
1 INTRODUCTION 
 
The selection of optimal risk protection measures is 
a central task in many fields of human activity in-
cluding natural hazard mitigation. As an example, 
the work presented in this paper has been motivated 
by the need for optimizing flood risk measures in 
Alpine valleys in Bavaria, Germany. The mainte-
nance of existing measures is costly and they often 
do not meet the actual priorities. The authorities 
consider implementing a new methodology for eco-
nomically efficient planning and management of 
flood protection measures. This goal requires the se-
lection of optimal protection strategies in each of the 
Alpine valleys, considering potential hazard magni-
tude, resulting damages and cost of measures.  

The methodologies for selecting optimal risk pro-
tection strategies in engineering, including natural 
hazard mitigation or safety of buildings and infra-
structure, have been adopted from the socio-
economic theory. Because the methodologies are 
mostly developed by technicians and engineers, the 
main focus is typically given to the hazard analysis, 
while the damage assessment and efficiency evalua-
tion are sidelined (Messner and Meyer, 2005). Addi-
tionally, the approaches vary among different fields 
of application and among different countries and 
several inconsistencies can be found in practice. 
These are likely to lead to selections of suboptimal 
protection strategies and to significant differences in 

investment efficiency among different fields of haz-
ard protection (Rose et al., 2007).  

In this paper, we aim at providing a general for-
mulation of the optimization problem assuming that 
all costs and risks can be expressed in monetary val-
ues (or as utility) and that the main objective is min-
imizing the sum of risk (i.e. expected damage) and 
cost (i.e. resources needed for establishing and main-
taining the protection measures). The allocation of 
resources for risk protection is viewed as a system 
optimization problem: the criteria and constraints are 
set at the top level (e.g. state) and the actual optimi-
zation is performed at the level of the subsystems 
(regions, towns, catchments) when designing partic-
ular protection measures and selecting the optimal 
protection level.  

We start with the formulation of the classic con-
tinuous optimization problem at the level of a sub-
system in Section 2.1 and expand it to the commonly 
encountered discrete problem in Section 2.2. In Sec-
tion 3 we introduce the system problem, where miti-
gation strategies in several subsystems must be op-
timized jointly. In case of an unlimited budget, it is 
sufficient to optimize the protection measures in in-
dividual subsystems independently. However, if the 
budget is limited, the need for an optimal allocation 
of resources amongst the regions arises. In practice, 
this can be achieved by applying criteria such as 
Benefit-Cost Ratio (BCR) or Marginal Costs (MC) 
that are investigated in Sections 3.1 and 3.2. The 
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theoretical findings are demonstrated on a hypothet-
ical example of optimizing the protection level in 
five regions under the constraint of limited budget in 
Section 4.  
 
2 OPTIMIZATION OF RISK MITIGATION IN 

AN INDEPENDENT SUBSYSTEM 

2.1 Basic continuous formulation 
The optimal risk mitigation strategy is here defined 
as the one, which minimizes the present (discounted) 
value of expected monetary expenses over a given 
period of time. The expenses correspond to the sum 
of risk, i.e. expected damage caused by the analyzed 
hazard, and cost, i.e. expected cost for planning, 
construction, operation and maintenance of the miti-
gation measures. These two types of expenses are 
typically incurred by different stakeholders; it is 
therefore desirable to keep them separately in the 
analysis. In case of natural hazards, the cost of miti-
gation measure is part of government investment ex-
penditures, while the risk is covered by special gov-
ernmental funds, insurance companies and public. 

Commonly, the optimization problem is formu-
lated in terms of a protection level !. The optimal 
protection level is found by minimizing: 
!"#! ! ! ! !!!!   (1) 
where ! !  and ! !  are the present (discounted) 
values of the risk and cost, respectively. ! !  is the 
cost associated with the cheapest mitigation strategy 
leading to protection level !. The problem can be ad-
ditionally constrained by a maximal available budget 
!!"#. Then the objective function from Eq. (1) is 
subjected to !!!! ! !!"#. 

Two alternative illustrations of the continuous op-
timization are shown in Figure 1 (a) and (b). The 
solid line in both figures represents a set of Pareto 
optimal solutions for different protection levels. A 
Pareto optimal solution can in this case be interpret-

ed as a state, where given protection level is   
achieved with minimal possible costs.  

An example of a continuous optimization prob-
lem is the selection of an optimal height of a coastal 
dyke (Danzig, 1956).  

2.2 Basic discrete formulation 
In most practical problems, one selects the optimal 
solution from a countable number of possible risk 
mitigation strategies and one thus has to solve a dis-
crete optimization problem as is illustrated in Figure 
1(c). Such an approach is necessary in cases, where 
the dependence of risk and cost on the protection 
level cannot be defined analytically. This situation 
typically arises when the system consists of many 
different components (e.g. dykes combined with re-
tention areas, mobile flood barriers and warning sys-
tem) and each component has one or more optimiza-
tion parameters (height of a dyke, volume of the re-
retention, type of the mobile barriers etc.). In such 
cases, it is only realistic to evaluate the optimum 
among a countable number of protection strategies, 
which are identified by the engineers.  

Let !!! !!! !! denote the possible strategies. In 
analogy to Eq. (1), we are searching for the strategy, 
which minimizes the sum of risk and cost. The op-
timization problem is now formulated as 

!"#! ! !! ! ! !! ! (2) 

where ! !!  and ! !!  are the present discounted 
values of the expected risk and cost of the!!th strate-
gy. The optimization of Eq. (2) can be additionally 
constrained by the available budget, i.e. it may be 
subjected to !!!!! ! !!"#. 

The strategies displayed in Figure 1(c) with the 
black crosses represent Pareto optimal solutions, 
while the gray strategy denoted as !! is not Pareto 
optimal, because it has higher risk and higher cost 
than strategy !!.  

 

 
Figure 1. Alternative illustrations of the risk protection optimization: (a) and (b) continuous formulation, (c) discrete formulation. 
The figures show unconstrained optimum and the optimum constrained by the available budget !!"#. 
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3 HIERARCHICAL OPTIMIZATION AT THE 
SYSTEM LEVEL 

Risk mitigation measures are often optimized at a 
system or portfolio level. In flood risk management, 
an agency can be responsible for various regions 
(subsystems), which may be catchments or munici-
palities. The situation is illustrated in Figure 2. In 
each of the region, an optimal protection strategy 
must be selected. The optimality is assessed at the 
system level (from the point of view of the agency), 
and the optimal solution must ensure an optimal dis-
tribution of resources among the subsystems.  

In each of ! regions, one can identify a number 
of locally Pareto optimal risk protection strategies 
denoted as !!!!, where ! ! !!!! !!! is the index of 
the region, !! ! !!!! !!!!  is the index of the strate-
gy in the !th region and !! is the number of strate-
gies in the !th region. Optimization can now be for-
mulated as: 

!"#!!!!!!!!! ! !!!! ! !!!!!!!!
!!!  (3) 

where ! !!!!  and ! !!!!  are the present (discount-
ed) values of the expected risk and cost of the!!th 
strategy in the !th region. 

If the problem of Eq. (3) is unconstrained, the op-
timal solution can be found by simply finding the 
optimum in each of the region individually. It holds: 

!"#!!!!!!!!! ! !!!! ! ! !!!!!
!!! !

!"#!!!!!!!!! ! !!!! ! ! !!!!!
!!!   (4) 

However, the cost are typically constrained with the 
available budget !!"# and the objective function 
from Eq. (3) is subjected to!! ! !!!! !!

!!! !!!"#. In 
such a case, Eq. (4) does not hold and the protection 
cannot be optimized independently in the individual 
regions. Because the protection strategies in the sub-
systems are not design at the same time, it is typical-

ly impossible to optimize the risk protection 
measures in the whole system (e.g. in a country or a 
state) at once.  

The problem can be solved by techniques devel-
oped for the so-called hierarchical (multi-level) op-
timization (Stoilov and Stoilova, 2008). In hierar-
chical optimization, the coordinator (agency) sets 
criteria (coordination parameters) for the optimiza-
tion in the subsystems. In case of natural hazard pro-
tection, criteria such as Marginal Costs (MC) or 
Benefit-Cost Ration (BCR) described in detail in 
Sections 3.1 and 3.2 can be perceived as such coor-
dination parameters. 

The hierarchical optimization can be carried out 
iteratively: The agency can adjust the criteria de-
pending on the results of optimizations in individual 
subsystems and depending on the changing con-
straints such as availability of resources. 

3.1 Benefit-cost ratio  
The Benefit-Cost Ratio (BCR) is used for evaluation 
of natural hazard protection in many countries, see 
e.g. Defra UK (2010) or Bründl (2009). The BCR of 
the !th strategy is calculated as  

!"# !! ! !!! !!
!! !!

 (5) 

where !!!!!!! is the expected value of risk reduc-
tion and !!!!!! is the expected value of cost in-
crease of strategy !! with respect to some reference 
strategy. The optimal strategy is selected at the sub-
system level by maximizing the BCR 

!"#
!
!"#!!!! ! !"#

!
! !!!!!!!!! !!

 (6) 

The optimization can be constrained by requiring a 
minimal value of BCR, i.e. !"# !! ! !"!!"#. 

 
Figure 2. Illustration of the system optimization problem. In each subsystem, Pareto optimal risk mitigation strategies are shown. 
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The definition of the reference strategy differs 
among countries and fields of application. It can be 
defined as maintaining the currently implemented 
protection measures, or as a so-called “do-nothing 
option” or “null option”, which corresponds to no 
active intervention (incl. no maintenance of existing 
measures). 

Here we consider the “null option” as the refer-
ence strategy. The BCR then equals: 

!"# !! ! !! ! ! !!
! !! ! !!

! !! ! ! !!
! !!

 (7) 

where ! !!  and ! !!  are the present values of risk 
and cost of the!!th strategy. !! is the maximal level 
of risk corresponding to the “null option” and the 
cost of the “null option” is !! ! !. 

Maximizing the BCR does not lead to the optimal 
solution in the general case. Assuming that the Pare-
to optimal border has a shape similar to the one 
shown in Figure 1(b), maximizing the BCR would 
select a solution, which is very close to the “null” 
option (i.e. a cheap solution with low protection lev-
el). This fact can be better explained on the discrete 
case shown in Figure 1(c). The BCR criterion identi-
fies strategy !! as the optimum because it has the 
highest rate or risk reduction to cost from all the op-
tions. (Note that strategy !! corresponds to the “null 
option”.) Strategy !! is optimal for small budgets. 
However, when the available budget exceeds the 
cost of !!, !! is not the optimal variant anymore and 
the BCR criterion thus leads to a suboptimal solu-
tion. The BCR approach can identify the optimal 
protection strategies only under restricting condi-
tions: First, the solutions with low protection level 
are not considered in the optimization (i.e. no strate-
gies with costs lower than !! are included); they are 
not identified by the analyst or they are discarded by 
other constraints such as minimal safety levels. Se-
cond, the solutions close to the unconstrained opti-
mum (strategies !! and !!) are not attainable due to 
the limited budget. The application of the BCR crite-
rion will be shown later in the example in Section 4. 

3.2 Marginal cost criterion 
An alternative approach to risk protection optimiza-
tion is provided by the marginal cost (MC) criterion. 
It has been applied in the field of natural hazard pro-
tection in Switzerland (Bohnenblust and Troxler, 
1987; Bohnenblust and Slovic, 1998; Bründl, 2009).  
In other fields of engineering risk mitigation, the 
MC criterion is not commonly utilized (Li et al., 
2009).  

The marginal costs !" are the costs incurred for 
reducing the risk by an additional unit !" . The 
principle of the MC criterion is illustrated in Figure 
3. In the continuous case, the marginal costs can be 
computed as the derivative of the Pareto optimal 

costs with respect to the risk, i.e. they can be found 
graphically as the gradient of the tangent to the Pare-
to front. If the marginal costs are higher than the risk 
reduction, i,e. !" ! !" , the strategy is inefficient 
(e.g. strategy !!!! in Figure 3). If we require 
!" ! !" , the criterion leads to the unconstrained 
optimum according to Eq. (2).  

  

 
Figure 3. Selection of the optimal strategy with the marginal 
cost (MC) criterion. 

 
If the budget is limited and we cannot reach the un-
constrained optimum, the optimal solution will have 
!" ! !" , e.g. strategies !! and !!!! in Figure 3..  

We can define a value ! ! !, which represents 
the required efficiency of the investment. The re-
quired efficiency is the inverse of the maximally ac-
cepted marginal cost !!!"#, ! ! !!!!!"#. Then 
we search for the solution where !!!" ! !" .  

In the discrete case, or when the optimal solution 
cannot be found analytically, the optimum can be 
identified graphically by shifting the line with the 
gradient corresponding to the required ! from the 
origin to the right (see Figure 3). The optimal solu-
tion is the one, which is first reached by this line. 
For example for ! ! !, the optimal solution corre-
sponds to the strategy !!. Computationally, this can 
be implemented by finding the strategy whose dis-
tance !!! (see Figure 3) is minimal for given !: 

!"#
!
!!! !

!
!! ! !

!"#
!

!" !! ! ! !!  (8) 

where ! !!  and ! !!  are the present values of the 
risk and cost of the!!th strategy.  

Figure 4 illustrates the differences in the selected 
protection level depending on the utilized criterion. 
The unconstrained optimum is found with the MC 
criterion with ! ! !. To find an optimum subjected 
to budget constraints, the MC criterion with ! ! ! 
can be used. Under some conditions, as discussed in 
Section 3.1, also the BCR criterion is suitable for 
constrained hierarchical optimization.  
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Figure 4. Selection of optimal risk protection level based on 
different criteria: BCR – Benefit-Cost Ration, MC - marginal 
costs and minimizing the sum of Risk and Cost.  !! is the max-
imal risk corresponding to a “null“ option. 

4 NUMERICAL EXAMPLE 

In this numerical study, we consider the identifi-
cation of an optimal risk mitigation strategy in 
! ! ! regions/subsystems with limited budget. This 
is motivated by the optimization of flood risk protec-
tion measures in Alpine regions, where these regions 
correspond to individual valleys, catchments or mu-
nicipalities. In each region, the following is evaluat-
ed through engineering studies: the present value of 
the maximal potential risk !! in case that no 
measures are taken (“null” option), the present value 
of risk and cost of the current strategy (current level 
of protection) and the present value of risk and cost 
of three to four alternative mitigation strategies. 
They are summarized in Table 1. These numbers are 
hypothetical, but they are similar to real numbers ob-
tained during the planning of flood risk protection in 
the considered Alpine regions.   

 
Table 1.  Risk !!!!"!  and cost !!!!"!  of alternative strategies 
in five studied regions (x105 Euro).  
Strategy Region: i=1 i=2 i=3 i=4 i=5 
“Null”  (N) j=1 !!   8 56 84 13 29 
  !! 0 0 0 0 0 
Current state j=2 R(!!"!   5 30 32 12.5 15 
       (P)  C(!!"! 2 10 30 1 10 
Option A j=3 R(!!"!   6 39 50 12 22 
  C(!!"! 1.3 5 10 1.4 5 
Option B j=4 R(!!"!   4.8 28 42 10 10 
  C(!!"! 1.9 12 25 1.4 11 
Option C j=5 R(!!"!   4 22 20 7.5 5 
  C(!!"!   2 14 42 3 12 
Option D j=6 R(!!"!   3 20 17 5 - 
  C(!!"! 3 15 50 5 - 

 
The risk protection in all the regions is financed 
from one budget !!"#. Following Eq. (3), we aim to 
select one strategy in each region to minimize the 
sum of the present value of risk and costs over all 
regions subject to!! ! !!!! !!

!!! !!!"#.   

Three approaches to the optimization are com-
pared: (I) The complete solution is obtained by test-
ing all the possible combinations for all the regions 
at once, by excluding those which do not fulfill the 
budget constraint and by selecting the one with min-
imal sum of risk and costs according to Eq. (3). The 
optimization is carried out for different budget levels 
!!"# ! !!!!!!! !" !!"! Euro. (II) Selecting the 
optimal solution in each region separately by max-
imizing the BCR criterion following Eq. (6) subject 
to !"# !! ! !"!!"#, for different levels of  
!"!!"#. If none of the options in the given region 
fulfills !"# !! ! !"!!"#, the null option is select-
ed. (III) Selecting the optimal solution in each region 
separately using the marginal cost criterion follow-
ing Eq. (8) for different levels of !.  

Figure 5 and Tables 2-4 display the results of the 
optimization. Figure 5 shows the total residual risk 
for all five areas that can be achieved with different 
levels of budget, as identified using solutions I to III. 
All identified solutions are Pareto optimal. The un-
constrained optimum (with unlimited budget) can be 
achieved with costs of 44x106 Euro and the residual 
risk is 84 x106 Euro. It corresponds to selecting op-
tions C in regions 1 and 5, options D in regions 2 
and 4 and option A in region 3. 

 

 
Figure 5. Results of the optimization: Residual risk in all five 
areas for different levels of budget !!"#.  Comparison of com-
plete solution (I) with solution obtained with BCR criterion (II) 
and with  MC criterion (III). 

 
Tables 2-4 summarize the strategies selected for dif-
ferent levels of budget. N denotes the “Null” variant, 
P denotes the present state and A,B,C and D the oth-
er options (compare with Table 1).  

Because we select only from a limited number of 
strategies, it is not possible to always find a solution 
that fully uses the available budget (see Table 2). 
For example, there is no combination of strategies 
that would cost exactly 14x106 Euro, we can only 
find the nearest cheaper one, which costs 13.1x106 
Euro.  
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Table 2.  Results of the optimization – complete solution: strat-
egies selected in individual regions for different levels of 
budget, the corresponding cost C, residual risk R, risk reduc-
tion relative to null variant Rred and Net Present Value 
(NPV=R+C), [x106 Euro] 
Budget Strategies  C R Rred NPV 
0 N,N,N,N,N 0 190 0 190 
2 C,N,N,N,N 2 186 4 188  
4 C,N,N,B,N 3.1 183 7 186.1 
6 N,A,N,N,N 5 173 17 178 
8 B,A,N,B,A 8 166.8 23.2 174.8 
10 N,N,A,N,N 10 156 34 166 
12 C,N,A,N,N 12 152 38 164 
14 C,N,A,B,N 13.1 149 41 162.1 
16 N,A,A,N,N 15 139 51 154 
18 B,A,A,B,N 18 132.8 57.2 150.8 
20 C,A,A,C,N 20 129.5 60.5 149.5 
22 C,P,A,N,N 22 126 64 148 
24 N,C,A,N,N 24 122 68 146 
26 C,C,A,N,N 26 118 72 144 
28 B,D,A,B,N 28 113.8 76.2 141.8 
30 B,A,A,B,C 30 108.8 81.2 138.8 
32 C,A,A,C,C 32 105.5 84.5 137.5 
34 C,P,A,N,C 34 102 88 136 
36 N,C,A,N,C 36 98 92 134 
38 C,C,A,N,C 38 94 96 132 
40 B,D,A,B,C 40 89.8 100.2 129.8 
42 C,D,A,C,C 42 86.5 103.5 128.5 
44 C,D,A,D,C 44 84 106 128 
 
Table 3.  Results of the optimization using BCR criterion: 
strategies selected in individual regions for different required 
!"!!"#, the corresponding cost C, residual risk R, risk reduc-
tion relative to null variant Rred and Net Present Value 
(NPV=R+C), [x106 Euro] 
!"!!"# Strategies  C R Rred NPV 
>3.5 N,N,N,N,N 0 190 0 190  
2.8-3.4 N,A,A,N,N 15 139 51 154 
2.1-2.7 N,A,A,B,N 16.1 136 54 152.1 
1.0-2.0 C,A,A,B,C 30.1 108 82 138.1 
 
Table 4.  Results of the optimization using MC criterion: strat-
egies selected in individual regions for different required !, the 
corresponding cost C, residual risk R, risk reduction relative to 
null variant Rred and Net Present Value (NPV=R+C), [x106 
Euro] 
!"!!"# Strategies  C R Rred NPV 
>3.5 N,N,N,N,N 0 190 0 190  
3.4 N,A,N,N,N 5 173 17 178 
2.8-3.3 N,A,A,N,N 15 139 51 154 
2.0-2.7 N,A,A,B,N 16.1 136 54 152.1 
1.9 C,A,A,B,C 30.1 108 82 138.1 
1.4-1.8 C,D,A,B,C 40.1 89 101 129.1 
1.3 C,D,A,C,C 42 86.5 103.5 128.5 
1.0-1.2 C,D,A,D,C 44 84 106 128 
 
As is evident from the results, the BCR approach (II) 
and the MC approach (III) identify only a subset of 
possible Pareto optimal strategies. For most budget 
levels, they do not allow to fully exploit the availa-
ble budget. For example, they are unable to identify 
a combination of strategies with total cost between 
5x106 Euro and 15x106 Euro or with total cost be-
tween 16.1x106 Euro and 30.1x106 Euro, even if the-
se exist as shown by approach (I).  

Additionally, the BCR criterion (II) only identi-
fies optima with available budgets between 15x106 
Euro and 30.1x106 Euro; in this range it gives the 
same solutions as the MC criterion (III). However, 
the BCR criterion is not suitable for higher budgets 
and for identifying the unconstrained optimum. 

5 SUMMARY & DISCUSSION  

The formulation of the optimization problem pro-
vided in this paper aims at supporting rational deci-
sion making for risk protection. The investigated hi-
erarchical risk-based optimization problems arise 
when decisions on protection measures are taken on 
the local level (e.g. selection of earthquake mitiga-
tion measures of individual bridges, planning of 
maintenance of offshore oil platforms), while the 
general aims and budget constraints are given at a 
top level (e.g. by the bridge management authority 
or by the company management). 

The continuous formulation of the optimization 
problem presented in Section 2.1 is the one widely 
used in theory. Figure 1 (a) and (b) show an alterna-
tive illustration of the same problem; (a) is typically 
used in the structural reliability field while (b) is 
more common in flood risk management. The dis-
crete formulation presented in Section 2.2 describes 
the problem as it is typically encountered in risk 
management, which is, however,  not commonly 
formalized in a rigorous way. 

Section 2 describes optimization of an independ-
ent (sub)system, for example of the flood risk pro-
tection of a municipality, where the budget limit is 
set directly by the local authorities and transfer of 
resources to other regions or other types of invest-
ments is not considered. However, in many applica-
tions, the individual subsystems have to compete for 
a limited amount of resources distributed from a 
higher level (e.g. state) as described in Section 3. 
Because the optimization of all subsystems cannot 
be carried out at once, it is useful to set so-called co-
ordination parameters on the top level, which set a 
new objective for the individual subsystems. In the 
long term, the values of the parameters for the se-
lected solution are returned from the subsystems to 
the top level and based on this information, the co-
ordination parameters can be further adjusted to re-
flect the actual availability of resources.  

The BCR and MC criteria are typically used as 
such coordinating parameters. Section 3.1 and 3.2 
discussed the definition and utilization of these crite-
ria. It was shown that the utilization of the BCR cri-
terion as defined in Eq. (7) for this purpose has fun-
damental flaws. The BCR criterion works only for a 
limited range of budget constraint under some re-
stricting conditions (e.g. only in the discrete case). 
Additionally, in practice the BCR criterion is often 
defined differently from the definition used here, 



which leads to further, potentially severe, inconsist-
encies.  

The utilization of the MC criterion as a coordina-
tion parameter is - in principle - correct. However, in 
the discrete case the MC criterion might not be suf-
ficiently flexible in order to be able to entirely allo-
cate different levels of budget, as was demonstrated 
in the numerical example in Section 4. Additionally, 
unlike in the case of the BCR, it is impossible in the 
discrete case to determine one exact value of the MC 
criterion for the selected solution; one can only pro-
vide an interval depending on the neighboring iden-
tified Pareto optimal strategies. It is probably for this 
reason that the MC criterion is not broadly used in 
practice, because the interval as an indicator is not as 
easily interpretable as a single number like the one 
provided by BCR. Nevertheless, the MC is prefera-
ble to the BCR and should be used in practice when-
ever possible. The MC has the additional advantage 
over the BCR that it is not necessary to compute the 
risk !! associated with the reference solution.  

In practice, the budget limit is commonly not the 
only constraint in the optimization problem. Addi-
tional constraints are the minimum acceptable safety 
level and other requirements defined by politics and 
society. These additional constraints can be included 
in the process described in this paper simply by ex-
cluding the unacceptable strategies. However, even 
if some of the strategies are inacceptable for safety, 
political or other reasons, it can be beneficial to 
quantify their economic efficiency. Knowledge of 
the MC of these inacceptable alternatives can help in 
a long term strategic planning and in improving the 
regulations and policies. 

Here, we have not further investigated how the 
selection of the MC criterion (the required value of 
!) at the top level can be implemented. In practice, 
the iterative process of adjusting the values of the 
coordination parameters is often limited, because 
one cannot always flexibly change the protection 
level in the subsystems once the protection measures 
have been put in place. It is therefore necessary to 
have some information on potential risk mitigation 
strategies in the subsystems when deciding on the 
value of the coordination parameter. 

The paper does not discuss the calculation of risk 
(i.e. expected damage) and cost. We have implied 
that their correct value is known. In engineering 
problems, risk and cost are typically determined by 
assessing the direct tangible damages and costs. Ad-
ditional effects, such as potential benefits from fu-
ture developments in the endangered areas are not 
included in the analysis. Neglecting these effects 
can, however, lead to suboptimal decisions, as the 
societal value of the protection measures will be un-
derestimated (Brent, 1996; Messner and Meyer, 
2005). Finally, the impact of uncertainty in estimates 
of risk and cost on the optimal selection of the miti-
gation measures should be studied.   

6 CONLUSIONS 

The paper provided a general formulation of the op-
timization problem for selecting the economically 
optimal level of risk protection. The optimum was 
defined as a state minimizing the sum of risk and 
cost. The types of the problem can be categorized in-
to continuous or discrete optimization. It must be 
further distinguished whether we optimize a closed 
subsystem, which is independent from other possible 
subsystems, or whether we deal with a system prob-
lem, where the different subsystems interact because 
they share a limited budget. The ability of the bene-
fit-cost-ratio (BCR) and the marginal cost (MC) cri-
teria to support an optimal allocation of resources to 
subsystems were investigated.  A numerical example 
demonstrates the optimization of the discrete system 
problem and it reveals the limitations of BCR and 
MC criteria.  
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