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Abstract

The partial safety factor concept is applied on element level. Its safety components are
calibrated such that a target reliability is – on average – achieved for each element failure
mechanism (e.g. bending failure of a beam or stability failure of a column). System effects
are not taken into account. Resulting system reliabilities can be below as well as above
the target reliability, depending on the redundancy of the system. We introduce an addi-
tional partial safety factor which increases the resistances of systems with high amounts of
redundancy and decreases the resistance of systems with low amounts of redundancy. The
values of the additional partial safety factor are derived via a link to a generalized version
of the Daniels system. The generalization includes probabilistic load modeling, material
models, correlation among members and non-equal load-sharing among members. We
propose efficient reliability evaluation methods and conduct numerical investigations for
each generalization.

1. Introduction

The current state of the art designing approach of structures is the partial safety factor
(PSF) concept [1–4]. The PSF concept is a semi-probabilistic design approach which
is applied at element level. Various element failure mechanism need to be considered
individually (e.g. bending failure of a beam or stability failure of a column). System
effects are not taken into account. The system reliability achieved by the partial safety
factor concept can be below as well as above the reliabilities at element level: In some
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cases failure at element level may not lead to system failure (e.g. if just one out of many
cables of a suspension bridge fails). In other cases element failure directly leads to system
failure (e.g. for statically determined structures).

Back when the PSF concept was introduced, the developing community was already aware
of this issue; however, "since the knowledge of system reliability is incomplete and not suf-
ficiently documented for practice, a quantitative assessment of various structural systems
is not intended" [4]. Today, system reliability is well studied. Various methods exist to
evaluate system reliabilities or to take system effects into account within the structural
design [5–8]. But none of these methods is applicable within the scope of the partial safety
concept.

The objective of this paper is to take system effects into account without leaving the
semi-probabilistic framework of the partial safety concept. To do this, we introduce an
additional partial safety factor (PSF) which value depends on various system properties.
The PSF is applied to each element. It decreases the element resistances of systems
with high amount of redundancy and increasing the element resistances of systems with
low amount of redundancy. This homogenizes the reliability level with respect of system
effects.

To derive the values of the additional PSF we make use of the Daniels system (see Figure
1). The Daniels system is a structural system of n parallel members, which share the same
load such that the strain on all members is equal. However, the original version of the
Daniels system is not universal enough to represent any structural system. We, therefore,
extend the original Daniels system.

s

1 n

EI → ∞
∆l

Figure 1: Daniels system.

The idea how to use the Daniels system to derive the additional PSF is, in a nutshell, the
following: First, we establish a link between general structural systems and the extended
version of the Daniels system, such that we are able to represent the reliability of any
structural system in terms of the reliability of a Daniels system. Secondly, we perform
a recalibration of the PSF concept with respect to the design of different variations of
the Daniels system. The recalibration is conducted by introducing the additional PSF
γSys for the different variations of the Daniels system. This perfectly homogenizes the
reliability level of the Daniels system with respect to system effects. Thirdly, the partial
safety factors can be translated back and applied to general structural systems. Due to the
necessary simplifications, the derived PSF does not perfectly homogenize the reliability
level of general structural systems, however, it is a step in the right direction.
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2. The Daniels system

The original formulation of the Daniels system (see Figure 1) has the following properties:
Deterministic and equal cross sections Ai and Young’s modulus Ei and deterministic load.
The horizontal bar distributes the load equally among all members that have not failed.
The ultimate strengths σmax,i of all members are independent and identically distributed
(i.i.d.). Members exhibit linear-elastic brittle material behavior according to Figure 2.

ε

σ

E

ri

Figure 2: Brittle material behavior of one member of the Daniels system: Linear-elastic
material behavior until element strength σmax,i = ri is reached. Once ri is
exceeded, the resistance drops to zero.

For simplification purposes and without loss of generality, we set all cross sections to one:
Ai := 1 (i = 1, . . . ,n). Consequently, the maximal resistance Ri of the ith bar is equal to
σmax,i.

The resistance of the Daniels system is determined from the following train of thought:
The system resistance until the first member fails is n times the resistance of the weakest
member. The system resistance until the second member fails is n−1 times the resistance
of the second weakest member. And so on. It follows that the system resistance RSys,n of
a Daniels system with n members is

RSys,n = nmax
i=1

{
(n − i + 1) · R(i)

}
(1)

where R(i) is the resistance of the ith strongest member, i.e., it is the ith order statistic of
Ri. From this the probability of system failure Pr(FSys,n) can be determined by solving
the following integral:

Pr(FSys,n) = n! ·
∫ s

n

0

∫ s
n−1

rn

· · ·
∫ s

r2
fR(rn) · fR(rn−1) . . . fR(r1) dr1 . . . drn−1 drn (2)

where fR is the probability density function (PDF) of the member resistance R.

Daniels found multiple analytical expressions to calculate this integral [9]. The most well-
known one is derived via a Taylor series expansion of the multidimensional integral in
terms of the lower bound of the first integral and via a recursive relation of the n-folded
integral and its derivative. From this, the following recursive formula of the CDF of the
system resistance can be derived [10,11]:

FRSys,n
(s) =(−1)n+1 · F n

R

(
s

n

)
−

n−1∑
i=1

[
(−1)i ·

(
n

i

)
· F i

R

(
s

n

)
· FRSys,n−i

(s)
]

(3)
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where FR is the CDF of the resistance of a single member.

Remark: Besides the exact formula to calculate the probability of failure, Daniels also
found that RSys,n is asymptotically normally distributed [9]. However, convergence is
rather slow.

We extent the Daniels system with respect to four aspects: Probabilistic load modeling,
material modeling of the members, correlation among members and non-equal load-sharing
among members. For all extensions, we develop efficient algorithms for reliability evalua-
tions, which are fast and accurate. The extensions can be combined. We do not include
detailed derivations of each extended version Daniels systems in the main paper, since
these are not crucial to understand the main message of the paper. Detailed derivation
are given in Appendix A. Moreover, Appendix Aand numerical studies includes numerical
studies for each extension. From these the respective effects to the system reliability can
be understood and transferred to general structural systems.

3. Recalibration of the PSF concept with respect to system
effects

To perform the recalibration we first establish a the linkt from general structural systems
to the Daniels system. The following list of entities describes this link. The list is complete
in the sence that no further entities need to be known to form extended Daniels systems
which – from the point of view reliability of reliability – are equivalent to any general
structural system. We do not give a formal proof that this list is complete; however,
the equivalents of the list and the extended Daniels system can be understood from the
example in Section 4.

1. Number of system failure mechanisms: Equal to the number of extended Daniels
systems needed. These Daniels systems are connected as a series system. Failure of
one Daniels system is equal to the occurrence of a failure mechanism, hence, system
failure.

2. Number of element failures that lead to a system failure mechanism: Number of
members in the corresponding Daniels system.

3. Resistance of each element of the structure: Directly corresponds to the material
type and the maximal stiffness of the elements of the Daniels system.

4. Correlation among the elements of the structure: Determines the correlation among
members of the Daniels system.

5. Loads of the structure: Directly correspond to the load of each Daniels system.

6. Geometry of the structure: From the geometry, the load effects can be calculated,
hence, the relation between loads and resistances of the Daniels system can be es-
tablished. This determines the load-sharing properties of the Daniels system.

4



The possible combinations of the six entities are endless. In order to derive the additional
PSF, some necessary simplifications and assumptions have to be made. The derived PSF
is only valid on that basis. The simplifications and assumptions per item of the above list
are the following:

1. We assume that one system failure mechanism is dominant and all other system
failure mechanisms can be neglected: No series system of Daniels systems has to be
evaluated, but only a singular Daniels system.

2. We only account for global failure mechanisms. Under this assumption, the number
of element failures that lead to a system failure mechanism is equal to the static
over-determination of the system plus one. We investigate Daniels systems with
n = 1, . . . ,10 members; hence, statically determined and 1, . . . ,9 times statically
over-determined systems.

3. The material behavior of each element of the structure is assumed to be of the same
type. No Daniels systems with mixed materials are considered. Further, different
dimensions of the elements of the structure are neglected; hence, only Daniels systems
with equal stiffnesses per member are investigated. We investigate ideal plastic
material (fres = 1), ideal brittle material (fres = 0), and semi plastic material
behavior (modeled following material model 2 with fres ∈ {0.25, 0.5, 0.75}).

4. We consider only positive equicorrelation among elements with a correlation coeffi-
cient of ρRiRj ∈ {0, 0.3, 0.6, 0.9}.

5. We account for the variability of the load side by utilizing a portfolio of load combi-
nations S inspired by the ongoing revision of the Eurocode [12]:

S = (1 − aQ) · G + aQ · ΘQiQi (4)

where G is the permanent load

G ∼ N E[G] = 1.00 c. o. v.[G] = 0.10 (5)

Qi is one of the following variable loads

Wind load: Q1 ∼ G E[Q1] = 1.00 c. o. v.[Q1] = 0.30 (6)
Snow load: Q2 ∼ G E[Q2] = 1.00 c. o. v.[Q1] = 0.50 (7)

Imposed load: Q3 ∼ G E[Q3] = 1.00 c. o. v.[Q1] = 0.80 (8)

ΘQi is the model uncertainty of the respective variable load

Wind load: ΘQ1 ∼ LN E[Q1] = 0.97 c. o. v.[Q1] = 0.26 (9)
Snow load: ΘQ2 ∼ LN E[Q2] = 0.81 c. o. v.[Q1] = 0.26 (10)

Imposed load: ΘQ3 ∼ LN E[Q3] = 1.00 c. o. v.[Q1] = 0.10 (11)

and aQ is a constant reflecting the proportion of the dead weight and the variable
load. We consider nine different values of aQ equally distributed within the interval
[0.1, 0.9].
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6. We neglect the geometry of the structure and assume that the loads evenly distribute
among the elements of the structure and also evenly redistribute in case of element
failure. In the case of plastic material behavior, this assumption is always satisfied
(since we already assumed equal element strength and dimensions); however, in the
case of brittle or semi-plastic material behavior, this assumption is critical. In these
cases, the derived additional PSF should be applied with caution.

Given a specific Daniels system, we calculate the average reliability index with respect to
the portfolio of load cases as:

β =
∑3

i=1
∑9

j=1 βQi,aQ,j

27 (12)

where βQi,aQ,j
is the reliability index of the Daniels system loaded by the load case resulting

from Qi and aQ,j . Figure 3 shows the resulting average reliability indices.

To homogenize the reliability of Daniels systems we introduce an additional partial safety
factor γSys. γSys is applied to the characteristic value of the resistance in addition to γM ;
hence, the design resistance is calculated as rd = rk

γM ·γSys
. The value of γSys depends on

the number of members of the Daniels system n, the plastic residual of the material r,
the coefficient of variation of the member resistances c. o. v.[R] and the correlation among
members ρ. To determine the values of γSys the following equation was solved

β(γSys; n,r, c. o. v.[R],ρ) != βT = 4.3 (13)

Figuratively speaking, the application of γSys makes all lines in Figure 3 constant at the
target reliability of 4.3. Note that only the average reliability β is constant, but the
individual cases of the considered portfolio still scatter; however, this scattering is not
related to system effects anymore.

Table 1 shows the values of γSys exemplarily for the case of c. o. v.[R] = 0.1 and ρ = 0.3.
Due to limited space, we do not list all values of γSys. The vast majority of values we
derived is close to 1. The minimum value we derived is γSys = 0.75 (ideal plastic system
with c. o. v.[R] = 0.2 and ρ = 0.0). The maximum value we derived is γSys = 1.10
(c. o. v.[R] = 0.2 and ρ = 0.6).

Table 1: γSys for c. o. v.[R] = 0.1 and ρ = 0.3.

n 1 2 3 4 5 6 7 8 9 10
Ideal plastic (fres = 1.00) 1.00 0.97 0.96 0.95 0.95 0.95 0.94 0.94 0.94 0.94
Semi-plastic (fres = 0.75) 1.00 1.01 1.03 1.03 1.03 1.03 1.03 1.03 1.04 1.04
Semi-plastic (fres = 0.50) 1.00 1.02 1.04 1.04 1.05 1.05 1.05 1.06 1.06 1.07
Semi-plastic (fres = 0.25) 1.00 1.02 1.04 1.05 1.06 1.06 1.06 1.07 1.07 1.08
Ideal brittle (fres = 0.00) 1.00 1.03 1.04 1.05 1.06 1.07 1.07 1.08 1.08 1.08
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Figure 3: Average reliability indices of Daniels systems with n = 1, . . . ,10 members,
fres ∈ {0, 0.25, 0.5, 0.75, 1}, c. o. v.[Ri] ∈ {0.05, 0.1, 0.15, 0.2} and ρRiRj ∈
{0, 0.3, 0.6, 0.9}.

4. Example structure

In the following, we investigate an – in literature well-known – example structural system
from Madsen et al. [13]. We design the structural system following the standard PSF
design, perform a reliability analysis, establish a link to the Daniels system, and redesign
the structure with the additional PSF γSys.

Figure 4 shows the discussed structural system. It is a frame with a horizontal load H and
a vertical loading load V . Potential bending failure at 5 different locations is considered.
Other element failure mechanisms are not considered.
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Figure 4: Example frame structure.

We choose V to be a log-normally distributed permanent load (E[V ] = 1 and c. o. v.[V ] =
0.2) and H to be a Gumbel distributed variable load (E[H] = 1 and c. o. v.[H] = 0.3).

4.1. Determination of the resistances according to the partial safety concept

We choose the characteristic loads as

hk = F −1
H (0.98) = 1.78 (14)

vk = E[V ] = 1 (15)

where F −1
H is the inverse CDF of H. The corresponding partial safety factors are chosen

as

γH = 1.5 (16)
γV = 1.35 (17)

The resulting design loads are

hd = hk · γH = 2.67 (18)
vd = vk · γV = 1.35 (19)

Two load cases are considered: V ⊕ H acting simultaneously and V acting only. The
design resistances result from the maximum absolute bending moments of the two load
cases at the 5 different locations:

rd,1 = 3.49 (20)
rd,2 = 1.35 (21)
rd,3 = 2.03 (22)
rd,4 = 3.84 (23)
rd,5 = 4.84 (24)

Choosing the partial safety factor of the resistance as γM = 1.3, the characteristic resis-
tances are calculated as rk,i = γM ·rd,i. We further choose the resistances to be log-normally
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distributed with c. o. v.[Ri] = 0.1 and the characteristic values to be defined via the 5[%]
quantiles. This results in the following distributions of the resistances Ri:

R1 ∼ LN E[R1] = 5.37 c. o. v.[R1] = 0.1 (25)
R2 ∼ LN E[R2] = 2.08 c. o. v.[R2] = 0.1 (26)
R3 ∼ LN E[R3] = 3.12 c. o. v.[R3] = 0.1 (27)
R4 ∼ LN E[R4] = 5.93 c. o. v.[R4] = 0.1 (28)
R5 ∼ LN E[R5] = 7.45 c. o. v.[R5] = 0.1 (29)

We further choose the resistances to be equicorrelated with a correlation coefficient of
ρRi,Rj = 0.3

4.2. Reliability analysis and link to the Daniels system

All minimal cut sets of bending failures at the 5 different locations, which lead to a
kinematic system, define the system failure modes. We consider the five failure modes
shown in Figure 5.

Failure mode 1 Failure mode 2 Failure mode 3

Failure mode 4 Failure mode 5

Figure 5: Considered failure modes of the frame.

Each of the failure modes is related to a Daniels system with similar reliability behavior.
Hence, the system reliability is described by a series system of Daniels systems. How
the system reliability is calculated and how the link between the frame and the Daniels
system can be established, strongly depends on the material of the frame. We investigate
two cases: Ideal plastic and ideal brittle material behavior. If the material behavior is
semi-plastic, a link to the Daniels system can also be established; however, the load effects
per damage state of the frame are not as straightforward to calculate anymore, and yield
hinge theory is required.
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4.2.1. Ideal plastic material behavior

Utilizing the principle of virtual work, a limit state function per failure mode can be
derived. We demonstrate this in the following for the third failure mechanism. Figure 6
shows the kinematics of the third failure mode. From this the outer virtual work δWO

and the inner virtual work δWI can be calculated as:

δWO = H · 5 · δφ + V · 5 · δφ (30)
δWI = R1 · δφ + R3 · 2 · δφ + R4 · 2 · δφ + R5 · δφ (31)

δφ

δφ

δφδφ

δφ δφ

5 · δφ

5
·δ

φ

Figure 6: Kinematics of the third failure mechanism.

The inner virtual work represents the resistance of the system against a failure mode and
the outer virtual work represents the load acting in the direction of a failure mode. From
a statics point of view, Ri represents the actually acting resistance moment and the inner
and outer virtual work have to be equal, otherwise, the system is kinematic. Reinterpreting
Ri as the potential maximum bending moment resistance at location i, the following LSF
regarding the third failure mechanism and the simulations load case are established:

g3 = R1 + 2 · R3 + 2 · R4 + R5 − 5 · H − 5 · V (32)

The frame fails in the third failure mode if and only if g3 is negative.

Remark: The third failure mode cannot only be caused by the combined load case of
V ⊕ H but also by the load case of V acting only. This would erase the term −5 · H in
the limit-state function. The respective failure domain is a subset of the failure domain
defined via the combined load case (assuming positive H). Therefore, we do not consider
this limit-state function.

Analogously, the remaining failure modes lead to the following LSFs:

g1 = R1 + R2 + R4 + R5 − 5 · H (33)
g2 = R2 + R3 + R4 − 5 · V (34)
g4 = R1 + 2 · R2 + 2 · R3 + R5 + 5 · V − 5 · H (35)
g5 = R1 + 2 · R2 + 2 · R3 + R5 − 5 · V (36)

Note, that the contribution of V in the fourth failure mode is positive, therefore, V
counteracts the failure mode.

System failure occurs if at least one failure mode occurs; hence, the system reliability is
determined from a series system composed of the five LSFs. We approximate the reliability
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indices per failure mode and load case with the first-order reliability method (FORM)
[14,15]

β1,plast = 4.66 (37)
β2,plast = 5.01 (38)
β3,plast = 5.28 (39)
β4,plast = 5.73 (40)
β5,plast = 7.64 (41)

and the system reliability with FORM for series systems [16]:

βSys,plast = 4.62 (42)

In the case of ideal plastic material behavior, it is possible to deduce a series system of
Daniels systems which is – from a reliability point of view – equivalent to the frame. The
series system of Daniels systems can be established as follows: The LSFs of Equations 32-
36 do not only represent the failure mechanisms of the frame, but all failure mechanisms
of any structural system which have the same inner and outer virtual work. This means, a
Daniels system with the same inner and outer virtual is – from a reliability point of view –
equivalent to a failure mode of the frame. It is always possible to find such a Daniels
system. Figure 7 shows the resulting Daniels systems.

5H

R
1

R
2

R
4

R
5

5V

R
2

R
3

R
4

5H + 5V

R
1

2R
3

2R
4

R
5

5H
5V

R
1

2R
2

2R
3

R
5

5V

R
1

2R
2

2R
3

R
5

Figure 7: Daniels systems which are equivalent to the five failure modes of the example
frame.

4.2.2. Ideal brittle material behavior

We carry out the reliability analysis via Monte Carlo simulation (MCS) [17,18]. For each
sample of the loads, we perform a structural analysis with respect to both load cases. If
a resistance sample at one of the five locations of the frame is lower than the bending
moment – caused by one of the load cases – we add a hinge at this location.1 If multiple
resistance samples are lower than the respective bending moments, we add the hinge at

1It may seem unrealistic to only add a hinge in case of brittle failure, since brittle failure typically does
not allow transmission of normal forces and shear forces anymore; however, in the example setup we
assumed only bending failure to be possible. In principle, the inclusion of normal force failure or shear
force failure is possible; however, an example with higher amounts of redundancy would be needed to
show meaningful calculations.
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the location where the difference between resistance and bending moment is the greatest,
whereby we favor cases that occur in the load case of the permanent load only. If a hinge
is added, we again perform a structural analysis of the modified version of the frame
potentially adding another joint. We iterate this procedure until the frame can either resit
the loads or fails (becomes kinematic). The resulting estimate of the system reliability
index is:

βSys,brit = 3.20 (43)

Classifying the different forms of kinematics we estimate the reliability indices per failure
mode as:

β1,brit = 3.99 (44)
β2,brit = 3.22 (45)
β3,brit = ∞ (46)
β4,brit = 4.74 (47)
β5,brit = 4.56 (48)

In the case of ideal brittle material behavior, it is not possible to establish a one-to-one
equivalents to the Daniels system as it is the case for the ideal plastic material behavior.
The main reason for this is the difference in the load redistribution after one or more
elements/members fail. In the case of the Daniels system, the relationship between member
loads and resistances is equal for all non failed members (see Section A.6). This is not
the case for the example frame; however, the standard partial safety factor design leads to
member stiffnesses that are proportional to the load effects. This corresponds to the load
distribution property of the extended Daniels system of Equation 74.

There are two main reasons which cause member stiffnesses that are non-proportional to
the load effects:

• The consideration of multiple load cases: If the stiffnesses per member result from
the maximum design stiffness of different load cases, member stiffnesses may not be
proportional to the load effects caused by one of the load cases. However, this non-
proportionality is not critical since it leads to an increase in the stiffness compared
to the cases where only one load case is considered; hence, it increases the reliability.

• The redistribution of the load after one or multiple members fail: If a member of a
structural system fails this may change the load flow of the structure fundamentally.
The load effects change while the stiffnesses of the undamaged members remain
the same, leading to a non-proportionality. This non-proportional redistribution of
the load is critical, since the stiffness of some members may now be lower than the
stiffness which would result from a partial safety factor design of an altered structure
including the member failure.

In the following, we derive Daniels systems for the case of proportional and non-proportional
load-sharing which are – from a reliability point of view – equivalent to the example frame.
However, this equivalent only holds for the respective load case and damage state of the
frame. In the case of a different load case or after failure of one element occurs, the
characteristics of the equivalent Daniels system change.
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• Non-equal load-sharing proportional to the member stiffnesses
This case occurs if the frame is not damaged yet and only one of the load cases is
considered for both: The partial safety factor design and the reliability assessment.
We exemplarily illustrate the case of V acting only. The design resistances following
the partial safety concept lead to resistances that are proportional to the load effects
(the resistance can be derived analogously to Section 4.1). This proportionality
directly defines the equivalent Daniels system (see Figure 8).

EI → ∞

V

R
1

R
2

R
3

R
4

R1

R2 R3 R4

R5

V

R
5⇔

∆l

Figure 8: Undamaged frame loaded by V only and Daniels system representing the equiv-
alent system behavior until element failure occurs. R1-R5 are determined follow-
ing the partial safety concept considering only the load case of V acting alone.

• Non-equal load-sharing non-proportional to the member stiffnesses
We exemplarily illustrate 3 cases:

– Again the previous case (only V considered for both, the partial safety factor
design and the reliability assessment), but with failure at location 2. The
failure adds a joint to the frame which leads to different load effects at each
location. These load effects are not proportional to the resistances anymore.
To represent this, we modify the horizontal bar of the Daniels system: The bar
is free to rotate and fixed against translations at one end (see Figure 9). By
choosing the distance δli of the members to the fixed end of the horizontal bar
for each member, the non-proportional load distribution can be represented.
δli is calculated as:

δli =
∣∣∣∣Mi,Λ2(V = vd)

Mi(V = vd)

∣∣∣∣ (49)

where Mi(V = vd) and Mi,Λ2(V = vd) are the inner moment at location i
caused by the vertical design load vd, if no failure or failure at location 2 is
present.
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EI → ∞

V

R
5

R1

R3 R4

R5

V

⇔ R
4

R
1

δli

R
3

Figure 9: Frame with failure at location 2 loaded by V only and Daniels system repre-
senting the equivalent system behavior until another element failure occurs. R1
and R3-R5 are determined with respect to the undamaged frame following the
partial safety concept considering only the load case of V acting alone.

– The undamaged frame, where the load cases V and V ⊕ H are considered
within the partial safety factor design but only V is taken into account within
the reliability assessment:

The Daniels system of Figure 9 can be derived similar to the previous case. δli
is calculated as

δli =
∣∣∣∣ Mi(V = vd)
max {Mi(V = vd,h = hd),Mi(V = vd)}

∣∣∣∣ (50)

where Mi(V = vd, H = hd) is the inner moment of the undamaged frame at
location i caused by the vertical and horizontal design load vd and hd.

EI → ∞

V

R1

R3 R4

R5

V

⇔

δli

R
1

R
4

R
5

R
2,

3

R2

Figure 10: Undamaged frame loaded by V only and Daniels system representing the equiv-
alent system behavior until element failure occurs. R1-R5 are determined fol-
lowing the partial safety concept considering both load cases V and V ⊕ H.

– The undamaged frame, where the load cases V and V ⊕H are considered within
the partial safety factor design but only V ⊕H is taken into account within the
reliability assessment:

Because two loads are acting in two different directions, the Daniels system
needs to be modeled with two horizontal bars. The members are not directly
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attached to these horizontal bars anymore, but infinitely stiff connections trans-
fer the load effects accordingly (see Figure 11). δli,V and δli,H are calculated
as

δli,V =
∣∣∣∣ Mi(V = vd)
max {Mi(V = vd,h = hd),Mi(V = vd)}

∣∣∣∣ (51)

δli,H =
∣∣∣∣ Mi(H = hd)
max {Mi(V = vd,h = hd),Mi(V = vd)}

∣∣∣∣ (52)

Some of the force effects do not induce tension but compression on the members
of the Daniels system (modeled with the help of a rocker). This is because the
inner moments cause by V and H at a specific location of the frame have op-
posing signs. Consequently, the members of the Daniels system cannot only fail
due to tension but also due to compression. If the bending stiffness at a location
of the frame is independent of the bending direction (e.g. for symmetric cross-
sections), the resistance against compression of the corresponding member of
the Daniels system is equally distributed and fully correlated to their respective
resistance against tension. If the bending stiffnesses differ with respect to the
bending direction, the resistance against tension and against compression of the
corresponding member of the Daniels system also differ accordingly (however,
are still fully correlated).

R1

R3 R4

R5

V

⇔

δli

R
2

R
1

R2

EI → ∞

H

R
3−

5

V

H

Figure 11: Undamaged frame loaded by V ⊕H and Daniels system representing the equiv-
alent system behavior until element failure occurs. R1-R5 are determined fol-
lowing the partial safety concept considering both load cases.

Note that, the equivalents of the frame and the above derived Daniels systems only hold,
since the relationship between loads and load effects is linear. If a structure behaves non-
linearly, the shape of the horizontal bar needs to be adjusted (e.g. parabolic in case of
quadratic nonlinearities).

4.3. Application of the additional partial safety factor

We apply γSys to the example frame structure. The frame is 3 times statically overdeter-
mined, therefore, 4 element failures make the frame kinematic (n = 4). The coefficient
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of variation of the member resistances is 0.1 and the members are equicorrelated with a
correlation coefficient of 0.3; thus, the values of γSys can be taken from the fourth column
of Table 1. In the ideal plastic case, γSys is 1.05. In the ideal brittle case, γSys is 0.95.

We redesign the frame including γSys. The distributions of the member resistances R1−5
are determined analogously to Section 4.1; whereby, γM ·γSys is applied to the characteristic
resistances. The system reliability is calculated as in Section 4.2. The resulting system
reliability indices are:

βSys,plast,γSys
= 4.43 βSys,brittle,γSys

= 3.45 (53)

The previously calculated system reliabilities without the application of γSys are βSys,plast =
4.62 and βSys,brittle = 3.20 (see Equation 42 and 43). Hence, both reliability indices are
closer to the target reliability index of 4.3.

5. Conclusion

We introduced an additional partial safety factor γSys to take redundancy effect into
account without leaving the framework of the PSF concept. It was derived by means of
a generalized Daniels system. γSys leads to a homogenization of the safety level. Due to
necessary simplifications, the homogenization is not perfect; however, a step in the right
direction.

γSys depends on the static overdetermination of the system, its material behavior, the
coefficient of variation of the material strength and the correlation of the involved element
failure mechanisms. The last two quantities may not be given within an PSF design and
have to be determined separately. If γSys would be included within a structural code,
recomandation of these quantities for different structural systems need to be derived.

The majority of values of γSys is close to 1. This is a reassuring result, as it shows that the
majority of current PSF designs are not very far from the target reliability due to system
effects. Neither material wastage due to overdesign nor unsafe structures usually occur.
Hence, the application of γSys may not be worth the effort in most cases. Exceptions may
be larger or critical structural systems (e.g. bridges) or structural systems which are build
multiple times (e.g. prefabricated houses).

In some cases γSys has rather low values up to 0.75 (high static overdetermination, high
plasticity of the material, high coefficient of variation of the material strength and low
correlation between element failure mechanism). In these cases a high saving potential of
resources could be exploit; however, the application of γSys is not needed due to safety
issues. In other cases γSys reaches values up to 1.10 (high static overdetermination, low
plasticity of the material, low coefficient of variation of the material strength and high
correlation between element failure mechanism). In these cases the application of γSys is
recommended to ensure sufficient safety of the structure.
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A. Extended Daniels system

In this appendix we give detailed derivations for the extended version of the Daniels
system. For each extension we perform numerical studies. Moreover, we give a review

19



on existing extension and relate the extensions to the ideal series and the ideal parallel
system.

A.1. Extensions in literature

The finding of Daniels that the system resistance is asymptotically normally distributed
was improved in [19] and extended, such that correlation among members [10, 20], more
general force-deformation curves [21], local load-sharing (stress concentrations of members
which are next to failed members) [22–24] and time-dependent deterioration [25] can be
considered. Different and not necessarily Gaussian asymptotic behavior was deduced for
these different extensions. However, the convergence to the asymptotic result is slow;
this holds for the original formulation as well as for all extensions [26]. This means that
the limiting distribution of the system resistance is only suitable for systems with a large
number of members n.

If the number of members n is smaller, a more exact evaluation of the system resistance
is necessary. In this regard, we are not aware of any research other than the works of
Gollwitzer, Hohenbichler, and Rackwitz. They utilized an order-statistics approach and
reinterpreted system failure as the intersection of failure events [27]. The probability of this
intersection can be approximated via FORM for parallel systems [16]. The approximation
error of this approach is not negligible but represents a major improvement over the
asymptotic approach. This approach allows the relaxation of some of Daniels’ original
assumptions. Gollwitzer and Rackwitz utilized this to carry out numerous numerical
studies [11, 28]. In fact, they investigated three out of the four subsequent extensions to
the Daniels system, namely, load modeling, material modeling, and correlation. However,
our approaches differ fundamentally: They are not based on FORM for parallel systems,
but either analytical, based on standard FORM or sampling methods. Our material model
is simpler than the one of Gollwitzer [11] which is based on material model for timber with
multiple parameters to calibrate. This may make our model less accurate in some cases,
however, more general and applicable for other cases. Moreover, our approach to include
correlation is more general and adaptable for all kinds of correlation.

A.2. Relationship to the ideal parallel and series system

Figure 12 shows a mechanical interpretation of an ideal parallel system and an ideal
series system. System failure of the ideal parallel system is defined as the state where all
members fail; however, it is hard to find a structural system for which this definition of
failure is meaningful. The ideal series system fails if at least one of the members fails. The
respective probabilities of system failure are

Pr(FSys,n;Parallel) =
[
FR

(
s

n

)]n

(54)

Pr(FSys,n;Series) = 1 − [1 − FR (s)]n (55)

where s is the load, n is the number of i.i.d. members and FR is the CDF of the member
resistances.
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Figure 12: Mechanical representation of an ideal parallel system (left) and an ideal series
system (right).

The ideal parallel system and the ideal series system represent the two extreme cases of
system behavior. They, therefore, provide an upper and lower bound to the probability of
system failure of the Daniels system:

Pr(FSys,n;Parallel) ≤ Pr(FSys,n;Daniels) ≤ Pr(FSys,n;Series) (56)

A.3. Probabilistic load modeling

Let l(S) be a function modeling the load of the Daniels System. S is a vector of load
phenomena (e.g., wind and snow) and the function l represents their combined effect.
Assuming independence of the resistances and the load, the probability of system failure
can be calculated by application of the total probability theorem:

Pr(FSys,n) =
∫

ΩS

FRSys,n
(l(S)) · fS(s)ds (57)

where ΩS is the sample space of S and fS is the joint PDF of S.

As an alternative to direct numerical evaluation of the integral of Equation 57, the FORM
can be used. Following [29, 30], we formulate the limit state function (LSF) of a single
component reliability problem:

g(P,S) = P − Pr(FSys,n) (58)

where P is a random variable with standard uniform distribution and Pr(FSys,n) can be
calculated via the recursive formula of Equation 3. Transformation to standard normal
space results in

G(uP ,uS) = uP − Φ−1
(
FRSys,n

(l(TU2X (uS)))
)

(59)

where UP is standard normally distributed, uS is multivariate standard normally dis-
tributed and TU2X is the transformation from the standard normal space to the original
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space. G(uP ,uS) is suitable for application within FORM. 2 3

A.3.1. Numerical investigations of the probabilistic load modeling

We perform numerical investigations with a log-normally distributed resistance (E[R] =
1 and c. o. v.[R] = 0.1) and a one-dimensional load following a Gumbel distribution
(c. o. v.[S] = 0.2). E[S] is chosen such that a target reliability index βT = 4.3 is achieved
in case of a Daniels system with only one member.

Figure 13 illustrates how the reliability index changes in the case of n > 1 for different
values of c. o. v.[S]. With increasing c. o. v.[S], the reliability index of the Daniels system
is less sensitive to n. Changes of c. o. v.[S] in low ranges (0.01-0.05) have a stronger effect
on the reliability index of the Daniels system. Values of c. o. v.[S] in the range of (0.1-0.5)
lead to similar reliability curves. In this range, the reliability of the Daniels system keeps
decreasing with increasing n.

5

4

6

3
2 4 6 8 101 3 5 7 9 n

β

c. o. v.[S] = 0.01

c. o. v.[S] = 0.05

c. o. v.[S] = 0.1

c. o. v.[S] = 0.5

Figure 13: Reliability index of the Daniels system with 1 to 10 members with different
c. o. v. of S of 0.01, 0.02, . . . , 0.05 and 0.1, 0.2, . . . , 0.5.

2Alternatively, the LSF can be formulated as

g(RSys,n,S) = RSys,n − l(S) (60)

and transformed to the standard normal space as

G(uR,uS) = F −1
RSys,n

(Φ(uR)) − l (TU2X (uS)) (61)

This LSF is also suitable for application within FORM, however, it requires the numerical evaluation
of F −1

RSys,n
, which is not available in closed form.

3Note that FORM should not be applied if the system resistance is formulated as in Equation 1. The
LSF would be:

g(RSys,n,S) = nmax
i=1

{
(n − i + 1) · R(i)

}
− l(S) (62)

Applying FORM to this formulation of the LSF leads to incorrect results because the corresponding
limit-state surface is highly non-linear.
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A.4. Material models

The stress-strain relationship of the considered material model is shown in Figure 14. It
is linear until a maximum stress σmax is reached. If the strain increases further, the stress
drops to a constant residual stress σplast [31].

ε

σ

ideal plastic

brittle

semi-plastic

σmax

σplast

Figure 14: Stress-strain relationship for new material models.

We define σplast in two different ways. Either as a deterministic value:

Material model 1: σplast,1 = fres · E[σmax] fres ∈ [0; 1] (63)

or probabilistically depending on σmax:

Material model 2: σplast,2 = fres · σmax fres ∈ [0; 1] (64)

fres is a factor that quantifies the residual strength. If fres = 0, both material models
represent brittle material behavior. If fres = 1, the second material model represents ideal
plastic material behavior.

The first material model can be “unrealistic” in the sense that σplast,1 can be greater than
small instantiations of σmax so that the stress-strain relationship would have an upward
jump. However, this model has the advantage that Daniels’ formula (Equation 3) can be
adapted such that the probability of failure can still be calculated analytically. This is not
the case for the second material model.

In case of material model 1, the plastic resistance of the failed members can be reinter-
preted as an additional negative load. Then the recursive formula to evaluate the CDF of
the system resistance (Equation 3) can be adapted to calculate the probability of system
failure under a deterministic load s as

FRSys,m
(s) =(−1)m+1 · F m

R

(
s − (n − m) · σplast,1

m

)
(65)

−
m−1∑
j=1

[
(−1)j ·

(
m

j

)
· F j

R

(
s − (n − m) · σplast,1

m

)
·

FRSys,m−j
(s − (n − m) · σplast,1)

]
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where m is an auxiliary variable of the recursion. The recursion has to be conducted for
m = 1, . . . ,n.

Equation 65 only calculates the probability of system failure if the plastic resistance of the
system is smaller than the load σplast,1 · n < s. If σplast,1 · n > s, the probability of system
failure Pr(FSys,n) is zero.

In case of material model 2, the probability of failure can be calculated via the following
n-fold parameter integral:

Pr(FSys,n) = n! ·
∫ s

n

0

∫ s
n−1 −fres·rn

rn

· · ·
∫ s−

∑n−1
i=1 fres·ri

r2
(66)

fR(rn) · fR(rn−1) . . . fR(r1) dr1 . . . drn−1 drn

For larger n, it is not feasible to evaluate the integral with classic numerical integration
methods. Furthermore, FORM is not suitable because of the shape of the failure domain.
Instead MCS or advanced sampling-based methods, such as Subset Simulation (SuS) [32–
34], can be applied to estimate Pr(FSys,n). MCS is straightforward to implement and has
guaranteed accuracy. However, for small Pr(FSys,n), MCS is inefficient. SuS is an adaptive
sampling method, which is suitable for small Pr(FSys,n).4

In the special case of the full plastic material behavior (material model 2 with fres = 1),
the system resistance is the sum of the member resistances. The limit-state function is

g =
n∑

i=1
Ri − s (69)

The corresponding limit-state surface is linear in the original space; hence, the application
of FORM is suitable.

4MCS and SuS can also be combined with the analytic solutions provided in Equation 65. E.g. in the case
of a Daniels system with two members of material 2, the probability of system failure can be calculated
as

Pr(FSys,n) =2! ·
∫ s

2

0

∫ s−fres·r2

r2

fR(r1) · fR(r2)dr1dr2 (67)

This integral can be split as

Pr(FSys,n) =2! ·
[∫ s

2

0

∫ s−fres· s
2

r2

fR(r1) · fR(r2)dr1dr2+ (68)

+
∫ s

2

0

∫ s−fres·r2

s−r· s
2

fR(r1) · fR(r2)dr1dr2︸ ︷︷ ︸
=:I+


The first integral of Equation 68 can be calculated exactly by applying Equation 65. Hence only the
error in the estimation of I+ with MCS or SuS remains. Since I+ < Pr(FSys,n), Equation 68 leads to
a variance reduction of the estimator compared to a direct application of MCS or SuS to Equation 67.
This approach can be extended to the case of a Daniels system with n members.
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A.4.1. Numerical investigations with the alternative material model

We perform the numerical investigations with the same setup as in A.3.1. Figure 15 shows
the reliability indices of Daniels systems with members modeled with material models 1
and 2 for different degrees of plasticity (fres = 0, 0.2, 0.4, 0.6, 0.8, 1.0). For low values
of fres, the two material models lead to similar results. For larger fres, the first material
model leads to much larger reliability indices than the second material model. For this
first material model, β eventually becomes infinite as σplast,1 ·n > s. The reliability indices
resulting from material model 2 are bounded by the ideal parallel system.
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Figure 15: Reliability index of the Daniels system with members modeled with material
model 1 (left) and model 2 (right) for different degrees of plasticity fres (blue
dash-dotted) and ideal series and parallel system (red dashed). The reliabil-
ity indices associated with material model 2 were calculated with the SuS-
implementation of [34] with an intermediate probability per level of 0.1 and
104 samples per level.

A.5. Correlation among members

We extend the Daniels system to include equicorrelated correlated members by means of a
hierarchical model [6,35,36]. In the case of equicorrelation a hierarchical model with only
only one hyperparameter α is required to represent the dependence structure (see Figure
16). The approach can be extended to unequal correlation among members, as discussed
further below.

It is mathematically convenient to choose a hyperparameter α that follows a standard nor-
mal distribution. Additionally, n standard normal distributed auxiliary random variables
Yi are introduced. The Yi are equicorrelated jointly normal with correlation coefficient
ρY , which follows from the correlation of the Ri transformed into the standard normal
space [37,38].
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Figure 16: Hierarchical Bayesian network with hyperparameter α to model equicorrelation
among member resistances.

The conditional CDF FR|α is given as [35]

FR|α (x | α) = Φ
(

Φ−1 (FR(x)) − √
ρY · α√

1 − ρY

)
(70)

The correlation model can be extended to resistances Ri with differing marginal dis-
tributions and varying mutual correlation coefficients. The only restriction is that the
correlation matrix in standard normal space has to be of the Dunnett-Sobel class [6,39].

The probability of failure is calculated via the total probability theorem as

Pr(FSys,n) =
∫ ∞

−∞
φ(α) · Pr(FSys,n | α)dα (71)

where φ is the standard normal PDF. Pr(FSys,n | α) is calculated with the original formula
of Daniels (Equation 3), whereby the CDF of the member resistances is FRi|α defined via
Equation 70. The integral in Equation 71 can be evaluated numerically. Alternatively,
Pr(FSys,n) can be approximated by FORM. By analogy with Equation 58-59 FORM is
applied to the following LSF:

G(UP ,α) = UP − Φ−1
(
FRSys,n|α(s)

)
(72)

where UP and α follow a standard normal distribution and FRSys,n|α is the CDF of the
system resistance following equation 3, whereby the CDF of the member resistances is
FRi|α defined via Equation 70.

A.5.1. Numerical investigations of the correlation model

We perform the numerical investigations with the same setup as in A.3.1. Figure 17 shows
the influence of the correlation between member resistances of the Daniels system with
ideal plastic, ideal brittle, and semi-plastic material modeled with material model 2 with
fres = 0.5. With increasing correlation, an increase of the number of members has less
effect on the reliability. If the members are fully correlated, the Daniels system degenerates
to a single component system.
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Figure 17: Reliability index of the ideal parallel and series system (dashed red) and the
Daniels system with brittle (fres = 0, green), ideal plastic and semi plastic
material modeled with material model 2 with (fres = 1, 0.5, dash-doted blue).
The members are uncorrelated (top left), equicorrelated with a correlation co-
efficient of 0.3 (top right), 0.6 (bottom left) and 0.9 (bottom right).

A.6. Modified load-sharing properties among members

The original Daniels system has the following property of equal load-sharing among non-
failed members:

∀i,j∈{1,...,n}∀Λ⊆{1,...,n}\{i,j} : si,Λ = sj,Λ (73)

where si,Λ i ∈ {1, . . . ,n} is the share of the total load s acting on the ith member of the
Daniels system with failed members Λ ⊆ {1, . . . ,n} \ i (the undamaged Daniels system
is represented via Λ = ∅). The equal load-sharing property is a consequence of two
assumptions of the original Daniels system: First, the postulate of equal cross sections
and Young’s modulus, i.e., equal stiffnesses among all members. Second, the original
Daniels system is modeled with a horizontal bar with infinite bending stiffness, which is
blocked against rotation on both sides. Altering any of these properties leads to non-equal
load-sharing.

Furthermore, all resistances of the original Daniels system follow the same distribution.
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This makes the relationship between member loads and resistances equal for all mem-
bers.

Figure 18 shows three modifications of the Daniels system leading to different load-sharing
properties.

s

A1

EI → ∞
∆l

An

s

1 n

EI → ∞
∆l

s

1 n

EI ̸= ∞
∆l

a) b) c)

Figure 18: Modifications of the Daniels system which lead to different load-sharing prop-
erties.

Figure 18 a): This modified Daniels system has varying cross-section areas per member.
For this modified Daniels system, Equation 73 does not hold anymore; however, another
– slightly weaker – load-sharing property holds: The load is distributed proportional to the
member stiffnesses:

∀i,j∈{1,...,n}∀Λ⊆{1,...,n}\{i,j} : si,Λ
Ai · E

= sj,Λ
Aj · E

(74)

where E is the Young’s modulus and Ai is the cross-section area of member i.

Figure 18 b): This modified Daniels system has a rotatable horizontal bar which is fixed at
one end only. For this modified Daniels system, Equation 73 and 74 do not hold; however,
another – again slightly weaker – load-sharing property holds: After the failure of member
k, the load redistributes proportionally:

∀i,j∈{1,...,n}∀Λ⊆{1,...,n}\{i,j}∀k∈{1,...,n}\(Λ∪{i,j}) : si,Λ
sj,Λ

= si,Λ∪k

sj,Λ∪k
(75)

Figure 18 c): This modified Daniels system has a horizontal bar with a finite bending
stiffness. For this modified Daniels system, none of the properties (Equation 73-75) hold.

The three above-mentioned load-sharing properties (Equation 73-75) are logically related
to each other as follows: Eq.73 ⇒ Eq.74 ⇒ Eq.75; hence, they can be interpreted as three
levels of load-sharing leading to three levels of redundancy.

In order to calculate the system reliability of modified Daniels systems, it is helpful to
compare the failure domain of the original Daniels system and a modified Daniels system.
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Figure 19 visualizes this for the case of three members. The failure domain of the original
Daniels system is the union of 6 cubes whose edge lengths are all possible combinations of
s, s

2 , and s
3 . The recursive formula from Daniels (Equation 3) makes use of the symmetric

shape of the failure domain and the fact that the member resistances are i.i.d.. The
failure domain of modified Daniels systems also consists of 6 cubes; however, these are not
necessarily symmetric anymore and the member resistances are not necessarily identically
distributed random variables.

R1

R2R3

s
s
2s

3

R1

R2
R3

Figure 19: Failure domain of the original Daniels system (left) and a modified Daniels
system (right) with 3 members.

In the general case of a modified Daniels system with n members, the failure domain is
described by n! hypercubes Hj (j = 1, . . . ,n!). Each hypercube describes one possible
ordering of member failures leading to system failure. The edge lengths of a hypercube
are equal to the load share si,Λ where i is the next member to fail and Λ are members
that have already failed. In the case of a proportional redistribution after member failure
(Equation 75), the calculation of all si,Λ is straightforward. If Equation 75 does not hold,
the calculation of each si,Λ requires a structural analysis.

In the following, we present two analytical approaches to calculate the probability of failure
of modified Daniels systems as in Figure 18. The first approach is via the application of
the principle of inclusion and exclusion. The second approach meshes the failure domain
with disjoint hypercubes and sums up their respective probabilities. Both approaches are
only reasonable for moderately small numbers of members n. For larger n, MCS [17, 18]
or advanced sampling methods such as SuS [32–34] should be applied.

The first approach is baseed on the principle of inclusion and exclusion. The probability
of system failure FSys,n can be evaluated as

Pr(FSys,n) =
n!∑

k=1
(−1)k−1 ∑

I⊆{1,...,n!}
|I|=k

Pr

⋂
j∈I

Hj

 (76)

where the second summation is with respect to all possible index sets I of numbers from
1 to n! and cardinality k.

With an increasing number of members n, the evaluation of Equation 76 becomes numer-
ically infeasible even for moderate n. This is not only because the number of hypercubes
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Hj grows with O(n!), but in particular since the number m-tuples to describe the inter-
sections grows with O(n!!). The largest numerically reasonable number of elements for
applying the principle of inclusion and exclusion is n = 4. In this case 4! = 24 hypercubes
Hj exist. This leads to

(24
2
)

= 276 intersection pairs,
(24

3
)

= 2024 intersection triplets etc.
Reaching the maximum at

(24
12
)

= 2 704 156 intersection 12-tuples. If the system consists
of 5 members, 5! = 120 hypercubes Hj exist. The number of intersection tuples is already
1036.

A numerically preferable alternative to the principle of inclusion and exclusion is the fol-
lowing meshing approach. We divide the failure domain into non-overlapping hypercubes.
Then the probability of system failure is calculated as the sum of the probabilities of all
events defined via these hypercubes. One possibility to define the hypercubes and calculate
their respective probability is to envelop the system failure domain with the hypercube
[0,s] × [0,s] × · · · × [0,s] and mesh it per direction (=̂member) i with the grid si,Λ (=̂ load
share of member i regarding system state with failed members Λ). If all si,Λ for all Λ
differ, the meshing defines a maximum of n!n sub-hypercubes hj .

Summing over the probability of all sub-hypercubes within the failure domain ΩFSys,n
gives

the probability of system failure

Pr(FSys,n) =
∑

hj⊆ΩFSys,n

Pr(hj) (77)

This approach has complexity O (n!n), hence is more feasible than the application of
the principle of inclusion and exclusion. The maximum numerically feasible number of
members is in the order of n ≈ 10.

A.6.1. Numerical investigations of modified load-sharing among members

In the following, we apply the meshing approach to the modified Daniels systems a) and
b) of Figure 18. As for the original Daniels system, we assume equal Young’s modulus
per member, a deterministic load s (chosen such that the target reliability of βT = 4.3 is
met for n = 1), i.i.d ultimate member strength σmax,i and linear-elastic brittle material
behavior.

Neither system satisfies the property of equal load-sharing among non-failed members
(Equation 73). We introduce variables for both systems controlling the degree by which
the systems deviate from the perfect load-sharing property of the original Daniels system
and investigate its effect on the system reliability.

System a) of Figure 18
We assume the member strength to be log-normally distributed

σmax,i ∼ LN E[σmax,i] = 1 c. o. v.[σmax,i] = 0.1 (78)
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and vary the cross-section areas linearly

Ai =

1 n = 1
1 − fs ·

(
2 · i−1

n−1 − 1
)

n ≥ 2
(79)

where n is the number of members of the modified Daniels system and fs ∈ [0,1) is a
factor controlling the non-equality of the cross-section areas. The cross-section area of the
first member is A1 = 1 − fs and the cross-section area of the last member is An = 1 + fs.
The cross-section area of all other members is linearly interpolated between A1 and An. If
fs = 0, the original Daniels system is obtained. The larger fs, the more the cross-section
areas differ, with a maximum inequality for fs = 1.

Figure 20 illustrates the resulting system reliability indices for a Daniels system with n = 5
members. The reliability index is not significantly influenced by the factor fs. We obtain
similar results for other numbers of members n or different setups of the modified Daniels
system (e.g. different c. o. v.[σmax,i] or semi-plastic material behavior). This indicates
that in general, the reliability index may be not sensitive to non-equal load-sharing if
the load-sharing property of Equation 74 is fulfilled (proportionality to the mean member
resistances).

3.80

β

3.85

3.90

0.25 0.750 0.5 1 fs

Figure 20: System reliability index of the modified Daniels system a) with n = 5 brittle
members and different levels of non-equal load-sharing controlled via fs (the
original Daniels system corresponds to fs = 0).

System b) of Figure 18
We assume the member strength to be log-normally distributed:

σmax,i ∼ LN E[σmax,i] = 1 c. o. v.[σmax,i] ∈ {0.1, 0.2, 0.3} (80)

and all distances between members to be equal; therefore, the load is linearly distributed
among members. The inequality of load-sharing is described via the ratio of the deforma-
tion of the first member to the last member ∆l1

∆ln
. If ∆l1

∆ln
= 1, the support of the horizontal

bar is infinitely far away from the first member of the modified Daniels system b). This
is equivalent to the original Daniels system. With decreasing ∆l1

∆ln
< 1, the support moves

closer to the first member, and the load-sharing becomes increasingly unequal. The max-
imum inequality in load-sharing is reached for ∆l1

∆ln
= 0.
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Figure 21 shows the resulting system reliability index. The system reliability index first
decreases with the increasing number of members, reaches a minimum and then increases.
Figure 22 shows that the coefficient of variation of the member strength has a significant
influence on how much ∆l1

∆ln
influences the resulting system reliability indices.
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Figure 21: System reliability index of the modified Daniels system b) with n brittle mem-
bers and different levels of non-equal load-sharing controlled via ∆l1

∆ln
.
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Figure 22: System reliability index of the modified Daniels system b) with n = 5 brittle
members with varying c. o. v.[σmax,i] ∈ {0.1, 0.2, 0.3} and different levels of non-
equal load-sharing controlled via ∆l1

∆ln
.

32


	Introduction
	The Daniels system
	Recalibration of the PSF concept with respect to system effects
	Example structure
	Determination of the resistances according to the partial safety concept
	Reliability analysis and link to the Daniels system
	Ideal plastic material behavior
	Ideal brittle material behavior

	Application of the additional partial safety factor

	Conclusion
	Extended Daniels system
	Extensions in literature
	Relationship to the ideal parallel and series system
	Probabilistic load modeling
	Numerical investigations of the probabilistic load modeling

	Material models
	Numerical investigations with the alternative material model

	Correlation among members
	Numerical investigations of the correlation model

	Modified load-sharing properties among members
	Numerical investigations of modified load-sharing among members



