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Introduction

Let θ be a set of uncertain variables, and suppose we have a set of observed or measured data
points D. Using Bayes’ Theorem, our belief about θ can be updated by

f (θ|D) =
1

Z
f (θ) f (D|θ) , (1)

where the prior distribution f (θ) represents the initial knowledge about the parameters; the
likelihood function f (D|θ) stands for the probability of observing data D conditional on the
parameter vector θ; the model evidence Z = f (D) =

∫
f (D|θ) f (θ) dθ acts as a normalizing

constant; and the posterior distribution f (θ|D) represents the updated belief about θ after
observing the data D.

In the following, we describe 3 examples that are commonly used as benchmarks in Bayesian
inference with engineering application. These problems are solved in MATLAB® and Python us-
ing the following approaches:

� Bayesian inference with subset simulation (BUS-SuS) [3] :
Function BUS_SuS.

� Adaptive Bayesian inference with subset simulation (aBUS-SuS) [3]:
Function aBUS_SuS.

� Improved transitional Markov chain Monte Carlo (iTMCMC) [3]:
Function iTMCMC.

For further questions or bugs in the codes please write to:
felipe.uribe@tum.de.

1 One-dimensional posterior

Consider a one-dimensional inference problem [3]

f (θ | D) ∝ f (θ) f (D | θ) = N (θ; 0, 1) · N (θ;µ, σ2),

where the likelihood has parameter σ2 = 0.04. The only ’data’ point is the mean D = µ = 5.
This problem has analytical solution; the posterior mean and standard deviation are 4.81 and
0.196, respectively. Moreover, the model evidence is Z = 2.36× 10−6.
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2 Multi-modal posterior

We consider the simulation of a multi-modal posterior given by the truncated mixture of bi-
variate Gaussian densities [2]

f (θ | D) ∝ f (θ) f (D | θ) = U(θ; [a1, a2], [b1, b2]) ·
n∑
i=1

wiN (θ;µi, σ
2I2), (2)

where the prior is the uniform distribution in the square domain [a1, b1]× [a2, b2].
The following values for the parameters are used: The number of densities in the mixture is

n = 10, the bounds for the prior are a1 = a2 = 0, b1 = b2 = 10, the variance is σ2 = 0.01, and the
weights are given by {wi}|ni = 0.1. The ’data’ points are given by the means D = {µi}|ni , which
are generated by simulating a realization from the prior. Posterior samples of (2) are shown in
Figure 1.
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Figure 1: Samples from the multi-modal posterior distribution in Example 2.

3 Two-degree-of-freedom shear building

3.1 Model description

Consider a two-degree-of-freedom shear building model without damping, as shown in Figure 2.
This type of representation is commonly used to model moment-resisting frame structures. The
objective is to identify its uncertain interstory stiffness parameters based on measurements of the
first two eigenfrequencies. According to [1], this problem is not globally identifiable, which means
that there exist multiple combinations of values of the model parameters that can approximate
the measured data reasonably well.

The story masses are taken as deterministic values, m1 = 16531 and m2 = 16131 kg. The
interstory stiffness are parametrized as, k1 = k̄1θ1 and k2 = k̄2θ2, where θ1 and θ2 are the
stiffness parameters to be identified. The nominal values for the interstory stiffnesses are chosen
as, k̄1 = k̄2 = 29.7× 106 N/m. The vector of uncertain parameters is θ = [θ1, θ2].

3.2 Definition of the prior

Motivated by the positive nature of the stiffness parameters the prior distribution of θ is assumed
to be given by the product of two log-normal PDFs with modes Moθ1 = 1.3 and Moθ2 = 0.8, and
standard deviations σ̄θ1 = σ̄θ2 = 1 [1].
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Figure 2: Shear building model (without damping).

The mode and variance of the log-normal PDF are equal to

Mo = exp(µ− σ2) =⇒ σ2 = µ− ln(Mo) (3)

σ̄2 = exp(2µ+ σ2)(exp(σ2)− 1). (4)

By substituting Eq. 3 into Eq. 4, the following equations can be solved to obtain the parameter
µ for each distribution

σ̄2θ1 − exp(2µθ1 + [µθ1 − ln(Moθ1)])(exp(µθ1 − ln(Moθ1))− 1) = 0

σ̄2θ2 − exp(2µθ2 + [µθ2 − ln(Moθ2)])(exp(µθ2 − ln(Moθ2))− 1) = 0,

which result into µθ1 = 0.51024 and µθ2 = 0.16958. Now, using the mean and mode values
in Eq. 3, we obtain the standard deviations of the underlying Gaussian σθ1 = 0.49787 and
σθ2 = 0.62667.

These are the parameters of the log-normal distributions, and therefore, the prior PDF is
defined as

f (θ) =
2∏
j=1

1

θjσθj
√

2π
exp

(
−

(ln(θj)− µθj )2

2σ2θj

)
. (5)

3.3 Definition of the likelihood

Using modal data D corresponding to measured eigenfrequencies, the likelihood function for the
stiffness parameters θ can be formulated as [1]

f(D|θ) = exp

(
−J(θ)

2σ2ε

)
, (6)

where J(θ) is the modal measure-of-fit function given by [6]

J(θ) =
2∑
j=1

µ2εj

(
f2j (θ)

f̃2j
− 1

)2

, (7)

here µε1 = µε2 = 1 are the means and σ2ε = 1/2i−1 the variance of the prediction error (for a
given i = 1, ..., 9 simulation level to explore the effect of different values of σ2ε on the posterior).
Furthermore, the fj(θ) are the natural eigenfrequencies obtained with the model and the D = f̃j
are the natural eigenfrequencies used as the data in the model updating, these values are f̃1 = 3.13
and f̃2 = 9.83 Hz.

The equation of motion for un-damped free vibration encountered in structural engineering
is expressed as

Mü + Ku = 0,
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where the mass matrix M and stiffness matrix K are given by:

M =

[
m1 0
0 m2

]
K =

[
k1 + k2 −k2
−k2 k2

]
.

This equation can be solved by assuming a harmonic solution of the form:

u = Φj sin(ωjt),

where ωj are the circular natural eigenfrequencies and Φj are the eigenvectors or modal shapes.
Performing differentiation of the harmonic solution and substituting into the equation of motion
yields

−ω2
jMΦj sin(ωjt) + KΦj sin(ωjt) = 0,

which is equivalent to (
K− ω2

jM
)
Φj = 0, for j = 1, 2.

This equation is known as the eigenvalue problem of un-damped linear systems, which is a set
of homogeneous algebraic equations. The basic form of this eigenvalue problem can be expressed
as:

KΦj = ω2
jMΦj ,

which is solved for ω2
j and Φj . Finally, the corresponding natural eigenfrequencies in Hz are

obtained as fj = ωj/(2π). Note that our problem only depends on the stiffness matrix since the
mass matrix is assumed deterministic.

Combining Eqs. 6 and 7, the likelihood function is equal to

f(D|θ) = exp

− 2∑
j=1

µ2εj
2σ2ε

(
f2j (θ)

f̃2j
− 1

)2
 . (8)

3.4 Definition of the posterior

From Eq. 1, the posterior distribution can be expressed as

f (θ|D) = Z−1D f (D|θ) f (θ)

where ZD = f (D) =
∫
f (D|θ) f (θ) dθ is a normalizing constant known as the model evidence

or marginal likelihood. Since the aim is to draw samples from the posterior distribution, only its
shape is needed [4, 7]. This particularity allows us to apply several Bayesian inference algorithms
only using our knowledge about the prior and likelihood functions, i.e., f (θ|D) ∝ f (D|θ) f (θ).

Hence, using Eqs. 5 and 8, the target distribution to be used in the sampling process for the
updating of the posterior distribution is given by

f (θ|D) ∝ π(θ) = exp

− 2∑
j=1

µ2εj
2σ2ε

[
f2j (θ)

f̃2j
− 1

]2 2∏
j=1

1

θjσθj
√

2π
exp

(
−

(ln(θj)− µθj )2

2σ2θj

)
. (9)

Posterior samples of (9) are shown in Figure 3.
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Figure 3: Samples from the posterior distribution in Example 3.
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