

MSc thesis – Environmental Engineering Optimizing flexible infrastructure designs via partially observable Markov decision processes (POMDPs) Wanying Liu, September 2017

Background

Infrastructure design suffers from changing demand over the long service life. To deal with the uncertain demand, usually a flexible system whose capacity can be easily updated in the future is favored. This study optimizes the flexible infrastructure design problems via a framework of partially observable Markov decision processes (POMDPs). Alternatives with different degrees of flexibility can be compared in terms of their optimal initial capacities, expected life-cycle costs and future update strategies. Besides, the effects of the damage function and the belief state transition on the benefits from flexible designs have also been studied.

Figure 1 The generic POMDP model Demand θ , observation Z, capacity a, immediate risk U_R and immediate cost U_C

Figure 2 Optimization of the initial capacity of three systems with different flexibility φ The blue line is the total expected reward and the other three (red line, immediate cost; yellow line, immediate risk; purple line, expected future reward) are its components calculated for the initial time step.

Methodology

A generic POMDP model characterizing the infrastructure design problems is set up. The change of demand is modeled through a Gaussian state transition function and the observation error is considered in a Gaussian likelihood function. The POMDP model is optimized through dynamic programming in Matlab and through an existing POMDP solver called *zmdp*.

Supervised by M.Sc. Elizabeth Bismut,

Prof. Dr. Daniel Straub

Conclusion

Results show that a flexible design is beneficial with a steep damage function, a significant change of demand (e.g. high trend and high state uncertainty) and a small observation error.

The consistent results of Matlab and *zmdp* solver indicate a promising potential to optimize various POMDP engineering problems (e.g. with non-Gaussian distributions) with POMDP solvers.