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1 Introduction

This document presents four MATLAB® classes for defining joint probability distributions and
performing selected operations on these distributions. The classes were developed in view of
applications to reliability analysis and uncertainty quantification, but can also be used in other
contexts.

The first class, termed ERADist, defines the marginal distributons among a selected set of
probability distribution types. The second class, called ERANataf (section 4), defines the joint
distribution through a Gaussian copula by means of the Nataf isoprobabilistic transformation.
The third class, called ERACond (section 5), allows the definition of conditional distribution ob-
jects for the use within the scope of the fourth class, which is called ERARosen. ERARosen (section
6) is based on the Rosenblatt transform and enables the definition of joint distributions by com-
bining different marginal and conditional distributions. Both, ERANataf and ERARosen, allow
the transformation of the joint distribution from and to standard normal space.

This documentation is not meant to provide an exhaustive description of the implemented
MATLAB® classes and methods. Instead it presents briefly the motivation, theoretical back-
ground and their definition. Together with the provided MATLAB® example scripts, the user
should get a basic understanding on how the different classes can be used. To get more informa-
tion about a specific class or method it is possible to call the commands help class and help
class\method within MATLAB® | where class is one of the four class names (presented in this
documentation) and method one of the methods of the respective class.

Since all the functionalities were implemented within the object-oriented programming paradigm
in the next section the basic principles of this programming paradigm within the MATLAB® frame-
work are explained.

2 Object-oriented programming in MATLAB®

One can usually implement simple numerical methods using built-in functions in MATLAB® |
However, with the increase in magnitude and complexity of the tasks, functions become more
complex and difficult to operate. Object-oriented techniques can simplify the programming of
numerical methods that may involve specialized data structures or a large number of functions
that interact between the different data structures.

Object-oriented programming not only allows the definition of a certain data structure, but
also the definition of different types of operations (functions) that can be applied to the data.
In this way, the data structure becomes an object that includes both data and functions. In



particular, a class is a template that describes objects with common characteristics; one must

identify and establish all the objects that are manipulated and how they relate to each other.
MATLAB® admits the creation of programs using objects and ordinary functions [9]. In

general, a MATLAB® class (command classdef), should contain the following main blocks:

e properties block: Defines all the properties that are associated with a class. Attributes
and default values of all properties are defined.

e methods block: Defines functions associated with the class and their attributes. The first
method, called the constructor, must have the same name as the class itself .

3 The ERADist Class

3.1 Motivation

The specification of probability distributions is paramount in statistical and uncertainty anal-
ysis. This task is not only essential for the definition of probability density functions (PDFs)
and cumulative distribution functions (CDFs), but also for the generation of samples and com-
putation of statistics of quantities of interest. ERADist is the basic class for defining marginal
distributions, which is the basic for defining joint distributions with the other classes described
later.

The Statistics and Machine Learning Toolbox [8] by MATLAB® provides an environment for
statistical computations. However, it does not provide much support with operations on joint
distributions, which are central to reliability analysis and uncertainty quantification. Addition-
ally, some basic functionalities, which make these tasks easier, are also not provided by The
Statistics and Machine Learning Toolbox. For example, marginal distributions have to be de-
fined by their parameters, but often it is rather the the moments of the distribution that are
provided for its characterization. Consequently, the ERADist class has been designed with the
purpose of generating several types of probability distribution that can be defined either by their
parameters, moments or experimental data to which the distribution is fitted. Furthermore, the
different methods of the ERADist class are used as auxiliary functions for different methods of
the ERANataf and ERARosen class.

3.2 Definition

3.2.1 ’Properties’ block

The properties block contains three elements:

e Name: specifies the distribution type
e Par: specifies the parameters of the distribution
e ID: name by which the distribution can be identified

3.2.2 ’'Methods’ block

The methods block is defined by seven functions:



e Obj = ERADist(name,opt,val) constructor method to define the object

e Mean = mean(0Obj) returns the mean value

e Standarddeviation = std(0bj) returns the standard deviation

e CDF = cdf(0bj,x) returns the value of the CDF at x

e InverseCDF = icdf(0Obj,y) returns the value of the inverse CDF at y
e PDF = pdf(0bj,x) returns the value of the PDF at x

e Random = random(0bj,m,n) generates m X n random samples

To get a better understanding on how an ERADist object can be defined, in the following the
different inputs of the constructor method are explained.
The input argument name corresponds to the type of probability distribution that the user wants
to create. The user can choose from 21 supported probability distributions that are listed in
Table 1. To get more information about the supported distributions and their properties please
refer to the appendix A.

The input argument opt can be chosen as:

e PAR: If the distribution should be defined by its parameters (Table 2).
e MOM: If the distribution should be defined by its first moments (Table 3).

e DATA: If the distribution should be defined by fitting the parameters to a given data set
(Table 4).

The argument val requires the numeric value of the given opt, i.e., the value of the parameters
if PAR is chosen, the value of the moments if MOM is chosen, or the data vector if DATA is chosen.
In the case that the user wants to use the ERADist object as part of an ERARosen object the addi-
tional input argument id can be given. In this case the ERADist object must be defined as follows:

Obj = ERADist(name,opt,val,id)

The scope of the additional input is to be able to identify the corresponding node when plot-
ting the Bayesian network which defines the ERARosen object with the method plotGraph. The
input id must thereby be given as a character array.

In order to facilitate the definition of the ERADist class, the inputs of name and opt are case
insensitive.



Table 1: ERADist distribution names.

name [ Distribution
‘beta’ Beta distribution
’binomial’ Binomial distribution
‘chisquare’ Chi-Squared distribution
‘exponential’ Exponential distribution
'frechet’ Frechet distribution
‘gamma’ Gamma distribution
‘geometric’ Geometric distribution
"GEV’ Generalized extreme value distribution (to model maxima)
"GEVMin’ Generalized extreme value distribution (to model minima)
‘gumbel’ Gumbel distribution (to model maxima)
‘gumbelMin’ Gumbel distribution (to model minima)
"lognormal’ Log-Normal distribution
‘negativebinomial’ | Negative binomial distribution
‘'normal’ Normal distribution
‘pareto’ Pareto distribution
'poisson’ Poisson distribution
‘'rayleigh’ Rayleigh distribution
’standardnormal’ Standard normal distribution
‘truncatednormal’ Truncated normal distribution
‘uniform’ Uniform distribution
'weibull’ Weibull distribution
Table 2: Definition of the distributions by their parameters (PAR).
l Distribution [ Defined by parameters
Beta Obj = ERADist(’beta’,’PAR’, [r,s,lower,upper])
Binomial Obj = ERADist(’binomial’,’PAR’, [n,p])
Chi-squared Obj = ERADist(’chisquare’,’PAR’, [k])
Exponential Obj = ERADist(’exponential’,’PAR’, [lambda])
Fréchet Obj = ERADist(’frechet’,’PAR’, [a_n,k])
Gamma Obj = ERADist(’gamma’,’PAR’, [lambda,k])
Geometric Obj = ERADist(’geometric’,’PAR’, [pl)
GEV (to model maxima) Obj = ERADist(’GEV’,’PAR’, [beta,alpha,epsilon])
GEV (to model minima) Obj = ERADist(’GEVMin’,’PAR’, [beta,alpha,epsilon])
Gumbel (to model maxima) | Obj = ERADist(’gumbel’,’PAR’, [a_n,b_n])
Gumbel (to model minima) | Obj = ERADist(’gumbelMin’,’PAR’, [a_n,b_n])
Log-normal Obj = ERADist(’lognormal’,’PAR’, [mu_lnx,sig_lnx])
Negative binomial Obj = ERADist(’negativebinomial’,’PAR’, [k,p])
Normal Obj = ERADist(’normal’,’PAR’, [mean,std])
Pareto Obj = ERADist(’pareto’,’PAR’, [x_m,alphal)
Poisson Obj = ERADist(’poisson’,’PAR’, [v,t])
Obj = ERADist(’poisson’,’PAR’, [lambda]l)
Rayleigh Obj = ERADist(’rayleigh’,’PAR’, [alphal)
Standard normal Obj = ERADist(’standardnormal’,’PAR’,[])
Truncated normal Obj = ERADist(’truncatednormal’,’PAR’, [mu_n,sig _n,a,b])
Uniform Obj = ERADist(’uniform’,’PAR’, [lower,upper])
Weibull Obj = ERADist(’weibull’,’PAR’, [a_n,k])




Table 3: Definition of the distributions by their moments (MOM).

| Distribution | Defined by moments ‘
Beta Obj = ERADist(’beta’,’MOM’, [mean,std,lower,upper])
Binomial Obj = ERADist(’binomial’,’MOM’, [mean,std])
Chi-squared Obj = ERADist(’chisquare’,’MOM’, [mean])
Exponential Obj = ERADist(’exponential’,’MOM’, [mean])
Fréchet Obj = ERADist(’frechet’,’MOM’, [mean,std])
Gamma Obj = ERADist(’gamma’,’MOM’, [mean,std])
Geometric Obj = ERADist(’geometric’,’MOM’, [mean])
GEV (to model maxima) Obj = ERADist(’GEV’,’MOM’, [mean,std,betal)
GEV (to model minima) Obj = ERADist(’GEVMin’,’MOM’, [mean,std,betal)

Gumbel (to model maxima) | Obj = ERADist (’gumbel’,’MOM’, [mean,std])
Gumbel (to model minima) | Obj = ERADist(’gumbelMin’,’MOM’, [mean,std])

Log-normal Obj = ERADist(’lognormal’,’MOM’, [mean,std])
Negative binomial Obj = ERADist(’negativebinomial’,’MOM’, [mean,std])
Normal Obj = ERADist(’normal’,’MOM’, [mean,std])
Pareto Obj = ERADist(’pareto’,’MOM’, [mean,std])
Poisson Obj = ERADist(’poisson’,’MOM’, [mean,t])

Obj = ERADist(’poisson’,’MOM’, [mean])
Rayleigh Obj = ERADist(’rayleigh’,’MOM’, [mean])
Standard normal Obj = ERADist(’standardnormal’,’MOM’, [])
Truncated normal Obj = ERADist(’truncatednormal’,’MOM’, [mean,std,a,b])
Uniform Obj = ERADist(’uniform’,’MOM’, [lower,upper])
‘Weibull Obj = ERADist(’weibull’,’MOM’, [mean,std])

Table 4: Definition of the distributions by data (DATA).

l Distribution ‘ Defined by data ‘
Beta Obj = ERADist(’beta’, ’DATA’,{[X], [lower,upper]})
Binomial Obj = ERADist(’binomial’,’DATA’,{[X],n})

Chi-squared Obj = ERADist(’chisquare’,’DATA’, [X])
Exponential Obj = ERADist(’exponential’,’DATA’, [X])
Fréchet Obj = ERADist(’frechet’,’DATA’, [X])
Gamma Obj = ERADist(’gamma’,’DATA’, [X])
Geometric Obj = ERADist(’geometric’,’DATA’, [X])
GEV (to model maXima) Obj = ERADist(’GEV’,’DATA’, [X])

GEV (to model minima) Obj = ERADist(’GEVMin’,’DATA’, [X])

Gumbel (to model maxima) | Obj = ERADist (’gumbel’,’DATA’, [X])
Gumbel (to model minima) Obj = ERADist(’gumbelMin’,’DATA’, [X])

Log-normal Obj = ERADist(’lognormal’,’DATA’, [X])
Negative binomial Obj = ERADist(’negativebinomial’,’DATA’, [X])
Normal Obj = ERADist(’normal’,’DATA’, [X])
Pareto Obj = ERADist(’pareto’,’DATA’, [X])
Poisson Obj = ERADist(’poisson’,’DATA’,{[X],t})
Obj = ERADist(’poisson’,’DATA’, [X])
Rayleigh Obj = ERADist(’rayleigh’,’DATA’, [X])
Truncated normal Obj = ERADist(’truncatednormal’,’DATA’,{[X], [a,b]l})
Uniform Obj = ERADist(’uniform’,’DATA’, [X])
Weibull Obj = ERADist(’weibull’,’DATA’, [X])

4 The ERANataf Class

4.1 Motivation and Theoretical Background

For several methods in probabilistic assessment and reliability analysis, it is beneficial to trans-
form the basic random variables to an equivalent independent standard normal random variable
space. This allows to take advantage of the numerous properties of the normal distribution. De-
pending on the information available on the distributions of random vectors, there exist several



possible transformations from the space of physical variables to the standardized variable space,
e.g. Nataf transformation, Rosenblatt transformation (see section 6), Hermite polynomials
transformation, among others [4].

The Nataf transformation [10] describes the joint probability density function of random vari-
ables based on their individual marginal distributions and coefficients of correlation using a
Gaussian copula. The basic assumption of the underlying distribution model is that the random
variables derived from a marginal transformation to standard normal variables will follow the
multivariate normal distribution.

Consider a set of n correlated random variables X = [X1, ..., X,,] with known marginal CDFs
Fx, (21),..., Fx, () and linear correlation matrix Ry with components,

<Xi - ,U’Xi> Xj— Hx;
ox, ox, ’

where px, and oy, are the mean and standard deviation of X;. The Nataf transformation
T : X — U is the composition of two functions T = T5 o 17,

P;j:E

e First, an associated set of correlated standard normal random variables U = [171, e l?n]
(with correlation matrix Rg) can be obtained by applying:

T1 : Xl — UZ = (13_1 (FXZ(CL‘Z)) 1= 1, ey T
where, ® is the standard normal CDF.

e Second, a set of uncorrelated variables U = [Uj, ..., U, ] is subsequently obtained by apply-
ing:
:U-—U=T0
where, I' is the square root of the inverse of the correlation matrix Ry, e.g. a Cholesky
factor of Ry, 1 The correlation matrix Ry is called the fictive correlation matrix. In general
Ry # R, but they are related as:

(@) — | (B (0(0) — px
p'Lj—E —

Ox;
_ 1 // (Fi-l (®(a;)) —uxi) (F};jl (®(a;)) —uxj> 6o (i, 153 ) ditidlil

Ox,0x;

where, ¢ is the two-dimensional standard normal PDF with zero means, unit standard
deviations and correlation coeflicient p;j.

The computation of the coefficients pgj may be carried out using iterative procedures.
However, it might be difficult since it involves the resolution of an integral equation (which
is not guaranteed to have a solution, if p;; is too close to 1 or -1), and even if each
coefficient p;j can be computed, there is no guarantee that the resulting matrix will be
positive definite [3]. When this happens, a set of semi-empirical formulas relating p;;
and p;j based on numerical studies for various types of random variables can be used [4].
In the ERANataf class the computation of the fictive correlation matrix (i.e. solution of
the integral equation) is carried out numerically by a two-dimensional Gauss-Legendre
quadrature integration, together with the MATLAB® fzero command in order to solve
for the correlation coefficients.

After applying the Nataf transformation the joint PDF and CDF of the random vector X can
be computed as [4],

R @) fx () f(n) T P ()
Pl = on (6 R) =S oty o R0 TS50

1=

Fx(x) = @(1; Ry)



The ERANataf class implements not only the Nataf transformation to map a given set of samples
from the physical to the standard normal space (X2U), but also the inverse Nataf transformation
to map the samples from the standard normal space to the physical space (U2X) and the Jaco-
bians of the two transformations. Moreover, one can compute the joint PDF and CDF of a given
set of correlated random variables, or generate random samples from the joint distribution.

4.2 Definition

4.2.1 ’Properties’ block

The properties block contains four elements:

e Rho_X: correlation matrix of the random vector X

e Rho_Z: correlation matrix of the correlated normal vector U

e A: lower triangular matrix of the Cholesky decomposition of Rho_Z
e Marginals: contains all marginal distribution objects

4.2.2 ’Methods’ block

The methods block is defined by six functions:

e Obj = ERANataf (M,Correlation) constructor method to define the object

e [U,Jac] = X2U(Nataf,X,opt) transformation from X to U and Jacobian of
this transformation

e [X,Jac] = U2X(Nataf,U,opt) transformation from U to X and Jacobian of
this transformation

e jointrandom = random(Nataf,n) generates n random samples according to the
joint distribution

e jointpdf = pdf(Nataf,X) returns the joint PDF at X

e jointcdf = cdf(Nataf,X) returns the joint CDF at X

To define the ERANataf object, the marginals, defined by a vector-shaped ERADist object,

must be given as input argument M of the constructor method. A vector-shaped ERADist object
can be created by stacking the single ERADist objects in a matrix (e.g., [dist _1,...,dist_n]). The
dependence between the different marginals must be defined by a n x n correlation matrix and
given as input argument Correlation of the constructor method.
For the other methods one must consider that every row of X and U corresponds to a single
data point while the number of columns corresponds to the dimension of the joint distribution.
Moreover note, the output Jac of the methods X2U and U2X is only given if the respective input
opt is given as character array ’Jac’. If that is the case, the output Jac corresponds to the
Jacobian of the transformation of the first sample in X and U.



5 The ERACond Class

5.1 Motivation

A way to describe dependence between different random variables is to define conditional proba-
bility distributions. The density of the variable Y conditional on the variable X could be written
as:

fxy (zly) = @)

where fxy(x,y) represents the joint PDF of the variables X and Y. It is not always possible
to directly define the joint distribution of two or more random variables. However, if different
marginal and conditional distributions are known, the combination of these can be used to define
the joint distribution. This approach, which is different to the one represented by the Nataf distri-
bution model (see section 4), is implemented in the ERARosen class (see section 6). To enable this
approach, the ERACond class is defined, which allows the construction of conditional distributions.

5.2 Definition

5.2.1 ’Properties’ block

The properties block contains five elements:

e Name: specifies the distribution type
e Opt: type of parameter which defines the distribution, either ’'MOM’ or 'PAR’
e Param: specifies the parameters of the distribution according to the property Opt

as a function handle

e ID: name by which the distribution can be identified

5.2.2 ’"Methods’ block

Although the ERACond class contains different methods, in the following only the constructor
method will be explained. The other methods are only meant to be called by the different
ERARosen methods. The direct use is nonetheless possible, but in general not recommended and
therefore not explained.

An ERACond object can be defined by the constructor method as follows:

Obj = ERACond(name,opt,param)

The input argument name corresponds to the type of probability distribution that the user
wants to create. The user can choose from a total of 21 supported probability distributions
that are listed in Table 1. To get more information about the supported distributions and their
properties please refer to the appendix A.

The ERACond class, unlike the ERADist class, accepts only two options for the input argument
opt , namely:

e PAR: If the distribution should be defined by its parameters (see Table 2 for orientation).



e MOM: If the distribution should be defined by its first moments (see Table 3 for orientation).

For the input argument param the user must give the required information, parameters or first
moments according to the choice given in opt, as follows:

e as a cell array of function handles (and scalars) for distributions with multiple parameters.

e as a function handle for distributions with one parameter. A cell array of a single function
handle also works for distributions with one parameter.

The number of variables of the function handle corresponds to the number of distributions (other
ERAcond or ERADist objects) that the conditional distribution is depending on. The distributions
on which the conditional distribution depends are also referred to as parents. An example for a
cell array of function handles given as input param for distributions that have two parameters
and three parents could be:

param = {Q(x,y,z) x+y+z, 0.2"x"2}

An example for the required input param for distributions that have one parameter and two
parents could be:

param = {Q@(x,y) x"2-y} OR param = @(x,y) x"2-y

Note, in case that one of the parameters or moments does not depend on any parents the
respective matrix entry of the function handle can be simply given by a constant term.

In case the user wants to use the method plotGraph within the ERARosen class in order to
visualize the Bayesian network which defines the ERARosen object, it can be beneficial to give the
additional input argument id to the different ERACond objects that define the ERARosen object.
In this case ,the ERACond objects must be defined as follows:

Obj = ERACond(name,opt,param,id)

The reason for the additional input is to be able to identify the different nodes when plotting
the Bayesian network. The input id must thereby be given as a character array.

6 The ERARosen Class

It should be noted that this class is not working for MAT LAB® releases older than MATLAB
R2019a.

6.1 Motivation and Theoretical Background

As already mentioned in section 5.1, there are different ways to define joint probability distri-
butions. The approach underlying the ERARosen class is the definition of a joint probability
distribution by the combination of different marginal and conditional distributions through the
Rosenblatt transform. In general, the joint PDF of a random vector X can be written through
the chain rule as

fx(%) = fxy (71) - fxox, (@2 X1 = 21) - o o x X (B0 X = 21,00, X1 = Tn1)



Due to the successive conditioning of the different random variables, a transformation of the
variables from physical to standard normal space T': X — U can be written as follows:

uy = &1 (Fx, (1))
us = 7Y Fy, (22| X1 = 21))

Un = q)_l(FXn(xn|X1 = T, -'-7Xn—1 = J;n—l))

This transformation is known as Rosenblatt transformation [1,2,11]. Its inverse, the transfor-
mation T : U — X, can be written as:

z1 = Fy, (®(u1))
2 = Fy, (®(u2)| X1 = 1)

Ty = F)}i(é(unﬂXl =, ...,Xn_l = Jjn_l)

In order to facilitate the understanding, definition and visualization of the joint PDF with
the ERARosen class, it is useful to link the Rosenblatt transformation to the concept of Bayesian
networks. A Bayesian network (BN) is a probabilistic modeling tool that has originated from the
field of artificial intelligence and machine learning [12]. A BN is defined by a Directed Acyclic
Graph (DAG) structure and its graphical representation makes it easy to intuitively define and
understand the dependency between random variables. Every marginal and conditional dis-
tribution corresponds to a node within the graph. The BN encodes conditional independence
assumptions among the random variables. Specifically, from the d-separation properties under-
lying BNs it follows that the chain rule speficying the joint PDF can be reduced to:

n

fx(x) =[] fx.(@ilpax, (x:))

=1

where fx, (xi|pax,(x;)) corresponds to the conditional PDF of X; given realizations of the parents
of Xj;, denoted as pax,(z;). Parents of X; are all nodes that have links pointing towards Xj.
For the example shown in Figure 1 the joint PDF can therefore be written as:

fx(x) =fa(a) - fB() - fojap(c|lA=a,B=0b)- fpjac(dlA=a,C=c)
“felac(elC=c¢,B=0b) fpp(fID=4d)- fap,ceglD=d,C=c E=e)

10



Figure 1: Example of a Directed Acyclic Graph

11



The variables A and B are defined as marginal distributions and therefore must be created as
ERADist objects while all the other variables are defined as conditional distributions, hence must
be created with ERACond.

Additional to the joint PDF and the two transformations, a sequential generation of multivari-
ate random samples is implemented in the ERARosen class.

Since it is not always possible to accurately evaluate the integral for the joint CDF, no method
is implemented for this purpose. However, the user can make use of the MATLAB® built-
in kernel density estimation functions mvksdensity and ksdensity. More information re-
garding the use of this functions can be found in [6,7] or in the provided MATLAB® script
Example_Kernel Density_Estimation.m.

6.2 Definition

6.2.1 ’Properties’ block

The properties block contains four elements:

e Dist: cell array containing all the different marginal and conditional
distributions

e Parents: cell array containing the indices of the parent nodes

e Layers: cell array containing information about the computation order

e Adjacency: adjacency matrix of the Directed Acyclic Graph which defines the

dependency between the different distributions

6.2.2 ’Methods’ block
The methods block is defined by six functions:

e Obj = ERARosen(dist,depend) constructor method to define the object

e U = X2U(0bj,X,opt) transformation from X to U

e X = U2X(0bj,U,opt) transformation from U to X

e jointpdf = pdf(0bj,X,opt) returns the joint PDF at X

e jointrandom = random(0bj,n) generates n random samples according to the

joint distribution

fig = plotGraph(0bj,opt) plots the Bayesian network by which the joint
distribution is defined

The input arguments of the constructor methods are defined as follows:

e dist must be a cell array with vector shape that contains all the marginal distributions
(ERADist objects) and conditional distributions (ERACond objects) required to define the
joint distribution. To create the input dist all the different distribution objects must be
defined separately and then be stacked in a cell array (e.g., dist = {dist_1,dist_2,

, dist_n}). The use of cell arrays instead of matrix objects is necessary since it is not
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possible to put objects of different classes, in this case ERADist and ERACond objects, in
one matrix.

e depend must describe the dependency between the different marginal and conditional dis-
tributions. The dependency is defined by collecting vector shaped matrices which contain
the indices of the parents of the respective distributions in a cell array. The matrices within
the cell array must be ordered according to the place of the corresponding distribution in
the input dist. If a distribution is defined as a marginal distribution, and therefore has no
parents, an empty matrix ([1) must be given for that distribution in depend. For condi-
tional distributions, the order of the indices within one of the matrices corresponds to the
order of the variables of the respective function handle of the according ERACond object.
The described dependency must always lead to a Directed Acyclic Graph (DAG) structure.

For the the methods X2U, U2X and pdf the following apply:

e X must be a n X d matrix (n = number of data points, d = dimensions).

e If no error message should be given in case of the detection of an improper distribution,
give opt as character array ’NaN’.

When using the method plotGraph, if opt is given as >numbering’ the nodes are named accord-
ing to their order of input in dist (e.g., the third distribution in dist is named #3). If no ID
was given to a certain distribution, the distribution is also named according to its position in
dist, otherwise the property ID is taken as the name of the distribution.

7 Use of discrete marginals with ERANataf and ERARosen

The distributions models that can be used to construct objects of the ERADist and ERACond
classes include a number of discrete distributions. These include the binomial, negative bino-
mial, geometric and Poisson models, see appendix A. Discrete random variables can be used
to construct joint probability distributions through application of the ERANataf and ERARosen
classes. The key concept that allows the definition of discrete joint distributions based on the
Gaussian copula and the product rule (Rosenblatt transform) is the extension of the definition
of the inverse of a function as follows:

F~Yu) =inf{z € R: F(z) > u}

The above is known as the generalized inverse of the function F'(z). Through employing the
generalized inverse of the CDF of discrete random variables, it is possible to define a unique
transformation 7' : U — X based on either joint model. However, for a discrete random variable
X with CDF Fy it holds that Fy (Fy'(u)) # u, which implies that the transform 7 : X — U is
not unique. Therefore, if at least one of the marginal (or conditional) distributions is a discrete
distribution, the method X2U will return an error.
We note that if the ERANataf class includes only discrete marginals, the joint PMF of the
random vector X is given by the expression:
fx(x) =A% (AT

Tn—1

LAY @0, Ry)

r1—1

where

Ag’ZG(X) =G(x1,. . X1, 0py Tht 1y -+ -y Tn) — G(T1, 0o X1, Ay Thot 1y - -+, T)
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For the case where the marginals of the first m components of X are continuous and the remaining
components are discrete, the joint PDF reads:

fX(X) = Aiz—lAiz_l—l ce Aiz:i—lFXWH—l:n (Xm—|—1:n|x1:m)fxl;m (Xlzm)

where fx,,,.(X1.,) is obtained as explained in section 4 and Fx,,. ., (Xm+1:n|X1:m) is the CDF
of the random variable X,,,y1., conditional on Xj.,, = X1.,,. As the accurate implementation of
these steps involves considerable computational cost, they are currently not included. Therefore,
the jointpdf method of the ERANataf class will return an error if at least one marginal is a
discrete distribution.

8 Application Examples

For more information on the different classes, please refer to the ’'Examples’ folder. The folder
contains three MATLAB® scripts which illustrate the use of the different classes which were
presented in this document. An additional script illustrates how to estimate the marginal PDFs
and joint CDF of a random vector defined with the ERARosen class using kernel density estima-
tion with MATLAB® built-in functions.
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A Supported Probability Distributions

Name PDF/PMF and CDF Support Parameters Mean Standard deviation
Beta
Fx(@) = (z—a)t(b—a)"! z € (a,b) r>0 as+br b—a rs
X B(r,s)(b—a)rts—1 s>0 r+s r+s\Vr+s+1
FX(m):]%(r,s) (a<b)eRrR
Binomial
p— n T n—ax
px(z) = (x)p (1-p) z €{0,..,n} n € Ny np np(l —p)
LI p €[0,1]
Fx@) =3 (M)pra-p"
i=0 "
Chi-squared
1
fx(z) = 2ﬁr<k)x(§—l)exp<_,> z € [0, 00) k € Nso k V2k
2 a3
2
k
1(5:3)
Fx(z) = :
r (%)
Exponential
fx(xz) = Xexp (—Az) z € [0, 00) A>0 % %

Fx(xz) =1—exp(—Ax)
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Name PDF/PMF and CDF Support Parameters Mean Standard deviation
Fréchet
k+1 k
o= () e (< (%)) S I wr (1-3) wlr(-3)-
an \ T T k € (0, 00) k k
an\Fk f k>1 1/2
Fx (z) =exp (— (*) ) o r2 (1 - 1)}
T k
oo for k<1 for k> 2
oo for k<2
Gamma
(o) = AFgh =1 exp(—Az) z € [0,00) k>0 k k
I'(k) A>0 A A2
v(k, Az)
F p—
=Ty
Geometric
px(@) =1 —-p)* 'p ze{1,2,3,..} pe0.1] 1 1-p
Fx(z)=1-(1-p)* P p?
GEV
1 a — —
Fx (@) = = (#(2))* " exp(—t()) z€fe— 5,00 a>0 PR Gt &\ /P —28) -1 - B
« ; BER B B
Fx (z) = exp(—t(z)) or #>0 ceR for 8#0,8<1 for B#0,8<1/2
with (z) = (14 (25%)) /?
z € (—oo,e — —] oo for B>1 ooforﬁ>l
-2
for <0
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Name PDF/PMF and CDF Support Parameters Mean Standard deviation
GEV Min
(mirror image of
1 «a —B) —
GEV around ¢) fx(z) = > (t(2))?+! exp(—t(x)) T € e+ B»OO) a>0 €— a% %\/F(l —-28)-T(1-p)?
BeR
Fx(z) =1 — exp(—t(z)) for <0 ceR for B#£0,8<1 for B#0,8<1/2
with #(z) = (1 — B(2=<))~"/*
@
xe(foo,e+g} oo for f>1 oofor,BZ%
for >0
Gumbel
Ta
fx(z) = L exp(—z — exp(—2)) x € (—00,00) an >0 bn + any Tg
an b, €R where ~ = 0.577216
Fx(z) = exp(—exp(—2))
with 2= 2 bn
an
Gumbel Min
(mirror image of 1 an
Gumbel around fx(z) = — exp(z — exp(z)) @ € (—00,00) an >0 bn — any 76
bn) an bn €R where v~ 0.577216
Fx (x) = 1 — exp(—exp(2))
with z= 2 o
Qn
Log-normal
1 (11’1(1’) — lulnX)2 T € (07 OO) HPinx € R UL2nX 012 X
) = exp | — ex + B2 lex + —22 exp(o? -1
fx (@) P < 207 i >0 P nx + =0 P | pnx + =3 p(o, x)
1 1 Inx — ,ulnx]
Fx(x) ==+ —erf [7
xm=5+3 V201inx
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Standard deviation

Name PDF/PMF and CDF Support Parameters Mean
Negative
binomial r—1
px(@) = (k—l)(lfp)“kpk velkktl,..} keN = k(1 —p)
s i 4 pe(0,1) P p?
_ = _Ni—k Kk
Fx(@ =3 (" )a-»""
i=k
Normal
1 (x—n)? zeR €R o
0= o (-2 ~ ~
) 202T 202 c>0
1 T — i
Fx(x) == 1+erf(7):|
x(@) 2 |: V2
Pareto
fe ax
fX (m) = xaax_'_ni x € [1‘777,700) Tm >0 - _m1 :E?noc
—12(c —
P (:p):l—(m“’>a a>0 for a>1 (@=1)*a—2)
X T for a>2
Poisson
px () = ATexp (=) _ (v1)” exp (=vt) z€{0,1,2,...} A>0 A=t VA =Vt
x! x!
or
PV 0, t>0
Fx(2) =exp(-0) Y v >0,
=
Rayleigh
fx(z) = — exp(—a?/20?) z € [0,00) a>0 e i-r ,
e 2 5

Fx(z) =1 — exp(—z?/2a?)




Name

PDF/PMF and CDF

Support Parameters Mean Standard deviation
Standard normal
L L o u€eR - 0 1
u) = ——exp | —-u
o) = = (502
®(u) ! /u (—t%/2) dt
u) = —— exp (—
V2T J o P
Truncated
normal . <m> 2 € [a, 1] i €R b 5 . 5
fx(z) = In / @ fx(@)dz / z? - fx (z)dz — (/ - fX(fC)d$>
crn<<1>(b;ﬂ)f<b(%>> on >0 a . i
" " a<b
o (z5m) -0 (250)
F (l‘) — frn (T’IL
X o (b—un) _ @ (a—un)
Uniform
1 _ 1 1
fx(z) =4 b-a z € [a,b] x € [a, b] oo < a < oo L(a+b) ENTIE
0 otherwise —co<b< oo
0 rz<a
Fx(e)={2=% a¢lab)
1 rz>b
‘Weibull
k—1 k 2
Fe(m) = & (i) exp [ - ( z ) z € [0,00) an € (0,00) anl'(1+1/k) a {r (1 " %) _
Gn \dn an k € (0, 00)

Fx(@) =1 exp ( (m)k)
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In order to compute some of the previous expressions the following special functions are required:

e the error function,

erf(z) = % /Ow exp(—t?)dt

The beta function,
1
B(z,y) = / t* (1 — )y tae
0

The regularized beta function,

B(z;a,b) _ fy t* (A —t)""dt
B(a,b) B(a,b)

I.(a,b) =

The gamma function,

The lower incomplete gamma function,

v(s,x) = / t57Lexp(—t) dt
0
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