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Abstract

Bayesian analysis enables a consistent updating of the failure probability of engineering
systems when new data is available. To this end, we introduce an adaptive importance
sampling (IS) method based on the principle of cross entropy (CE) minimization. The key
contribution is a novel IS density associated with the posterior probability density function
(PDF) of the uncertain parameters, that facilitates efficient sampling from the important
region of the failure domain, especially when the failure event is rare. The IS density
is designed via a two-step procedure. The first step involves construction of a sample-
based approximation of the posterior, which we build using the CE method. Here the aim
is to determine the parameters of a chosen parametric distribution family that minimize
its Kullback-Leibler divergence from the posterior PDF. The second step of the proposed
method constructs the desired IS density for sampling the failure domain through a second
round of CE minimization, starting from the approximate posterior obtained in the first
step. An adaptive, multi-level approach is employed to solve the two CE optimization
problems. The IS densities deduced in the two steps are then applied to construct an
efficient estimator for the posterior probability of failure. Through numerical studies, we
investigate and demonstrate the efficacy of the method in accurately estimating the reliability
of engineering systems with rare failure events.

Keywords: Reliability updating, Bayesian analysis, Importance sampling, Cross entropy

1. Introduction

The prediction of reliability lies at the heart of model-based safety assessment of engineer-
ing systems. An accurate assessment requires appropriate characterization of the uncertain
model parameters, taking into account all available data. Once an engineering system comes
into existence, it is possible to obtain information on the system properties and performance
through measurements, monitoring and other means of observations. This information can

*Corresponding author
Email addresses: oindrila.kanjilal@tum.de (Oindrila Kanjilal), iason.papaioannou@tum.de
(Tason Papaioannou), straub@tum.de (Daniel Straub)

Preprint submitted to *** March 2, 2022



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

be used to update the model parameters to provide improved estimates of the system’s re-
liability. A consistent framework for assimilating the new information into the models is
provided by Bayesian analysis.

Consider the model, M, of an engineering system, characterized by a set of model pa-
rameters and boundary conditions that describe the geometry, material properties, loads
etc. In many practical applications, some of these parameters are uncertain. Uncertain
parameters are modeled by random variables gathered in a random vector ® of dimension
ng. Let the probability density function (PDF) pg (@) denote one’s prior belief about the
distribution of @, i.e., before new information becomes available. The prior probability of
failure is given by the multi-dimensional integral

Pe= [ n@)e(0)a0. (1

where F' = {0 € R" : g(0) < 0} is the failure event, defined in terms of the so called limit

state function ¢(0), and Ip(0) is the indicator function such that Iz(0) = 1 if g(@) < 0
and Ip(0) = 0 otherwise. Computation of the limit state function for an outcome 6 of the
uncertain parameters requires evaluation of the system model M. The probability of the
complement of F' is the reliability of the system.

When new data from the engineering system is available, it can be used to learn the
uncertain parameters, thereby updating the prior PDF. The data can be direct observations
of the uncertain parameters, ®, or measurements of the system response, e.g., measurements
of stress condition or deformation. Let d denote the data that is available in the form of
measurements or observations. The updated/posterior PDF of © that incorporates the data
information in the context of M is given by Bayes’ theorem as

peia(0) = c' L(6]d)pe(6). (2)

L(0]|d) is the likelihood function that expresses the plausibility of observing d given a certain

0 and cg is the normalizing constant that ensures that peja(@) integrates to one. It is
commonly referred to as the marginal likelihood (or evidence) and is defined as

o= [ Liolde(o)as. )

When the data contains measurements of the system response, L(8|d) includes the system

model M and Eq. (2) is termed a Bayesian inverse problem.The probability of failure
conditional on the data d is obtained by replacing the prior PDF in Eq. (1) by the posterior
PDF

Ppla = /GeR”B 17 (0)pe)a(0)do (4)

Evaluation of the posterior probability of failure requires repeated computation of the
limit state function and the likelihood over the outcome space of ®, and is challenging due to
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several reasons. The functions L(€|d) and ¢(@) are typically evaluated numerically, i.e., they
are treated as black-box models. As a consequence, it is impossible to analytically evaluate
Ppjq except for some special cases. Additionally, numerical integration of the integrals
in Egs. (3) and (4) is often not feasible due to the large number of random variables
involved. Approaches to approximate the posterior probability of failure using the first- and
second- order reliability methods [30] or Laplace’s asymptotic approximation [32] have been
suggested. These methods require evaluations of the first and second derivatives of L(0|d)
and ¢(@), and, hence, might be computationally challenging, especially if the number of
model parameters is large or evaluation of M is costly. Moreover, they are often inaccurate
in cases where the data is not informative.

Monte Carlo simulation (MCS) methods offer a robust alternative to numerically evaluate
Prpjq. Here one can first perform a Bayesian analysis to learn the posterior PDF pg|q(8) of the
uncertain parameters, and then use samples generated from peg)q(@) to evaluate Ppjq. Beck
and Au [5] propose an adaptive Metropolis-Hastings algorithm to generate samples from
Pe|a(@) and then use these samples to update the reliability by evaluating the reliability
conditional on each of these samples. This approach becomes inefficient when the number
of uncertain model parameters ng is high and the posterior probability of failure is small.
Ching and Hsieh [9] propose a method to update the reliability by combining Bayes’ theorem
with maximum entropy theory. This approach uses standard MCS to fit a set of sampling
distributions by the maximum entropy method. The method is suited for high dimensions
ng, but it remains inefficient for small target probabilities.

The limitation of the aforementioned simulation-based approaches in estimating small
posterior failure probabilities can be overcome by combining the methods for Bayesian anal-
ysis with advanced Monte Carlo methods for rare event estimation. Ching and Beck [7]
propose a method for online reliability updating based on an efficient importance sampling
technique of Au and Beck [2]. Sundar and Manohar [41] suggest an approach to estimate
the posterior probability of failure by applying Girsanov’s transformation based importance
sampling [29]. The methods in [7, 41] are applicable only if the system is dynamic and the
model uncertainties are due to the unknown loading. Efficient approaches to update the reli-
ability in the presence of both structural parameter and loading uncertainties are suggested
in [21, 19, 4]. Jensen et al. [21] and Hadjidoukas et al. [19] propose to first update the
prior PDF of the model parameters by applying the transitional Markov chain Monte Carlo
method [8]. Subsequently, subset simulation [1] is employed for evaluating the conditional
probability in Eq. (4) starting from samples of the posterior. The application of subset sim-
ulation in conjunction with a Gibbs sampling-based method for Bayesian model updating
6] is explored in Bansal and Cheung [4]. Straub et al. [39, 40] present an approach that
enables estimation of the updated failure probability without resorting to posterior samples.
In this procedure, termed BUS (Bayesian updating with structural reliability methods), the
integrals appearing in the definition of Ppyg in Eq. (4) are converted into equivalent reliabil-
ity integrals by means of appropriate transformations. These integrals can then be evaluated
with any sampling-based reliability estimation method, such as importance sampling [39] or
other advanced Monte Carlo techniques [33, 40]

In this contribution, we introduce a novel simulation-based method to update the re-
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liability of engineering systems using data. The proposed procedure uses an importance
sampling (IS) method that is developed based on the principle of cross entropy (CE) mini-
mization. The key contribution is a novel IS density associated with the posterior PDF of
the uncertain parameters, which facilitates efficient sampling of the important region of the
failure domain, particularly for a small posterior probability of failure. The IS density is
designed via a two-step procedure. The first step involves construction of a sample-based
approximation of the posterior PDF, which we build using the CE method. Here the aim
is to determine the parameters of a chosen parametric distribution family that minimize
its Kullback-Leibler divergence from pgja(@). The approximation leads to an efficient IS
density for estimating the marginal likelihood. In the second step of the proposed method,
we use the approximation of pga(@) as a building block to construct the desired IS density
for sampling the failure domain, through a second round of CE minimization. An adaptive,
multi-level approach is employed to solve the CE optimization problem in each step. The
IS densities deduced in the two steps are then applied to construct an efficient estimator for
the posterior failure probability.

2. Importance sampling approach for reliability updating

The posterior probability of failure is defined in terms of the marginal likelihood, cg, and
the likelihood function, L(0|d), as

Pra=— [ 1:(6)L(6|d)pe(6)do. (5)

CE JocRrmo

One can evaluate Ppjq by standard Monte Carlo simulation, via a rejection sampling scheme,

wherein independent samples of the uncertain parameters © generated from the prior PDF
are used to estimate cp and the posterior probability Prjq. When the posterior PDF of
© differs significantly from the prior, or the failure event under the posterior probability
measure is a rare event, this method requires a large number of samples to yield accurate
estimates. A classical approach to address this drawback is to apply importance sampling.

Design of an efficient importance sampling scheme to evaluate the posterior probability
of failure requires two main ingredients: (i) an IS density to estimate the marginal likelihood,
and (ii) an IS density to integrate the un-normalized posterior PDF over the failure domain.
Let qg)(e) and qg)(e) denote these two IS densities, respectively. Accordingly, Eq. (4) is
written in the modified form

1

Ppa = — 11(6)W2(6)qs) (9)d6, (6)
CE JocRr"o
with
ce= [ LOkWi(6)4S) 6)as. (")
OcR™6

In the preceding equations, W;(0) = (i?)—((?) and W(0) = %ﬁ’e@)@ are the importance
[S] (S}
4



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

weight functions.

We develop an adaptive sampling strategy to determine the IS densities qg)(e) and
qg)(e). The method is built on the principle of cross entropy (CE) minimization [36], a
classical approach for constructing near-optimal IS densities for Monte Carlo integration.
In the subsequent sections, we put forward a novel procedure to adapt this principle for the
reliability updating problem. The proposed method is comprised of two steps. In the first
step, described in Section 3, we determine the IS density qg)(e). We construct qg)(e) as a
near-optimal approximation of the posterior PDF, pgja(@). We adopt the approach devel-
oped in our recent work [15], where we approximate peja(@) by a parametric density that
minimizes the cross entropy (CE) loss between peja(@) and a chosen family of parametric
distributions. In the next step, we construct qg)(H) as an approximation of the optimal IS
density for integrating the un-normalized posterior PDF over the failure domain. The pro-
cedure requires a second round of CE minimization. The approach, developed in Section 4,
leverages upon the approximation of peja(@) of the first step, and a smooth approximation
of the indicator of the failure event, used earlier by [34, 35], to efficiently solve the CE opti-
mization problem. We provide the proposed IS estimator of the posterior failure probability
and discuss its statistical properties. In Section 5, we discuss the choice of the parametric
density in the CE method, which is followed by numerical investigations in Section 6 that
demonstrate the performance of our method.

3. Approximation of the posterior PDF

As already noted, it is straightforward to evaluate the marginal likelihood, cg, by stan-
dard Monte Carlo simulation (MCS): one generates independent samples {O(i),i =1,..., Nl}
from the prior PDF pg(@) and computes the sample mean of the likelihood function values
{L <G(i)|d> i=1,... ,Nl}. However, if the data is highly informative, the posterior PDF
tends to differ significantly from the prior PDF, necessitating a very large number of sam-
ples N; to obtain an accurate estimate, i.e., an estimate with a small coefficient of variation
(CoV). Importance sampling provides a path to overcome the drawback of standard MCS.
The IS density should be selected such that the IS estimator has a smaller coefficient of
variation (CoV) compared to the estimator in standard Monte Carlo. Following (7), one
can show that if the posterior PDF is selected as the IS density, i.e., if qg)(O) = pe|a(0),
the CoV of the IS estimator of the marginal likelihood reduces to zero. In the context of
importance sampling, such a density is termed the optimal IS density [36]. The optimal IS
density peja(@) requires knowledge of the target quantity cg, and hence cannot be directly
applied. However, it is possible to construct an IS density that closely resembles peja(8),
and subsequently apply it to estimate cg. In [15], we construct an approximation of the
posterior PDF by fitting parametric density models using the CE method. The approach is
summarized in the following.
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3.1. Multi-level cross entropy method for posterior approximation

Consider a family of parametric densities gg(€; v) defined by the parameter vector v € V.
We select ge(0;v) such that it contains the prior PDF of the uncertain parameters, i.e.,
qe(0; 1) = pe(0) for oy € V. The choice of the family gg(0;v) is detailed in Section 5.
The CE method aims at constructing a near-optimal IS density by minimizing the Kullback-
Leibler (KL) divergence between the optimal IS density and the chosen parametric family
[36]. The KL divergence between peja(€) and ge(8;v) is a measure of distance between the
two PDFs and is defined as

D1 (peja(0)l|ge(6;v)) = Erora {111 (%)]

- éEpe [L(0|d) In (pG)Id(e)ﬂ N éEp@ [L<9|d) In (Q(a(e; U>>]
(8)

Since the first expectation on the right-hand side of Eq. (8) is not a function of v, minimizing

D1 (peja(0)||ge(6;v)) is equivalent to solving the stochastic optimization problem:

v, =argmax E,¢ [L(0]|d)1n (¢e(6;a))] (9)

CE
acV

The parametric density defined by v is a near-optimal approximation of the posterior PDF

pe|a(@). The above optimization can be solved by approximating the expectation in Eq. (9)
with a set of samples drawn from peg(6). However, the number of samples required to obtain
a good sample approximation is large when pga(@) differs significantly from pe(@). In such
cases, directly solving Eq. (9) is computationally challenging. To address this challenge, in
[15] we develop a multi-level version of the CE method that approaches the target density
peoja(0) step-wise through a sequence of parametric densities defined by {v, k=1,..., L}
We consider a sequence of intermediate target densities {h¥(@),k = 0,...,L;} that
starts from the prior PDF pg (@) and gradually approaches the posterior PDF pga(@). The
distribution sequence is constructed by tempering the likelihood function (i.e., by taking it
to be the power of v;):
i(6) = - L(61d) "o (6). (10
Here Cj is the normalizing constant of h%(@) and 0 = v < 71 < -+ < 7, = 1 are

tempering parameters which ensure a smooth transition between the prior and posterior
PDFs of ©. Note that h{(0) = pe(0) and hi*(0) = pea(6). This distribution sequence
has been used in [31, 10, 8] to design Markov chain-based sequential Monte Carlo samplers
for Bayesian analysis. We approach the posterior PDF pga(6) gradually, by solving the
CE optimization problem sequentially for each intermediate target density. This leads to
a sequence of parameter vectors {vy, k = 1,..., Ly} such that the final parameter vy, is a
good approximation of the optimal parameter v; . We determine vy by minimizing the KL
divergence between h¥(0) and ge(0;v):
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v, = argminD, (R}(0)||ge(0; v))

acV (11)
= argmax E,o [L(0]|d)" In (¢e(6;a))]

acy

The objective function of the corresponding optimization problem, i.e., the expectation
E,o [L(0]d)" In (¢e(6;a))], is approximated by importance sampling using a set of samples
{O(i),z' =1,..., N} distributed according to qe(0; x_1), where Ij_; is the estimate of vy_;
determined in the previous level. At k = 0, the sampling density qg(0; () corresponds to
the prior PDF pg(@). This leads to the following stochastic optimization problem to be
solved in each intermediate level :

acV

N
5 L 5t (a0 i
Uy = argmax — ;:1 W} (0( ) yk,l) In (q@ <0( ). a)) , (12)

~ . NN @) ,
where W} <0(Z), f/k,l) =1L (0(’)]d) ' % is the importance weight of a sample 8.

The accuracy and computational cost of this procedure depends on the choice of the
tempering parameters {vx,k = 1,..., L1}, which determine the change between the respec-
tive target densities. In order to obtain a good estimate of ©, with a limited number of
samples, the intermediate PDF h%(6) should not differ largely from the parametric density
qe(0;0;_1). To ensure this, we adopt the criterion suggested in [34] and select the tem-
pering parameter 7, adaptively, on the fly, such that the sample CoV 5;;,; of the weights

{Wkl (0(i)) i=1,.. .,N} adheres to a target value 07 = 1.5:

. 2
v, = argmin (5W§ (v) — (51;) . (13)

YEMK-1,1)

The adaptive procedure terminates when the value of 7, determined based on Eq. (13)

equals 1. After termination, the final parameter vector vy, is determined by solving Eq.
(12) with vz, = 1. Dy, closely approximates the optimal parameter v _ in Eq. (9). Thus,
qge(0;v,) is a close approximation of the posterior PDF for the chosen parametric family,
and is taken as the IS density for estimating the marginal likelihood, cg.

4. Estimation of the posterior probability of failure

The parametric density ¢e(0;¥,) describing the posterior PDF could be applied to
estimate the posterior probability of failure by importance sampling. However, if the failure
event, [, is rare under the posterior probability measure, the samples from ¢g(0;21,) do
not represent well the failure domain, resulting in a high sampling CoV of the associated IS
estimator. In contrast, the optimal IS density that perfectly describes F', and leads to an IS
estimator with sampling CoV equal to zero, is given by
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Q};ﬂd(e) = %]F(e)p@\d<9>- (14)

The above IS density, however, cannot be applied in practice, as it requires knowledge of the

target probability of failure. We develop an extension of the multi-level CE method described
in the previous section, to construct an IS density qg)(O) that is a close approximation of
the optimal IS density q}Fld(H). The proposed IS density is able to adequately describe the
rare failure region, and, together with qe(0; 21, ), it leads to an efficient IS estimator for the
posterior failure probability.

Consider the parametric density family ¢ge(0;v);v € V introduced in the previous sec-
tion. An approximation of the optimal IS density q}SFld(O) is deduced by the CE method,
by minimizing the KL divergence between q}F‘d(B) and ¢e(0;v), i.e., by solving the CE
optimization problem

V}F‘d = argmin Dy, (q}F‘d(e)Hq@(H; a))
acV (15)
= argn:}ax Epeq IF(60) 10 (¢e(6; a))].

ac

One can solve the above optimization in a single step, after approximating the expectation

through importance sampling using samples from the parametric density qe(0; 1, ) describ-
ing the posterior PDF, pg|a(@). This approach, however, requires a large number of samples
when the failure event is rare. By analogy with Section 3, we lay out a multi-level procedure
that approaches the target density q;;m(e) step-wise, by approximating a sequence of target
densities {h5(0),k = 1,..., Ly} residing between the posterior PDF pgq(6) and q}ZF‘d(O).
The approach, described in Section 4.1, results in an extended sequence of parameter vectors
{Ukyr,,k =1,..., Ly} where the final parameter o, . is a good approximation of V}‘;Fld.
The parametric density ¢e(0;¥1,+1,), which is close to the optimal IS density q}SF‘d (0), is
then applied to estimate the posterior probability of failure by importance sampling.

4.1. Multi-level CE method for estimation of the posterior failure probability

In the standard multi-level CE method for rare event estimation [36], the intermediate
target densities correspond to the optimal IS densities of intermediate reliability integrals,
defined by a sequence of failure events that gradually approach the rare failure event F. To
enable better use of the samples generated at each level, Papaioannou et al. [35] proposed to
characterize the intermediate densities using a smooth approximation of 1z(€) based on the
standard normal cumulative distribution function ®(-). We follow the distribution sequence
suggested in [35] and define the intermediate target densities for estimating the posterior
failure probability as

P

where o1 > g9 > - -+ > 0, > 0 are smoothing parameters and P, is the normalizing constant

h5(8) = Lo (—%z)) peya(6), (16)

8
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of h%(@). Note that lim, o ® <—@> = I{g(0) < 0}. Hence, with decreasing o, the above

sequence converges to the optimal IS density q}ZFld(O) in Eq. (14).

Starting from the parametric density ge(6; 1, ) approximating the posterior PDF pga (@),
we construct a sequence of densities {go(0;Viir,),k = 1,..., Ly} such that qe(€;vk.r,)
has the minimum KL divergence from h%5(0) within the parametric family. The parameter
vector Uy, p, is determined by solving the sample counter-part of the CE optimization:

Vi1, = argmax Epg [@ (—@) In (ge (6; a))} . (17)

acy Ok

We approximate the expectation in Eq. (17) through importance sampling using samples

{H(i),i =1,..., N} generated from qe(0;Vkir,-1), to arrive at the following optimization

problem:

acV

N
Vjyr, = argmax Z Wi (O(i), ﬁk+L1—1> In (Q(a (0(i); a)) ) (18)
i=1

with W,?(O; Virr,—1) = @ <—%Z)> %ﬁf?)' To ensure that a good estimate of vy, p,

is obtained with a reasonable number of samples drawn from ¢e(0; Px+1,-1), in each level the

smoothing parameter is selected such that the sample CoV 5W2 of the weights {Wk? (O(i) Sy L1_1> =1,
k

adheres to a target value 9;:

. 2
o) = argmin (5{7‘,«3(0) - 5:,) : (19)

0€(0,0%-1)

We select 6 = 1.5 [34]. The adaptive procedure terminates when the CoV of the weights of
. . . . . 1{g(6™)<0} .

the current smooth approximation with respect to the optimal IS density NAICIAN 1=1

()

9k

is smaller than 9.

4.2. Estimator for the posterior probability of failure

The fitted IS density qe(0;v,.+1,) is applied to evaluate the posterior probability of
failure by importance sampling. Accordingly, we write Eq. (4) in the modified form

p®|d(9) A

Fld /OER"B F( )QG(0§VL2+L1)qe( L2+L1>
1 Le|d 0

CE JocRro QG(B, VL2+L1)

(20)
Q(.)(G; ’>L2+L1>d0'

The marginal likelihood, cg, is evaluated by importance sampling using the IS density

9
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qe(0;vr,). This leads to

Jocgno 1r(0)W2(0)qe (0; 1,41, )d0

Pria = 3 ; (21)
| feeR"G L(9|d)WI(9)CI®(9; VLl)de
where W1(8) = qe”(‘Z—(f and W>(0) = —qg((%‘;)fi(fl)) are IS weights. The corresponding

estimator is

1 Nis,2 (2,4) (2,4)
pis . Nisa 2t 1r (0 )W2 (0 > (22)
Fd = Nisa 1 (@d1q) W (90 ’
Nis 1 Zz 1 ‘ 1

where {0(1”') 1=1,..., N 1} and {0(2’i) 1=1,..., N 2} are independent samples gener-

ated from the IS densities qo(0;V1,) and qe(0; 0,1, ), respectively.

4.8. Statistics of the proposed estimator

The bias and CoV of the estimator of the posterior failure probability are given by the
following two ‘propositions. We denote the estimators in the denominator and numerator of
Eq. (22) by Py and Pg, respectlvely Let P, and Ps, respectively, denote the true values of
]51 and Pg, i.e., Ppig = 5. For simplicity we set Nig; = Nigo = N.

Proposition 1. PIS‘d is biased for finite N. The fractional bias is given by:

= 6% — p120103 +o(1/N) = O(1/N), (23)

where ; and d, respectively, denote the CoV of P, and ]52, and pi2 denotes the correlation
coefficient between the estimators. PI Fld 18 thus asypmtotically unbiased and the bias is

O(1/N).

Proof. Since P}SM = % and Ppjq = FQ it follows that
M — E _ ﬁ h (24)
Priq P, PP

Taylor series expansion of % around P; leads to
1

. . . . 2
PF\d PF\di P, P 1 P1—P1+ P — P
Prpia P B P Py

P, P Pl(pl_P1> P2(p1—P1>
B R R Y S

10

(25)
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Taking expectation on both sides of Eq. (25) and noting that the estimators P, and P, are
unbiased, i.e., E[]f’l] = P, and E[[f’g] = P,, proves the required proposition. O

Proposition 2. The CoV 5}5;3‘(1 of ﬁ’ﬁd is given by:

where §; and J9, respectively, denote the CoV of 151 and ]52, and ppo denotes the correlation

coefficient between the estimators. PI Fla 1s thus a consistent estimator and its CoV 4 prs 18

O(1/vV/N). N

Proof. From Eq. (25)

P, —P -P P P1<P1 P1> p2<]51—P1>
E F|d—F|d = FE _2__1_|_ 5 — + ...
PF|d P2 Pl Pl P1P2
_ 2
| B-P A-P A(h-r) R(h P1>+
B P, P P? PPy
- . 2 . .
_E P — P1 L B-hk| P —P P — P o 1
Pl P2 P1 P2 N
' (27)
Hence the proposition. O

In practice, it is reasonable to assume that the estimators Py and P, are uncorrelated.
Then, we can use the first two terms on the R.H.S of Eq. (26) to obtain an approximate
estimate of the CoV of the probability of failure estimator:

0215 A2 0% + 03, (28)

Prla

where § P, &, and &, denote sample estimates of o P, 01 and 09, respectively. The estimates
F|d F|d

of §; and d, are obtained according to [28]

11 R 2
52 = = {L (9“7@') d) W (00@)} _pe 29
! P2 Nisi—1 | Nigs ; | ! ! (29)

and
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A 1 1 1 ) . 2 .
52 = I (9@»’)) {W (49(271))} P2l 30
2 P} Nisa —1 | Nigp ; F 2 2 (30)

To investigate the influence of the number of samples Nis; and Nigo on the CoV of pfps‘d,

we consider two cases. In the first case, we take Nig; and Nigo equal to the number of
samples employed per level in the multi-level CE method, i.e., Nig; = Nigo = N. In the
second case, we select the number of samples to ensure that o PI, adheres to a target value

0*. For this, we vary Nig; and Nig o adaptively such that the sample estimates 51 and 52 are,
respectively, equal to target values 67 and 65 with 8 + 85 = 0*. A choice of 67 = 65 = 6*/\/2
is employed in the present study which ensures that ¢ Pi, < 6%

4.4. Separation of uncertainty

In many problems, the data contains information on only a sub-group of the random
variables appearing in the limit state function. For example, ® can contain uncertain future
forcing variables, which cannot be learned. Let © 4 denote the group of random variables
in ® that cannot be learned and ® 3 denote the remaining random variables. In principle,
one can consider the likelihood function to be simply constant with respect to all random
variables in © 4. The methods described in the preceding sections then remain applicable,
and the posterior probability of failure can be estimated based on Eq. (22). However, in
certain applications it is convenient to evaluate the probability of failure conditional on
specific instances of @p separately, using analytical or simulation-based methods [16, 11,
14]. In such cases, it is advantageous to express the posterior probability of failure in an
alternative form. Let pe(0) = pe,je;(04|08)pe,a(@s) be the prior PDF of ©. The
posterior PDF of @ is then given by pea(0) = pe,je,(04|05)pe,a(05), where pe,a(05)
is the posterior PDF of ®p defined in analogy to Eq. (2). One can write the posterior
probability of failure in terms of ® 4 and Op as

PFd:/ . Prie,(05)pesa(05)d0s, (31)
Op€eR B

where the conditional failure probability Prje,(05) is given by

Prie;(05) = / 1r(04,08)pe ,10,(04]05)d0 4. (32)

04cR™0A

In Egs. (31) and (32), ng, and ng, denote the dimension of @4 and Op, respectively.

The formulation in the above equations offers two advantages. Firstly, the CE optimization
problem for updating model parameters © g, that leads to the approximation of the posterior
PDF pe,a(0p), is now solved in a lower-dimensional space. This reduces the computational
cost required for optimization and can help to address the degeneracy of the importance
sampling weights in high dimensions. Secondly, it enables one to evaluate Ppje,(05) by
tailor-made approaches specific to the application at hand, thereby reducing the uncertainty
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of the posterior failure probability estimator. The posterior probability of failure is then
estimated by evaluating the expectation of Ppe,(6p) with respect to pe,a(6s). The
parametric density ge,(05;¥1,) for approximating pe,a(65) and estimating the marginal
likelihood can be constructed by the CE method through the procedure described in Section
3. However, the challenge lies in constructing an IS density associated with pea(€5) to
efficiently perform the reliability integration, i.e., the expectation of Prje,(05), for which
the procedure in Section 4.1 cannot be directly applied.
The optimal IS density for evaluating the integral in Eq. (31) is given by

Urpa(08) = 5 Prio, (05)p0,a(05). (39

Prjq
Note that this optimal density is different from the one in Eq. (14). Hence, to determine
an approximation of the above density by the multi-level CE method, one needs to consider
an alternative distribution sequence that defines a smooth transition from pea(035), or its
approximation qe,(0p;7r,), to q}Fld(OB) in Eq. (33). Such a distribution sequence can be
constructed by tempering the conditional probability function [24]:

1

h5(0p) = EPF&)B(BB)C%]?@BM(QB); (34)

where {ay,k = 0,..., Lo} are the tempering parameters satisfying 0 = ap < oy < ... <

ar, = 1 and Cy, is the normalizing constant of h5(0p). The parametric IS density qe, (05; ¥1,+1,)

is determined by approximating the above distribution sequence in a step-wise manner. The
associated CE optimization problems are solved sequentially, following similar steps as in
Section 3. An IS estimator of the posterior probability of failure is obtained as

Nigo £ 0 g
pIs iz 2= Lo (‘959 )> Wap (953 )) (35)
F|ld — i : ’
NIIS,l Zﬁil L (0(357 )|d> WLB (Bg’ )>

where W, 5(0p) = LOB)) and Wy 5(0p) = LOs|pop05) o101 weights, {OE’i),z’ =1,... 7NIS,1}

050801, 105080 Ly+1,)

and {0532’“, 1=1,..., NIS’Q} are independent samples generated from the IS densities go,(05; V1, )

and ge,(05;VL,+1, ), respectively, and PF|@ 5 (0g’i)) is the estimate of the conditional prob-

ability for sample Og’i). In the following, we discuss the evaluation of ]5F|@ 5 (@) for a special
case.

4.4.1. Updating the first-passage failure probability of uncertain linear systems

A prominent example where the above formulation is useful is the estimation of first-
passage probability of systems subjected to random dynamic loads. In this context, F
denotes the first-passage failure event, ® 4 denotes the random variables characterizing the
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future random excitation and ®p denotes uncertain system parameters. Typically, O 4
is high dimensional and is independent of ®@g. It is well-known that applying standard
importance sampling with parametric IS density in a high-dimensional random variable space
can lead to poor estimates [3, 26]. This is related to the degeneracy of the IS weights in high
dimensions. Hence, advanced Monte Carlo methods that are designed for high dimensions
(37, 38] are commonly applied to estimate the first-passage probability. Evaluating the
posterior probability of failure based on Egs. (31) and (32) enables the integration of these
methods into the framework of cross entropy-based Bayesian analysis to update first-passage
probabilities of engineering systems under future excitation.

The conditional probability Pre,(@p) denotes the first-passage failure probability of
the deterministic system corresponding to a specific outcome 05 of the system parameters.
If the random excitation is a Gaussian process, ® 4 is comprised of independent standard
Gaussian random variables. The conditional first-passage probability Ppje,(0p) can be
estimated by importance sampling from the outcome space of @4. In [2], an efficient IS
density, ge ,j@ =0, (04), of © 4 is suggested for the particular case where the system is linear,
which is defined by a weighted sum of Gaussian PDF's truncated on the failure domain of the
deterministic system defined by @z. Accordingly, the conditional first-passage probability
is expressed by the modified integral

Prio, (0) / 10,4, 0)Wa4(0.4)de 1 050, (0.4)460.4, (36)

04 €R"0A

where W5 4(04) = #% is the IS weight. By employing a one-sample estimator of
Al®B=YB

the above integral, the IS estimator for evaluating the posterior first-passage failure proba-
bility is given by:

S (050w (0w (0
F|ld — i : |
v L (6571d) W (65)

(37)

where O(AQ’“ denotes a sample of the random vector ® 4 characterizing the Gaussian exci-
tation, generated from the IS density q®A|®B_0(2,i)<9A) suggested in [2]. The IS density
- 7B

go,(0p;V1,+1,) is determined by applying the multi-level CE method on the distribution
sequence in Eq. (34). For first-passage problems of linear systems, one can construct
qo,(0p;V1, 1) efficiently, based on the framework introduced in [24, 25]. Here, an analyt-
ical approximation of the conditional first-passage probability, Prie,(@5), deduced based
on Rice’s formula, is employed to solve the CE optimization problem. The use of the an-
alytical approximation facilitates smooth convergence of the CE method and reduces the
optimization effort without compromising much on accuracy. The IS estimator of Ppe,(05)
is applied for evaluating the posterior failure probability according to Eq. (37).
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5. Choice of parametric density

In the CE method, the parametric density gg(@;v) is typically chosen such that it con-
tains the nominal density of the uncertain model parameters. In the context of the Bayesian
updating problem, the nominal density corresponds to the prior PDF pg(@). Without loss
of generality, we assume that the prior distribution of the random vector ® = {©1;...;0,,}
representing the uncertain model parameters is the independent standard Gaussian distri-
bution. Then the prior PDF is given by pg(0) = H?il pe,(0;), where for every j, pe,(0;) is
a one-dimensional standard Gaussian PDF for ©;. When the model parameters are a-priori
non-Gaussian and dependent, they are generated from the standard Gaussian random vector
© by means of the Nataf transformation [12] or the Rosenblatt transformation [20].

The Gaussian distribution family is a standard choice of the parametric family in the CE
method [36, 27]. To allow for efficient representation of multi-modal posterior distributions,
we consider a multivariate Gaussian mixture (GM) model as the parametric density. The
PDF of a GM model is defined as the sum of a number of Gaussian PDFs, each of them
multiplied by a weighing factor:

nagm
q®<0;1j) = Zﬂ—st<B; “5725)7 (38)

s=1
where fg(0; pg, 35) is the s-th variate Gaussian PDF with mean p, and covariance matrix
3, and {ms;s =1,...,ngm} are normalized weights satisfying the condition > %) 7w, = 1.

In Eq. (38), nga denotes the number of modes, which can be fixed a-priori or selected on
the fly [17]. The parameter vector is given by v = {7, p,, Xs; 8 = 1,...,ngn}, where
is scalar-valued, p, is a vector of dimension ng and 3 is an ng X ng symmetric matrix.
This results in a total of nGMM + (ngyr — 1) unknown parameters in the parametric
density. For the uni-modal case, i.e., ngy = 1, closed form analytical expressions for the
parameter update in Eqgs. (12) and (18) are available [36]. For the general case of ngy > 1,
the parameters are updated by means of an expectation-maximization (EM) algorithm. The
EM procedure and the updating rules for the parameters of the GM model are described in
[17] and are not further discussed here.

It is noted that in high dimensional problems, i.e., in problems where the number ng
of uncertain model parameters is large, the CE method with Gaussian densities performs
poorly. This is due to two reasons: the first is the degeneracy of the importance sampling
weight in high dimensions [3, 26]. The second reason is the number of parameters in the GM
model, which increases quadratically with ng. This results in a rapid increase in the number
of samples per level N required to obtain an adequate estimate of the optimal parameter
values. In such cases, it is beneficial to consider alternative parametric densities, such as
the von-Mises-Fisher-Nakagami distribution family [43, 35], within the CE method.

6. Numerical illustrations

We investigate the performance of the proposed CE-based reliability updating (CEIS-
RelUp) method by means of three numerical examples. The first example considers the
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reliability of a structural component subjected to fatigue updated with measurements of the
crack size. Here we update the reliability of an infinite size plate with fatigue crack based on
measurements of the crack size. The second example considers a geotechnical engineering
problem. Here we apply CEIS-RelUp to update the reliability of an infinite clay slope based
on measurements of the undrained shear strength. The third example involves dynamic
reliability updating, where the first-passage probability of a randomly excited two-story
moment-resisting frame is updated based on modal data.

The performance of the CEIS-RelUp method is assessed in terms of the sample mean and
sample CoV of the estimates of Ppjq, denoted by I5F|d and ¢ in this section, and in terms of
the required computational effort. The sampling variance of the estimators Py and P, in the
denominator and numerator of Eq. (22) contribute to the variability of f)F|d. The sample

CoV of jf’l and pg, denoted by 51 and 52, as well as the estimates of the marginal likelihood,
denoted by ¢g, are also reported. The computational effort is assessed in terms of the
number of samples of © expended for CE optimization and reliability estimation. Ncg; and
Ncg,2, respectively, denote the CE optimization effort required to construct the parametric
IS densities qo(0;vr,) and go(0;Vr,+1,). Nis1 and Niga, respectively, denote the number
of samples employed in the IS estimators P, and P, during reliability estimation. The sample
size in the reliability estimation step is selected using two approaches. In the first approach,
the sample size is taken equal to the number of samples per level for CE optimization, i.e.,
Nigs1 = Nigo = N. In the second approach, Nis; and Nig, are selected adaptively on the
fly to ensure that an estimate of the CoV of the IS estimate of Prjq adheres to a specified
target value 0*. The adaptive variant of the IS estimator is implemented according to the
procedure described in [24]. The performance measures are averaged over 500 independent
simulation runs in Examples 6.1 and 6.2 and 50 simulation runs in Example 6.3.

6.1. Fatigue crack growth

We consider an infinite size plate with fatigue crack, adapted from [13, 39]. The objective
is to update the reliability of the plate based on measurements of the crack size. The rate
of crack growth is described by Paris’ Law as

dil(:) _ ClAS/ram)", (39)

where a is the size of the crack, n is the number of stress cycles, AS is the stress range

per cycle (constant stress amplitude is assumed) and C' and m are empirically determined
model parameters. The crack size as a function of the number of stress cycles n is given by
[13]:
m m m] T
aln) = [(1 = Z)CAS T + a01’7] =% (40)
where q¢ denotes the initial crack size. The failure event is defined in terms of the number

of stress cycles to failure. The performance function is given by

g =n.—ny, (41)
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where n. denotes the number of stress cycles required to reach a critical crack size of a. and

ny denotes the number of stress cycles at which the reliability is estimated. For an infinite
plate, n. is given by

1 1
(m —2)C (\/_AS) Lto " e
= —1 51ln (%) ,m=2.
TCAS ao

The prior probabilistic description of the uncertain model parameters is given in Table 1.

nNe =

],m;«é2 (42)

Table 1: Prior probabilistic description of the parameters of the crack growth problem in Example 6.1.

Parameter Distribution Mean Standard deviation Correlation
ap[mm] Exponential 1 1 -
ac[mm] Deterministic 50 - -
AS[Nmm™?] Normal 60 10 -
(In(C)[N],m[mm])  Bi-Normal  (-33,3.5) (0.47,0.3) Pin(c),m = —0.9

We estimate the reliability at n; = 8 x 10° stress cycles. The prior value of the probability
of failure, based on 2 x 10° standard Monte Carlo samples, is 9.2 x 1073. The failure
probability is updated via the likelihood function

L(6]d) = Hexp (——( e ’”)) (43)

where nj; is the number of measurements, o, is the standard deviation of the measurement

noise, n; is the number of stress cycles up to the i-th measurement and a,,; are the crack
size measurements. We implement CEIS-RelUp with a uni-modal Gaussian distribution
as the parametric family. In the present example, where the number of uncertain model
parameters is ng = 4, the Gaussian density is comprised of 14 unknown parameters, which
are updated analytically during CE optimization. We investigate the influence of the number
of measurements and the standard deviation of the measurement noise on the performance
of the method. The results for the two case studies are summarized in the following.

6.1.1. Case study: Effect of standard deviation of measurement noise
We consider two measurements of crack size:

U1 = 1.7mm at ny = 10° stress cycles (44)

amp2 = 1.8mm at ny = 3 X 10° stress cycles
The posterior probability of failure, Ppq, is estimated with o, = 0.5mm, 0.25mm and
0.125mm. In our experiment, the sample size, per level, for CE optimization is varied
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Figure 1: Cross entropy optimization effort for infinite size plate with fatigue crack

between N = 125 and N = 1000. Fig. 1 shows the total number of samples, or equivalently
the number of model evaluations, required to construct the IS densities ¢o(0;v,) and
qe(0;V,11,). It is observed that the computational effort required for CE optimization
increases with decrease in 0,,. With decreasing standard deviation of the measurement noise,
the likelihood function gets more concentrated; consequently the target densities q}ZFld(G)
and pe|a(@) have lower standard deviation and their difference to the prior increases. This
results in an increase in the number of levels, and hence the number of samples, required
to reach the target densities by the multi-level CE method. Furthermore, we observe that
Ncg,2 is larger than Ncg i, which indicates that the number of levels required by the CE
method to converge to qe(€;0,.1,) is more than that required for qg(0;ry,). For the
values of o,, considered, the number of levels range, on average, from L; = 2 to 3 and L, =
3 to 9 for the target densities pgja(@) and q};Fld(O), respectively. The required number of
levels indicates that the posterior is closer to the prior as compared to the optimal IS density
of the failure domain and the posterior.

We estimate the posterior failure probability with the non-adaptive (Ns-NonAdap) and
adaptive (Nig-Adap) variants of the IS estimator, I5F|d. In the latter case, the target CoV
of ISF|d is set to 0* = 0.10 and 0.05. Recall that the contribution to the CoV of PF|d comes

from the two IS estimators, P; and Py, in the denominator and numerator of Eq. (22).
In the adaptive case, the sample sizes of these estimators, i.e., Nig; and Nig o, are selected
adaptively such that the respective sample CoVs adhere to the target values 07 and 03, where
67 = 6 = 6*/\/2. These target CoVs are equal to 0.071 for §* = 0.10 and 0.035 for §* = 0.05.
The Monte Carlo estimate of the failure probability, using 2 x 10° samples obtained from
the posterior PDF through rejection sampling, is 3.7 x 1073(CoV ~ 3.7%), 1.7 x 1073 (CoV
~ 5.4%) and 9.5 x 107 (CoV = 23%) for 0,, = 0.5mm, 0.25mm and 0.125mm, respectively.
The simulation results for N = 250 and 500 are reported in Table 2. The sample mean of the
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posterior failure probability estimates are comparable with the reference solution, for all o,,.
However, the sampling variability of Pp|d changes significantly with o,,. As o, decreases, the
posterior PDF becomes significantly different from the prior, and the failure event under the
posterior probability measure becomes increasing rare. These factors increase the number
of levels for convergence due to the reduced ability of the parametric family in describing
the target densities q};F‘d(O) and pe|a(@), thereby leading to an increase in the sample CoV
of the IS estimators for small o,,. Hence, when the sample size of these estimators is fixed,
i.e., for the non-adaptive case with Nig; = Nigo = IV, we observe a monotonic increase in
the respective sample CoVs, i.e., o, and &, in Table 2, with decrease in o,. The increase is
significant for ds. Accordingly, when the sample size is selected adaptively, the IS estimators
require a larger number of samples to achieve the target CoV for small values of o,,.

Table 2: Posterior failure probability estimates for fatigue crack growth, with two measurements, for different
standard deviation of measurement noise. Reference value of the probability of failure, based on 2 x 10°
samples obtained through rejection sampling, is 3.7 x 1072, 1.7 x 1072 and 9.5 x 10~° for o,, = 0.5mm,
0.25mm and 0.125mm, respectively.

CE PF|d b o d Nisi Nis2 Nt

Nis-NonAdap 0.159 3.86x 1072 0.09 0.03 0.10 250 250 1965

§ N =250 Nig-Adap (6* =0.10) 0.159 3.85 x 1073 0.11 0.07 0.08 28 432 1926

S Nig-Adap (6* = 0.05) 0.159 3.82 x 10~ 0.07 0.04 0.06 120 1150 2735
Il

e Nis-NonAdap 0.161 3.84x10=% 0.08 0.01 0.07 500 500 3885

© N= 500 Nig-Adap ((5* =0.10) 0.159 3.87 x 1073  0.08 0.06 0.06 19 568 3472

Nig-Adap (6* = 0.05) 0.160 3.83 x 1073 0.06 0.04 0.05 71 989 3945

Nis-NonAdap 0.076 1.65 x 10=% 0.21 0.05 0.20 250 250 2255

E N =250 Nis-Adap (6* =0.10) 0.074 1.65 x 1072 0.12 0.08 0.09 48 564 2367

S Nig-Adap (6* = 0.05) 0.074 1.64 x 1072 0.07 0.04 0.06 195 1473 3423
Il

e Nis-NonAdap 0.075 1.64x10=3% 0.07 0.02 0.07 500 500 4295

© N =500 Nis-Adap (6* =0.10) 0.074 1.66 x 1073 0.10 0.07 0.07 26 608 3929

Nris-Adap (5* = 0.05) 0.075 1.65x10=3 0.06 0.04 0.05 104 1220 4619

Nis-NonAdap 0.034 9.75x10=° 0.30 0.05 0.30 250 250 3108

@ N =250 Nig-Adap ((5* =0.10) 0.034 9.54 x 107 0.12 0.06 0.10 61 868 3536

=) Nris-Adap ((5* =0.05) 0.034 9.54 x 107 0.09 0.04 0.08 274 2609 5490
I

5 Nis-NonAdap 0.034 9.68 x10~° 0.26 0.02 0.26 500 500 5910

N =500 Nis-Adap (6* = 0.10) 0.034 9.63x 1075 0.10 0.06 0.08 45 723 5678
Nis-Adap (6* = 0.05) 0.034 9.67x 1075 0.07 0.04 0.06 157 2032 7099

The performance of CEIS-RelUp is assessed for different sample size N during CE opti-
mization. We observe that the sample mean of the posterior failure probability estimates is
broadly similar for all N. However, there is significant change in the sampling variability of
the estimators and the required computational effort. The variation in the sample CoV of
pp‘d and the total computational effort, for o, = 0.5mm and 0.125mm, 6* = 0.10 and 0.05,
are shown in Fig. 2. For the non-adaptive variant of the IS estimator, Nig-NonAdap, an
increase in N reduces the sample CoV, B , of the posterior failure probability estimator. This
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Figure 2: Coefficient of variation of posterior failure probability estimates and total computational effort for
infinite size plate with fatigue crack

behavior is due to two factors. First, the number of effective samples available to fit the
parametric densities increases with N. This results in improved estimates of the parameter
vectors vy, and vy,,r,, and better approximation of the respective optimal IS densities.
Second, an increase in N implies a monotonic increase in the sample size of the IS estima-
tors P1 and Pg, which leads to a reduction in the sample CoVs 51 and 62, respectively. The
decrease in sampling fluctuations for Nig-NonAdap is, however, at the expense of increased
computational effort. In case of Nig-Adap, the sample CoV ¢, is close to the target value,
ie., 0] = 0.071 for 0* = 0.10 and 67 = 0.035 for 0* = 0.05, for all N. The estimates of d, are
initially large for 6* = 0.10, but they gradually reduce to 0.071 as N increases. For §* = 0.05,
however, 5 remains larger than the target value 0.035. This is due to inaccuracy in the esti-
mator of &, in Eq. (30), used for the adaptive selection of Nigs. The sub-optimality in the
IS density qe(0;1,,1,) for small o,, induces possible bias in the estimator, due to which it
decays faster than the true value. We note that in the adaptive variant of the method, the
number of samples for estimation of the denominator can be smaller than /N, whereas for the
numerator it is always greater than N. This is because checking the termination criterion
for the numerator requires N samples from the final density [35]. Overall, it is observed
that the performance of Nig-NonAdap and Nig-Adap are comparable for ¢,, = 0.5mm. For
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o, = 0.125mm, the adaptive variant of the IS estimator exhibits superior performance. In
the latter case, Nig-NonAdap requires 11530 samples to yield a sample CoV of 10% of the IS
estimator PF|d, whereas Nig-Adap yields a sample CoV of 10% and 6% with approximately
5500 and 7000 samples, respectively.

6.1.2. Case study: Effect of number of measurements
To investigate the influence of the number of measurements, n,;, on the performance of
CEIS-RelUp, we consider two additional observations of the crack size:

Am3 = 1.9mm at ng = 4 x 10° stress cycles (45)
ama4 = 2.1mm at ny = 5 X 10° stress cycles

The posterior probability of failure, Pgq, for 0, =0.5mm is 5.1 x 10~* (CoV =~ 10%). The

reference solution is evaluated based on 2 x 10° samples obtained through rejection sampling.
We evaluate Prq by CEIS-RelUp, using non-adaptive and adaptive selection of the sample
size of the IS estimator. The results with Nig-Adap correspond to 6* = 0.10. We select
N = 250 and 500 samples per level during CE optimization. It is observed that the CE
optimization effort, i.e., the number of levels required to construct the IS densities ¢o(0; vy, )
and qo(0;V1,11,), increases with the number of measurements. The increase is marginal for
qe(0; 01, ), but approximately twice for go(0;¥1,+1,). The results of reliability estimation
are reported in Table 3. The sample mean of the posterior failure probability estimator,
PF‘d, compares well with the reference solution. For Nig-NonAdap, the sample CoV, B , of
Pp‘d decreases with increase in N, which was also observed in Table 2. For Nig-Adap, )
remains close to the specified target value. We observe that an increase in the number of
measurements causes a significant increase in the sample CoV of the IS estimators Py and Pg,
leading to larger sampling fluctuations in pp|d. When the sample size of these estimators,

i.e., Nig1 and Nig o, are fixed to N, the respective sample CoVs 31 and 32 are approximately
twice of those obtained for ny; = 2. Similarly, when Nig; and Nig o are selected adaptively,
the number of samples required to meet the target CoV increases with n,,. Finally, we
observe that Nis-Adap remains more efficient than Nig-NonAdap, since it yields a smaller
sample CoV of Pp|d with comparable total computational effort.

Table 3: Posterior failure probability estimates for fatigue crack growth by CEIS-RelUp, with nj; = 4 and
0, = 0.5mm. Reference value of the probability of failure, based on 2 x 10° samples obtained through
rejection sampling, is 5.1 x 1074,

CE PF|d 5 o1 02 Nisi Nia N

N = 250 Nis-NonAdap 0.087 5.38x10~%* 0.23 0.05 0.22 250 250 2582
o Nig-Adap (6* = 0.10) 0.085 5.42 x 107% 0.12 0.08 0.09 57 617 2756

N = 500 Nis-NonAdap 0.086 5.41 x10~% 0.18 0.02 0.17 500 500 4918

Nis-Adap (6* = 0.10) 0.085 5.30x10~* 0.10 0.07 0.08 37 773 4728
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6.2. Stability of an infinite clay slope

In this example, we apply the CEIS-RelUp approach to update the reliability of a sat-
urated (infinite) clay slope under undrained conditions. The slope, shown in Fig. 3, has a
height of H =5m, a slope angle of 3 = 15° and a saturated unit weight of v = 20kN/m?.
The short-term shear strength of the clay is characterized by the undrained shear strength,
which is assumed to vary with depth from the soil surface. The factor of safety governing
the slope stability is given by [18]

. Su(z)
FS(z) = ~zsin Beos B’ (46)

where s,(z) denotes the undrained shear strength at a depth z below the ground surface.

1 unit

ground surface

/

Figure 3: Infinite clay slope in Example 6.2

The failure event F' of the slope is defined as FSy, being < 1.0, where F'S;, is the
minimum factor of safety over the height of the slope. The depth dependent nature of the
undrained shear strength is characterized by the non-stationary random field model [22]

$u(2) = suo + byzexplw(z)], (47)

where s, is the undrained shear strength at the ground surface, b is a trend parameter that

determines the rate of increase of strength with soil depth and w(z) is the randomly fluctu-
ating component of s,, which is modeled as a one-dimensional zero mean Gaussian random
field with constant standard deviation, o, = 0.24. To characterize the spatial correlation of
Su, We assume an exponential auto-correlation function of w(z), with a correlation length of
1.9m [23]. w(z) is numerically represented in terms of a finite number of random variables
through the Karhunen-Loeve (KL) expansion:

NKL

w(z) = Z Vi (2)05E, (48)
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where {(\;, ¢;(2)),72 = 1,...,nkp} are eigenpairs of the auto-covariance function, arranged

in decreasing order of magnitude of the eigenvalues, and { OKL i =1,... ng L} are indepen-
dent standard Gaussian random variables. We consider ng; = 10 eigenmodes in the KL
expansion. Following [23], we model the prior distribution of the parameters s,o and b by
lognormal random variables, with means p,, = 14.67kPa and p, = 0.272, and standard
deviations o, = 4.04kPa and o, = 0.189. In this way, a total of ng = 12 random variables
are required to represent the non-stationary random field s,(z).

For the purpose of reliability analysis, we discretize the soil profile into 100 equal slices
of height Ah = H/100. The factor of safety is evaluated at the base of each slice, resulting
in 100 different factors of safety {FS(z;),7 = 1,...,100}, where z; = ¢Ah. The minimum
factor of safety is evaluated as F'Sp, = min;—y 100 £'5(%;). Without measurements, the
prior probability of slope failure is 1.49 x 10~} as obtained from 10° standard Monte Carlo
samples. The following measurements of the undrained shear strength are used to update
the failure probability:

Sy, = 17.8kPa at z,,; = 1.5m
Supm.. = 24.5kPa at zp, 5 = 3.0m (49)
Sup,s = 30.0kPa at zp, 3 = 4.5m

The measurement result s, ; at a given location z,,; is related to the true value by means of
independent multiplicative error €, ;, that is assumed to follow a lognormal distribution with
median equal to one and constant standard deviation. With this assumption, the likelihood
function is given by [40]

ny

L(6]d) = exp (— 3 [t = e 9)]2) 7 (50)

2
i=1 20‘1I16m71‘

where O, , = \/ In(1+ CoV? ) is the standard deviation of Ine,,;. The coefficient of

variation of €,,; is set to COV,, , = 5% in this example. A reference value of the posterior
probability of failure based on 10° samples obtained through rejection sampling is 6.37 x
1074(CoV =~ 4%).

We implement CEIS-RelUp with a uni-modal Gaussian distribution as the parametric
family. In the present example, where the number of uncertain model parameters is ng = 12,
the Gaussian density is comprised of 90 unknown parameters. In Fig. 4 we show the prior
and posterior statistics of the undrained shear strength, s,, and the factor of safety, F'S.
The estimates of the prior statistics are obtained through standard Monte Carlo simulation
from the prior PDF. The estimates of the posterior statistics are obtained from CEIS-RelUp,
through importance sampling from the fitted IS densities ¢ (0;71,) and ¢e(0;V1,11,). A
comparison of the estimates from CEIS-RelUp with the ones obtained through rejection
sampling (RS) demonstrates good agreement. The mean of the posterior of s, conditional
on the domain of the failure event, F', is close to the mean of the unconditional posterior,
which indicates that the PDF of the uncertain model parameters shifts towards the failure
domain after the updating. There is a reduction in the spread of the updated PDF, as
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s indicated by smaller standard deviation of the posterior of s, in comparison to the prior,
s which, in turn, results in a lower posterior probability of failure. The variation in the mean

s of F'S indicates that failure is more likely to occur.

607

608

609

610

611

612

613

614

615

616

617

618

s, (kPa) s, (kPa)
40 50 10 20 30 40 50
Mean Standard deviation
E E
N N
5 S
Q- o -
(] ]
o [a}
FS
15 2 0 0.5 1 15 2
; 0 ; ; ;
_2F . -1r / //,,
£ E ( v
N ~ 2T /
< 3 £ /
[=% o -3+ /
a a /
4t |
4 al )
/
/‘ 1
5l

Prior

————— Prior conditional on F'

Posterior (RS)

Posterior (CEIS-RelUp)

————— Posterior conditional on F' (RS)

————— Posterior conditional on F (CEIS-RelUp)

Figure 4: Prior and posterior statistics of the undrained shear strength, s,, and the factor of safety, F'S.
Top-left: Variation of mean of s, with depth. Top-right: Variation of standard deviation of s, with depth.
Bottom-left: Variation of mean of F'S with depth. Bottom-right: Variation of standard deviation of F'S
with depth.

The results of reliability estimation, as well as the computational effort required to
construct the IS densities go(0;r,) and ¢e(0; V1,11, ), are reported in Table 4. We employ
the non-adaptive (Nig-NonAdap) and adaptive (Nig-Adap) variants of the IS estimator,
Pp‘d, to estimate the posterior failure probability. In the latter case, the target CoV of Pp|d
is set to 0* = 0.10, which corresponds to target values 0] = 05 = 0.071 of the CoV of the
estimators ]51 and ]52, in the denominator and numerator of Eq. (22). The estimates of Ncg
and Ncg o indicate that the required CE optimization effort is higher in the second stage,
i.e., the number of levels required to construct ¢e(@; 2, 1,) is approximately twice of that
required for g (@;0r,). As the sample size per level N increases, we observe a decrease in
the required number of levels for convergence of the CE method. This is due to an increase
in the number of effective samples available to fit the parametric densities, which facilitates
faster convergence of the CE method.
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With N = 500 samples per level, we observe an underestimation in the posterior failure
probability estimates as obtained from CEIS-RelUp. This is due to bias in the estimates
of the numerator P,. The estimate of the marginal likelihood, although not reported, is
observed to be accurate for all N. In comparison, approximating the optimal IS density
of the numerator, i.e., q}Fld(H), is more challenging. For a small N, the available number
of effective samples is not sufficient to adequately approximate q}‘DF‘d(H), leading to bias in
the failure probability estimates. With increase in N, we also observe a reduction in the
sampling variability of the IS estimators. With Nis-NonAdap, there is a gradual decrease in
the sample CoV of the IS estimators P1 and P2, and hence of the estimator PF|d The results
with non-adaptive and adaptive variants of the IS estimator indicate that P, has a larger
variability than Py, which indicates reduced flexibility of the parametric density in describing
the posterior PDF over the failure domain. Overall, both variants of the IS estimator require
similar total computational effort, Np. Hence, selecting the sample size of the IS estimators
adaptively does not offer a clear advantage in this example. This is because a large number
of samples per level N is required to obtain an adequate parametric IS density for estimating
the updated failure probability. Both variants of the method employ at least N samples for
estimation and when N is large the CoV of the probability estimate is already small enough
with NV samples.

Table 4: Posterior failure probability estimates of infinite clay slope by CEIS-RelUp. Reference value of the
posterior probability of failure based on 10° samples obtained through rejection sampling is 6.37 x 10~%.

Ncea1  Ncg2 Pria 5 o 02 Nisi Nisa  Nr
N = 500 Nig-NonAdap 2275 5319 5.71x107% 0.35 0.09 0.34 500 500 8594
a Nis-Adap (6* = 0.10) 2275 5319 5.94x10"* 0.18 0.07 0.17 437 3412 11443
N = 750 Nis-NonAdap 2798 6250 6.23x107% 0.15 0.09 0.14 750 750 10548
o Nis-Adap (6* = 0.10) 2798 6250 6.30 x 10~* 0.13 0.07 0.11 237 1911 11196
N = 1000 Nis-NonAdap 3399 7282  6.26x107* 0.11 0.05 0.10 1000 1000 12681
- Nis-Adap (6* = 0.10) 3399 7282  6.38x107* 0.11 0.07 0.08 201 1694 12576
N = 2000 Nis-NonAdap 6253 12898 6.36 x 107* 0.08 0.03 0.07 2000 2000 23151
o Nis-Adap (6* = 0.10) 6253 12898 6.39 x 10°* 0.09 0.06 0.06 140 2364 21746

6.3. First-passage failure of a two-story moment-resisting frame

We apply CEIS-RelUp to update the first-passage failure probability of a two-story
moment-resisting frame, earlier studied in [5], using its identified natural frequencies. A
two degree-of-freedom shear building model, shown in Fig. 5, is used to model the structure
in order to identify the inter-story stiffnesses and story masses, and to predict the reliability.
The inter-story stiffnesses are parameterized as k; = arky and ky = aQEQ, where o7 and o
are the stiffness parameters to be identified, and ki = ky = 29.7 x 10°N/m are the nominal
values for the inter-story stiffnesses of the first and second stories, respectively. The story
masses are parameterized as m; = asm; and my = a4m9, where a3 and a4 are the mass
parameters to be updated, and m; = 16.5 x 103kg and My = 16.1 x 10%kg are the nominal
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values for the first- and second-story masses, respectively. The prior PDF for a; to ay is
given by the product of four lognormal PDFs with most probable values 1.3, 0.8, 0.95 and
0.95, and standard deviations 1, 1, 0.1 and 0.1, respectively.

m;
ko /2 ko /2
my
ki/2 ki/2
nmn ., mm
f@®

Figure 5: Two degree-of-freedom shear building model in Example 6.3

The first-passage failure probability of the structure subjected to a stochastic ground
excitation is predicted using the shear building model. The response of interest is the inter-
story drift between the first and the second stories. Failure is defined as the event that
the inter-story drift exceeds a threshold level of h* within a duration of T" = 10s. The
structure is assumed to be subjected to earthquake motion, f(¢), modeled by stationary
Gaussian white noise with spectral intensity S = 1 x 1072m?/s®>. The response of the
structure is computed at the discrete time instants {t, = (k — 1)At,k = 1,...,ny}, where
the time step size is assumed to be At = 0.005s. Hence, the number of time instants is
nyr = T/At + 1 = 2001. The stochastic excitation f(t) is characterized by a sequence
of independent standard normal random variables {Zx,k = 1,...,nr} that generate the

white noise at the discrete time instants, i.e., {f(tk) = \/21S/AtZ, k=1,... ,nT}. The

reliability is predicted for two response thresholds, h* = 0.030m and A* = 0.035m.

In this example, there is a total of ng = ny+4 = 2005 random parameters, of which four
parameters (two stiffness parameters a; and ay and two mass parameters ag and ay) are
updated. Using noisy simulated response time histories, the identified natural frequencies
are fl = 3.13Hz and fg = 9.83Hz, which are used as the data d in the updating. We
evaluate the posterior probability of failure according to the procedure described in Section
44. Op = {ay, az, az, ay} are the random variables that are updated based on the
data, and @4 = {Z4,...,Z,,} are the remaining random variables characterizing the future
excitation. Using the modal data d, the likelihood function for updating ®p is formulated
as [42]

2 2 2
1 [ (05)
L(0p|d) =exp | —o— >N []T —1] |, (51)
j=1 J
where \{ = Ay = 1 are the means and ¢ = 1—16 is the standard deviation of the prediction
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error between each j? and the corresponding model squared frequency fj2(0 B)-

We select a two-component Gaussian mixture (GM) model as the parametric density
family. In the present example, where the number of uncertain structural parameters to be
updated is 4, a two-component GM distribution is described by 29 unknown parameters that
are determined by CE optimization. The parametric IS density go,(05;¥L,) for evaluating
the marginal likelihood and approximating the posterior PDF of ®p is constructed based
on the procedure in Section 3. The parametric density qe,(05;VL,+1,) approximating the
optimal IS density of the posterior probability of failure is constructed by applying the
multi-level CE method on the distribution sequence in Eq. (34), according to the procedure
outlined in [24]. Fig. 6 shows the samples of ®p obtained from the fitted parametric
densities. The four components of the samples are shown in two groups: «a; versus «s in the
first column and a3 versus a4 in the second column of Fig. 6. The posterior joint distribution
of the stiffness parameters is bimodal, however, only one of the modes contributes to first-
passage failure. For the mass parameters, there is no significant change between the posterior
density and the optimal IS density over the failure domain. In both cases, the distribution of
the samples obtained from the parametric densities fitted through the CE method compare
well with the reference solution obtained through rejection sampling.

We vary the number of samples per level, N, during CE optimization between 250 and
1000. Fig. 7 shows the computational effort needed to fit the parametric IS densities
go,(05;0r,) and ge,(0p;Vr,+1,) by CE optimization. The required optimization effort,
i.e., the number of samples Ncg 1 and Ncg 2, indicates a marginal decrease in the number of
levels to convergence for increasing N, which is attributed to the larger number of effective
samples available to fit the parametric densities. We observe that the computational effort
for constructing qe,(0p;Vr,+1,) is larger for the higher threshold level h*, as the failure
event under the posterior probability measure gets rarer with increase in A*. This leads to
an increase in the number of levels required to estimate the optimal parameters of the IS
density that best describe the failure domain.

The posterior first-passage probability of failure is evaluated based on the IS estimator
in Eq. (37), wherein the IS density ge ,j@,-0,(04) of ©4 is selected as suggested in [2]. The
results of reliability estimation are reported in Table 5. The simulation results are obtained
based on IS densities constructed with N = 500 samples per level during CE optimization.
The estimates from the adaptive variant of the IS estimator correspond to 6* = 0.10 and
0.05. The reference solution, evaluated based on 5 x 107 samples obtained through rejection
sampling, is 1.85 x 107 (CoV ~ 1%) for h* = 0.030m and 4.52 x 107% (CoV = 6.7%) for
h* = 0.035m. The estimates of the marginal likelihood and posterior failure probability
obtained through CEIS-RelUp compare well with the reference value for both response
thresholds. For a higher h*, there is an increase in the sample CoV of the posterior failure
probability estimates. This is due to an increase in variability of the estimator P, with the
threshold level. When the sample size of the IS estimators is fixed, i.e., for Nig-NonAdap,
the sample estimate 05 of the CoV of P is larger for h* = 0.035m. When the sample size is
selected adaptively to meet a prescribed target CoV, P requires more samples to converge
for a higher response threshold, as indicated by the larger values of Nigo for h* = 0.035m.

We investigate the effect of the number of samples per level during CE optimization
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Figure 6: Samples of the stiffness parameters o7 and as and mass parameters as and a4. Top: Joint
posterior PDF of the parameters. Bottom: Joint optimal IS density over the failure domain. Scattered
points denote samples from the parametric densities fitted by the CE method. Solid lines denote contours
of the joint PDFs constructed based on samples obtained through rejection sampling.

on the performance of CEIS-RelUp. For different values of N, the sample mean of the
posterior first-passage probability estimates are similar to the values in Table 5, and hence
are not reported. Fig. 8 shows the variation in the sample CoV of the failure probability
estimates and the total computational effort with N. For Nig-NonAdap, it is observed that
the sample CoV § decreases with increasing N. However, once the parameters of the IS
density become sufficiently optimal for larger values of IV, the rate of decrease reduces. For
sufficiently large N, the variation of the parameters of the fitted IS density becomes small
and the rate of decrease is proportional to 1/v/N (cf. Proposition 2). This is because in
the non-adaptive variant, N samples are used for estimation. The estimates of the sample
CoV with Nig-Adap closely adhere to the prescribed target, except for N = 250 where we
observe higher variability in the estimates. This is attributed to the sub-optimality in the
parameters of the IS density due to the inadequate number of effective samples available
for fitting the parametric density with N = 250. The total computational effort shows that
selecting the sample size of the IS estimators adaptively is more efficient. For A* = 0.03m
and h* = 0.035m, Nig-NonAdap requires Ny = 6870 and Nt = 7125 samples, respectively,
to achieve a sample CoV of 5% of the failure probability estimates. With Nig-Adap, the
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Table 5: Posterior first-passage probability estimates of two-story moment-resisting frame by CEIS-RelUp.
CE optimization performed using N = 500 samples per level. Reference value of the posterior first-passage
probability, based on 5 x 107 samples obtained through rejection sampling, is 1.85 x 10~* and 4.52 x 1076
for h* = 0.030m and h* = 0.035m, respectively. Reference value of the marginal likelihood is 1.42 x 1073.

CE PF\d b 01 b2 Nisi Nisa Nr
Nigs-NonAdap 1.43x 1072 1.81x10~* 0.07 0.04 0.06 500 500 4880
h* =0.030m  Nig-Adap (5* =0.10) 1.39 x 1072 1.88x10~* 0.10 0.06 0.07 98 155 4133
Nis-Adap (5* =0.05) 142x 1072 1.81x10~* 0.04 0.03 0.03 640 688 5208
Nis-NonAdap 1.43x 1072 4.67x107% 0.13 0.04 0.11 500 500 5200
h* =0.035m Nig-Adap (6* = 0.10) 1.39x 10~ 4.56 x 106 0.10 0.06 0.06 98 182 4480
Nig-Adap (6* = 0.05) 1.42 x 1073 468 x 1075 0.05 0.04 0.04 640 806 5646
same is achieved with Nt = 5208 samples for A* = 0.03m and Nt = 5646 for h* = 0.035m.

7. Concluding remarks

This contribution proposes a novel importance sampling (IS) method to update the
failure probability of engineering systems based on data. An effective IS density of the
uncertain model parameters is introduced to estimate the marginal likelihood of the data.
The IS density is determined by minimizing the cross entropy (CE) between the posterior
probability density function (PDF) of the uncertain parameters and a chosen parametric
family of probability distributions. The IS density for marginal likelihood estimation leads to
a sample-based approximation of the posterior PDF, which is subsequently used as a building
block to construct an efficient IS density for estimating the posterior failure probability
through a second round of CE minimization. The novel contribution lies in the development
of a two-step adaptive multi-level approach to efficiently solve the two CE optimization
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Figure 8: Coefficient of variation of posterior first-passage probability estimates and total computational
effort for two-story moment-resisting frame

problems. Numerical studies on a range of engineering problems demonstrate that the
proposed method gives accurate estimates of the updated reliability with reasonable total
number of samples.

We discuss two approaches to select the sample size of the IS estimator for the posterior
probability of failure. In the first approach, the number of samples is fixed to a certain
value. The second approach considers selecting the sample size adaptively to ensure that an
estimate of the sample CoV of the IS estimator adheres to a specified target. Results from
numerical studies demonstrate that the adaptive variant of the estimator is more efficient.

The performance of the CE method depends on the choice of the parametric density.
We consider the Gaussian density and Gaussian mixture (GM) as the parametric families,
which are able to adequately represent a wide range of posterior distributions. However, the
number of distribution parameters to be learnt by CE optimization increases quadratically
with the number of uncertain model parameters. In an ongoing work, we explore sparse
learning approaches to accelerate the learning and improve the efficiency of the method in
high dimensions. In the numerical studies, the number of the terms in the GM model is
chosen prior to the simulation. We intend to explore adaptive approaches that estimate the
number of GM terms on the fly during CE optimization.
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