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Abstract 

With increasing levels of driving automation, the perception provided 

by automotive environment sensors becomes highly safety relevant. 

A correct assessment of the sensors’ perception reliability is therefore 

crucial for ensuring the safety of the automated driving 

functionalities. There are currently no standardized procedures or 

guidelines for demonstrating the perception reliability of the sensors. 

Engineers therefore face the challenge of setting up test procedures 

and plan test drive efforts. Null Hypothesis Significance Testing has 

been employed previously to answer this question. In this 

contribution, we present an alternative method based on Bayesian 

parameter inference, which is easy to implement and whose 

interpretation is more intuitive for engineers without a profound 

statistical education. We show how to account for different 

environmental conditions with an influence on sensor performance 

and for statistical dependence among perception errors. Additionally, 

we study the impact of error dependence among several sensors on 

the perception reliability of a redundant multi-sensor system. To this 

end, we simplify the sensor data fusion with a majority voting 

scheme, which implies that the multi-sensor system’s perception fails 

whenever more than half of the individual sensors commit 

unacceptable errors. For a redundant multi-sensor system, in which 

error occurrence is weakly dependent, it can be shown that empirical 

reliability assessments are feasible. While the presented method does 

not encompass entirely the full complexity of the problem, it provides 

an initial systematic estimate of the necessary test drive effort and 

facilitates the use of sound statistical methods for test effort 

estimation. 

Introduction 

With the advent of advanced driver assistance systems (ADAS) and 

automated driving, machine vision provided by a set of environment 

perceiving sensors has become an integral part of modern cars [1–8]. 

With this technological development arises the need to demonstrate 

the automated systems’ safety and reliability before putting them in 

service. In this context it is important to assess the reliability of the 

environment sensors in perceiving the vehicles’ surroundings because 

perception errors may have serious consequences.  

The reliability of the automated system and of the sensors’ perception 

depends strongly on the context and environment [9–12]. Existing 

testing and validation frameworks, for instance ISO 26262, are not 

directly applicable to the safety validation of automated driving and 

machine vision [12]. This leads to the task of designing tests to 

validate the systems’ safety. One important question for test design 

is: How much effort is necessary to empirically demonstrate the 

reliability of the sensor-based perception, i.e. how much real driving 

is necessary?  

In the context of ADAS and machine vision, a statistical framework 

utilized to derive the empirical test effort is Null Hypothesis 

Significance Testing (NHST) [12–15], which is based on the 

frequentist interpretation of probability. However, for many 

engineers with only basic training in statistics (and many scientists, 

see [16]), the correct interpretation of NHST is difficult and 

counterintuitive. There is a wide discussion in the scientific 

community about the misuse of NHST based on misinterpretation 

and overconfidence in “statistical significant” results [16–20]. 

In this contribution we therefore provide a Bayesian test design for 

empirical reliability assessments of environment perception. 

Bayesian methods for reliability assessments are widely used and 

common in many different industries [21–27].  

One important advantage of the Bayesian method compared to the 

NHST is its flexibility, which allows easier application to non-

standard problems such as the reliability of a correlated redundant 

multi-sensor system. With this method, the necessary test drive effort 

for a given safety target – e.g. on average less than one safety-

relevant perception error in 108 hours – can be derived. We find that 

the Bayesian solution to this problem is easier to apply and interpret 

for engineers without advanced statistical training. The Bayesian test 

design is here applied to assess the perception reliability of 

environment sensors such as Lidar [28] and Radar [29]. Additional to 

the treatment of individual sensors, the perception reliability of a 

redundant multi-sensor system is in this study quantified with a 

majority-voting scheme that has been proposed in [15]. 

Statistical models utilized to estimate test efforts in the domain of 

ADAS rely on the assumption of independence of the critical events 

[12–15]. In this contribution, perception error dependence is taken 

into account. The main contributions of this work are therefore: 

1. The introduction of extensions to standard statistical models 

with which perception error dependence due to environmental 

effects can be accounted for at the individual sensor level.  

2. The application of well-known and intuitive Bayesian methods 

to the problem of assessing the perception reliability of 

automotive environment sensors. The intention is to provide a 



 

 

detailed guide on perception reliability assessments for 

practicing engineers. 

3. Statistical models for a majority-voting scheme that allow to 

consider error dependence between redundant sensors are 

presented in the context of estimating the perception reliability 

of a multi-sensor system. 

The paper is organized as follows: First we review the idea of 

deriving the test drive effort for reliability demonstrations of ADAS 

and environment perception with NHST. Thereafter, we introduce a 

Bayesian approach as an alternative solution to the problem. It 

includes the dependence of subsequent perception errors and includes 

non-stationary perception error occurrences. Further, we address how 

to assess the perception reliability and safety of a redundant multi-

sensor system, including error dependence among multiple sensors. A 

synthetic case study is conducted to demonstrate the proposed 

methods and to study the impact of error dependence on the 

reliability of environment perception provided by redundant sensors. 

Finally, a discussion of the results and the method is given and 

conclusions are provided. 

Background: Reliability assessment of 

automotive environment perception 

The aim of a reliability assessment is to demonstrate that the system 

or item under consideration – here at first the environment perception 

of an individual sensor – complies with a given target level of safety. 

In this specific case, the target level of safety can be expressed as an 

acceptable mean rate of safety-relevant perception error occurrences, 

denoted with 𝜆𝑆𝐿: 

𝜆𝑆𝐿 =
1

𝑡
       (1) 

where 𝑡 is defined as the mean time between the occurrence of 

subsequent safety-relevant perception errors with the sensor under 

consideration. The definition of safety-relevant perception errors 

depends strongly on the ADAS or automated driving functionality of 

interest. Hence, the safety-relevance of an error has to be determined 

by the analyst. Generally, a safety-relevant perception error can be 

the non-detection of an object, the false-positive detection of an 

object, a large deviation of a physical measurement quantity from the 

ground truth (e.g. object position or object velocity) or a 

misclassification of the object (e.g. cyclist identified as pedestrian) 

[30]. With this definition of potential safety-relevant perception 

errors, an environment sensors’ perception reliability refers to the 

probability of absence of safety-relevant perception errors, i.e. it is 

the compliment of the probability of safety-relevant perception error 

occurrence. 

The target level of safety in Eq. (1) may be derived from norms. 

Alternatively, it was argued that reliability criteria may be defined by 

requiring the automated driving system to outperform human drivers 

in terms of the mean rate of accident occurrence [14]. 

Null Hypothesis Significance Testing for sensor 

reliability assessment 

NHST (see [31] for an introduction to statistics including NHST and 

[16–20] for the interpretation of NHST results) is a statistical tool 

utilized to test hypotheses and results in either making a decision in 

favor or against a tested hypothesis. To be able to make this decision, 

one sets up a so called null hypothesis 𝐻0 which is opposed to the 

hypothesis of interest. The hypothesis of interest itself is termed 

alternative hypothesis 𝐻1. The decision in favor of or against 𝐻1 is 

based on whether the observed data of an experiment or test are 

unlikely to occur under the null hypothesis 𝐻0. 

When assessing the perception reliability of a sensor, a reasonable 𝐻0 

is that the sensor’s mean safety-relevant perception error rate 𝜆 is 

larger than the desired target level of safety 𝜆𝑆𝐿: 

𝐻0: 𝜆 > 𝜆𝑆𝐿      (2) 

The alternative hypothesis is that the sensor complies with the target 

level of safety: 

𝐻1: 𝜆 ≤ 𝜆𝑆𝐿     (3) 

To be able to test 𝐻1 with NHST, it is necessary to specify a random 

variable 𝑍 that summarizes the data (i.e. observations) of a test drive. 

𝑍 is called the test statistic and is a function of the data. A particular 

observation of 𝑍 is denoted with 𝑧𝑑𝑎𝑡𝑎. An obvious choice for 𝑍 is 

the number of safety-relevant perception errors in a test drive. If 

under 𝐻0, a value of 𝑍 smaller or equal to the observed 𝑧𝑑𝑎𝑡𝑎 is 

unlikely to occur by chance (i.e. with a probability of less than α, 

where α denotes the significance level), it will be concluded that with 

a statistical confidence of (1 − α) the null hypothesis can be rejected. 

With this rejection one implicitly makes a decision in favor of 𝐻1: 

Reject 𝐻0 if Pr(𝑍 ≤ 𝑧𝑑𝑎𝑡𝑎|𝐻0) = 𝑝 ≤  α   (4) 

𝑝 is the observed significance level of the data. The smaller the 

observed significance level 𝑝, the less likely it is for the observed 

𝑧𝑑𝑎𝑡𝑎 or smaller values to occur by chance, given 𝐻0. It is important 

to understand that the decision to reject or not to reject 𝐻0 based on 

𝑝 ≤  α is also conditional on the statistical assumptions underlying 

Eq. (4) (e.g. statistical model used, independence, data collection 

methods).  

The necessary test drive effort that allows to make a decision in favor 

of 𝐻1: 𝜆 ≤ 𝜆𝑆𝐿 can then be derived by the following steps: 

 Define a test statistic 𝑍 (here: the number of observed perception 

errors in the test drive) 

 Derive the sampling distribution of 𝑍 

 Specify a significance level α (typically 0.05) 

 Fix 𝑧𝑑𝑎𝑡𝑎 at different values of the sample space (here: 𝑧𝑑𝑎𝑡𝑎 is 

the number of observed errors, with possible values 0,1,2, …) 

 For each value of 𝑧𝑑𝑎𝑡𝑎, solve the underlying statistical model of 

Eq. (4) for the test effort (e.g. number of trials, time or 

kilometers) such that it holds Pr (𝑍 ≤ 𝑧𝑑𝑎𝑡𝑎 |𝐻0) = α. 

Following these steps one obtains the minimum test drive effort 

associated with the acceptable number of perception errors, such that 

𝐻0 is rejected (for an analogous application see [14]). 

When selecting a test design, i.e. a value of 𝑧𝑑𝑎𝑡𝑎 and the 

corresponding test effort, the error of rejecting a true 𝐻0 – termed 

type 1 error – is made with a probability α or less, conditional on 𝐻0 

and under the condition that the assumptions on the test statistics 

hold. The type 2 error occurs when not rejecting 𝐻0, even though 𝐻1 

is the truth. In case of environment sensors, this error will occur if by 

chance more safety-relevant errors than acceptable are observed in 

the predefined test drive effort, even though λ ≤ 𝜆𝑆𝐿. The probability 

𝛽 of the type 2 error can be quantified when assuming a specific error 

rate λ ≤ 𝜆𝑆𝐿 to be the hypothetical truth. With a fixed test effort, 



 

 

simultaneously minimizing the type 1 and the type 2 errors is not 

possible. The lower the type 1 error should be, the larger the type 2 

error becomes.  

A major problem with NHST after rejecting 𝐻0 is a common but 

flawed interpretation: Often it is concluded, that at least with (1 − α) 
probability 𝐻1 is true, or with (1 − α) probability 𝐻0 is not true [16]. 

This interpretation is wrong [16–20]. A specific successful 

hypothesis test that rejects 𝐻0: 𝜆 > 𝜆𝑆𝐿 does not demonstrate 

𝐻1: 𝜆 ≤ 𝜆𝑆𝐿 with a certain probability nor does the 𝑝-value specify 

the probability of the data occurring by chance [20]. The hypothesis 

test only allows the statement that, given the data fulfills Eq. , it is 

not a bad decision to reject 𝐻0, because if 𝐻0 was true, then the 

observed data would be unlikely. A single hypothesis test makes no 

statement about the probability of neither 𝐻0 nor 𝐻1 being the truth; 

in the context of NHST these probabilities are either zero or one [16]. 

The next section discusses the implications of using NHST for 

reliability assessments and puts the presented misconception into 

perspective. 

Performance evaluation of NHST 

From a societal risk perspective an important question one might ask 

is: What is the probability of releasing a system with 𝜆 > 𝜆𝑆𝐿 (i.e. 

one that does not comply with the target level of safety), when using 

the NHST method? The answer to this question depends on how 

many systems tested with NHST fulfill  𝜆 ≤ 𝜆𝑆𝐿 in the first place, i.e. 

on the prior probability Pr(𝐻1), and can be estimated as [32]: 

Pr(𝐻0|𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐻0) =
[1 − Pr (𝐻1)] ∙ α

Pr (𝐻1) ∙ (1 − 𝛽) + [1 − Pr (𝐻1)] ∙ α
    

      (5) 

where Pr (𝐻0|𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐻0) denotes the ratio of released systems 

not complying with the target level of safety 𝜆𝑆𝐿 to total systems 

released in the long run. Eq. 5) with its dichotomization of the error 

rate 𝜆 into 𝐻0 and 𝐻1 is in fact a simplification of a continuous 

probabilistic problem. Therefore, Eq. ) holds approximately if 

systems not complying with the target level of safety (i.e. the systems 

for which 𝐻0 holds) have a 𝜆 in the unsafe region 𝜆 > 𝜆𝑆𝐿 close to 

𝜆𝑆𝐿, and if all systems that fulfill the target level of safety have the 

same type 2 error probability 𝛽. For the case of 𝛽 = 0.5, the ratio of 

released systems with 𝜆 > 𝜆𝑆𝐿 to the total number of systems 

released, after Eq. ), is illustrated in Figure 1 as a function of the 

prior probability Pr (𝐻1). 

First, as Figure 1 shows, if no system complies with the target safety 

level 𝜆𝑆𝐿 in the first place, i.e. Pr (𝐻1) = 0, then all systems released 

with NHST fail to comply with the target level of safety. This is a 

trivial result, but is pointed out here considering the possible 

misinterpretations of the 𝑝-value. Second, if for instance 20 % of the 

systems tested comply with the target level of safety, i.e.  

Pr (𝐻1) = 0.2, then roughly 30 % of all systems released are 

erroneously considered to comply with the predefined safety 

requirements. This is far from the significance level α = 0.05, which 

demonstrates how the true error of NHST is easily underestimated 

when α is misinterpreted to be a probabilistic statement about the 

tested hypotheses. 

In reality, Pr (𝐻1) is unknown and the true percentage of released 

systems not complying with the target level of safety cannot be 

known with certainty. Nevertheless, Figure 1 demonstrates how one 

should not be overconfident in NHST results that show the system 

under consideration is reliable with “statistical significance”. 

 
Figure 1. Percentage Pr (𝐻0|𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐻0) of released systems with NHST 
that do not comply with the target level of safety, in function of the prior 

probability Pr (𝐻1) for a system complying with the target level of safety, 

assuming a type 2 error of 𝛽 = 0.5 and a significance level 𝛼 = 0.05. 

Alternatives to NHST for reliability assessments 

Testing engineers and all involved stakeholders of a reliability 

analysis might benefit from conceptually easier and more transparent 

methods than NHST when trying to demonstrate the reliability of 

new systems such as ADAS or environment sensors. The American 

Statistical Association (ASA) recently issued a warning about 𝑝-

values of NHST due to their misuse and misinterpretation [20]: 

“Scientific conclusions and business or policy decisions should not 

be based only on whether a 𝑝-value passes a specific threshold.” 

Confidence intervals are often put forward as an alternative to NHST. 

They are related to concepts of NHST and are equally likely to be 

misinterpreted [16, 33]. Therefore we refrain from further discussing 

this option. 

We find that the Bayesian view on probability is in most contexts 

better suited for empirical sensor perception reliability evaluation. In 

contrast to frequentist approaches such as NHST, the Bayesian 

interpretation of probability treats observed data as fixed and the 

probabilistic parameters that produced the data as random. The 

Bayesian approach is often conceptually easier and more directly 

answers the question usually asked by the analyst: Which 

probabilistic conclusions about an uncertain parameter of interest can 

be drawn from a particular set of data or observations [17, 34]? For 

some problems, a frequentist analysis may yield the same numerical 

results as a Bayesian analysis [35] but, strictly speaking, does not 

allow the same intuitive interpretation. The interested reader is 

referred to [34–36] for further information on the frequentist and 

Bayesian point of view of probability. 

Bayesian methodology for empirical perception 

reliability assessments of environment sensors 

In this section, we propose a Bayesian alternative to NHST to derive 

the necessary test effort for reliability assessments of environment 

perception in the field of ADAS. First, a statistical model is presented 

that accounts for dependent perception errors and for a non-stationary 

probability of error occurrence. Following the definition of the 

statistical model, a Bayesian solution to estimate the test drive effort 

and to perform an empirical sensor perception reliability assessment 

is derived. Moreover, statistical models are presented that allow to 

assess the reliability of a multi-sensor system. 



 

 

Statistical model 

Environment sensors such as Lidars [28] and Radars [29] repeatedly 

probe their environment in measurement cycles and aggregate the 

collected information in a time-discretized digital environment model 

containing relevant information about the driving environment and 

the traffic participants [30]. In this section, the focus is on individual 

sensors, i.e. the environment representation is not yet based on sensor 

data fusion [37] but on the data of an individual sensor. Given the 

temporal discretization of the environmental model, a natural way of 

describing error occurrence of an individual sensor is to introduce a 

binary random variable 𝑊𝑖 for each measurement cycle 𝑖: Either the 

measurement cycle 𝑖 is free from safety-relevant perception errors 

(𝑤𝑖 = 0) or at least one safety-relevant perception error occurs (𝑤𝑖 =
1). All different perception error types defined previously in the 

section Background: Reliability assessment of automotive 

environment perception are here considered jointly with the random 

variable 𝑊𝑖. 

With this interpretation, the occurrence of safety-relevant perception 

errors (𝑤𝑖 = 1) in a single measurement cycle 𝑖 is represented by a 

Bernoulli trial: 

𝑝𝑊𝑖
(𝑤𝑖) = {

𝑝           𝑓𝑜𝑟 𝑤𝑖 = 1
1 − 𝑝   𝑓𝑜𝑟 𝑤𝑖 = 0

   (6) 

where 𝑝 is the probability of error occurrence. The probability of the 

number of safety-relevant perception errors 𝑌 in 𝑛 measurement 

cycles can then be modeled with the Binomial distribution: 

𝑝𝑌(𝑦) = (
𝑛

𝑦
) ∙ 𝑝𝑦 ∙ (1 − 𝑝)𝑛−𝑦 = ⋯ 

            =
𝑛!

𝑦! ∙ (𝑛 − 𝑦)!
∙ 𝑝𝑦 ∙ (1 − 𝑝)𝑛−𝑦 

      (7) 

Whenever the probability of error occurrence 𝑝 is small (𝑝 → 0) and 

the number of measurement cycles is large (𝑛 → ∞), both of which 

holds for environment sensors, in the limit as 𝑛 → ∞, the Binomial 

distribution leads to the Poisson distribution: 

𝑝𝑋𝑡(𝑥) =
(𝜆 ∙ 𝑡)𝑥

𝑥!
∙ 𝑒𝑥𝑝(−𝜆 ∙ 𝑡) 

      (8) 

where 𝑥𝜖[0,1,2, … ] is the number of safety-relevant perception errors 

in the time interval 𝑡 and 𝜆 is the mean rate of safety-relevant 

perception error occurrence. 

In order for Eqs. ) to hold, two important requirements have to 

be met: First, error occurrences in subsequent measurement cycles 

have to be independent of each other, and second, the probability 𝑝 

and thus the error rate 𝜆 have to be constant. Both requirements are 

not met for environment sensors. The performance of environment 

sensors such as Lidars or Radars depends on the given context and 

external factors, including adverse weather conditions, dirt, dust and 

target properties [9–12]. As a consequence, 𝑝 and 𝜆 are not constant 

over time. Also, if an error occurs in a given measurement cycle, it 

will be more likely for the subsequent measurement cycle to exhibit 

an error due to common influencing factors. Therefore, error 

occurrence is not independent of each other. Thus, the distributions 

provided by Eqs. ) cannot be utilized without violating the 

underlying mathematical assumptions. 

Mathematical representation of dependent errors 

The two violations discussed in the previous section are seen to be 

caused by physical effects that act on different time scales. The 

perception error dependence is caused by physical effects that are 

common to multiple measurement cycles in a row. Examples are the 

presence of objects with low reflectivity, strong rain gusts or a low 

sun that blinds optical sensors. Due to the highly dynamic nature of 

driving vehicles, the effects causing the dependence are often only 

present for a short duration, in the scale of a few seconds. 

Environment conditions with influence on sensor performance which 

act on a scale in the order of minutes to hours, such as the weather in 

general, are not seen as the primary cause of dependent errors but 

rather influence the overall probability of error occurrence in a 

specific time interval. These effects consequently lead to a non-

stationary error rate and are treated in the next section.  

The error dependence leads to a higher probability of error 

occurrence in subsequent measurement cycles, once an error has 

occurred. If one wanted to estimate the probability of an perception 

error occurring for two measurement cycles in a row, with the model 

given in Eq. (7), neglecting the dependence could lead to severe 

underestimation. Aside of violating the requirements for Eqs. 6), 

error dependence is an important factor to consider when assessing 

the perception reliability of environment sensors because the safety-

relevance of errors is partly determined by whether errors persist over 

multiple cycles (e.g. a false-positive object). A perception error 

occurring in only one cycle does typically not lead to an insecure or 

inappropriate behavior of a desired functionality. Sensors are able to 

use a multi-cycle validation, restricting the impact of errors occurring 

only for a very short duration [15]. This means that ADAS such as 

collision protection systems or adaptive cruise control only react 

when information is consistent over multiple measurement cycles 

[15, 29, 38].  

To account for dependent errors caused by physical effects such as 

outlined above, the reference of the mean rate of error occurrence 𝜆 

has to be adapted. In Eq. ) 𝜆 is the rate of safety-relevant errors 

referring to individual measurement cycles. To consider dependent 

errors, the error rate 𝜆 of Eq. ) is associated with the interpretation 

given in Figure 2. 𝐹1, 𝐹2 and 𝐹3 (and so on) are the events that 

subsequent measurement cycles contain at least one error, at least two 

errors and at least three errors in a row. Accordingly, 𝜆1, 𝜆2 and 𝜆3 

refer to the rate of occurrences of at least one error, at least two errors 

and at least three errors in a row. Additionally, 𝐹0 denotes the event 

that a single measurement cycle is free from perception errors. Due to 

the safety relevance of perception errors that persist over multiple 

cycles, the analyst ultimately is not interested in 𝜆1 but rather in 𝜆2, 

𝜆3 or the rates associated with a larger number of subsequent events.  

 
Figure 2. Each box represents a sensor’s measurement cycle. A grey colored 

box indicates that a perception error has occurred in the given cycle. 𝐹1, 𝐹2, 𝐹3 
are the events that at least one, at least two and at least three cycles in a row 

contain an error. 𝜆1, 𝜆2, 𝜆3 are the rates of error occurrences referring to the 

events 𝐹1, 𝐹2, 𝐹3. 𝐹0 denotes that no error has occurred in a given cycle. 



 

 

It should be clear, because 𝜆j ≤ ⋯ ≤ 𝜆2 ≤ 𝜆1, it is easier to learn 𝜆1 

than e.g. 𝜆2 as more data will be available for 𝜆1 than 𝜆2.With the 

interpretation given in Figure 2, for a fixed number of measurement 

cycles 𝑛, it holds: 

𝑛 = 𝑛𝐹0 + 𝑛𝐹1 + 𝑛𝐹2 +⋯+ 𝑛𝐹∞    (9) 

Where 𝑛𝐹0  are the number of 𝐹0 events, 𝑛𝐹1are the number of 𝐹1 

events and so on. When 𝑛 becomes large (𝑛 → ∞), 𝑛𝐹1  is related to 

𝑛𝐹0: 

𝑛𝐹1 = 𝑛𝐹0 ∙ Pr(𝐹1|𝐹0)     (10) 

where Pr(𝐹1|𝐹0) is the probability that the first cycle of a potential 

row of errors contains an error, given no error has occurred in the 

previous cycle (see Figure 2). Similarly, 𝑛𝐹𝑗  can be obtained: 

𝑛𝐹𝑗 = 𝑛𝐹0 ∙ ∏ Pr (𝐹i|𝐹i−1, … , 𝐹0)
𝑖=𝑗
𝑖=1    (11) 

Pr (𝐹i|𝐹i−1, … , 𝐹0) is the probability of 𝑖 errors in a row, given 𝑖 − 1 

erorrs in a row have occurred previously. Thus the dependence of 

error occurrence is quantified with Pr (𝐹i|𝐹i−1, … , 𝐹0) for all  

𝑖 = 1,2,3,….Inserting Eqs. (10)(11) into Eq. (9) and solving for 

𝑛𝐹0/𝑛 leads in the limit of 𝑛 → ∞ to the unconditional probability 

Pr(𝐹0) of a randomly selected cycle to be free from perception 

errors: 

Pr(𝐹0) = lim
𝑛→∞ 

𝑛𝐹0
𝑛
= 

              =
1

1+Pr(𝐹1|𝐹0)+Pr(𝐹1|𝐹0)∙Pr(𝐹2|𝐹1, 𝐹0)+⋯+∏ Pr (𝐹j|𝐹j−1,…,𝐹0)
𝑗=∞
𝑗=1

 

      (12) 

Based on Pr(𝐹0), 𝜆1 is obtained as: 

𝜆1 =
Pr(𝐹0) ∙ Pr(𝐹1|𝐹0)

𝑡𝑐𝑦𝑐𝑙𝑒
   

      (13) 

With 𝑡𝑐𝑦𝑐𝑙𝑒  the measurement cycle time. Generally, it holds: 

𝜆j = 𝜆j−1 ∙ Pr (𝐹j|𝐹j−1, … , 𝐹0)    (14) 

It follows from Eqs. (12)(14) that 𝜆j fully describes the dependence 

structure which is quantified by Pr (𝐹0), Pr (𝐹1|𝐹0),.., 
Pr (𝐹j|𝐹j−1, … , 𝐹0). Therefore, if the interest is in a sequence of at 

least 𝑗 errors in a row, the dependence is fully accounted for. 

Furthermore, as long as the time intervals are large (𝑡 → ∞) and the 

error events are rare, the number of 𝐹j events in two non-overlapping 

time intervals can for a given 𝜆j be regarded as approximately 

independent of each other. Both these requirements can be assumed 

to hold for environment sensors. Under these conditions Eq. )can 

be used. Another way of interpreting 𝜆j and 𝜆j−1 in Eq. (14) is that 

they are related by a Poisson process with random selections [39]. In 

the remainder of the contribution the index 𝑗 of the 𝜆j of interest will 

be dropped for ease of notation. 

Considering a non-stationary error rate 

In this section, the non-stationary rate of error occurrence on a larger 

time scale is addressed. Environmental conditions and effects with 

influence on sensor performance that lead to a non-stationary rate of 

error occurrence are for instance adverse weather, dust, dirt, 

temperature and many more [9–12].  

To account for the non-stationary rate of error occurrence,  𝜆 ∙ 𝑡 is in 

Eq. ) is replaced by 𝜇(𝑡): 

𝑝𝑋𝑡(𝑥) =
𝜇(𝑡)𝑥

𝑥!
∙ 𝑒𝑥𝑝(−𝜇(𝑡)) 

      (15) 

𝜇(𝑡) is the mean number of safety-relevant errors in the time interval 

𝑡. For Lidar sensors, weather influences are among the most relevant 

environmental effects [10, 11]. We therefore use the example of 

weather conditions to present the calculation of 𝜇(𝑡). Let the weather 

be characterized by the four conditions sunny, rainy, snowy and 

cloudy weather. The sensor performance might differ under different 

conditions. When the time interval 𝑡 is large, the mean number of 

error occurrence 𝜇(𝑡) can be approximated as: 

𝜇(𝑡) = (𝑝𝑠𝑢𝑛 ∙ 𝜆𝑠𝑢𝑛 + 𝑝𝑟𝑎𝑖𝑛 ∙ 𝜆𝑟𝑎𝑖𝑛 + 𝑝𝑠𝑛𝑜𝑤 ∙ 𝜆𝑠𝑛𝑜𝑤 +⋯  

     +𝑝𝑐𝑙𝑜𝑢𝑑𝑦 ∙ 𝜆𝑐𝑙𝑜𝑢𝑑𝑦) ∙ 𝑡    (16) 

where 𝑝𝑠𝑢𝑛; 𝑝𝑟𝑎𝑖𝑛; 𝑝𝑠𝑛𝑜𝑤 and 𝑝𝑐𝑙𝑜𝑢𝑑𝑦 are the probabilities of sunny, 

rainy, snowy and cloudy weather. 𝜆𝑠𝑢𝑛, 𝜆𝑟𝑎𝑖𝑛, 𝜆𝑠𝑛𝑜𝑤 , 𝜆𝑐𝑙𝑜𝑢𝑑𝑦 are the 

mean rates of error occurrence during rainy, snowy and cloudy 

weather. The average error rate �̅� can then be calculated as: 

�̅� = 𝑝𝑠𝑢𝑛 ∙ 𝜆𝑠𝑢𝑛 + 𝑝𝑟𝑎𝑖𝑛 ∙ 𝜆𝑟𝑎𝑖𝑛 + 𝑝𝑠𝑛𝑜𝑤 ∙ 𝜆𝑠𝑛𝑜𝑤 +⋯  

     +𝑝𝑐𝑙𝑜𝑢𝑑𝑦 ∙ 𝜆𝑐𝑙𝑜𝑢𝑑𝑦    (17) 

It has to hold 𝑝𝑠𝑢𝑛 + 𝑝𝑟𝑎𝑖𝑛 + 𝑝𝑠𝑛𝑜𝑤 + 𝑝𝑐𝑙𝑜𝑢𝑑𝑦 = 1. Additional 

environmental effects can be considered by decomposing each error 

rate 𝜆𝑠𝑢𝑛 , 𝜆𝑟𝑎𝑖𝑛, 𝜆𝑠𝑛𝑜𝑤 , 𝜆𝑐𝑙𝑜𝑢𝑑𝑦 with respect to the environmental 

effect that should be added to the model, in analogy to Eq. (17). 

To correctly estimate a representative �̅�, the test drive of total 

duration 𝑡 has according to Eqs. (16)(17) be conducted in accordance 

with 𝑡𝑠𝑢𝑛 = 𝑝𝑠𝑢𝑛 ∙ 𝑡; 𝑡𝑟𝑎𝑖𝑛 = 𝑝𝑟𝑎𝑖𝑛 ∙ 𝑡; 𝑡𝑠𝑛𝑜𝑤 = 𝑝𝑠𝑛𝑜𝑤 ∙ 𝑡; 
𝑡𝑐𝑙𝑜𝑢𝑑𝑦 = 𝑝𝑐𝑙𝑜𝑢𝑑𝑦 ∙ 𝑡. Note that under a varying rate of error 

occurrence, the error occurrences no longer follows a Poisson 

process. Nevertheless, the probability of the number of error 

occurrences can be described by Eq. (8), in which 𝜆 ⋅ 𝑡 is replaced by 

𝜇(𝑡) (or equivalently by replacing 𝜆 with �̅�).  

A problem is however that the probability of for instance 𝑝𝑟𝑎𝑖𝑛 varies 

geographically. For now it is assumed one is able to learn the 

probabilities 𝑝𝑠𝑢𝑛; 𝑝𝑟𝑎𝑖𝑛; 𝑝𝑠𝑛𝑜𝑤 and 𝑝𝑐𝑙𝑜𝑢𝑑𝑦 for one geographical 

region. Then, for this particular region, the non-stationary rate of 

error occurrence is accounted for when the test drive is conducted in 

accordance with 𝑝𝑠𝑢𝑛; 𝑝𝑟𝑎𝑖𝑛; 𝑝𝑠𝑛𝑜𝑤 and 𝑝𝑐𝑙𝑜𝑢𝑑𝑦. A more detailed 

examination of how to learn 𝜆𝑠𝑢𝑛 , 𝜆𝑟𝑎𝑖𝑛, 𝜆𝑠𝑛𝑜𝑤 , 𝜆𝑐𝑙𝑜𝑢𝑑𝑦 individually 

and independent of the geographical region in an efficient way is 

beyond the scope of this contribution. 



 

 

Bayesian reliability assessment and test effort 

estimation 

This section describes a Bayesian method for deriving the necessary 

test drive effort to demonstrate λ < 𝜆𝑆𝐿 before the data is collected 

and for assessing the reliability of the sensor after the test drive, once 

the data is available. The general problem is that of inferring an 

unknown mean rate of safety-relevant perception error occurrence 𝜆 

from a limited amount of data, where the data consists of the number 

of safety-relevant perception errors 𝑥 that have been observed in a 

specific time interval 𝑡. We use Bayesian statistics (see [40] for an 

introduction) to solve this problem. For a detailed treatment of 

Bayesian reliability analyses we refer to textbooks [21, 22]. 

Bayes’ theorem is applied to draw probabilistic conclusions on 𝜆: 

𝑓(𝜆|𝑥, 𝑡)  ∝  𝑓(𝜆) ∙ 𝑝𝑋𝑡(𝑥|𝜆, 𝑡)    (18) 

𝑓(𝜆|𝑥, 𝑡) is the posterior probability distribution of the safety-

relevant perception error rate 𝜆 for a given observed number of 

safety-relevant errors 𝑥 in the time interval 𝑡, 𝑓(𝜆) is the prior 

probability distribution of the error rate 𝜆 and 𝑝𝑋𝑡(𝑥|𝜆, 𝑡)  is the 

likelihood of 𝜆 given the observation of 𝑥 in 𝑡. The likelihood 

𝑝𝑋𝑡(𝑥|𝜆, 𝑡) is defined by the Poisson distribution of Eq. ). The 

symbol ∝ in Eq. (18) expresses that the posterior distribution is 

proportional to the prior and likelihood up to a constant.  

A convenient choice for the prior distribution in case of a Poisson 

likelihood is the Gamma distribution. The Gamma distribution is the 

conjugate distribution to the Poisson likelihood, which signifies that 

both 𝑓(𝜆) and 𝑓(𝜆|𝑥, 𝑡) in Eq. (14) have the Gamma distribution 

[40]. The Gamma probability density function (PDF) is: 

𝑓(𝜆) =
𝑏𝑎

𝛤(𝑎)
∙  𝜆𝑎−1 ∙  exp(−𝑏 ∙  𝜆) 

      (19) 

Where 𝑎 and 𝑏 are the parameters of the gamma distribution and 

𝛤(𝑎)  = ∫ 𝑢𝑎−1 ∙ exp(−𝑢)d𝑢
∞

0
 is the gamma function. The 

corresponding Gamma cumulative distribution function (CDF) 

𝐹(𝜆|𝑥, 𝑡) is: 

𝐹(𝜆|𝑥, 𝑡) =
𝛾(𝑎, 𝑏 ∙ 𝜆)

𝛤(𝑎)
 

      (20) 

Where 𝛾(𝑎, 𝑏 ∙ 𝜆) = ∫ 𝑢𝑎−1
𝑏∙𝜆

0
∙ exp(−𝑢) d𝑢 is the incomplete 

gamma function. The prior distribution is described by 𝑓(𝜆) with 

parameters 𝑎′ and 𝑏′. The parameters of the posterior 𝑓(𝜆|𝑥, 𝑡) are 

denoted 𝑎′′ and 𝑏′′ and are obtained as: 

𝑎′′ = 𝑎′ + 𝑥     (21) 

𝑏′′ = 𝑏′ + 𝑡     (22) 

Inserting 𝜆𝑆𝐿 together with 𝑎′′ and 𝑏′′ into Eq. (20provides the 

answer to the key question in this probabilistic reliability assessment: 

What is the probability Pr(𝜆 < 𝜆𝑆𝐿|𝑥, 𝑡) that the system under 

consideration complies with the target level of safety 𝜆𝑆𝐿?  

Pr(𝜆 < 𝜆𝑆𝐿|𝑥, 𝑡) = 𝐹(𝜆𝑆𝐿|𝑥, 𝑡)   (23) 

Moreover, the best point estimate of the unknown error rate 𝜆 is the 

posterior mean �̂�: 

�̂� =
𝑎′′

𝑏′′
=
𝑎′ + 𝑥

𝑏′ + 𝑡
 

      (24) 

As the analysis deals with a safety-relevant issue, often a more 

conservative estimate for 𝜆 than the posterior mean �̂� is desired. 

Therefore the analyst may chose for instance the 95 % quantile, or 

alternatively the 99 % quantile, of the posterior 𝜆 as a conservative 

point estimate.  

To perform the analysis, prior parameters have to be selected. A 

commonly accepted formal rule to construct an (objective) prior 

distribution when no prior information is available has been defined 

by Jeffreys [40–42]. The property that makes Jeffreys’ prior non-

informative is its invariance to re-parameterizations [40]. Here, 

Jeffreys’ prior yields 𝑎′ = 0.5 and 𝑏′ → 0. Eq. (24) supports the 

interpretation of the prior parameters as 𝑎′ prior error observations in 

a prior test time interval 𝑏′ (see [21] page 89). However, by 

comparing Eq. (19) with Eq. (8), Gelman et al. [40] page 52 argue 

that the prior parameters may be interpreted as 𝑎′ − 1 prior 

observations in a prior time interval 𝑏′. Following this interpretation, 

a weakly informative prior in case no prior information is available 

could also be selected as 𝑎′ = 1 and 𝑏′ → 0. One is able to show that 

with 𝑎′ = 1 and 𝑏′ → 0 the same numerical results for the necessary 

test effort 𝑡 are obtained as with NHST. If substantial information 

prior to the analysis is available, then this information can easily be 

incorporated into 𝑎′ and 𝑏′ following the interpretation given.  

The test drive effort before collecting the data can be derived by the 

following steps: 

 Select the probability with which the target level of safety 

should be complied with (e.g. Pr(𝜆 < 𝜆𝑆𝐿|𝑥, 𝑡) = 0.95)  
 Insert the desired target level of safety 𝜆𝑆𝐿 into Eq. (20 

 Fix the acceptable number of errors 𝑥 of the test drive at 

different values (i.e. 𝑥 = 0,1,2,…) 

 For each value of 𝑥, solve Eq. (20) for the test effort 𝑡 

The result are the acceptable number of errors 𝑥 for a given test drive 

effort 𝑡, which all allow to conclude with at least 95 % probability 

that the sensor complies with 𝜆𝑆𝐿. 

Assessing the reliability of a multi-sensor system 

To enhance the safety of the environment perception, the system 

architecture may include redundant sensors obtaining the same types 

of information in overlapping field of views. It is pointed out that 

complementary sensor principles used to obtain different types of 

information (e.g. camera for object classification and radar for object 

localization) do not comprise a redundant but a complementary 

system [37]. These are not considered here. 

To combine the information and data of multiple sensors, sensor data 

fusion is applied [43]. Modern sensor data fusion algorithms mostly 

are based on Bayes filters such as the well-known Kalman filter [43]. 

Because it is not straightforward to evaluate the performance of a 

multi-sensor system with complicated fusion algorithms, we simplify 

the problem with a so-called majority voting system [12, 15]. The 

assumption is that a system’s perception using the information of 

redundant sensors fails, when more than half of the individual sensors 



 

 

commit safety-relevant perception errors. An approach utilizing a 

majority voting scheme to describe the multi-sensor based perception 

reliability has already been reported in [15]. 

In reliability analysis, a majority voting system can be represented as 

a k-out-of-N system [22], meaning that at least k-out-of-N sensors 

have to commit safety-relevant perception errors for the system to 

provide erroneous information. To calculate the multi-sensor 

system’s rate of perception error occurrence, let the occurrence of 

safety-relevant errors for each sensor 𝑠 = 1,… , 𝑁 (𝑁 is the total 

number of redundant sensors) for a given measurement cycle be a 

binary random variable 𝑈𝑠 with 𝑢𝑠 = 1 meaning sensor 𝑠 commits at 

least one error and 𝑢𝑠 = 0 meaning sensor 𝑠 commits no error. The 

probability 𝑝 of committing an error is assumed to be equal for all 

sensors and is related to the error rate 𝜆 of the individual sensors as 

well as the measurement cycle time 𝑡𝑐𝑦𝑐𝑙𝑒: 

𝑝 = 1 − exp(−𝜆 ∙ 𝑡𝑐𝑦𝑐𝑙𝑒) ≈  𝜆 ∙ 𝑡𝑐𝑦𝑐𝑙𝑒    (25) 

The approximation 𝑝 =  𝜆 ∙ 𝑡𝑐𝑦𝑐𝑙𝑒  holds for 𝜆 ≪ 1 h−1. The multi-

sensor machine vision, based on majority voting, commits perception 

errors when ∑ 𝑈𝑠
𝑁
𝑠=1 ≥ ⌊

𝑁

2
+ 1⌋, with ⌊

𝑁

2
+ 1⌋ being the notation for 

rounding 
𝑁

2
+ 1 down. Under the assumption that the individual 

sensors’ perception error probabilities 𝑝 are independent of each 

other, the probability 𝑝𝑓 of the multi-sensor based machine vision to 

provide erroneous information can be calculated with the binomial 

CDF: 

𝑝𝑓 = ∑ (
𝑁
𝑘
)

𝑁

𝑘=⌊
𝑁
2
+1⌋

∙ 𝑝𝑘 ∙ (1 − 𝑝)𝑁−𝑘 

      (26) 

Adverse physical conditions such as the presence of objects with low 

reflectivity or strong rain gusts might lead to dependence between 

potential safety-relevant perception errors of redundant sensors 

(equivalent to the discussion in the previous section). Therefore the 

assumption of independence in Eq. ) might not be justified. To 

take dependent multi-sensor errors into account, we define the 

correlation coefficient 𝜌 of perception error occurrence 𝑈𝑠 and 𝑈𝑞 

between any pairs of sensors 𝑠, 𝑞 𝜖 {1,… , 𝑁} [44]: 

𝜌 =
E[𝑈𝑠 ∙ 𝑈𝑞] − E[𝑈𝑠] ∙ E[𝑈𝑞]

√E[𝑈𝑠](1 − E[𝑈𝑠]) ∙ E[𝑈𝑞] ∙ (1 − E[𝑈𝑞])

 

      (27) 

where E[ ] denotes the expectation operator. An important aspect is 

the interpretation of the correlation coefficient given by Eq. (27), 

which in this form is not very intuitive. When identical sensors are 

utilized, it holds E[𝑈𝑠] = E[𝑈𝑞] = 𝑝 and further: 

E[𝑈𝑠 ∙ 𝑈𝑞] = Pr(𝑈𝑠 = 1 ∩ 𝑈𝑞 = 1) = ⋯ 

                     = Pr(𝑈𝑠 = 1|𝑈𝑞 = 1) ∙ Pr(𝑈𝑞 = 1) = ⋯ 

                     = Pr(𝑈𝑠 = 1|𝑈𝑞 = 1) ∙ 𝑝 

      (28) 

Inserting into Eq. (27) leads to: 

𝜌 =
Pr(𝑈𝑠 = 1|𝑈𝑞 = 1) ∙ 𝑝 − 𝑝

2

𝑝 − 𝑝2
 

      (29) 

Eq. (29) is now more easily interpreted: Pr(𝑈𝑠 = 1|𝑈𝑞 = 1) is the 

conditional probability that sensor 𝑠 commits a perception error given 

that sensor 𝑞 has committed an error. 𝑝 is the individual sensors’ 

probability of perception error occurrence. On the one hand, with 

independence, i.e. Pr(𝑈𝑠 = 1|𝑈𝑞 = 1) = Pr(𝑈𝑠 = 1) = 𝑝, the 

correlation coefficient becomes 𝜌 = 0. On the other hand, if it is 

certain that sensor 𝑠 commits an error when an error occurs in sensor 

𝑞, i.e. Pr(𝑈𝑠 = 1|𝑈𝑞 = 1) = 1, the correlation coefficient becomes 

 𝜌 = 1. This is equivalent to full dependence. Finally, when 𝑝 is 

small, it holds 𝑝2 ≪ 𝑝 and Eq. (29) can be simplified to: 

𝜌 ≈ Pr(𝑈𝑠 = 1|𝑈𝑞 = 1)    (30) 

That is, the correlation coefficient 𝜌 is approximately equal to the 

conditional probability of error occurrence in sensor 𝑠 given an error 

has occurred in sensor 𝑞. 

To account for perception error dependence between redundant 

sensors we consider the beta-binomial distribution [44–47] and a 

model for correlated binary data proposed by Gupta and Tao [48]. 

The latter model is introduced because the beta-binomial distribution 

can due to numerical reasons not be utilized with small values of the 

correlation coefficient 𝜌. Conversely, the Gupta and Tao model is not 

applicable to large values of correlation 𝜌 (for further information see 

[49, 50]). The exact values of 𝜌 up to which both models can be used 

depend on the probability 𝑝. In the subsequent case study we utilize 

the beta binomial model for 𝜌 ≥ 0.01 and the Gupta and Tao model 

for 𝜌 < 0.01.  

With the beta-binomial distribution, the probability Pr(∑ 𝑈𝑠
𝑁
𝑠=1 = 𝑘) 

of exactly k-out-of-N sensors committing perception errors is [46]: 

Pr (∑𝑈𝑠

𝑁

𝑠=1

= 𝑘) = (
𝑁

𝑘
)
𝛤(𝜃1 + 𝜃2) ∙ 𝛤(𝜃1 + 𝑘) ∙ 𝛤(𝜃2 + 𝑁 − 𝑘)

𝛤(𝜃1) ∙ 𝛤(𝜃2) ∙ 𝛤(𝜃1 + 𝜃2 + N)
 

      (31) 

with 𝛤( ) the gamma function and the parameters 𝜃1, 𝜃2 related to the 

individual sensors’ probability of perception error occurrence 𝑝 and 

the correlation coefficient 𝜌 (derived from [47]): 

𝜃1 =
𝑝 ∙ (1 − 𝜌)

𝜌
,   𝜃2 =

(1 − 𝑝) ∙ (1 − 𝜌)

𝜌
 

      (32) 

Both 𝑝 and 𝜌 are assumed to be the equal for all sensors 𝑠 = 1,… , 𝑁 

and 𝑝 is given by Eq. ) when the error rate 𝜆 of an individual 

sensor is known. The probability of the majority vote based multi-

sensor machine vision to commit a perception error 𝑝𝑓, accounting 

for dependent sensor errors, can then be calculated as: 

𝑝𝑓 = ∑ Pr(∑𝑈𝑠

𝑁

𝑠=1

= 𝑘)

𝑁

𝑘=⌊
𝑁
2
+1⌋

 

      (33) 



 

 

Eq. ), ) and ) allow to study the system’s perception 

reliability including error dependence among redundant sensors 

according to the beta-binomial model. The solution utilizing the 

Gupta and Tao [48] model is given in the appendix. 

In theory, when the correlation coefficient goes to 𝜌 → 0, both the 

beta-binomial distribution as well as the Gupta and Tao model 

converge to the (independent) binomial distribution [46, 48]. Thus 

with 𝜌 → 0 the multi-sensor probability of perception error 

occurrence converges to Eq. (26), independently of which of the two 

models is utilized. 

Case study: Empirically demonstrating the 

perception reliability of environment sensors 

A synthetic case study is performed. Suppose one is interested in 

demonstrating that a sensor’s environment perception fulfills the 

target level of safety 𝜆𝑆𝐿 = 10
−7 h−1. For this target, first the 

necessary test drive effort 𝑡 to demonstrate 𝜆 < 𝜆𝑆𝐿 is derived. With 

the derived test effort it is demonstrated how the test drive has to be 

conducted to account for different weather influences. It is assumed 

that the weather in a particular region can be described with the 

probabilities 𝑝𝑠𝑢𝑛 = 0.65; 𝑝𝑟𝑎𝑖𝑛 = 0.15; 𝑝𝑠𝑛𝑜𝑤 = 0.05 and 

𝑝𝑐𝑙𝑜𝑢𝑑𝑦 = 0.15. 

Thereafter, we draw probabilistic conclusions about the safety-

relevant perception error rate 𝜆 based on hypothetical results of a test 

drive with the aim of illustrating the uncertainty in estimating 𝜆. 

In the last section of the case study, we study the influence of 

dependence on perception error occurrence in a multi-sensor based 

machine vision system. To this end, we assume that a specific task of 

the machine vision (e.g. object detection in the front field of view) is 

based on three identical Lidar or Radar sensors, respectively. The 

individual error rate 𝜆 of the three sensors is thus identical. The 

measurement cycle time is assumed to be 𝑡𝑐𝑦𝑐𝑙𝑒 = 0.05 s.  

For all calculations in this case study, Jeffreys’ prior parameters 𝑎′ =
0.5 and 𝑏′ = 0 are selected in Eq. (18) Jeffreys’ prior reflects 

ignorance on the error rate 𝜆 before conducting the test and is 

commonly considered to be non-informative [40]. This choice of 

prior is conservative as it only assigns a prior probability of  

Pr (𝜆 < 𝜆𝑆𝐿 = 10
−7 h−1) = 1.13 ∙ 10−11 that the target level of 

safety is met. 

Estimating the necessary test drive effort 

The empirical test drive effort can be estimated with Eq. ). Figure 

3a) shows the probability Pr(𝜆 < 𝜆𝑆𝐿|𝑥, 𝑡) that the sensor under 

consideration complies with the target level of safety 𝜆𝑆𝐿 = 10
−7 h−1 

for the cases of 𝑥 = 0, 𝑥 = 1 and 𝑥 = 2 perception errors during a 

test drive, in function of the test drive effort 𝑡. To derive a 

conservative estimate of the test drive effort 𝑡 required for a 

demonstration of λ < 𝜆𝑆𝐿, one may select the 𝑡 for which it holds 

Pr(𝜆 < 𝜆𝑆𝐿|𝑥, 𝑡) = 0.95 as indicated for the case 𝑥 = 0 in Figure 3a) 

with the grey arrow. 

A summary of different combinations of test drive efforts 𝑡 and the 

corresponding acceptable number of errors 𝑥 that all allow to 

conclude Pr(λ < 𝜆𝑆𝐿|𝑥, 𝑡) = 0.95 are given in Figure 3b). The 

smallest possible test effort to demonstrate 𝜆 < 𝜆𝑆𝐿 requires the 

observation of no errors and is 𝑡 = 1.92 ∙ 107 h. Even though all 

combinations in Figure 3b) show compliance with the target level of 

safety with 95 % credibility, it is necessary to select the test drive 

effort a-priori, and not do adjust it based on the observed number of 

errors. If a stopping criteria is selected on the go, the estimate of 

Pr(λ < 𝜆𝑆𝐿|𝑥, 𝑡) is biased.  

Figure 3. a) Probability Pr(𝜆 < 𝜆𝑆𝐿|𝑥, 𝑡) of compliance with the target level of 

safety 𝜆𝑆𝐿 = 10−7 h−1 in function of the test drive effort 𝑡, for the cases of 

𝑥 = 0, 𝑥 = 1 and 𝑥 = 2 errors during the test. The grey arrow indicates the 

test drive effort for the case of 𝑥 = 0 errors and Pr(𝜆 < 𝜆𝑆𝐿|𝑥, 𝑡) = 0.95.  

b) Number of acceptable errors 𝑥 in a test drive as a function of the test drive 

effort 𝑡 such that Pr(𝜆 < 𝜆𝑆𝐿|𝑥, 𝑡) = 0.95. 

Suppose the test effort is selected as 𝑡 = 1.92 ∙ 107 h with no 

acceptable errors 𝑥 during the test. To consider that error rates might 

differ substantially in function of environmental conditions with 

influence on sensor performance, the test effort has to be distributed 

according to the probabilities of the different environment conditions. 

Here only weather conditions are considered as relevant influencing 

factors. The resulting test profile is summarized in Table 1. 

Application of this test profile takes non-stationary error rates 

according to Eq. (17) into account. 

Table 1. Resulting test profile to account for different weather conditions. 

Weather condition Test time 𝒕𝒊 for weather condition 𝒊 

Sunny 𝑡𝑠𝑢𝑛 = 1.248 ∙ 10
7 h 

Rain 𝑡𝑟𝑎𝑖𝑛 = 0.288 ∙ 10
7 h 

Snow 𝑡𝑠𝑛𝑜𝑤 = 0.096 ∙ 107 h 

Cloudy 𝑡𝑐𝑙𝑜𝑢𝑑𝑦 = 0.288 ∙ 10
7 h 

 

Evaluating hypothetical test results 

In this section it is assumed that a test drive with 𝑡 = 1.92 ∙ 107 h has 

been conducted. Two hypothetical results of this test drive are 

evaluated: (a) 𝑥 = 0 and (b) 𝑥 = 1 errors have been observed in 𝑡. 
With these test results, the posterior parameters of the gamma 

distribution are calculated according to Eq. (21) and Eq. (22):  

(a) 𝑎′′ = 0.5 , 𝑏′′ = 1.92 ∙ 107 and (b) 𝑎′′ = 1.5, 𝑏′′ = 1.92 ∙ 107. 

The resulting posterior PDFs and CDFs of the error rate 𝜆 with these 

parameters are illustrated in Figure 4.  

As the PDFs in Figure 4a) and Figure 4c) show, the Bayesian 

approach captures the full uncertainty in the error rate 𝜆 by assigning 

to each value of the error rate a probability density. The CDF Figure 

4b) shows for 𝑥 = 0 that the unknown error rate is with 95 % 

probability smaller than 𝜆𝑆𝐿 = 10
−7 h−1. This is in accordance with 

the test design derived in the previous section. With the observation 

of 𝑥 = 1 error, the error rate is with 95 % probability  



 

 

𝜆 < 2 ∙ 10−7 h−1, as illustrated in Figure 4d). The target level of 

safety 𝜆𝑆𝐿 = 10
−7 h−1 is thus not fulfilled on basis of the 95 % 

quantile. 

 
Figure 4. a) Posterior PDF 𝑓(𝜆|𝑥, 𝑡) of the error rate when observing x=0 

errors in time 𝑡 = 1.92 ∙ 107 h and b) corresponding CDF. c) Posterior 

PDF 𝑓(𝜆|𝑥, 𝑡) of the rate when observing x=1 error in time 𝑡 = 1.92 ∙ 107 h 

and d) corresponding CDF. The grey arrows indicate the 95 % quantiles of the 

error rate 𝜆. 

Influence of error dependence on multi-sensor based 

machine vision 

While the previous two sections dealt with the reliability assessment 

of an individual sensor, this section studies the reliability of a multi-

sensor system where we model the sensor data fusion with a majority 

voting scheme. The multi-sensor system consists of three identical 

redundant sensors. First it is assumed that all sensors comply with the 

target level of safety such that each individual sensor has a perception 

error rate of exactly 𝜆 = 𝜆𝑆𝐿 = 10
−7 h−1. However, the correlation 

coefficient of error occurrence 𝜌 between the three sensors is 

unknown. What is now the error rate 𝜆𝑠𝑦𝑠𝑡𝑒𝑚 of the multi-sensor 

based machine vision? The answer to this question can be obtained 

with Eqs. ) to ) for the beta-binomial distribution and with Eqs. 

 and Eq. ) for the Gupta and Tao model [48]. 

𝜆𝑠𝑦𝑠𝑡𝑒𝑚 is illustrated in Figure 5 in function of the correlation 

coefficient 𝜌 in semi- and in double-logarithmic scale. The semi-

logarithmic plot in Figure 5 shows that the Gupta and Tao model 

(dashed line) in this specific case cannot be utilized for 𝜌 > 0.5 and 

deviates from the beta-binomial distribution starting around  

𝜌 = 0.05. In the range of 𝜌 > 0.01, we therefore utilize the beta-

binomial model that converges against the individual sensors’ 

perception error rate 𝜆 = 10−7 h−1 with full dependence (𝜌 → 1). 

This is the intuitive solution of a fully dependent redundant system. 

The beta-binomial model (solid line) cannot be evaluated for 𝜌 <
0.006 due to numerical reasons. Thus, in the range 𝜌 < 0.01 the 

Gupta-Tao model is utilized, which converges against the solution of 

the independent binomial CDF Eq. (26) with 𝜌 → 0. With 

independence, the system’s error rate is 𝜆𝑠𝑦𝑠𝑡𝑒𝑚 = 4.2 ∙ 10−19 h−1. 

In Figure 5 it is visible that for 𝜌 < 0.1 the system’s error rate 

λsystem strongly depends on the correlation coefficient. The reason 

for this sensitivity is explained with the interpretation of the 

correlation coefficient given through Eq. (29) and (30). For instance 

if 𝜌 ≈ 𝑃𝑟(𝑈𝑠 = 1|𝑈𝑞 = 1) =10−5, then the conditional probability 

of perception error occurrence in sensor 𝑠 – given an error has 

occurred in sensor 𝑞 – is 7.2 ∙ 106 times larger than in the 

independent case. As can be seen in Figure 5b, this leads to a system 

error rate λsystem ≈ 3 ∙ 10−12 h−1, substantially larger than with 

independent component errors. 

Figure 5. a) Perception error rate 𝜆𝑠𝑦𝑠𝑡𝑒𝑚 of a redundant multi-sensor based 

machine vision system in dependence of the correlation coefficient 𝜌. The 

system consists of three identical sensors with 𝜆 = 𝜆𝑆𝐿 = 10−7 h−1 each. The 
solid line represents the beta-binomial model and the dashed line the model 

presented in [48] (see appendix). b) The same plot in double logarithmic scale. 

In the previous sections of this case study, the test drive effort was 

derived such that an individual sensor complies with  

𝜆𝑆𝐿 = 10
−7 h−1. However, the relationship between the system’s 

error rate 𝜆𝑠𝑦𝑠𝑡𝑒𝑚 and correlation among the sensors has implications 

on the test effort, when the target level of safety is set on the system 

level. The two important questions then are: How large does the 

perception error rate of an individual sensor has to be and how much 

test drive effort is necessary at the individual sensor level, such that 

the system complies with the target level of safety 

𝜆𝑠𝑦𝑠𝑡𝑒𝑚 ≤ 𝜆𝑆𝐿 = 10
−7 h−1? The solution to these questions is 

illustrated in Figure 6 in function of the error correlation among 

different sensors. 

For clarity, the target level of safety for the individual sensors in a 

redundant multi-sensor system that lead to an overall system 

perception error rate of 𝜆𝑆𝐿 = 10
−7 h−1 is denoted with 𝜆𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙,𝑆𝐿 

and is shown in Figure 6a. Figure 6b shows the corresponding test 

drive effort which is necessary to demonstrate that the target level of 

safety of an individual sensor 𝜆𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙,𝑆𝐿 is complied with  

Pr(𝜆 ≤ 𝜆𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙,𝑆𝐿|𝑥, 𝑡) = 0.95. If all sensors are independent of 

each other, the individual safety target is as low as  

𝜆𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙,𝑆𝐿 = 0.05 h
−1, only requiring a test drive effort of 𝑡 =

40 h to demonstrate that the system complies with the target level of 

safety, i.e. Pr(𝜆 ≤ 𝜆𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙,𝑆𝐿|𝑥, 𝑡) = Pr(𝜆𝑠𝑦𝑠𝑡𝑒𝑚 ≤ 𝜆𝑆𝐿) = 0.95. 

In contrast, if all sensors are fully dependent, the safety target of the 

individual sensors reduces to 𝜆𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙,𝑆𝐿 = 𝜆𝑆𝐿 = 10
−7 h−1 with a 

test drive effort of 𝑡 = 1.92 ∙ 107 h. Obviously this is the same test 

drive effort as when implementing only a single sensor. With a 

correlation coefficient of 𝜌 ≤ 10−4 the test drive effort is 𝑡 ≤ 5.9 ∙
103 h. 



 

 

Figure 6. a) Necessary target level of safety for the individual sensors 

𝜆𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙,𝑆𝐿 in a redundant multi-sensor system (3 identical sensors) such that 

the system complies with 𝜆𝑠𝑦𝑠𝑡𝑒𝑚 ≤ 𝜆𝑆𝐿 = 10−7 h−1. b) Corresponding test 

drive effort 𝑡 for Pr(𝜆 ≤ 𝜆𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙,𝑆𝐿|𝑥, 𝑡) = 0.95 when no error is accepted 

in t. Both a) and b) are in function of the correlation coefficient 𝜌 of error 

occurrence among the different sensors. 

Discussion 

The interest is in the test drive effort that allows an empirical 

compliance demonstration of a sensors’ environment perception with 

the (for demonstrative purposes selected) target level of safety 𝜆𝑆𝐿 =
10−7 h−1. For individual sensors, this test drive effort is found to be 

in the order of at least 𝑡 = 1.92 ∙ 107 h, which appears infeasible in 

most practical contexts. Similar conclusions have already been drawn 

in [14], in which the test drive effort to demonstrate an automated 

system’s safety is derived with the Null Hypothesis Significance 

Testing (NHST). This indicates that the empirical demonstration (i.e. 

test drives in real driving situations) might not be the way to show 

that a sensor’s perception is sufficiently safe when the target level of 

safety is strict. 

In case of less restrictive safety requirements however, the here 

presented Bayesian approach allows to estimate test efforts. It has 

two main advantages over NHST: 1) it provides results that are easy 

to interpret, and 2) it is more flexible in extending the model, in 

particular to a hierarchical model that addresses changing 

environmental factors, and to a multi-sensor system. Figure 4 shows 

how the presented Bayesian approach captures the full uncertainty in 

estimating the perception error rate 𝜆, which is more intuitively 

understood than statements on the statistical significance of a 

hypothesis about 𝜆. The graphical illustrations in Figure 4 and Figure 

1 underline that the Bayesian methodology can readily be interpreted 

as a probability, while the 𝑝-value and significance level α of NHST 

are more difficult to understand (and are not understood by most 

engineers). Due to its intuitive and easy interpretation, the 

communication with decision makers benefits from the Bayesian 

approach: Given that the statistical model and assumptions represent 

the problem adequately well, the Bayesian test methodology results 

in the probability Pr(𝜆 < 𝜆𝑆𝐿|𝑥, 𝑡) that for a specific set of 

observations the target level of safety is complied with.  

In case certain aspects of the environment perception such as object 

localization are based on multiple redundant sensors, the redundancy 

should be considered in the reliability assessment of environment 

perception. As in every redundant system, redundancy can drastically 

increase the system reliability if sensors perform independently. 

However, Figure 5 should serve as a warning not to assume 

independence light handed, as the true error rate of the perception 

system might then be underestimated. For the investigated system, a 

seemingly small correlation of 𝜌 = 10−5 increases the system’s 

perception error rate by a factor of 7.1 ∙ 106  compared to the case of 

independence (𝜌 = 0)!  

It is illustrated in Figure 6 that the overall target level of safety 𝜆𝑆𝐿 of 

the machine vision may be more easily demonstrated in a redundant 

multi-sensor system than for an individual sensor, as long as errors 

dependence among the different sensors is small. In the extreme case 

of error independence at different sensors (𝜌 = 0), a system 

consisting of three sensors would require a test effort of only 𝑡 =
40 h to comply with 𝜆𝑆𝐿 = 10

−7 h−1. This illustrates how a 

redundant sensor system may offer the opportunity to demonstrate 

the safety of the environment perception with economical feasible 

effort in an empirical way, i.e. test drives with individual sensors in 

real driving situations. This result may be especially relevant for the 

future when the costs of environment sensors decrease. For instance, 

the reliability of the environment perception could be more easily and 

with lower costs ensured by multiple (independent) mid-class sensors 

than with one high-end sensor. However, in order to evaluate whether 

this is a valid alternative, one would need to know the correlation 𝜌 

of error occurrence among different sensors. The problem therefore 

shifts to demonstrating a low correlation 𝜌, which likely will require 

a larger test effort. This study should therefore be extended to 

determine the test effort necessary to determine a sufficiently low 

correlation between the sensors.  

It is important to note that the presented approach does not model the 

sensor data fusion in its full complexity. Instead of analyzing real 

fusion algorithms, the results are here derived by simplifying the 

sensor data fusion with a majority decision. While majority voting is 

a valid method to increase a system’s reliability [12], it is doubtful 

whether this method finds widespread application in practice. It is 

likely that modern fusion algorithms [43] will outperform a majority 

voting system, therefore the presented results may be regarded as 

conservative. 

The presented study combines different types of perception errors 

into the single metric “error rate 𝜆”. In reality, different types of 

perception errors include false-positive and false-negative object 

detections, errors in physical measurement quantities and object 

classification errors. The different types of errors occur with varying 

probability and may not be equally safety-relevant. It is here entirely 

left to the analyst to decide what comprises a safety-relevant 

perception error. 

Another limitation is found in the treatment of the temporal 

variability of error occurrence, induced through different physical 

influencing conditions. In this contribution we do not answer the 

question of how to assess which factors with influence on sensor 

performance to consider, this has to be decided by experts and 

preliminary test results. Also, as stated before, the probability of the 

different influencing factors such as weather is dependent on the 

geographical region. Future work should optimize the presented work 

to account for this aspect and examine how to include different 

environment conditions in higher detail. 

Conclusions 

A Bayesian methodology for empirical reliability assessments of 

sensor based environment perception is presented as an alternative to 

the commonly applied Null Hypothesis Significance Testing (NHST). 

It allows to estimate the necessary test drive effort to demonstrate the 

perception reliability of environment sensors, including dependent 

errors and time variable error probabilities. Furthermore, a solution to 



 

 

assess the reliability of a dependent redundant multi-sensor system is 

given. 

Applying the methodology in a case study shows that the empirical 

test drive effort may be unfeasibly large when the target level of 

safety is low. When working with a multi-sensor system in which the 

individual sensors are nearly independent of each other, the system’s 

perception reliability is considerably higher than when utilizing a 

single sensor. This fact opens up the possibility of validating the 

perception reliability empirically with feasible test drive effort, when 

one is able to show that multiple sensors have a small error 

dependency. The verification of a small error dependency itself is 

however expected to require additional test drive efforts. It remains to 

be studied what the necessary test setup and effort is for this purpose. 

Simplifications of the problem’s complexity involve the treatment of 

different types of perception errors, the representation of the sensor 

data fusion with a majority voting scheme and in approximating the 

time dependent performance of the perception induced through 

various physical influencing factors such as the weather. 
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Appendix 

To complement the results of the beta-binomial distribution, the correlated binomial distribution suggested in Gupta, Tao [48] is used. With this 

model the probability Pr(∑ 𝑈𝑠
𝑁
𝑠=1 = 𝑘) of exactly k-out-of-N sensors to commit a safety-relevant error, assuming each sensor has the same 

perception error probability 𝑝, is: 

Pr(∑ 𝑈𝑠
𝑁
𝑠=1 = 𝑘) = 𝑝 ∙ Pr(∑ 𝑈𝑠

𝑁−1
𝑠=1 = 𝑘 − 1) + (1 − 𝑝) ∙ Pr(∑ 𝑈𝑠

𝑁−1
𝑠=1 = 𝑘) + 𝜌 ∙ ∑ 𝑝(1 − 𝑝) ∙ 𝑎𝑁,𝑘

𝑠𝑁−1
𝑠=1  (A1) 

Where 𝜌 is the correlation coefficient quantifying the correlation of error occurrence between the sensors. It is assumed 𝜌 is equal among all sensors 

𝑠 = 1,… , 𝑁. The factor 𝑎𝑁,𝑘
𝑠  is defined as: 

𝑎𝑁,𝑘
𝑠 =

{
 
 

 
 

0,        𝑖𝑓 𝑘 < 0 𝑜𝑟 𝑘 > 𝑁

𝑎2,0
1 = 1, 𝑎2,1

1 = −2, 𝑎2,2
1 = 1,        𝑖𝑓 𝑁 = 2, 𝑠 = 1

𝑝 ∙ 𝑎𝑁−1,𝑘−1
𝑠−1 + (1 − 𝑝)𝑎𝑁−1,𝑘

𝑠−1 ,        𝑖𝑓 𝑁 > 2, 𝑠 = 𝑁 − 1

𝑝 ∙ 𝑎𝑁−1,𝑘−1
𝑠 + (1 − 𝑝)𝑎𝑁−1,𝑘

𝑠 ,        𝑖𝑓 𝑁 > 2, 𝑠 = 1,2,… , 𝑁 − 2

 (A2) 

Inserting Eq. (A1) into Eq. ) yields the probability of the majority vote based multi-sensor machine vision to fail 𝑝𝑓, including dependence 

according to the Gupta, Tao model. 


