=

(
P̂2

P2

− P̂1

P1

)
P1

P̂1

. (24)

Taylor series expansion of P1

P̂1
around P1 leads to271

P̂ IS
F |d − PF |d
PF |d

=

(
P̂2

P2

− P̂1

P1

)1− P̂1 − P1

P1

+

(
P̂1 − P1

P1

)2

+ · · ·


=
P̂2

P2

− P̂1

P1

+
P̂1

(
P̂1 − P1

)
P 2

1

−
P̂2

(
P̂1 − P1

)
P1P2

+ · · ·

(25)

10



Taking expectation on both sides of Eq. (25) and noting that the estimators P̂1 and P̂2 are272

unbiased, i.e., E[P̂1] = P1 and E[P̂2] = P2, proves the required proposition. �273

274

Proposition 2. The CoV δP̂ IS
F |d

of P̂ IS
F |d is given by:275

δ2
P̂ IS
F |d

= E

[
P̂ IS
F |d − PF |d
PF |d

]2

= δ2
1 + δ2

2 − ρ12δ1δ2 + o(1/N) = O(1/N) (26)

where δ1 and δ2, respectively, denote the CoV of P̂1 and P̂2, and ρ12 denotes the correlation276

coefficient between the estimators. P̂ IS
F |d is thus a consistent estimator and its CoV δP̂ IS

F |d
is277

O(1/
√
N).278

279

Proof. From Eq. (25)280

E

[
P̂ IS
F |d − PF |d
PF |d

]2

= E

 P̂2

P2

− P̂1

P1

+
P̂1

(
P̂1 − P1

)
P 2

1

−
P̂2

(
P̂1 − P1

)
P1P2

+ · · ·

2

= E

 P̂2 − P2

P2

− P̂1 − P1

P1

+
P̂1

(
P̂1 − P1

)
P 2

1

−
P̂2

(
P̂1 − P1

)
P1P2

+ · · ·

2

= E

[
P̂1 − P1

P1

]2

+ E

[
P̂2 − P2

P2

]2

− E

[(
P̂1 − P1

P1

)(
P̂2 − P2

P2

)]
+ o

(
1

N

)
(27)

Hence the proposition. �281

In practice, it is reasonable to assume that the estimators P̂1 and P̂2 are uncorrelated.282

Then, we can use the first two terms on the R.H.S of Eq. (26) to obtain an approximate283

estimate of the CoV of the probability of failure estimator:284

δ̂2
P̂ IS
F |d
≈ δ̂2

1 + δ̂2
2, (28)

where δ̂P̂ IS
F |d

, δ̂1 and δ̂2 denote sample estimates of δP̂ IS
F |d

, δ1 and δ2, respectively. The estimates285

of δ1 and δ2 are obtained according to [28]286

δ̂2
1 =

1

P̂ 2
1

1

NIS,1 − 1

 1

NIS,1

NIS,1∑
i=1

{
L
(
θ(1,i)|d

)
W1

(
θ(1,i)

)}2

− P̂ 2
1

 (29)

and287
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δ̂2
2 =

1

P̂ 2
2

1

NIS,2 − 1

 1

NIS,2

NIS,2∑
i=1

IF

(
θ(2,i)

){
W2

(
θ(2,i)

)}2

− P̂ 2
2

 . (30)

To investigate the influence of the number of samples NIS,1 and NIS,2 on the CoV of P̂ IS
F |d,288

we consider two cases. In the first case, we take NIS,1 and NIS,2 equal to the number of289

samples employed per level in the multi-level CE method, i.e., NIS,1 = NIS,2 = N . In the290

second case, we select the number of samples to ensure that δ̂P̂ IS
F |d

adheres to a target value291

δ∗. For this, we vary NIS,1 and NIS,2 adaptively such that the sample estimates δ̂1 and δ̂2 are,292

respectively, equal to target values δ∗1 and δ∗2 with δ∗1 + δ∗2 = δ∗. A choice of δ∗1 = δ∗2 = δ∗/
√

2293

is employed in the present study which ensures that δP̂ IS
F |d
. δ∗.294

4.4. Separation of uncertainty295

In many problems, the data contains information on only a sub-group of the random296

variables appearing in the limit state function. For example, Θ can contain uncertain future297

forcing variables, which cannot be learned. Let ΘA denote the group of random variables298

in Θ that cannot be learned and ΘB denote the remaining random variables. In principle,299

one can consider the likelihood function to be simply constant with respect to all random300

variables in ΘA. The methods described in the preceding sections then remain applicable,301

and the posterior probability of failure can be estimated based on Eq. (22). However, in302

certain applications it is convenient to evaluate the probability of failure conditional on303

specific instances of ΘB separately, using analytical or simulation-based methods [16, 11,304

14]. In such cases, it is advantageous to express the posterior probability of failure in an305

alternative form. Let pΘ(θ) = pΘA|ΘB
(θA|θB)pΘB |d(θB) be the prior PDF of Θ. The306

posterior PDF of Θ is then given by pΘ|d(θ) = pΘA|ΘB
(θA|θB)pΘB |d(θB), where pΘB |d(θB)307

is the posterior PDF of ΘB defined in analogy to Eq. (2). One can write the posterior308

probability of failure in terms of ΘA and ΘB as309

PF |d =

∫
θB∈R

nθB

PF |ΘB
(θB)pΘB |d(θB)dθB, (31)

where the conditional failure probability PF |ΘB
(θB) is given by310

PF |ΘB
(θB) =

∫
θA∈R

nθA

IF (θA,θB)pΘA|ΘB
(θA|θB)dθA. (32)

In Eqs. (31) and (32), nθA and nθB denote the dimension of ΘA and ΘB, respectively.311

The formulation in the above equations offers two advantages. Firstly, the CE optimization312

problem for updating model parameters ΘB, that leads to the approximation of the posterior313

PDF pΘB |d(θB), is now solved in a lower-dimensional space. This reduces the computational314

cost required for optimization and can help to address the degeneracy of the importance315

sampling weights in high dimensions. Secondly, it enables one to evaluate PF |ΘB
(θB) by316

tailor-made approaches specific to the application at hand, thereby reducing the uncertainty317
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of the posterior failure probability estimator. The posterior probability of failure is then318

estimated by evaluating the expectation of PF |ΘB
(θB) with respect to pΘB |d(θB). The319

parametric density qΘB
(θB; ν̂L1) for approximating pΘB |d(θB) and estimating the marginal320

likelihood can be constructed by the CE method through the procedure described in Section321

3. However, the challenge lies in constructing an IS density associated with pΘB |d(θB) to322

efficiently perform the reliability integration, i.e., the expectation of PF |ΘB
(θB), for which323

the procedure in Section 4.1 cannot be directly applied.324

The optimal IS density for evaluating the integral in Eq. (31) is given by325

q∗PF |d(θB) =
1

PF |d
PF |ΘB

(θB)pΘB |d(θB). (33)

Note that this optimal density is different from the one in Eq. (14). Hence, to determine326

an approximation of the above density by the multi-level CE method, one needs to consider327

an alternative distribution sequence that defines a smooth transition from pΘB |d(θB), or its328

approximation qΘB
(θB; ν̂L1), to q∗PF |d(θB) in Eq. (33). Such a distribution sequence can be329

constructed by tempering the conditional probability function [24]:330

hk2(θB) =
1

Ck
PF |ΘB

(θB)αkpΘB |d(θB), (34)

where {αk, k = 0, . . . , L2} are the tempering parameters satisfying 0 = α0 < α1 < . . . <331

αL2 = 1 and Ck is the normalizing constant of hk2(θB). The parametric IS density qΘB
(θB; ν̂L2+L1)332

is determined by approximating the above distribution sequence in a step-wise manner. The333

associated CE optimization problems are solved sequentially, following similar steps as in334

Section 3. An IS estimator of the posterior probability of failure is obtained as335

P̂ IS
F |d =

1
NIS,2

∑NIS,2

i=1 P̂F |ΘB

(
θ

(2,i)
B

)
W2,B

(
θ

(2,i)
B

)
1

NIS,1

∑NIS,1

i=1 L
(
θ

(1,i)
B |d

)
W1,B

(
θ

(1,i)
B

) , (35)

whereW1,B(θB) =
pΘB (θB)

qΘB (θB ;ν̂L1
)

andW2,B(θB) =
L(θB |d)pΘB (θB)

qΘB (θB ;ν̂L2+L1
)

are IS weights,
{
θ

(1,i)
B , i = 1, . . . , NIS,1

}
336

and
{
θ

(2,i)
B , i = 1, . . . , NIS,2

}
are independent samples generated from the IS densities qΘB

(θB; ν̂L1)337

and qΘB
(θB; ν̂L2+L1), respectively, and P̂F |ΘB

(
θ

(2,i)
B

)
is the estimate of the conditional prob-338

ability for sample θ
(2,i)
B . In the following, we discuss the evaluation of P̂F |ΘB

(θB) for a special339

case.340

4.4.1. Updating the first-passage failure probability of uncertain linear systems341

A prominent example where the above formulation is useful is the estimation of first-342

passage probability of systems subjected to random dynamic loads. In this context, F343

denotes the first-passage failure event, ΘA denotes the random variables characterizing the344
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future random excitation and ΘB denotes uncertain system parameters. Typically, ΘA345

is high dimensional and is independent of ΘB. It is well-known that applying standard346

importance sampling with parametric IS density in a high-dimensional random variable space347

can lead to poor estimates [3, 26]. This is related to the degeneracy of the IS weights in high348

dimensions. Hence, advanced Monte Carlo methods that are designed for high dimensions349

[37, 38] are commonly applied to estimate the first-passage probability. Evaluating the350

posterior probability of failure based on Eqs. (31) and (32) enables the integration of these351

methods into the framework of cross entropy-based Bayesian analysis to update first-passage352

probabilities of engineering systems under future excitation.353

The conditional probability PF |ΘB
(θB) denotes the first-passage failure probability of354

the deterministic system corresponding to a specific outcome θB of the system parameters.355

If the random excitation is a Gaussian process, ΘA is comprised of independent standard356

Gaussian random variables. The conditional first-passage probability PF |ΘB
(θB) can be357

estimated by importance sampling from the outcome space of ΘA. In [2], an efficient IS358

density, qΘA|ΘB=θB(θA), of ΘA is suggested for the particular case where the system is linear,359

which is defined by a weighted sum of Gaussian PDFs truncated on the failure domain of the360

deterministic system defined by θB. Accordingly, the conditional first-passage probability361

is expressed by the modified integral362

PF |ΘB
(θB) =

∫
θA∈R

nθA

IF (θA,θB)W2,A(θA)qΘA|ΘB=θB(θA)dθA, (36)

where W2,A(θA) =
pΘA (θA)

qΘA|ΘB=θB
(θA)

is the IS weight. By employing a one-sample estimator of363

the above integral, the IS estimator for evaluating the posterior first-passage failure proba-364

bility is given by:365

P̂ IS
F |d =

1
NIS,2

∑NIS,2

i=1 IF

(
θ

(2,i)
A ,θ

(2,i)
B

)
W2,A

(
θ

(2,i)
A

)
W2,B

(
θ

(2,i)
B

)
1

NIS,1

∑NIS,1

i=1 L
(
θ

(1,i)
B |d

)
W1,B

(
θ

(1,i)
B

) , (37)

where θ
(2,i)
A denotes a sample of the random vector ΘA characterizing the Gaussian exci-366

tation, generated from the IS density q
ΘA|ΘB=θ

(2,i)
B

(θA) suggested in [2]. The IS density367

qΘB
(θB; ν̂L2+L1) is determined by applying the multi-level CE method on the distribution368

sequence in Eq. (34). For first-passage problems of linear systems, one can construct369

qΘB
(θB; ν̂L2+L1) efficiently, based on the framework introduced in [24, 25]. Here, an analyt-370

ical approximation of the conditional first-passage probability, PF |ΘB
(θB), deduced based371

on Rice’s formula, is employed to solve the CE optimization problem. The use of the an-372

alytical approximation facilitates smooth convergence of the CE method and reduces the373

optimization effort without compromising much on accuracy. The IS estimator of PF |ΘB
(θB)374

is applied for evaluating the posterior failure probability according to Eq. (37).375
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5. Choice of parametric density376

In the CE method, the parametric density qΘ(θ;ν) is typically chosen such that it con-377

tains the nominal density of the uncertain model parameters. In the context of the Bayesian378

updating problem, the nominal density corresponds to the prior PDF pΘ(θ). Without loss379

of generality, we assume that the prior distribution of the random vector Θ = {Θ1; . . . ; Θnθ
}380

representing the uncertain model parameters is the independent standard Gaussian distri-381

bution. Then the prior PDF is given by pΘ(θ) =
∏nθ

j=1 pΘj(θj), where for every j, pΘj(θj) is382

a one-dimensional standard Gaussian PDF for Θj. When the model parameters are a-priori383

non-Gaussian and dependent, they are generated from the standard Gaussian random vector384

Θ by means of the Nataf transformation [12] or the Rosenblatt transformation [20].385

The Gaussian distribution family is a standard choice of the parametric family in the CE386

method [36, 27]. To allow for efficient representation of multi-modal posterior distributions,387

we consider a multivariate Gaussian mixture (GM) model as the parametric density. The388

PDF of a GM model is defined as the sum of a number of Gaussian PDFs, each of them389

multiplied by a weighing factor:390

qΘ(θ;ν) =

nGM∑
s=1

πsfG(θ;µs,Σs), (38)

where fG(θ;µs,Σs) is the s-th variate Gaussian PDF with mean µs and covariance matrix391

Σs and {πs; s = 1, . . . , nGM} are normalized weights satisfying the condition
∑nGM

s=1 πs = 1.392

In Eq. (38), nGM denotes the number of modes, which can be fixed a-priori or selected on393

the fly [17]. The parameter vector is given by ν = {πs,µs,Σs; s = 1, . . . , nGM}, where πs394

is scalar-valued, µs is a vector of dimension nθ and Σs is an nθ × nθ symmetric matrix.395

This results in a total of nGM
nθ(nθ+3)

2
+ (nGM − 1) unknown parameters in the parametric396

density. For the uni-modal case, i.e., nGM = 1, closed form analytical expressions for the397

parameter update in Eqs. (12) and (18) are available [36]. For the general case of nGM > 1,398

the parameters are updated by means of an expectation-maximization (EM) algorithm. The399

EM procedure and the updating rules for the parameters of the GM model are described in400

[17] and are not further discussed here.401

It is noted that in high dimensional problems, i.e., in problems where the number nθ402

of uncertain model parameters is large, the CE method with Gaussian densities performs403

poorly. This is due to two reasons: the first is the degeneracy of the importance sampling404

weight in high dimensions [3, 26]. The second reason is the number of parameters in the GM405

model, which increases quadratically with nθ. This results in a rapid increase in the number406

of samples per level N required to obtain an adequate estimate of the optimal parameter407

values. In such cases, it is beneficial to consider alternative parametric densities, such as408

the von-Mises-Fisher-Nakagami distribution family [43, 35], within the CE method.409

6. Numerical illustrations410

We investigate the performance of the proposed CE-based reliability updating (CEIS-411

RelUp) method by means of three numerical examples. The first example considers the412

15



reliability of a structural component subjected to fatigue updated with measurements of the413

crack size. Here we update the reliability of an infinite size plate with fatigue crack based on414

measurements of the crack size. The second example considers a geotechnical engineering415

problem. Here we apply CEIS-RelUp to update the reliability of an infinite clay slope based416

on measurements of the undrained shear strength. The third example involves dynamic417

reliability updating, where the first-passage probability of a randomly excited two-story418

moment-resisting frame is updated based on modal data.419

The performance of the CEIS-RelUp method is assessed in terms of the sample mean and420

sample CoV of the estimates of PF |d, denoted by P̂F |d and δ̂ in this section, and in terms of421

the required computational effort. The sampling variance of the estimators P̂1 and P̂2 in the422

denominator and numerator of Eq. (22) contribute to the variability of P̂F |d. The sample423

CoV of P̂1 and P̂2, denoted by δ̂1 and δ̂2, as well as the estimates of the marginal likelihood,424

denoted by ĉE, are also reported. The computational effort is assessed in terms of the425

number of samples of Θ expended for CE optimization and reliability estimation. NCE,1 and426

NCE,2, respectively, denote the CE optimization effort required to construct the parametric427

IS densities qΘ(θ; ν̂L1) and qΘ(θ; ν̂L2+L1). NIS,1 and NIS,2, respectively, denote the number428

of samples employed in the IS estimators P̂1 and P̂2 during reliability estimation. The sample429

size in the reliability estimation step is selected using two approaches. In the first approach,430

the sample size is taken equal to the number of samples per level for CE optimization, i.e.,431

NIS,1 = NIS,2 = N . In the second approach, NIS,1 and NIS,2 are selected adaptively on the432

fly to ensure that an estimate of the CoV of the IS estimate of PF |d adheres to a specified433

target value δ∗. The adaptive variant of the IS estimator is implemented according to the434

procedure described in [24]. The performance measures are averaged over 500 independent435

simulation runs in Examples 6.1 and 6.2 and 50 simulation runs in Example 6.3.436

6.1. Fatigue crack growth437

We consider an infinite size plate with fatigue crack, adapted from [13, 39]. The objective438

is to update the reliability of the plate based on measurements of the crack size. The rate439

of crack growth is described by Paris’ Law as440

da(n)

dn
= C[∆S

√
πa(n)]

m
, (39)

where a is the size of the crack, n is the number of stress cycles, ∆S is the stress range441

per cycle (constant stress amplitude is assumed) and C and m are empirically determined442

model parameters. The crack size as a function of the number of stress cycles n is given by443

[13]:444

a(n) =
[
(1− m

2
)C∆Smπ

m
2 n+ a0

1−m
2

] 1
1−m2 , (40)

where a0 denotes the initial crack size. The failure event is defined in terms of the number445

of stress cycles to failure. The performance function is given by446

g = nc − nf , (41)
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where nc denotes the number of stress cycles required to reach a critical crack size of ac and447

nf denotes the number of stress cycles at which the reliability is estimated. For an infinite448

plate, nc is given by449

nc =
2

(m− 2)C(
√
π∆S)

m

[
1

a0
m−2

2

− 1

ac
m−2

2

]
,m 6= 2

=
1

πC∆S2 ln

(
ac
a0

)
,m = 2.

(42)

The prior probabilistic description of the uncertain model parameters is given in Table 1.450

Table 1: Prior probabilistic description of the parameters of the crack growth problem in Example 6.1.

Parameter Distribution Mean Standard deviation Correlation

a0[mm] Exponential 1 1 -
ac[mm] Deterministic 50 - -

∆S[Nmm−2] Normal 60 10 -
(ln(C)[N],m[mm]) Bi-Normal (-33,3.5) (0.47,0.3) ρln(C),m = −0.9

We estimate the reliability at nf = 8×105 stress cycles. The prior value of the probability451

of failure, based on 2 × 105 standard Monte Carlo samples, is 9.2 × 10−3. The failure452

probability is updated via the likelihood function453

L(θ|d) =

nM∏
i=1

exp

(
−1

2

(
a(θ, ni)− am,i

σn

)2
)
, (43)

where nM is the number of measurements, σn is the standard deviation of the measurement454

noise, ni is the number of stress cycles up to the i-th measurement and am,i are the crack455

size measurements. We implement CEIS-RelUp with a uni-modal Gaussian distribution456

as the parametric family. In the present example, where the number of uncertain model457

parameters is nθ = 4, the Gaussian density is comprised of 14 unknown parameters, which458

are updated analytically during CE optimization. We investigate the influence of the number459

of measurements and the standard deviation of the measurement noise on the performance460

of the method. The results for the two case studies are summarized in the following.461

6.1.1. Case study: Effect of standard deviation of measurement noise462

We consider two measurements of crack size:463

am,1 = 1.7mm at n1 = 105 stress cycles

am,2 = 1.8mm at n2 = 3× 105 stress cycles
(44)

The posterior probability of failure, PF |d, is estimated with σn = 0.5mm, 0.25mm and464

0.125mm. In our experiment, the sample size, per level, for CE optimization is varied465
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Figure 1: Cross entropy optimization effort for infinite size plate with fatigue crack

between N = 125 and N = 1000. Fig. 1 shows the total number of samples, or equivalently466

the number of model evaluations, required to construct the IS densities qΘ(θ; ν̂L1) and467

qΘ(θ; ν̂L2+L1). It is observed that the computational effort required for CE optimization468

increases with decrease in σn. With decreasing standard deviation of the measurement noise,469

the likelihood function gets more concentrated; consequently the target densities q∗PF |d(θ)470

and pΘ|d(θ) have lower standard deviation and their difference to the prior increases. This471

results in an increase in the number of levels, and hence the number of samples, required472

to reach the target densities by the multi-level CE method. Furthermore, we observe that473

NCE,2 is larger than NCE,1, which indicates that the number of levels required by the CE474

method to converge to qΘ(θ; ν̂L2+L1) is more than that required for qΘ(θ; ν̂L1). For the475

values of σn considered, the number of levels range, on average, from L1 = 2 to 3 and L2 =476

3 to 9 for the target densities pΘ|d(θ) and q∗PF |d(θ), respectively. The required number of477

levels indicates that the posterior is closer to the prior as compared to the optimal IS density478

of the failure domain and the posterior.479

We estimate the posterior failure probability with the non-adaptive (NIS-NonAdap) and480

adaptive (NIS-Adap) variants of the IS estimator, P̂F |d. In the latter case, the target CoV481

of P̂F |d is set to δ∗ = 0.10 and 0.05. Recall that the contribution to the CoV of P̂F |d comes482

from the two IS estimators, P̂1 and P̂2, in the denominator and numerator of Eq. (22).483

In the adaptive case, the sample sizes of these estimators, i.e., NIS,1 and NIS,2, are selected484

adaptively such that the respective sample CoVs adhere to the target values δ∗1 and δ∗2, where485

δ∗1 = δ∗2 = δ∗/
√

2. These target CoVs are equal to 0.071 for δ∗ = 0.10 and 0.035 for δ∗ = 0.05.486

The Monte Carlo estimate of the failure probability, using 2 × 105 samples obtained from487

the posterior PDF through rejection sampling, is 3.7× 10−3(CoV ≈ 3.7%), 1.7× 10−3 (CoV488

≈ 5.4%) and 9.5× 10−5 (CoV ≈ 23%) for σn = 0.5mm, 0.25mm and 0.125mm, respectively.489

The simulation results for N = 250 and 500 are reported in Table 2. The sample mean of the490

18



posterior failure probability estimates are comparable with the reference solution, for all σn.491

However, the sampling variability of P̂F |d changes significantly with σn. As σn decreases, the492

posterior PDF becomes significantly different from the prior, and the failure event under the493

posterior probability measure becomes increasing rare. These factors increase the number494

of levels for convergence due to the reduced ability of the parametric family in describing495

the target densities q∗PF |d(θ) and pΘ|d(θ), thereby leading to an increase in the sample CoV496

of the IS estimators for small σn. Hence, when the sample size of these estimators is fixed,497

i.e., for the non-adaptive case with NIS,1 = NIS,2 = N , we observe a monotonic increase in498

the respective sample CoVs, i.e., δ̂1 and δ̂2 in Table 2, with decrease in σn. The increase is499

significant for δ̂2. Accordingly, when the sample size is selected adaptively, the IS estimators500

require a larger number of samples to achieve the target CoV for small values of σn.501

Table 2: Posterior failure probability estimates for fatigue crack growth, with two measurements, for different
standard deviation of measurement noise. Reference value of the probability of failure, based on 2 × 105

samples obtained through rejection sampling, is 3.7 × 10−3, 1.7 × 10−3 and 9.5 × 10−5 for σn = 0.5mm,
0.25mm and 0.125mm, respectively.

ĉE P̂F |d δ̂ δ̂1 δ̂2 NIS,1 NIS,2 NT

σ
n

=
0.

50
0 N = 250

NIS-NonAdap 0.159 3.86× 10−3 0.09 0.03 0.10 250 250 1965
NIS-Adap (δ∗ = 0.10) 0.159 3.85× 10−3 0.11 0.07 0.08 28 432 1926
NIS-Adap (δ∗ = 0.05) 0.159 3.82× 10−3 0.07 0.04 0.06 120 1150 2735

N = 500
NIS-NonAdap 0.161 3.84× 10−3 0.08 0.01 0.07 500 500 3885

NIS-Adap (δ∗ = 0.10) 0.159 3.87× 10−3 0.08 0.06 0.06 19 568 3472
NIS-Adap (δ∗ = 0.05) 0.160 3.83× 10−3 0.06 0.04 0.05 71 989 3945

σ
n

=
0.

25
0 N = 250

NIS-NonAdap 0.076 1.65× 10−3 0.21 0.05 0.20 250 250 2255
NIS-Adap (δ∗ = 0.10) 0.074 1.65× 10−3 0.12 0.08 0.09 48 564 2367
NIS-Adap (δ∗ = 0.05) 0.074 1.64× 10−3 0.07 0.04 0.06 195 1473 3423

N = 500
NIS-NonAdap 0.075 1.64× 10−3 0.07 0.02 0.07 500 500 4295

NIS-Adap (δ∗ = 0.10) 0.074 1.66× 10−3 0.10 0.07 0.07 26 608 3929
NIS-Adap (δ∗ = 0.05) 0.075 1.65× 10−3 0.06 0.04 0.05 104 1220 4619

σ
n

=
0.

12
5 N = 250

NIS-NonAdap 0.034 9.75× 10−5 0.30 0.05 0.30 250 250 3108
NIS-Adap (δ∗ = 0.10) 0.034 9.54× 10−5 0.12 0.06 0.10 61 868 3536
NIS-Adap (δ∗ = 0.05) 0.034 9.54× 10−5 0.09 0.04 0.08 274 2609 5490

N = 500
NIS-NonAdap 0.034 9.68× 10−5 0.26 0.02 0.26 500 500 5910

NIS-Adap (δ∗ = 0.10) 0.034 9.63× 10−5 0.10 0.06 0.08 45 723 5678
NIS-Adap (δ∗ = 0.05) 0.034 9.67× 10−5 0.07 0.04 0.06 157 2032 7099

The performance of CEIS-RelUp is assessed for different sample size N during CE opti-502

mization. We observe that the sample mean of the posterior failure probability estimates is503

broadly similar for all N . However, there is significant change in the sampling variability of504

the estimators and the required computational effort. The variation in the sample CoV of505

P̂F |d and the total computational effort, for σn = 0.5mm and 0.125mm, δ∗ = 0.10 and 0.05,506

are shown in Fig. 2. For the non-adaptive variant of the IS estimator, NIS-NonAdap, an507

increase in N reduces the sample CoV, δ̂, of the posterior failure probability estimator. This508
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Figure 2: Coefficient of variation of posterior failure probability estimates and total computational effort for
infinite size plate with fatigue crack

behavior is due to two factors. First, the number of effective samples available to fit the509

parametric densities increases with N . This results in improved estimates of the parameter510

vectors ν̂L1 and ν̂L2+L1 , and better approximation of the respective optimal IS densities.511

Second, an increase in N implies a monotonic increase in the sample size of the IS estima-512

tors P̂1 and P̂2, which leads to a reduction in the sample CoVs δ̂1 and δ̂2, respectively. The513

decrease in sampling fluctuations for NIS-NonAdap is, however, at the expense of increased514

computational effort. In case of NIS-Adap, the sample CoV δ1 is close to the target value,515

i.e., δ∗1 = 0.071 for δ∗ = 0.10 and δ∗1 = 0.035 for δ∗ = 0.05, for all N . The estimates of δ2 are516

initially large for δ∗ = 0.10, but they gradually reduce to 0.071 as N increases. For δ∗ = 0.05,517

however, δ̂2 remains larger than the target value 0.035. This is due to inaccuracy in the esti-518

mator of δ2, in Eq. (30), used for the adaptive selection of NIS,2. The sub-optimality in the519

IS density qΘ(θ; ν̂L2+L1) for small σn induces possible bias in the estimator, due to which it520

decays faster than the true value. We note that in the adaptive variant of the method, the521

number of samples for estimation of the denominator can be smaller than N , whereas for the522

numerator it is always greater than N . This is because checking the termination criterion523

for the numerator requires N samples from the final density [35]. Overall, it is observed524

that the performance of NIS-NonAdap and NIS-Adap are comparable for σn = 0.5mm. For525
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σn = 0.125mm, the adaptive variant of the IS estimator exhibits superior performance. In526

the latter case, NIS-NonAdap requires 11530 samples to yield a sample CoV of 10% of the IS527

estimator P̂F |d, whereas NIS-Adap yields a sample CoV of 10% and 6% with approximately528

5500 and 7000 samples, respectively.529

6.1.2. Case study: Effect of number of measurements530

To investigate the influence of the number of measurements, nM , on the performance of531

CEIS-RelUp, we consider two additional observations of the crack size:532

am,3 = 1.9mm at n3 = 4× 105 stress cycles

am,4 = 2.1mm at n4 = 5× 105 stress cycles
(45)

The posterior probability of failure, PF |d, for σn =0.5mm is 5.1× 10−4 (CoV ≈ 10%). The533

reference solution is evaluated based on 2×105 samples obtained through rejection sampling.534

We evaluate PF |d by CEIS-RelUp, using non-adaptive and adaptive selection of the sample535

size of the IS estimator. The results with NIS-Adap correspond to δ∗ = 0.10. We select536

N = 250 and 500 samples per level during CE optimization. It is observed that the CE537

optimization effort, i.e., the number of levels required to construct the IS densities qΘ(θ; ν̂L1)538

and qΘ(θ; ν̂L1+L2), increases with the number of measurements. The increase is marginal for539

qΘ(θ; ν̂L1), but approximately twice for qΘ(θ; ν̂L1+L2). The results of reliability estimation540

are reported in Table 3. The sample mean of the posterior failure probability estimator,541

P̂F |d, compares well with the reference solution. For NIS-NonAdap, the sample CoV, δ̂, of542

P̂F |d decreases with increase in N , which was also observed in Table 2. For NIS-Adap, δ̂543

remains close to the specified target value. We observe that an increase in the number of544

measurements causes a significant increase in the sample CoV of the IS estimators P̂1 and P̂2,545

leading to larger sampling fluctuations in P̂F |d. When the sample size of these estimators,546

i.e., NIS,1 and NIS,2, are fixed to N , the respective sample CoVs δ̂1 and δ̂2 are approximately547

twice of those obtained for nM = 2. Similarly, when NIS,1 and NIS,2 are selected adaptively,548

the number of samples required to meet the target CoV increases with nM . Finally, we549

observe that NIS-Adap remains more efficient than NIS-NonAdap, since it yields a smaller550

sample CoV of P̂F |d with comparable total computational effort.551

Table 3: Posterior failure probability estimates for fatigue crack growth by CEIS-RelUp, with nM = 4 and
σn = 0.5mm. Reference value of the probability of failure, based on 2 × 105 samples obtained through
rejection sampling, is 5.1× 10−4.

ĉE P̂F |d δ̂ δ̂1 δ̂2 NIS,1 NIS,2 NT

N = 250
NIS-NonAdap 0.087 5.38× 10−4 0.23 0.05 0.22 250 250 2582

NIS-Adap (δ∗ = 0.10) 0.085 5.42× 10−4 0.12 0.08 0.09 57 617 2756

N = 500
NIS-NonAdap 0.086 5.41× 10−4 0.18 0.02 0.17 500 500 4918

NIS-Adap (δ∗ = 0.10) 0.085 5.30× 10−4 0.10 0.07 0.08 37 773 4728
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6.2. Stability of an infinite clay slope552

In this example, we apply the CEIS-RelUp approach to update the reliability of a sat-553

urated (infinite) clay slope under undrained conditions. The slope, shown in Fig. 3, has a554

height of H =5m, a slope angle of β = 15◦ and a saturated unit weight of γ = 20kN/m3.555

The short-term shear strength of the clay is characterized by the undrained shear strength,556

which is assumed to vary with depth from the soil surface. The factor of safety governing557

the slope stability is given by [18]558

FS(z) =
su(z)

γz sin β cos β
, (46)

where su(z) denotes the undrained shear strength at a depth z below the ground surface.559

0

𝜸

𝒛

𝑯

potential failure plane

ground surface

1 unit

𝜷

Figure 3: Infinite clay slope in Example 6.2

The failure event F of the slope is defined as FSmin being < 1.0, where FSmin is the560

minimum factor of safety over the height of the slope. The depth dependent nature of the561

undrained shear strength is characterized by the non-stationary random field model [22]562

su(z) = su0 + bγzexp[w(z)], (47)

where su0 is the undrained shear strength at the ground surface, b is a trend parameter that563

determines the rate of increase of strength with soil depth and w(z) is the randomly fluctu-564

ating component of su, which is modeled as a one-dimensional zero mean Gaussian random565

field with constant standard deviation, σw = 0.24. To characterize the spatial correlation of566

su, we assume an exponential auto-correlation function of w(z), with a correlation length of567

1.9m [23]. w(z) is numerically represented in terms of a finite number of random variables568

through the Karhunen-Loève (KL) expansion:569

w(z) =

nKL∑
i=1

√
λiφi(z)θKLi , (48)
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where {(λi, φi(z)), i = 1, . . . , nKL} are eigenpairs of the auto-covariance function, arranged570

in decreasing order of magnitude of the eigenvalues, and
{
θKLi , i = 1, . . . , nKL

}
are indepen-571

dent standard Gaussian random variables. We consider nKL = 10 eigenmodes in the KL572

expansion. Following [23], we model the prior distribution of the parameters su0 and b by573

lognormal random variables, with means µsu0 = 14.67kPa and µb = 0.272, and standard574

deviations σsu0 = 4.04kPa and σb = 0.189. In this way, a total of nθ = 12 random variables575

are required to represent the non-stationary random field su(z).576

For the purpose of reliability analysis, we discretize the soil profile into 100 equal slices577

of height ∆h = H/100. The factor of safety is evaluated at the base of each slice, resulting578

in 100 different factors of safety {FS(zi), i = 1, . . . , 100}, where zi = i∆h. The minimum579

factor of safety is evaluated as FSmin = mini=1,...,100 FS(zi). Without measurements, the580

prior probability of slope failure is 1.49× 10−1 as obtained from 105 standard Monte Carlo581

samples. The following measurements of the undrained shear strength are used to update582

the failure probability:583

sum,1 = 17.8kPa at zm,1 = 1.5m

sum,2 = 24.5kPa at zm,2 = 3.0m

sum,3 = 30.5kPa at zm,3 = 4.5m

(49)

The measurement result sum,i at a given location zm,i is related to the true value by means of584

independent multiplicative error εm,i, that is assumed to follow a lognormal distribution with585

median equal to one and constant standard deviation. With this assumption, the likelihood586

function is given by [40]587

L(θ|d) = exp

(
−

nM∑
i=1

[lnsum,i − lnsu(zm,i,θ)]2

2σ2
lnεm,i

)
, (50)

where σlnεm,i =
√

ln(1 + CoV2
εm,i

) is the standard deviation of lnεm,i. The coefficient of588

variation of εm,i is set to COVεm,i = 5% in this example. A reference value of the posterior589

probability of failure based on 106 samples obtained through rejection sampling is 6.37 ×590

10−4(CoV ≈ 4%).591

We implement CEIS-RelUp with a uni-modal Gaussian distribution as the parametric592

family. In the present example, where the number of uncertain model parameters is nθ = 12,593

the Gaussian density is comprised of 90 unknown parameters. In Fig. 4 we show the prior594

and posterior statistics of the undrained shear strength, su, and the factor of safety, FS.595

The estimates of the prior statistics are obtained through standard Monte Carlo simulation596

from the prior PDF. The estimates of the posterior statistics are obtained from CEIS-RelUp,597

through importance sampling from the fitted IS densities qΘ(θ; ν̂L1) and qΘ(θ; ν̂L2+L1). A598

comparison of the estimates from CEIS-RelUp with the ones obtained through rejection599

sampling (RS) demonstrates good agreement. The mean of the posterior of su conditional600

on the domain of the failure event, F , is close to the mean of the unconditional posterior,601

which indicates that the PDF of the uncertain model parameters shifts towards the failure602

domain after the updating. There is a reduction in the spread of the updated PDF, as603
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indicated by smaller standard deviation of the posterior of su in comparison to the prior,604

which, in turn, results in a lower posterior probability of failure. The variation in the mean605

of FS indicates that failure is more likely to occur.606
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Figure 4: Prior and posterior statistics of the undrained shear strength, su, and the factor of safety, FS.
Top-left: Variation of mean of su with depth. Top-right: Variation of standard deviation of su with depth.
Bottom-left: Variation of mean of FS with depth. Bottom-right: Variation of standard deviation of FS
with depth.

The results of reliability estimation, as well as the computational effort required to607

construct the IS densities qΘ(θ; ν̂L1) and qΘ(θ; ν̂L2+L1), are reported in Table 4. We employ608

the non-adaptive (NIS-NonAdap) and adaptive (NIS-Adap) variants of the IS estimator,609

P̂F |d, to estimate the posterior failure probability. In the latter case, the target CoV of P̂F |d610

is set to δ∗ = 0.10, which corresponds to target values δ∗1 = δ∗2 = 0.071 of the CoV of the611

estimators P̂1 and P̂2, in the denominator and numerator of Eq. (22). The estimates of NCE,1612

and NCE,2 indicate that the required CE optimization effort is higher in the second stage,613

i.e., the number of levels required to construct qΘ(θ; ν̂L2+L1) is approximately twice of that614

required for qΘ(θ; ν̂L1). As the sample size per level N increases, we observe a decrease in615

the required number of levels for convergence of the CE method. This is due to an increase616

in the number of effective samples available to fit the parametric densities, which facilitates617

faster convergence of the CE method.618

24



With N = 500 samples per level, we observe an underestimation in the posterior failure619

probability estimates as obtained from CEIS-RelUp. This is due to bias in the estimates620

of the numerator P̂2. The estimate of the marginal likelihood, although not reported, is621

observed to be accurate for all N . In comparison, approximating the optimal IS density622

of the numerator, i.e., q∗PF |d(θ), is more challenging. For a small N , the available number623

of effective samples is not sufficient to adequately approximate q∗PF |d(θ), leading to bias in624

the failure probability estimates. With increase in N , we also observe a reduction in the625

sampling variability of the IS estimators. With NIS-NonAdap, there is a gradual decrease in626

the sample CoV of the IS estimators P̂1 and P̂2, and hence of the estimator P̂F |d. The results627

with non-adaptive and adaptive variants of the IS estimator indicate that P̂2 has a larger628

variability than P̂1, which indicates reduced flexibility of the parametric density in describing629

the posterior PDF over the failure domain. Overall, both variants of the IS estimator require630

similar total computational effort, NT . Hence, selecting the sample size of the IS estimators631

adaptively does not offer a clear advantage in this example. This is because a large number632

of samples per level N is required to obtain an adequate parametric IS density for estimating633

the updated failure probability. Both variants of the method employ at least N samples for634

estimation and when N is large the CoV of the probability estimate is already small enough635

with N samples.636

Table 4: Posterior failure probability estimates of infinite clay slope by CEIS-RelUp. Reference value of the
posterior probability of failure based on 106 samples obtained through rejection sampling is 6.37× 10−4.

NCE,1 NCE,2 P̂F |d δ̂ δ̂1 δ̂2 NIS,1 NIS,2 NT

N = 500
NIS-NonAdap 2275 5319 5.71× 10−4 0.35 0.09 0.34 500 500 8594

NIS-Adap (δ∗ = 0.10) 2275 5319 5.94× 10−4 0.18 0.07 0.17 437 3412 11443

N = 750
NIS-NonAdap 2798 6250 6.23× 10−4 0.15 0.09 0.14 750 750 10548

NIS-Adap (δ∗ = 0.10) 2798 6250 6.30× 10−4 0.13 0.07 0.11 237 1911 11196

N = 1000
NIS-NonAdap 3399 7282 6.26× 10−4 0.11 0.05 0.10 1000 1000 12681

NIS-Adap (δ∗ = 0.10) 3399 7282 6.38× 10−4 0.11 0.07 0.08 201 1694 12576

N = 2000
NIS-NonAdap 6253 12898 6.36× 10−4 0.08 0.03 0.07 2000 2000 23151

NIS-Adap (δ∗ = 0.10) 6253 12898 6.39× 10−4 0.09 0.06 0.06 140 2364 21746

6.3. First-passage failure of a two-story moment-resisting frame637

We apply CEIS-RelUp to update the first-passage failure probability of a two-story638

moment-resisting frame, earlier studied in [5], using its identified natural frequencies. A639

two degree-of-freedom shear building model, shown in Fig. 5, is used to model the structure640

in order to identify the inter-story stiffnesses and story masses, and to predict the reliability.641

The inter-story stiffnesses are parameterized as k1 = α1k1 and k2 = α2k2, where α1 and α2642

are the stiffness parameters to be identified, and k1 = k2 = 29.7× 106N/m are the nominal643

values for the inter-story stiffnesses of the first and second stories, respectively. The story644

masses are parameterized as m1 = α3m1 and m2 = α4m2, where α3 and α4 are the mass645

parameters to be updated, and m1 = 16.5× 103kg and m2 = 16.1× 103kg are the nominal646
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values for the first- and second-story masses, respectively. The prior PDF for α1 to α4 is647

given by the product of four lognormal PDFs with most probable values 1.3, 0.8, 0.95 and648

0.95, and standard deviations 1, 1, 0.1 and 0.1, respectively.649
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𝑚1

𝑓 𝑡

Figure 5: Two degree-of-freedom shear building model in Example 6.3

The first-passage failure probability of the structure subjected to a stochastic ground650

excitation is predicted using the shear building model. The response of interest is the inter-651

story drift between the first and the second stories. Failure is defined as the event that652

the inter-story drift exceeds a threshold level of h∗ within a duration of T = 10s. The653

structure is assumed to be subjected to earthquake motion, f(t), modeled by stationary654

Gaussian white noise with spectral intensity S = 1 × 10−2m2/s3. The response of the655

structure is computed at the discrete time instants {tk = (k − 1)∆t, k = 1, . . . , nT}, where656

the time step size is assumed to be ∆t = 0.005s. Hence, the number of time instants is657

nT = T/∆t + 1 = 2001. The stochastic excitation f(t) is characterized by a sequence658

of independent standard normal random variables {Ξk, k = 1, . . . , nT} that generate the659

white noise at the discrete time instants, i.e.,
{
f(tk) =

√
2πS/∆tΞk, k = 1, . . . , nT

}
. The660

reliability is predicted for two response thresholds, h∗ = 0.030m and h∗ = 0.035m.661

In this example, there is a total of nθ = nT +4 = 2005 random parameters, of which four662

parameters (two stiffness parameters α1 and α2 and two mass parameters α3 and α4) are663

updated. Using noisy simulated response time histories, the identified natural frequencies664

are f̃1 = 3.13Hz and f̃2 = 9.83Hz, which are used as the data d in the updating. We665

evaluate the posterior probability of failure according to the procedure described in Section666

4.4. ΘB = {α1, α2, α3, α4} are the random variables that are updated based on the667

data, and ΘA = {Ξ1, . . . ,ΞnT } are the remaining random variables characterizing the future668

excitation. Using the modal data d, the likelihood function for updating ΘB is formulated669

as [42]670

L(θB|d) = exp

− 1

2ε2

2∑
j=1

λ2
j

[
f 2
j (θB)

f̃ 2
j

− 1

]2
 , (51)

where λ1 = λ2 = 1 are the means and ε = 1
16

is the standard deviation of the prediction671
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error between each f̃ 2
j and the corresponding model squared frequency f 2

j (θB).672

We select a two-component Gaussian mixture (GM) model as the parametric density673

family. In the present example, where the number of uncertain structural parameters to be674

updated is 4, a two-component GM distribution is described by 29 unknown parameters that675

are determined by CE optimization. The parametric IS density qΘB
(θB; ν̂L1) for evaluating676

the marginal likelihood and approximating the posterior PDF of ΘB is constructed based677

on the procedure in Section 3. The parametric density qΘB
(θB; ν̂L2+L1) approximating the678

optimal IS density of the posterior probability of failure is constructed by applying the679

multi-level CE method on the distribution sequence in Eq. (34), according to the procedure680

outlined in [24]. Fig. 6 shows the samples of ΘB obtained from the fitted parametric681

densities. The four components of the samples are shown in two groups: α1 versus α2 in the682

first column and α3 versus α4 in the second column of Fig. 6. The posterior joint distribution683

of the stiffness parameters is bimodal, however, only one of the modes contributes to first-684

passage failure. For the mass parameters, there is no significant change between the posterior685

density and the optimal IS density over the failure domain. In both cases, the distribution of686

the samples obtained from the parametric densities fitted through the CE method compare687

well with the reference solution obtained through rejection sampling.688

We vary the number of samples per level, N , during CE optimization between 250 and689

1000. Fig. 7 shows the computational effort needed to fit the parametric IS densities690

qΘB
(θB; ν̂L1) and qΘB

(θB; ν̂L2+L1) by CE optimization. The required optimization effort,691

i.e., the number of samples NCE,1 and NCE,2, indicates a marginal decrease in the number of692

levels to convergence for increasing N , which is attributed to the larger number of effective693

samples available to fit the parametric densities. We observe that the computational effort694

for constructing qΘB
(θB; ν̂L2+L1) is larger for the higher threshold level h∗, as the failure695

event under the posterior probability measure gets rarer with increase in h∗. This leads to696

an increase in the number of levels required to estimate the optimal parameters of the IS697

density that best describe the failure domain.698

The posterior first-passage probability of failure is evaluated based on the IS estimator699

in Eq. (37), wherein the IS density qΘA|ΘB=θB(θA) of ΘA is selected as suggested in [2]. The700

results of reliability estimation are reported in Table 5. The simulation results are obtained701

based on IS densities constructed with N = 500 samples per level during CE optimization.702

The estimates from the adaptive variant of the IS estimator correspond to δ∗ = 0.10 and703

0.05. The reference solution, evaluated based on 5× 107 samples obtained through rejection704

sampling, is 1.85 × 10−4 (CoV ≈ 1%) for h∗ = 0.030m and 4.52 × 10−6 (CoV ≈ 6.7%) for705

h∗ = 0.035m. The estimates of the marginal likelihood and posterior failure probability706

obtained through CEIS-RelUp compare well with the reference value for both response707

thresholds. For a higher h∗, there is an increase in the sample CoV of the posterior failure708

probability estimates. This is due to an increase in variability of the estimator P̂2 with the709

threshold level. When the sample size of the IS estimators is fixed, i.e., for NIS-NonAdap,710

the sample estimate δ̂2 of the CoV of P̂2 is larger for h∗ = 0.035m. When the sample size is711

selected adaptively to meet a prescribed target CoV, P̂2 requires more samples to converge712

for a higher response threshold, as indicated by the larger values of NIS,2 for h∗ = 0.035m.713

We investigate the effect of the number of samples per level during CE optimization714
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Figure 6: Samples of the stiffness parameters α1 and α2 and mass parameters α3 and α4. Top: Joint
posterior PDF of the parameters. Bottom: Joint optimal IS density over the failure domain. Scattered
points denote samples from the parametric densities fitted by the CE method. Solid lines denote contours
of the joint PDFs constructed based on samples obtained through rejection sampling.

on the performance of CEIS-RelUp. For different values of N , the sample mean of the715

posterior first-passage probability estimates are similar to the values in Table 5, and hence716

are not reported. Fig. 8 shows the variation in the sample CoV of the failure probability717

estimates and the total computational effort with N . For NIS-NonAdap, it is observed that718

the sample CoV δ̂ decreases with increasing N . However, once the parameters of the IS719

density become sufficiently optimal for larger values of N , the rate of decrease reduces. For720

sufficiently large N , the variation of the parameters of the fitted IS density becomes small721

and the rate of decrease is proportional to 1/
√
N (cf. Proposition 2). This is because in722

the non-adaptive variant, N samples are used for estimation. The estimates of the sample723

CoV with NIS-Adap closely adhere to the prescribed target, except for N = 250 where we724

observe higher variability in the estimates. This is attributed to the sub-optimality in the725

parameters of the IS density due to the inadequate number of effective samples available726

for fitting the parametric density with N = 250. The total computational effort shows that727

selecting the sample size of the IS estimators adaptively is more efficient. For h∗ = 0.03m728

and h∗ = 0.035m, NIS-NonAdap requires NT = 6870 and NT = 7125 samples, respectively,729

to achieve a sample CoV of 5% of the failure probability estimates. With NIS-Adap, the730
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Table 5: Posterior first-passage probability estimates of two-story moment-resisting frame by CEIS-RelUp.
CE optimization performed using N = 500 samples per level. Reference value of the posterior first-passage
probability, based on 5× 107 samples obtained through rejection sampling, is 1.85× 10−4 and 4.52× 10−6

for h∗ = 0.030m and h∗ = 0.035m, respectively. Reference value of the marginal likelihood is 1.42× 10−3.

ĉE P̂F |d δ̂ δ̂1 δ̂2 NIS,1 NIS,2 NT

h∗ = 0.030m
NIS-NonAdap 1.43× 10−3 1.81× 10−4 0.07 0.04 0.06 500 500 4880

NIS-Adap (δ∗ = 0.10) 1.39× 10−3 1.88× 10−4 0.10 0.06 0.07 98 155 4133
NIS-Adap (δ∗ = 0.05) 1.42× 10−3 1.81× 10−4 0.04 0.03 0.03 640 688 5208

h∗ = 0.035m
NIS-NonAdap 1.43× 10−3 4.67× 10−6 0.13 0.04 0.11 500 500 5200

NIS-Adap (δ∗ = 0.10) 1.39× 10−3 4.56× 10−6 0.10 0.06 0.06 98 182 4480
NIS-Adap (δ∗ = 0.05) 1.42× 10−3 4.68× 10−6 0.05 0.04 0.04 640 806 5646

same is achieved with NT = 5208 samples for h∗ = 0.03m and NT = 5646 for h∗ = 0.035m.731

7. Concluding remarks732

This contribution proposes a novel importance sampling (IS) method to update the733

failure probability of engineering systems based on data. An effective IS density of the734

uncertain model parameters is introduced to estimate the marginal likelihood of the data.735

The IS density is determined by minimizing the cross entropy (CE) between the posterior736

probability density function (PDF) of the uncertain parameters and a chosen parametric737

family of probability distributions. The IS density for marginal likelihood estimation leads to738

a sample-based approximation of the posterior PDF, which is subsequently used as a building739

block to construct an efficient IS density for estimating the posterior failure probability740

through a second round of CE minimization. The novel contribution lies in the development741

of a two-step adaptive multi-level approach to efficiently solve the two CE optimization742
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Figure 8: Coefficient of variation of posterior first-passage probability estimates and total computational
effort for two-story moment-resisting frame

problems. Numerical studies on a range of engineering problems demonstrate that the743

proposed method gives accurate estimates of the updated reliability with reasonable total744

number of samples.745

We discuss two approaches to select the sample size of the IS estimator for the posterior746

probability of failure. In the first approach, the number of samples is fixed to a certain747

value. The second approach considers selecting the sample size adaptively to ensure that an748

estimate of the sample CoV of the IS estimator adheres to a specified target. Results from749

numerical studies demonstrate that the adaptive variant of the estimator is more efficient.750

The performance of the CE method depends on the choice of the parametric density.751

We consider the Gaussian density and Gaussian mixture (GM) as the parametric families,752

which are able to adequately represent a wide range of posterior distributions. However, the753

number of distribution parameters to be learnt by CE optimization increases quadratically754

with the number of uncertain model parameters. In an ongoing work, we explore sparse755

learning approaches to accelerate the learning and improve the efficiency of the method in756

high dimensions. In the numerical studies, the number of the terms in the GM model is757

chosen prior to the simulation. We intend to explore adaptive approaches that estimate the758

number of GM terms on the fly during CE optimization.759
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