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Abstract 8 

Discrete Bayesian networks (BNs) can be effective for risk- and reliability assessments, in 9 
which probability estimates of (rare) failure events should be continuously updated with new 10 
information. To solve such reliability problems accurately in BNs, the discretization of 11 
continuous random variables must be performed carefully. To this end, we develop an 12 
efficient discretization scheme, which is based on finding an optimal discretization for the 13 
linear approximation of the reliability problem obtained from the First-Order Reliability 14 
Method (FORM). Because the probability estimate should be accurate under all possible 15 
future information scenarios, the discretization scheme is optimized with respected to the 16 
expected posterior error. To simplify application of the method, we establish parametric 17 
formulations for efficient discretization of random variables in BNs for reliability problems 18 
based on numerical investigations. The procedure is implemented into a software prototype. 19 
Finally, it is applied to a verification example and an application example, the prediction of 20 
runway overrun probabilities of a landing aircraft.  21 
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1 Introduction 24 

For operational risk and reliability management, it is often desirable to compute the 25 
probability of a rare event 𝐹  under potentially evolving information. Examples include 26 
warning systems for natural and technical hazards, or the planning of inspection and 27 
intervention actions in infrastructure systems. Ideally, this is achieved through Bayesian 28 
updating of Pr(𝐹) with the new information 𝑍 to the posterior probability Pr(𝐹|𝑍). When 29 
physically-based or empirical models for predicting the rare event exist, such updating is 30 
possible with structural reliability methods (SRM) (Sindel and Rackwitz, 1998, Straub, 2011). 31 
However, it is often difficult to perform the required computations in near-real-time, due to a 32 
lack of efficiency or robustness. A modeling and computational framework that does facilitate 33 
efficient Bayesian updating is the discrete Bayesian network (BN). Hence it was proposed to 34 
combine SRMs with discrete Bayesian networks for near-real-time computations (Friis-35 
Hansen, 2000, Straub and Der Kiureghian, 2010a, Straub and Der Kiureghian, 2010b).  36 

BNs are based on directed acyclic graphs (DAGs), to efficiently define a joint probability 37 
distribution 𝑝 𝐘  over a random vector 𝐘 (Jensen and Nielsen, 2007, Kjaerulff and Madsen, 38 
2013). The DAG of a BN, which is often referred to as the qualitative part of a BN, consists 39 
of a node for each variable in 𝐘 and a set of directed links among nodes representing 40 
dependence among the variables. In the case of discrete BNs, conditional probability tables 41 
(CPTs) quantitatively define the type and strength of the dependence among the variables. 42 
The entries of the CPT of a variable 𝑌! are the probabilities for each state of 𝑌! conditional on 43 
all possible combinations of states of its parents.  44 

For hybrid BNs, which include both discrete and continuous variables, exact inference is 45 
available only for two special cases, which are BNs with Gaussian nodes, whose means are 46 
linear functions of their parents, and BNs, whose nodes are defined as a mixture of truncated 47 
basic functions (MoTBFs) (Langseth et al., 2009, Langseth et al., 2012). Otherwise, 48 
approximate inference algorithms are available for hybrid BNs based on sampling techniques, 49 
e.g. (Lerner, 2002, Hanea et al., 2006). However, these are computationally demanding and 50 
not suitable for most near-real-time decision support (Hanea et al., 2015). As an alternative, 51 
the continuous random variables can be discretized, which enables the use of exact inference 52 
algorithms that exist for general discrete BNs. These include the variable elimination 53 
algorithm (Zhang and Poole, 1994) and the junction tree algorithm (Lauritzen and 54 
Spiegelhalter, 1988, Jensen et al., 1990).  55 

The size of discrete BNs, and the associated computational effort, increases approximately 56 
exponentially with the number of discrete states of its nodes, which motivates the 57 
development of efficient discretization algorithms. While efficient discretization in the 58 
context of machine learning and BNs in general has been investigated by multiple researchers 59 
(Dougherty et al., 1995, Kotsiantis and Kanellopoulos, 2006), research on efficient 60 
discretization in the context of engineering risk analysis or structural reliability has been 61 
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limited. In general, it is to be distinguished between static and dynamic discretization. While 62 
the former discretizes the BN a-priori before entering evidence (offline), the latter is based on 63 
an iterative scheme that updates the discretization scheme in function of the evidence (online).  64 

Dynamic discretization for risk analysis applications has been developed mainly by (Neil et 65 
al., 2008), based on the work by (Kozlov and Koller, 1997). The procedure starts with an 66 
initial discretization of a hybrid BN, for which an approximate entropy error is calculated. If 67 
the error complies with a convergence criterion, the current discretization is accepted. 68 
Otherwise the discretization is iteratively altered, by splitting the intervals with the highest 69 
entropy error, until the convergence criterion is fulfilled. The approach is implemented in the 70 
software AgenaRisk (Agena, 2005). Other dynamic discretization algorithms for reliability 71 
analysis have been proposed, e.g. in (Zhu and Collette, 2015) for dynamic BNs. The 72 
advantage of dynamic discretization is its flexibility when evidence is entered in the BN, i.e. 73 
when the model is updated with new observation.   74 

Static discretization has the advantage of being computationally more efficient and simple to 75 
implement. Some considerations for static discretization of BNs in reliability applications 76 
have been presented in (Friis-Hansen, 2000, Straub, 2009, Straub and Der Kiureghian, 2010a). 77 
As pointed out by (Friis-Hansen, 2000), for applications in which extreme events are 78 
important, discretization of the distribution tails should be performed with care. Static 79 
discretization facilitates a careful representation of these tails.  However, the accuracy of the 80 
static discretization varies with the available evidence. The difficulty is thus to find a 81 
discretization scheme that is optimal under a wide variety of posterior distributions.  82 

In this paper we derive a procedure for efficiently performing static discretization of 83 
continuous reliability problems. An optimal discretization scheme is sought, which minimizes 84 
the expected approximation error with respect to possible future observations (evidence). To 85 
solve this optimization problem, we propose to approximate the reliability problem by the 86 
First-Order Reliability Method (FORM). Section 2 of the paper describes the methodology 87 
applied. Section 3 presents numerical parameter studies, and simple parametric relations for 88 
defining an efficient discretization scheme are derived. In Section 4, the procedure is applied 89 
to a set of verification examples and to the computation of the probability of runway overrun 90 
of a landing aircraft.   91 
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2 Methodology 92 

2.1 Structural reliability 93 

Since the 1970s structural reliability methods have been developed and applied in the 94 
engineering community to estimate failure probabilities Pr 𝐹  of components or systems, 95 
based on physical or empirical models. The performance of engineering components is 96 
described by a limit state function (LSF) 𝑔 𝐱 , where 𝐗 = [𝑋!;… ;𝑋!] is a vector of basic 97 
random variables influencing the performance of the component. By definition, failure 98 
corresponds to 𝑔 𝐱  taking non-positive values, i.e. the failure event is 𝐹 = 𝑔 𝐗 ≤ 0 . 𝑔 𝐱  99 
includes the physical or engineering model, which is often computationally demanding. The 100 
probability of failure is calculated by integrating the probability density function (PDF) of 𝐗, 101 
𝑓𝐗 𝐱 , over the failure domain: 102 

Pr 𝐹 = 𝑓𝐗 𝐱 𝑑𝐱
! 𝐱 !!

                       (2) 

The formulation can be extended to the reliability of general systems by defining the failure 103 
domain as a combination of series and parallel systems (Ditlevsen and Madsen, 2007). In the 104 
general case, there is no analytical solution to Eq. 2 and the integral is potentially high-105 
dimensional. For this reason, structural reliability methods (SRMs) are applied to approximate 106 
it. These include the first- and the second order reliability method (FORM and SORM) as 107 
well as a large variety of sampling methods, including importance sampling methods such as 108 
directional importance sampling, and sequential sampling methods such as subset simulation. 109 
These methods are well-documented in the literature (Au and Beck, 2001, Rackwitz, 2001, 110 
Der Kiureghian, 2005, Ditlevsen and Madsen, 2007). 111 

2.2 First order reliability method (FORM)  112 

To obtain an approximation of the probability of failure through FORM, the LSF 𝑔 𝐗  is 113 
transformed to an equivalent LSF 𝐺(𝐔) in the space of uncorrelated standard normal random 114 
variables 𝐔 = [𝑈!;… ;𝑈!] (Fig. 1). The transformation is probability conserving, so that 115 
Pr 𝑔 𝐗 ≤ 0 = Pr 𝐺 𝐔 ≤ 0 = Pr(𝐹). A suitable transformation for this purpose, which is 116 
consistent with the BN, is the Rosenblatt transformation (Hohenbichler and Rackwitz, 1981). 117 
In case all basic random variables are independent, this transformation reduces to the 118 
marginal transformations: 𝑈! = Φ!! 𝐹!! 𝑋! , with Φ!! being the inverse standard normal 119 
CDF. 120 
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The FORM approximation of Pr(𝐹) is obtained by substituting the LSF in U-space 𝐺 𝐔  by a 125 
linear function 𝐺! 𝐔 , i.e. a first-order Taylor expansion of 𝐺 𝐔 . The key idea of FORM is 126 
to choose as the expansion point the so-called design point 𝐮∗, which is the point that 127 
minimizes 𝐮∗  subject to 𝐺! 𝐔 ≤ 0. It is also known as the most likely failure point, as it is 128 
the point in the failure domain with the highest probability density. Since all marginal 129 
distributions of the standard uncorrelated multinormal distribution are standard normal, it can 130 
be shown that the FORM probability of failure Pr 𝐺! 𝐔 ≤ 0  is: 131 

Pr 𝐺! 𝐔 ≤ 0 = Φ −𝛽!"#$  (3) 

where Φ is the standard normal CDF and 𝛽!"#$ is the distance from the origin to the design 132 
point, i.e. 𝛽!"#$ = 𝐮∗ . The problem thus reduces to finding the design point 𝐮∗. If 𝐺 𝐔  is 133 
linear, the FORM solution of the probability of failure is exact, otherwise it is an 134 
approximation, which however is sufficiently accurate in most practical applications with 135 
limited numbers of random variables (Rackwitz, 2001).  136 

The linearized LSF 𝐺! 𝐔  can be written as: 137 

𝐺! 𝐔 = 𝛽!"#$ − α!𝐔 (4) 

where 𝛂 = α!,… ,α!  is the vector of FORM importance measures. These importance 138 
measures are defined as: 139 
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α! =
𝑢!∗

𝛽!"#$
 (5) 

where 𝑢!∗ is the 𝑖-th component of the design point coordinates. The α!’s take values between 140 
-1 and 1, and it is 𝛂 = 1. α! is 0, if the uncertainty on 𝑈! has no influence on Pr 𝐺! 𝐔 ≤141 
0 , and it is 1 or -1, if 𝑈! is the only random variable affecting Pr 𝑔! 𝐔 ≤ 0 . When the 142 
original random variables 𝑋! are mutually independent, the α!’s are readily applicable also in 143 
the original space, otherwise the α!’s can be transformed as described in (Der Kiureghian, 144 
2005). 145 

2.3 Treatment of a reliability problem in a BN 146 

We combine discrete BNs and structural reliability concepts to facilitate updating of rare 147 
event (failure) probabilities under new observations. The general problem setting is illustrated 148 
in the BN of Fig. 2. We here limit ourselves to component reliability problems; system 149 
problems are considered later. The binary random variable ‘Component performance’ is 150 
described by the LSF 𝑔(𝐗).  151 

 152 

 153 
Figure	
  2.	
  A	
  general	
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  including	
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  reliability	
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  154 

 155 

The basic random variables 𝐗 of the model are included in the BN as parents of ‘Component 156 
performance’. The nodes 𝑀! represent measurements of individual random variables 𝑋!, and 157 
nodes 𝐼! represent factors influencing the basic random variables. Dependence between the 158 
variables in 𝐗 is modeled either directly by links among them (here 𝑋! → 𝑋! and 𝑋! → 𝑋!) or 159 
through common influencing factors (here 𝐼! → 𝑋! and 𝐼! → 𝑋!) the component performance 160 
node can have (multiple) child nodes. However that does not have an impact on the 161 
discretization of the reliability problem.   162 

Ultimately, the goal is to predict the component performance, i.e. Pr(𝐹), conditional on 163 
observations of other variables, typically of the measurement variables 𝑀!, but possibly of 164 
any other random variable in the BN, such as the influencing variables 𝐼!. Whenever new 165 
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evidence on these variables is available, the BN should be evaluated (in near-real) time 166 
utilizing exact BN inference algorithms. 167 

To enable exact inference algorithms, all continuous random variables are discretized. These 168 
include the 𝐗, and possibily the 𝑀! and 𝐼!. In the general case, the computational effort for 169 
solving the BN is a direct function of the CPT size of ‘Component performance’. The size of 170 
this CPT is 2 𝑛!

!!! !, where 𝑛 is the number of random variables in 𝐗, and 𝑛! is the number 171 
of states used for discretizing 𝑋!. In this paper we do not describe the discretization of random 172 
variables 𝑀! and 𝐼!, since it is typically straightforward and does not contribute significantly 173 
to computational performance. The key parameter for computational efficiency and accuracy 174 
is the discretization scheme for 𝐗, which is described in the next section. 175 

2.4 Simplification of BNs through node removal 176 

Removing random variables from a BN is one possibility to reduce the computational effort 177 
associated with a model. A formal approach for removing nodes from a BN is described in 178 
(Straub and Der Kiureghian, 2010b). In order to decide which nodes to remove from the BN 179 
the following questions should be considered: 180 

• Which random variables are relevant for prediction? (This includes ‘Component 181 
performance’.) 182 

• Which random variables can potentially be observed? (This includes the measurement 183 
variables.) 184 

• Which random variables simplify the modeling of dependencies? (These are e.g. 185 
common influencing factors such as 𝐼! in Fig. 2.) 186 

• For which random variables is it desirable to explicitly show their influence on 187 
component performance? 188 

If a random variable does not belong to any of these categories, the corresponding node in the 189 
BN can be removed. Since the computational efficiency of the model is governed by the size 190 
of the CPT of the ’Component state’ node, the primary interest is in removing basic random 191 
variables from the network. As a measure for the relevance of a basic random variable, 192 
importance measures α!  from a FORM analysis may be used. To better understand the 193 
relation between 𝛼!  and 𝑋! ’s relevance for prediction consider a linearized LSF 𝐺! 𝐔 . 194 
Following (Der Kiureghian, 2005) the variance of 𝐺! 𝐔  can be decomposed as: 195 

𝜎!!
2 = ∇𝐺 ! α1

2 + α2
2 + ⋯+ α𝑛

2  (6) 

where ∇𝐺 denotes the gradient vector of the non-linearized LSF 𝐺 𝐔 . From Eq. 6 it is seen 196 
that a random variable 𝑋! with corresponding α! accounts for α𝑖2 ∙ 100% of the variance 𝜎!!

! . 197 
Therefore, observing a random variable 𝑋! with α! = 0.1 will reduce the variance 𝜎!!

!  by 1%, 198 
whereas the fixing of 𝑋! with α! = 0.5 will reduce 𝜎!!

!  by 25%. 199 
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2.5 Discretization of basic random variables 200 

For ease of presentation, we first consider discretization of statistically independent basic 201 
random variables 𝐗, i.e. the special case of the BN in Fig. 2 in which the 𝑋!’s have no parents. 202 
This is extended to the general case thereafter. 203 

2.5.1 Independent basic random variables  204 

The situation is illustrated in Fig. 3. The performance of the component depends on 𝑛 205 
statistically independent random variables and is described by a LSF 𝑔 𝐗 = 𝑔(𝑋!,… ,𝑋!). 206 
For all basic random variables 𝑋!, corresponding measurements 𝑀! can be performed. To 207 
obtain an equivalent discrete BN, the continuous 𝑋! are replaced by the discrete random 208 
variables 𝑌!, and the LSF is replaced by the CPT of component performance conditional on 209 
𝐘 = [𝑌!;… ;𝑌!]. For each discrete random variable 𝑌! with 𝑛! states  1,2,… ,𝑛!, we define a 210 
discretization scheme 𝐷! = 𝑑!,𝑑!,… ,𝑑!!!!,𝑑!!  consisting of 𝑛! + 1  interval boundaries. 211 
The first and the last interval boundaries are given by the boundaries of 𝑋!′𝑠 outcome space. 212 

 213 
Figure 3. Representation of a basic reliability problem with n independent basic random variables in a BN. Left: 214 
original problem with continuous basic random variables 𝑋!, right: discrete BN, in which 𝑋! are substituted with 215 
discrete nodes 𝑌!. 216 
 217 
Since here the 𝑋!, and thus the 𝑌!, have no parents, the PMF of 𝑌! is defined as: 218 

𝑝!! 𝑗 = 𝐹!! 𝑑! − 𝐹!! 𝑑!!!               7  

where 𝐹!! denotes the cumulative distribution function (CDF) of 𝑋!. The probability of failure 219 
corresponding to the discrete BN in Fig. 3b can be calculated as:  220 

Pr 𝐹 =        … 𝑝!! 𝑦! ∙… ∙ 𝑝!! 𝑦! ∙ Pr 𝐹 𝑌! = 𝑦! ∩…∩ 𝑌! = 𝑦!

!!

!!!!

!!

!!!!
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Once measurements from the nodes 𝐌 = [𝑀!;… ;𝑀!] are available, the conditional failure 221 
probability can be calculated as: 222 

Pr 𝐹 𝐌 = 𝐦 ≈     
1

𝑝𝐌 𝐦
…

𝑝!! y! ∙ 𝑝!! !! 𝑚! 𝑦! ∙ … ∙ 𝑝!! 𝑦! ∙ 𝑝!! !! 𝑚! 𝑦!
∙ Pr 𝐹 𝑌! = 𝑦! ∩ …∩ 𝑌! = 𝑦!

!!

!!!!

!!

!!!!

 9  
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where Pr 𝐹 𝑌! = 𝑦!,… ,𝑌! = 𝑦!  is the conditional probability of component failure given 223 
𝑦!,… ,𝑦!. If no measurements are available for some of the basic random variables, the 224 
corresponding likelihood terms 𝑝!! !! 𝑚! 𝑦!  are simply omitted in Eq. 9. 225 

While the computation of the unconditional failure probability following Eq. 8 is exact, the 226 
computation of the conditional failure probability through Eq. 9 is only an approximation. 227 
The reason is that the dependence between the measurement variable 𝑀! and the ‘Component 228 
performance’ variable is not fully captured in the discrete BN (see also Straub and Der 229 
Kiureghian, 2010b). In Fig. 4, this is illustrated for a reliability problem with one basic 230 
random variable 𝑋! . Both the continuous distribution (Fig. 4a) and the corresponding 231 
discretized distribution (Fig. 4b) are updated correctly after observing 𝑀!. However, for Eq. 9 232 
to be exact, also the conditional failure probabilities Pr 𝐹 𝑌! = 𝑦!  would need to be updated. 233 
This can be observed in Fig. 4a: in interval 𝑌! = 3, which is the one cut by the limit state 234 
surface, the ratio of the probability mass in the failure domain to that in the safe domain 235 
changes from the prior to the posterior case. The fact that Pr 𝐹 𝑌! = 3 ≠ Pr 𝐹 𝑌! = 3,𝑀! =236 
𝑚!  shows that the independence assumption underlying Eq. 9, namely Pr 𝐹 𝑌! = 𝑦! =237 
Pr 𝐹 𝑌! = 3,𝑀! = 𝑚!  is only an approximation. The error occurs only in the intervals that 238 
are cut by the limit state surface. In the simple one-dimensional case of Fig. 4, an optimal 239 
discretization approach would be to discretize the whole outcome space in two intervals, one 240 
capturing the survival and one the failure domain. This discretization would have zero 241 
approximation error. However, already in a two-dimensional case, such a solution is not 242 
possible. This is illustrated in Fig. 5, where the cells cut by the limit state surface are indicated 243 
in grey. The failure probability conditional on measurements calculated according to Eq. 9 244 
will necessarily be an approximation. The approximation error will be small, if the 245 
contribution of the cells cut by the limit state surface (the grey cells in Fig. 5) to the total 246 
failure probability is small. An efficient discretization will thus limit this contribution with as 247 
few intervals as possible. 248 

	
  249 
Figure	
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  251 
Figure	
  5.	
  Discretization	
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  2D.	
  252 

	
  253 

2.5.2 Dependent basic random variables 254 

Eqs. (7-9) must be adjusted when dependence among the 𝑋!’s is present, in accordance with 255 
the case-specific BN structure. However, the principles outlined above for independent 256 
𝑋!,… ,𝑋! hold equally for dependent basic random variables: The discretization error is a 257 
function of the cells cut by the limit state function.  258 

When determining an optimal discretization, we propose in the following to find the FORM 259 
approximation of the reliability problem, which can readily account for the dependence 260 
among the random variables. Hence, there is no need to distinguish between the cases with 261 
independent or dependent random variables.  262 

2.6 Efficient discretization 263 

2.6.1 Optimal discretization of linear problems in standard normal space 264 

To find an efficient discretization of 𝐗, we consider the FORM solution to the reliability 265 
problem. Evaluating the linearized FORM LSF 𝐺! 𝐔  is computationally inexpensive once 266 
the design point 𝐮∗ is known. Therefore, it is feasible to find a discretization of 𝐔 that is 267 
optimal for the event 𝐺! 𝐔 ≤ 0  through optimization. If 𝐺 𝐔  is not strongly non-linear, 268 
this solution will be an efficient discretization for 𝐺 𝐔 ≤ 0  and, after a transformation to 269 
the original space, also for 𝑔 𝐗 ≤ 0 .  270 

As discussed in Section 2.5.1, the approximation error of the discretization is associated with 271 
the change from the prior to the posterior distribution of the basic random variables. A 272 
measure of optimality must thus consider possible measurements of 𝐗 or 𝐔. We consider 273 
hypothetical measurements 𝑀! of all 𝑈! with additive measurement error ε!:  274 

𝑀! = 𝑈! + 𝜀!          (10) 

g(x1, x2) = 0
x2

x1

Pr(F|dark grey cell) = 1

Pr(F|white cell) = 0

0 < Pr(F|light grey cell) < 1 

f (x1, x2)
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𝜀!  is modeled as a normal distribution with zero mean and standard deviation σ! . The 275 
conditional distribution of 𝑈!  given a measurement outcome 𝑀! = 𝑚!  is the normal 276 
distribution with mean !

!!!!
!  
𝑚! and standard deviation 1− !

!!!!
!  

.  277 

We define an error measure based on comparing the true posterior probability of failure 278 
P! 𝑴 𝐦  with the posterior probability of failure calculated from the discretized 𝐔, denoted 279 
by P! 𝑴 𝐝;𝐦 . Here, 𝐝 are the parameters defining the discretization. The proposed error 280 
measure is: 281 

𝑒 𝐝,𝐦 =
log!" P! 𝑴 𝐝;𝐦 − log!"P! 𝑴 𝐦

log!" P! 𝑴 𝐦
     (11) 

𝑒 𝐝,𝐦  is a relative measure of the posterior error, weighted by the magnitude of the 282 
probability of failure.  283 

A-priori, the measurement outcomes are not known. Hence we define the optimal 284 
discretization as the one that minimizes the expected preposterior error E𝑴 𝑒 𝐝,𝑴 : 285 

 286 

𝐝!"# = argmin
𝐝
E𝑴 𝑒 𝐝,𝑴 = argmin

𝐝
𝑒 𝐝,𝐦

𝑴

f𝑴(𝐦)d𝐦     (12) 

The optimization is thus based on the computation of an expected value with respect to the 287 
possible measurements outcomes 𝑴  before having taken any measurements. This is 288 
analogous to a preposterior analysis (Raiffa and Schlaifer, 1961, Straub, 2014b). However, 289 
unlike in traditional preposterior analysis, the objective is not to identify an optimal action 290 
under future available information, but to find the optimal discretization parameters 𝐝!"#. The 291 
integral in Eq. 12 is evaluated through a simple Monte Carlo approach. All 𝑀! have the 292 
normal distribution with zero mean and variance 1+ 𝜎!!. 293 

The parameters in 𝐝 describing the discretization scheme are:  294 

− 𝑛!: number of intervals used to discretize each random variable 𝑈!,  295 
− 𝑤!: width of the discretization frame in the dimension of 𝑈!, and  296 
− 𝑣!: position of the midpoint of the discretization frame relative to the design point 297 

These parameters are illustrated in Fig. 6. For a problem with 𝑛 basic random variables, the 298 
full set of optimization parameters is 𝐝 = 𝑤!,… ,𝑤!,𝑛!,… ,𝑛!!!, 𝑣!,… , 𝑣! .  299 

Clearly, the discretization error reduces with increasing 𝑛! . Because the computational 300 
efficiency of the final BN is a direct function of the size of the CPT associated with 301 
component performance, which is 𝑛!!

!!! , we constrain its size. To this end, we define 𝑐!! as 302 
the maximum number of parameters of the CPT of the component state node. This puts a 303 
constraint on the optimization of Eq. 12: 304 
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𝑐!" ≤ 𝑛!

!

!!!

       (13) 

	
  305 

Figure 6. Schematic representation of a discretization of a linear 2D reliability problem. 𝑤! is the distance 306 
between interval boundaries 𝑑!!  and 𝑑!!!!

! . All intervals between these boundaries are equi-spaced. 𝑣! is the 307 
position of the midpoint of the discretization frame relative to the design point 𝐮∗ in dimension 𝑖. 308 

The optimization is implemented through a two-level approach. The optimization of the 309 
continuous parameters width 𝑤! and position of the discretization frame 𝑣! for all 𝑖 = 1,… ,𝑛 310 
is carried out using unconstrained nonlinear optimization for fixed values of 𝑛! . The 311 
optimization of the discrete 𝑛! is performed through a local search algorithm.  312 

2.6.2 Efficient discretization of the original random variables 𝐗 313 

Since the nodes in the BN represent random variables 𝐗 in their original outcome space, the 314 
discretization schemes, which are derived for the corresponding standard normal random 315 
variables 𝐔, need to be transformed to the X-space. In the case of mutually independent 316 
random variables 𝑋!, any point on the  𝑖-th interval boundary in U-space – if transformed – 317 
will result in the same corresponding 𝑖-th interval boundary in X-space. This is not the case 318 
for dependent random variables 𝑋!, where a mapping of the interval boundaries in U-space to 319 
X-space will not lead to an orthogonal discretization scheme in X-space, even if it is 320 
orthogonal in U-space. To preserve orthogonality throughout the transformation, we propose 321 
to represent each interval boundary through a characteristic point and determine the boundary 322 
in X-space through a transformation of this point. For transforming the interval boundary of 323 
𝑋!, the characteristic point is selected as the design point 𝐮∗, where the i-th element is 324 
substituted by the coordinate of the interval boundary. In Fig. 7 this is shown for an example 325 
with 𝑛 = 2 random variables. 326 
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 327 
Figure	
  7.	
  Transformation	
  of	
  a	
  discretization	
  scheme	
  from	
  U-­‐space	
  to	
  X-­‐space.	
  To	
  preserve	
  orthogonality	
  328 
each	
  interval	
  boundary	
  in	
  U-­‐space	
  is	
  represented	
  by	
  a	
  characteristic	
  point.	
  The	
  random	
  variables	
  𝑋!	
  and	
  329 
𝑋!	
  are	
  Weibull	
  distributed	
  with	
  scale	
  and	
  shape	
  parameter	
  1	
  and	
  their	
  correlation	
  is	
  0.5.	
  330 

3 Development of an efficient discretization procedure 331 

3.1 Optimization of the FORM approximation 332 

We present the optimal discretization for the FORM approximation 𝐺!(𝐔) for 𝑛 = 2 and 333 
𝑛 = 3 dimensions. Extension to higher numbers of random variables is discussed. Because 334 
the linear LSF employed in FORM is described only by the reliability index 𝛽!"#$ and the 335 
vector 𝛂 of FORM sensitives, following Eq. 4, it facilitates parametric studies.  336 

Initially, we consider a reliability index 𝛽!"#$ = 4.26, corresponding to a probability of 337 
failure of 10!!. The standard deviation of the additive measurement error is set to either 338 
𝜎! = 0.5 or 𝜎! = 1.0. Different combinations of FORM sensitivity values 𝛼! are selected, to 339 
investigate their effect on the optimal discretization. In all investigated cases, we find that the 340 
position of the midpoint of the optimal discretization frame coincides with the design point, 341 
i.e. 𝑣!

!"# = 0. Furthermore, the optimal number of intervals 𝑛!
!"# is approximately the same 342 

for all random variables in all investigated cases, independent of the 𝛼! values. We therefore 343 
fix these two optimization parameters at 𝑣! = 0 and 𝑛! = 𝑐!"

! ! . The optimal discretization 344 
widths 𝑤!

!"#, however, vary significantly with the importance measures 𝛼!.  345 

3.1.1 Dependence of the optimal discretization width on 𝛼! 346 

At first sight, the dependence of 𝑤!
!"# on 𝛼! is not obvious, but a clear trend can be observed 347 

by plotting the probability mass enclosed by 𝑤!
!"# against 𝛼!, as shown in Fig. 8. The width 348 

𝑤! describes the domain in which a fine discretization mesh is applied (Fig. 6). The results of 349 
Fig. 8 indicate that the probability mass contained within this interval should be a direct 350 
function of the random variable’s importance, as expressed through 𝛼!. The more important 351 
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the variable, the finer the discretization around the design point should become. The observed 352 
relationship between this probability mass and 𝛼! follows a clear trend, and a function can be 353 
fitted (Fig. 8). Neither the dimensionality of the problem nor the standard deviation of the 354 
measurement error appear to have an influence on this relation. However, as shown in the 355 
following section, it is found that the relation does depend on the prior failure probability of 356 
the problem (i.e. on 𝛽!"#$) and on the number of intervals 𝑛! used to discretize the domain.  357 

To facilitate the application in practice and extending the results to larger numbers of random 358 
variables, in section 3.2 parametric functions are fitted to the optimization results to capture 359 
the dependency between the optimal discretization width 𝑤!

!"#and the FORM importance 360 
measures 𝛼!. 361 

 362 
Figure	
  8.	
  Logarithm	
  of	
  the	
  probability	
  mass	
  enclosed	
  by	
  the	
  discretization	
  frame	
  plotted	
  against	
  𝛼! .	
  Φ	
  363 
denotes	
  the	
  standard	
  normal	
  CDF	
  and	
  𝑢𝑏! 	
  respectively	
  𝑙𝑏! 	
  the	
  last	
  (upper)	
  and	
  the	
  first	
  (lower)	
  interval	
  364 
bound	
  in	
  dimension	
  𝑖.	
  365 

3.1.2 Dependence of the optimal discretization on the reliability index 𝛽 and the 366 
number of discretization cells 𝑐!" 367 

The influence of the prior failure probability and the maximum size of the CPT, 𝑐!", on the 368 
optimal discretization is investigated through 10 problems with 𝑛 = 2 random variables in 369 
standard normal space. The FORM importance measures of the random variables are selected 370 
between 0.1 to 0.995 and the standard deviation of the measurement error is fixed to 𝜎! = 1.0. 371 
We find that the optimal discretization frame is again centered at the design point, i.e. 372 
𝑣!
!"# = 0, and that the intervals are distributed uniformly among the dimensions.  373 

Firstly, we vary the maximum CPT size 𝑐!", i.e. the total number of discretization cells. The 374 
reliability index is 𝛽!"#$ = 5.2. Fig. 9 shows the influence of 𝑐!" on the resulting width of 375 
the discretization frame 𝑤!. Three cases are considered: 𝑐!" = 25, 𝑐!" = 100 and 𝑐!" = 400. 376 
These choices correspond to 5, 10 and 20 intervals for each random variable. The left side of 377 
Fig. 9 shows the relation between the optimal 𝑤! and 𝛼! . The right side of Fig. 9 shows the 378 
same relation, where the 𝑤!’s are scaled as in Fig. 8, i.e. the logarithm of the probability mass 379 
enclosed by the outer interval boundaries is depicted. As in Fig. 8, there is a clear dependence 380 
between the scaled 𝑤! values and the 𝛼! ’s. The interval frames increase with increasing 381 
number of random variables.  382 
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Secondly, we vary the prior failure probability from 10!!  (𝛽 = 3.1) to 10!!  (𝛽 = 5.2). The 383 
results are shown in Fig. 10. Again, a distinct dependence between the scaled 𝑤! values and 384 
the 𝛼! ’s is found. The interval frames decrease with increasing reliability index (with 385 
decreasing failure probability).  386 

3.2 Parametric function of optimal discretion frame 387 

As evident from Fig. 9 and Fig. 10, and discussed above, there is a clear dependence of the 388 
probability mass enclosed by the optimal discretization frame (with width 𝑤!) on the FORM 389 
sensitivity values 𝛼! . The following parameteric function captures this dependence:  390 

log Φ 𝑢𝑏! −Φ 𝑙𝑏! = 𝑎 ∙ exp   𝑏 ∙ 𝛼!  (14) 

𝑢𝑏! is the upper and  𝑙𝑏! the lower interval boundary in dimension 𝑖, such that 𝑤! = 𝑢𝑏! − 𝑙𝑏!. 391 
𝑎 and 𝑏 are the parameters of the exponential function. This function is depicted in Figs. 9 392 
and 10. Tab. 1 shows the parameter values 𝑎 and 𝑏 for the different combinations of the prior 393 
reliability index 𝛽 and number of intervals per dimension 394 
	
  395 
Table	
  1.	
  Parameters	
  𝑎	
  and	
  𝑏	
  of	
  Eq.	
  14	
  for	
  𝛽 = 3.1,	
  𝛽 = 4.3	
  and	
  𝛽 = 5.2	
  as	
  well	
  as	
  5,	
  10	
  and	
  20	
  intervals	
  396 
per	
  dimension.	
  397 

𝑎,
𝑏  𝑛! = 5 𝑛! = 10 𝑛! = 20 

𝛽 = 3.1 −0.28,
2.9  −1.6 ∙ 10!!,

  5.8
 −9.8 ∙ 10!!,

8.7
 

𝛽 = 4.3 −0.15,
4.3  −2.4 ∙ 10!!,

  6.1
 −2.1 ∙ 10!!,

6.2
 

𝛽 = 5.2 −0.36,
3.7  −0.11,

5.0  −3.7 ∙ 10!!,
6.0

 

From the left sides of Fig. 9 and Fig. 10, it can be observed that the relation between 𝛼!  and 398 
𝑤! is fairly diffuse for random variables with 𝛼! < 0.6. Here, the parametric relationship of 399 
Eq. 14 is less accurate. However, these random variables by definition have lower importance 400 
on the reliability estimate. Hence, the inaccuracy of Eq. 14 for random variables with 401 
𝛼! < 0.6 is not critical, as is confirmed by the numerical investigations performed in the 402 

remainder of the paper.  403 

The parameter values of Tab. 1 are derived from two-dimensional problems. In Fig. 8 it is 404 
shown that there are no notable differences between two and three dimensions. On this basis, 405 
it is hypothesized that the heuristics are applicable also to problems with higher dimensions. 406 
This assumption is furthermore supported by the verification examples presented in chapter 4, 407 
where the heuristics are applied also to four-dimensional problems without any notable 408 
deterioration in the results.  409 
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 410 
 411 
Figure 9. Optimization results for 10 two-dimensional, linear problems in standard normal space, which are 412 
discretized with 5, 10 and 20 intervals per dimension. In all cases the prior failure probability is 10!! (𝛽 = 5.2). 413 
The crosses represent the optimization results. The solid lines are the fitted parametric function (Eq. 14). The 414 
left-hand side shows the relation between the width of a discretization frame 𝑤! and 𝛼!  and the right-hand side 415 
shows the relation between the probability mass enclosed by the discretization frame with width 𝑤! and 𝛼! . The 416 
grey crosses on the right side represent outliers (i.e. results were the optimization was not successful) and are not 417 
shown in the figures on the left.  418 
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  419 
	
  420 
Figure	
   10.	
  Optimization results for 10 two-dimensional, linear problems in standard normal space, which are 421 
discretized with 10 intervals per dimension. The prior failure probabilities are 10!!(𝛽 = 3.1), 10!!(𝛽 = 4.3) 422 
and 10!!(𝛽 = 5.2). The crosses represent the optimization results. The solid lines are the fitted parametric 423 
function (Eq. 14). The left-hand side shows the relation between the width of a discretization frame 𝑤! and 𝛼!  424 
and the right-hand side shows the relation between the probability mass enclosed by the discretization frame 425 
with width 𝑤! and 𝛼! . The grey crosses on the right side represent outliers (i.e. results were the optimization 426 
was not successful) and are not shown in the figures on the left.  427 
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3.3 Summary of the proposed procedure 429 

The steps of the proposed procedure are:  430 

1. Formulate the reliability problem  431 
2. Set up the corresponding BN 432 
3. Perform a FORM analysis for the reliability problem 433 
4. Simplify the BN by removing nodes based on: 434 

a. Their importance for prediction 435 
b. Their observability 436 
c. Whether or not a node simplifies modeling of dependencies 437 
d. Whether or not it is desired to explicitly show a node in the BN for 438 

communication purposes 439 
5. Find the discretization scheme in U-space based on the proposed heuristics i.e.: 440 

a. The discretization scheme is centered at the design point 441 
b. The same number of intervals is used for each random variable 442 
c. The width of the discretization frame follows Eq. 14 443 

6. Transform the discretization scheme to X-space 444 
7. Compute the CPTs of the component state node and the basic random variables 445 

A MATLAB based software tool performing these steps (except step 1) is available for 446 
download under www.era.bgu.tum.de/software.  447 

4 Applications 448 

4.1 Verification example I 449 

For verification purposes, we apply the proposed methodology to the discretization of a 450 
general limit state with non-normal dependent random variables. The approximation error 451 
made by this discretization is investigated for different measurement outcomes.  452 

Failure is defined through the linear LSF  𝑔 𝐱 : 453 

𝑔 𝐱 = 𝑎 − 𝑋!

!

!!!

 (15) 

i.e., failure corresponds to the event 𝑋!!
!!! ≥ 𝑎 . 454 

The basic random variables are distributed as 𝑋!~𝐿𝑁 0,0.5  and 𝑋!,… ,𝑋!~𝐿𝑁 1,0.3  455 
(values in parenthesis are the parameters of the lognormal distribution). The statistical 456 
dependence among the 𝑋!  is described through a Gaussian copula model, with pairwise 457 
correlation coefficients 𝜌!". The parameters 𝑎 and 𝜌!" determine the prior failure probability 458 
𝑃!. Measurements 𝑀! = 𝑚! are available for all basic random variables; they are associated 459 
with multiplicative measurement errors 𝜀! ∼ LN 0,0.71 . In Tabs. 2 and 3, different cases 460 
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with 3 and 4 random variables are shown. These cases differ with respect to the prior failure 461 
probability 𝑃! , the correlation between the random variables 𝜌!"  and the observed 462 
measurements 𝐦. For each case, a reference solutions 𝑃! 𝐌 is calculated analytically. 463 
 464 
Table 2.  Evaluation of the discretization error for different measurements 𝐦, for problems with 𝑛 = 3 random 465 
variables. 𝑎 is the constant of the LSF, Eq. 15; 𝜌!" is the correlation coefficient between 𝑋! and 𝑋! for all 𝑖 ≠ 𝑗; 466 
P! and P! 𝑴 denote the analytically calculated prior and posterior failure probabilities, respectively; P! 𝑴 is the 467 
conditional failure probability calculated with the discrete BN. 468 

𝑎 𝑐!" 𝜌!" P! 𝐦 P! 𝑴 P! 𝑴 Absolute 

error  

Relative          

error 

[%] 
100 10! 0 3.6𝐸 − 5 3.0,2.9,2,9  4.3𝐸 − 5 4.5𝐸 − 5 3𝐸 − 6 6 

100 10! 0 3.6𝐸 − 5 2.3,1.1,2,1  4.6𝐸 − 6 5.3𝐸 − 6 7𝐸 − 7 14 

100 10! 0 3.6𝐸 − 5 0.9,2.4,0.9  2.8𝐸 − 7 3.5𝐸 − 7 7𝐸 − 8 25 

200 15! 0.5 1.6𝐸 − 4 1.6,2.0,1.2  1.4𝐸 − 6 1.4𝐸 − 6 1𝐸 − 7 4 

400 8! 0.5 6.4𝐸 − 6 2.6,3.0,3.2  8.2𝐸 − 7 8.9𝐸 − 7 7𝐸 − 8 9 

400 12!   0.5 6.4𝐸 − 6 3.6,3.3,4,3  4.9𝐸 − 6 5.0𝐸 − 6 1𝐸 − 9 3 

 469 
Table 3.  Evaluation of the discretization error for different measurements 𝐦. The number of random variables 470 
𝑛 = 4; 𝑎 is the constant of the LSF, Eq. 15; 𝜌!" is the correlation coefficient between 𝑋! and 𝑋! for all 𝑖 ≠ 𝑗; P! 471 
and P! 𝑴 denote the analytically calculated prior and posterior failure probabilities, respectively; P! 𝑴 is the 472 
conditional failure probability calculated with the discrete BN. 473 

𝑎 𝑐!" 𝜌!" P! 𝐦 P! 𝑴 P! 𝑴 Absolute 

error  

Relative          

error [%] 

400 10! 0 1.7𝐸 − 5 2.2,3.2,2.4,3.4  9.5𝐸 − 6 1.0𝐸 − 5 9𝐸 − 7 9 

400 10! 0 1.7𝐸 − 5 1.6,1.6,1.6,2.0  6.5𝐸 − 7 7.9𝐸 − 7 1𝐸 − 7 21 

400 10! 0 1.7𝐸 − 5 1.1,2.3,1.9,1.2  2.4𝐸 − 7 3.0𝐸 − 7 6𝐸 − 8 26 

600 10! 0.5 1.3𝐸 − 3 3.3,1.7,2.8,2.6  4.2𝐸 − 4 4.3𝐸 − 4 2𝐸 − 5 4 

800 8! 0.5 5.3𝐸 − 4 1.9,2.0,1.9,2.4  1.8𝐸 − 5 1.9𝐸 − 5 1𝐸 − 6 8 

 474 

The results in Tables 2 and 3 show that the proposed methodology for discretization leads to 475 
generally acceptable errors in the posterior probability estimate. (It is reminded that the prior 476 
error is zero.) As expected, the relative error is larger when the posterior probability is low, 477 
and the absolute error is larger when the posterior probability is high. This follows from the 478 
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error measure defined in Eq. 11, which balances the relative with the absolute error. In 479 
addition, the results do not display any apparent effect of correlation on the accuracy.  480 

To assess the effect of the choice of the number of discretization intervals, the failure 481 
probability P! 𝑴 was calculated for a discretization scheme with up to 20 intervals per RV for 482 
the fourth measurement case in Tab. 2. The estimated failure probabilities P! 𝑴 are plotted 483 
together with the exact solution in Fig. 11.   484 

 485 
Figure 11. Posterior probability P! 𝑴 as a function of the number of intervals per random variable together with 486 
the exact (analytical) solution P! 𝑴 for the fourth measurement case in Tab 2. 487 

4.2 Verification example II 488 

The failure criterion applied in verification example I (Eq. 15) leads to a linear LSF in U-489 
space. To verify the accuracy of the proposed method for problems with non-linear LSFs in 490 
U-space, we additionally investigate the following LSF:  491 

𝑔 𝐱 = 𝑎 − 𝑋!

!

!!!

  (16) 

Again the basic random variables 𝑋!  to 𝑋!  are distributed as 𝑋!~𝐿𝑁 0,0.5  492 
and   𝑋!,… ,𝑋!~𝐿𝑁 1,0.3 . Different cases with 𝑛 = 2 , 3 and 4 random variables are 493 
investigated. Measurements 𝑀! = 𝑚! are available for all basic random variables; associated 494 
to these measurement are multiplicative measurement errors 𝜀! ∼ LN 0,0.71 . For 495 
independent random variables 𝑋!  it is possible to determine posterior distributions 496 
𝑓!! !! 𝑥! 𝑚!  analytically. The posterior failure probabilities 𝑃! 𝑴 , which are used as 497 
reference solutions, are calculated through importance sampling with 10!  samples. The 498 
results are presented in Tab. 4.  499 
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Table	
  4.	
  Evaluation	
  of	
  the	
  discretization	
  error	
  for	
  different	
  measurements	
  𝐦.	
  The	
  problems	
  have	
  𝑛 = 2, 3	
  500 
or	
  4	
  random	
  variables;	
  𝑎	
  is	
  the	
  constant	
  of	
  the	
  LSF,	
  Eq.	
  16;	
  𝜌!" 	
  is	
  the	
  correlation	
  coefficient	
  between	
  𝑋! 	
  501 
and	
  𝑋! 	
  for	
  all	
  𝑖 ≠ 𝑗;	
  P! and P! 𝑴 denote the prior respectively posterior failure probabilities, which	
  are	
  502 
calculated	
  through	
  importance	
  sampling	
  with	
  10!	
  samples;  P! 𝑴 is the conditional failure probability 503 
calculated with the discrete BN. 504 
	
  505 

𝑎 𝑐!" 𝜌!" P! 𝐦 P! 𝑴 P! 𝑴 Absolute 
error  

Relative          
error [%] 

𝑛 = 2  :      

12 10! 0 1.3𝐸 − 5 2.8,4.5  1.4𝐸 − 5 1.2𝐸 − 5 2𝐸 − 6 15 

12 10! 0 1.3𝐸 − 5 2.3,2.4  3.3𝐸 − 6 3.5𝐸 − 6 2𝐸 − 7 6 

10 12! 0 1.7𝐸 − 4 4.0,3.2  4.0𝐸 − 4 3.7𝐸 − 4 3𝐸 − 5 7 

𝑛 = 3: 

15 10! 0 3.7𝐸 − 5 2.1,5.6,5.0  4.8𝐸 − 5 4.5𝐸 − 5 4𝐸 − 6 7 

15 10! 0 3.7𝐸 − 5 1.1,3.7,3.4  1.5𝐸 − 5 1.8𝐸 − 5 3𝐸 − 6 20 

13 12! 0 5.0𝐸 − 4 3.0,3.0,3.0  5.4𝐸 − 4 5.4𝐸 − 5 3𝐸 − 6 1 

𝑛 = 4:  

20 8! 0 7.4𝐸 − 6 2.0,4.0,3.4,3.0  4.9𝐸 − 6 5.6𝐸 − 6 6𝐸 − 7 13 

17 8! 0 3.1𝐸 − 4 1.0,1.4,1.2,2.0  4.5𝐸 − 5 5.2𝐸 − 5 7𝐸 − 6 15 

17 12! 0 3.1𝐸 − 4 3.1,2.0,3.3,2.4  2.5𝐸 − 4 2.5𝐸 − 4 7𝐸 − 6 3 

 506 

The results in Tab. 4 do not differ substantially from Tabs. 2 and 3. This indicates that the 507 
(weak) non-linearity of the LSF function describing failure does not affect the accuracy 508 
significantly.  509 

4.3 Runway overrun 510 

Runway overrun (RWO) of a landing aircraft is one of the most critical accidents types in 511 
civil aviation. A RWO warning system is developed with the proposed discretization 512 
procedure. It provides RWO probabilities conditional on observations of the landing-weight, 513 
the headwind and the approach speed for different aircraft types and different airports. For a 514 
detailed description of how this problem can be treated in BN framework we refer to 515 
(Zwirglmaier and Straub, 2015). 516 

Formally, RWO can be expressed as the event of the operational landing distance exceeding 517 
the available runway length (Fig. 12). Correspondingly, a LSF for runway overrun can be 518 
defined as:  519 
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𝑔 𝐗 = Runway  length− Operational  landing  distance 𝐗  (17) 

with 𝐗 representing the basic random variables of the problem.  520 

(Drees and Holzapfel, 2012) proposed a model for the operational landing distance required 521 
by a landing aircraft, which is applied here. The model, as well as the basic random variables 522 
𝐗, are presented in (Zwirglmaier et al., 2014), which also includes a detailed description of 523 
the reliability and sensitivity analysis.  524 

We consider two different airports (AP I and AP II) and two different aircraft types (AC A 525 
and AC B). While the aircraft type affects the landing-weight, the airport affects both the 526 
headwind and the approach speed. The distribution models for landing-weight, headwind and 527 
approach speed deviation at the different airports and with the different aircraft types are 528 
given in Tabs. 5–7. All other basic random variables of the problem are not affected by the 529 
airport and aircraft type and are as in (Zwirglmaier et al., 2014). 530 

Tab. 8 summarizes the FORM importance measures of all random variables 𝐗 computed for 531 
the four combinations of aircrafts and airports.  532 

 533 

	
  534 
Figure	
  12.	
  Runway	
  definitions.	
  	
  535 

 536 
Table	
  5.	
  Distribution	
  models	
  for	
  landing	
  weight	
  conditional	
  on	
  the	
  aircraft.	
  537 
	
  538 

Landing weight [t] 

 Distribution Mean Std. deviation 

AC A Weibull (min) 59.25 1.69 
AC B Weibull (min) 64.25 1.69 
  539 

Threshold Touchdown
point

Runway length

Aircraft
stops

Operational landing distance Stop margin
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Table	
  6.	
  Distribution	
  models	
  for	
  head	
  wind	
  conditional	
  on	
  the	
  airport.	
  540 

Head wind [kts] 

 Distribution Mean Std. deviation 

AP I Normal 5.42 5.75 

AP II Normal 6.51 5.75 

 541 
Table	
  7.	
  Distribution	
  models	
  for	
  approach	
  speed	
  deviation	
  conditional	
  on	
  the	
  airport.	
  542 
	
  543 

Approach speed deviation [kts] 

 Distribution Mean Std. deviation 

AP I Gumbel (max) 4.69 4.21 

AP II Gumbel (max) 5.63 4.21 

 544 

Table 8. FORM importance measures 𝛼!  for each aircraft-airport combination and every basic random variable 545 
in the RWO application. 546 

 547 

4.3.1 Selection of relevant random variables 548 

The applied RWO model includes 10 basic random variables. However, it is sufficient to 549 
include only a selection of these explicitly in the BN. Random variables that are not relevant 550 
for the prediction of RWO in the considered scenarios can be excluded. This is the case for 551 

 𝛼!  

Random variable (I/A) (I/B) (II/A) (II/B)       Annotation 

Landing weight [t] 0.09 0.10 0.11 0.09 Modeled 

Headwind [kts] −0.65 −0.61 −0.67 −0.60 Modeled 

Temperature [°C] 0.03 −0.00 −0.03 −0.03 Not important 

Air pressure [hPa] 0.01 −0.01 −0.01 −0.00 Not important 

Touchdown point [m] 0.20 0.16 0.18 0.20 Modeled 

Approach speed deviation [kts]  0.20 0.21 0.20 0.24 Not observable 

Time of spoiler deployment [s]  −0.00 −0.00 0.01 0.01 Not important 

Time of breaking initiation [s] 0.70 0.74 0.68 0.73 Not observable 

Time of reverser deployment [s] 0.03 0.04 0.06 0.05 Not important 

Time of breaking end [s] −0.02 −0.01 0.01 0.02 Not important 
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random variables with a low FORM importance, whose value does not depend significantly 552 
on airport and aircraft type. Here, all random variables, whose absolute value of the FORM 553 
importance measure 𝛼! ′𝑠 is smaller than 0.1, are excluded (see Tab. 8). The one exception is 554 
landing weight, since this variable is substantially influenced by the aircraft type.  555 

Furthermore, one can exclude random variables that cannot be measured before the decision 556 
on whether to land or not is made. This holds for Touchdown point and the time at which the 557 
pilot initiates breaking. Since these basic random variables are also not needed to simplify the 558 
modeling of dependencies, it is not necessary to explicitly model them in the BN, as indicated 559 
in Tab. 8.  560 

4.3.2 BN model 561 

The resulting BN of the RWO warning system is shown in Fig. 13. During the aircraft 562 
approach, measurements can be obtained for the three basic random variables included in the 563 
BN. 564 

The random variables were discretized separately for each aircraft-airport combination (joint 565 
states of discrete parents) with 8 intervals each, following the proposed discretization 566 
procedure. In a second step, the discretization schemes are merged, i.e. the regions of the 567 
outcome space, which are discretized with fine intervals for at least one of the aircraft-airport 568 
combinations, are discretized with the respective fine intervals also in the merged 569 
discretization scheme. In the end 15 (landing-weight), 10 (headwind) and 9 (approach speed 570 
deviation) intervals are used to discretize the three basic random variables. 571 

For all observable quantities, the measurements 𝑚! are modeled with an additive observation 572 
error:  573 

𝑚! = 𝑥! + 𝜀! (18) 

𝜀! is modeled by a normal distribution with zero mean and standard deviation 𝜎!!.  574 

For the random variable landing weight (at landing time) we model the standard deviation of 575 
the measurement error as 𝜎!!" = 0.34  𝑡. Due to turbulences governing wind speeds, the 576 
measurement of the head wind speed at the time of the measurement is a less reliable 577 
indicator for the head wind speed at landing time; we model the measurement error with a 578 
standard deviation 𝜎!!" = 2.88  𝑘𝑡𝑠. A high uncertainty is also assumed for the approach 579 
speed deviation at landing 𝜎!!"# = 4.21  𝑘𝑡𝑠. 580 

49 (Measurement LW), 57 (Measurement HW) and 57 (Measurement ASD) intervals are used 581 
to discretize the measurement nodes.  582 
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  583 
	
  584 
Figure	
  13.	
  BN	
  structure	
  for	
  a	
  RWO	
  warning	
  system.	
  585 

4.3.3 Results 586 

In Tab. 9, RWO probabilities for the different airports and aircrafts obtained with the discrete 587 
BN are compared to reference solutions, which were calculated by importance sampling 588 
around the design point.  589 

 590 

Table	
   9.	
   RWO	
   probabilities	
   for	
   the	
   different	
   airports	
   and	
   aircrafts	
   calculated	
  with	
   the	
   discrete	
   BN	
  𝑝𝐵𝑁,	
  591 
together	
  with	
   reference	
   solutions	
   calculated	
   by	
   importance	
   sampling	
   around	
   the	
   design	
   point	
  𝑝𝐷𝑆.	
   The	
  592 
reference	
  solution	
  has	
  a	
  sampling	
  error	
  with	
  coefficient	
  of	
  variation	
  in	
  the	
  order	
  of	
  10%.	
  593 
	
  594 

AP/AC 𝑝𝐵𝑁 𝑝𝐷𝑆 

I/A 2.0𝑒 − 7 1.9𝑒 − 7 

I/B 1.0𝑒 − 6 9.2𝑒 − 7 

II/A 1.3𝑒 − 7 1.3𝑒 − 7 

II/B 6.9𝑒 − 7 6.5𝑒 − 7 

 595 

In Tab. 10, results obtained with the BN for different hypothetical cases of aircrafts 596 
approaching an airport are presented. In each of these cases, measurements associated with 597 
landing weight, headwind and the approach speed deviation are made. A threshold is used to 598 
decide, whether or not the pilot should continue landing or fly to the alternate airport 599 

Runway
 overrun

Landing-
weight

Head-
wind

Approach
speed 

deviation Measure-
ment HW

Measure-
ment LWMeasure-

ment ASD

Airport

Aircraft-
type
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respectively try a second approach. Here we assume that up to a probability of runway 600 
overrun of 10!! the pilot should continue landing.  601 

 602 
Table	
  10.	
  Probabilities	
  of	
  RWO	
  and	
  corresponding	
  decision	
  on	
  landing,	
  computed	
  with	
  the	
  BN	
  for	
  different	
  603 
sets	
  of	
  observations.	
  	
  604 

Cas

e 

Airpo

rt 

Aircra

ft 

Meas. LW 

[t] 

Meas. HW 

[kts] 

Meas. ASD [kts] Pr   RWO  Landing 

a) AP I AC B 63 0 10.5 2.5𝑒 − 8 Yes 

b) AP I AC A 61 −10 5 4.8𝑒 − 6 No 

c) AP II AC B 67 3 0 6.5𝑒 − 10 Yes 

d) AP II AC A 57.5 −12 3 1.3𝑒 − 6 No 

5 Discussion 605 

When modeling with BNs, it is often necessary or beneficial to discretize continuous random 606 
variables. When the BN includes rare events that are a function of such random variables, the 607 
choice of the discretization scheme is non-trivial. In this contribution, we investigate this 608 
discretization based on FORM concepts, and propose a heuristic procedure for an efficient 609 
discretization in these cases. This is based on importance measures 𝛼! obtained through a 610 
FORM analysis, which represent the influence of the uncertainty associated with a random 611 
variable 𝑋!. 612 

The most important finding is that discretization should focus on the area around the most 613 
likely failure point (design point), identified by a FORM analysis. Furthermore, we find that 614 
optimally all random variables should be discretized with approximately equal numbers of 615 
intervals, independent of their importance, as long as |𝛼!| is not close to zero. The widths of 616 
the intervals should be selected based on the FORM importance 𝛼! of the random variables. 617 
With increasing importance, the interval width should be reduced, leading to finer 618 
discretization for larger 𝛼! . This relation is particularly evident for 𝛼! ≥ 0.8. We show that 619 
it is possible to fit a parametric function to approximate the relation between 𝛼!  and the 620 
optimal width of the region on which the discretization should focus.  621 

This parametric function is used to derive a heuristic procedure for finding an efficient 622 
discretization. This allows the extrapolation of the optimization results to problems with more 623 
random variables. As demonstrated by the verification examples, the heuristic procedure leads 624 
to accurate results.  625 

In this paper, we restrict ourselves to static discretization. Application of the proposed 626 
procedure within dynamic discretization (e.g. (Neil et al., 2008)) should be investigated. The 627 
results of the procedure can serve as an initial discretization scheme, which is iteratively 628 
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adjusted within dynamic discretization. This might strongly enhance the convergence 629 
performance of these algorithms.  630 

Here, we consider only component reliability problems, which are characterized by a single 631 
design point. Nevertheless the heuristics derived can also be applied to system reliability 632 
problems. System reliability problems can in general be treated as combinations of 633 
component reliability problems. Parallel and serial systems are to be distinguished. For 634 
parallel systems discretization should be performed based on the joint design point of the 635 
problem. For serial systems, following the same line of thought as in the runway overrun 636 
example, discretization can be performed separately for each component problem 637 
(corresponds to the discrete cases i.e. airport- aircraft combinations in the RWO example). In 638 
a second step the discretization schemes can be merged. In the same way it is possible to 639 
apply the heuristic to multi state components. One can treat each limit state surface (LSF) 640 
defining the boundary between two states separately and merge the discretization schemes 641 
afterwards.  642 

The number of basic random variables in a single LSF that can be modeled explicitly in a BN 643 
is limited to around 5 to 8. This is due to the exponential growth of the target nodes CPT with 644 
increasing number of parents and is independent of the discretization method. Despite this 645 
limitation, BNs are applicable to many practical problems – particularly if one considers that 646 
usually not all basic random variables need to be modeled explicitly as nodes, as 647 
demonstrated in the presented example. 648 

While in this paper the focus was on the discretization of the basic random variables, it is 649 
straightforward to incorporate the BNs discussed into larger models.   650 

6 Conclusion 651 

We investigated discretization of continuous reliability problems such that they can be treated 652 
in a discrete Bayesian network framework. Reliability problems with linear LSF in standard 653 
normal space were considered. These can be seen as FORM approximations of reliability 654 
problems. For these linear LSFs optimal discretization schemes were found, which are 655 
optimal with respect to an error measure calculated through a preposterior analysis. Since 656 
FORM is known to give good approximations also for most non-linear reliability problem, the 657 
resulting discretization schemes are efficient also for non-linear LSFs. The main findings 658 
presented in this paper are: 659 

• An optimal discretization scheme should discretize finely the area around the FORM 660 
design point.  661 

• The size of the sub-region of the outcome space of a random variable 𝑋! can be 662 
reduced significantly for random variables whose corresponding uncertainty is 663 
dominating the reliability problem  664 
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• The number of intervals used for discretization should be approximately equal for all 665 
basic random variables 666 

On this basis, we proposed a heuristic that can be used to find an efficient discretization 667 
scheme. In verification examples, this heuristic is found to give good accuracy 668 
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