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1

Introduction

Fatigue of materials is a phenomenon which implies a structural damage due to cyclic

loading and it is one of the most studied subjects in the field of structural and mechan-

ical engineering.

High cycle fatigue refers to the application of more than 103 loading cycles to the

structure or to the component. Since its discovery in the 19th century by Wöhler, fa-

tigue of metals has been constantly studied in the field of engineering, unfortunately

being the driver often constituted by the many accidents caused by this phenomenon.

More than 15.000 papers have been written on this topic in the last 20 years. Never-

theless fatigue failures still occur, causing not only costs but also disasters, such as the

Aloha Airlines Flight 243 accident in 1988, or the Comet 1 accident in 1954, just to

cite two of the most known accidents, for which fatigue has been o�cially recognized

to be the cause of failure.

The service loading conditions, which in the case of fatigue are given by cyclic

loading, may cause the nucleation and growth of cracks from the free surface or from

pre-existing imperfections. Cracks often grow from the free surface, because stresses

usually reach their highest value on the surface and because small imperfections due to

the surface roughness facilitate the crack nucleation. Cracks can also easily grow from

pre-existing imperfections, such as for example welding defects or surface flaws deriving

from the manufacturing process or resulting from the deterioration during the service.

The nucleation phase of the cracks is usually longer in comparison to the growth phase,

therefore the presence of preexisting imperfections must be taken into account when

1



1. INTRODUCTION

analyzing the behavior of a structures subjected to fatigue. Once nucleated, cracks

may grow in the structure without causing macroscopic or visible damage from the

beginning. However unexpected failure occurs, when critical conditions of crack size

and applied stress are reached.

Fatigue crack growth is possible only when the fatigue threshold or the fatigue limit

are exceeded. The fatigue threshold is a characteristic property of the material and

it is expressed in terms of a stress intensity factor (SIF). The SIF accounts for the

geometry of the structure, the crack’s shape and dimension, the applied nominal stress.

When the applied SIF exceeds the fatigue threshold (SIF � SIFth) the crack grows,

when the applied SIF is lower than the fatigue threshold (SIF  SIFth) the crack

does not grow, even though cyclic stresses are applied. Generally, the fatigue crack

growth depends on the combination of crack’s dimension and applied stress and it is

also influenced by the geometry of the structure and by the cracks’ shape.

Due to the presence of the fatigue threshold, a cyclic loading acting on a structure

does not imply the generation of fatigue damage. In this respect two design approaches

can be distinguished: i) safe-life and ii) damage tolerant.

The safe-life design approach avoids crack nucleation and crack growth in the struc-

tures, maintaining the SIF below the fatigue threshold and assuming the structure will

have an infinite service life. In case pre-existing cracks are present in the structure, an

hypothesis on their maximum or expected size must be formulated in order to avoid

the exceedance of the fatigue threshold. This approach is simple to apply and often

conservative; its drawback is the over-dimensioning of the components.

The damage tolerant design approach allows the nucleation and growth of cracks,

i.e. this approach permits the application of a SIF higher than the threshold. How-

ever it ensures that the damage does not cause failure. In some cases non destructive

inspections are carried out during the structure’s life to detect the presence of cracks.

This is for example the case of aeronautical components or expensive components of

power generation plants. In other cases only initial non destructive tests are planned,

and no intermediate inspections is foreseen.This approach requires the definition of a

finite service life.
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The loading to which a structure is subjected might be constant or variable.

In the simplest case, a structure is subjected to a constant amplitude stress with

constant stress ratio, as depicted in figure 1.1. In this case the stress condition is

described by the stress range �� = �max � �min and by the stress ratio, R = �
min

�
max

, or

by the stress amplitude �a = ��
2 .

Usually structures are subjected to variable amplitude loads, which imply a variable

stress amplitude and a variable stress ratio during the fatigue life (see figure 1.2).

A constant stress sequence of the type shown in figure 1.1 can be very easily de-

scribed, while a variable amplitude stress sequence is not always predictable, it is not

easy to simulate for experimental testing and it is di�cult to obtain analytically for

numerical evaluations.

n 

σmax 

σmin 

Δσ 

σmean 

Figure 1.1: Scheme of a constant amplitude stress versus the number of fatigue cycles

n.

The stress to which structural components is subjected depends on the specific

application and on the particular service conditions. For example the stress sequence

experienced by a structural component of an airplane is very demanding during landing

and take o↵, while it is lighter during the cruise. This implies that airplanes traveling

a long way experience less severe loading than those landing and taking o↵ more often.

The stress sequences experienced by o↵ shore structures depend by the water current

of the particular area where they are installed. The mechanical components of a car,

such as axles and suspensions, are subjected to very di↵erent types of loading when the

3
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n 

σ 

Figure 1.2: Scheme of a variable stress versus the number of fatigue cycles n.

car is traveling on a highway or when it is traveling o↵-road. On average, the type of

stress to which a car is subjected depends on the quality of the road network on which

the car is traveling, and can vary for di↵erent countries or regions. Steel bridges are

also subjected to variable stresses and the estimation of their fatigue damage as well

as of the possibility to extend their life are relevant topics in the civil engineering field.

1.1 This work: motivation and innovative features

The first studies on the influence of variable amplitude loading on fatigue date back to

the 1930s when, in the aeronautical field, engineers aimed at optimizing the performance

of the components and reducing their weight. Many improvements have been done in

the high cycle fatigue design with variable loading, but many aspects of this topic are

still open for investigation.

To achieve an optimized design not only the sequence of variable stress has to be

described, but also the uncertainty in the other input variables has to be taken into

account. For example the presence of initial flaws and their size are uncertain, as well

as the mechanical and the fatigue properties of the material, which are often given as

minimum guaranteed values and vary depending on the manufacturing process or even

on the production batch. Sometimes, also the residual stresses, due for example to the
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manufacturing or welding process, play an important role in the fatigue phenomenon.

Besides, fatigue presents considerable scatter even under controlled experimental con-

ditions and its intrinsic stochastic nature has also to be considered.

For this reason, an exhaustive fatigue design must be based on a statistically based

reliability evaluation, accounting for all the uncertainties a↵ecting the case study and

properly describing the applied stress sequence.

The current standard fatigue reliability evaluation procedures, such as (6), do not

treat the fatigue life assessment with a probabilistic approach and do not consider vari-

able amplitude fatigue stress sequences and the stochastic fatigue crack growth (21).

Therefore there is a gap between the fatigue reliability evaluation available standard

procedures, the state of the art methods for fatigue crack growth and reliability evalu-

ation, the actual in-service conditions of the structures subjected to high cycle fatigue.

The present work aims at covering this gap, proposing a comprehensive reliability eval-

uation method for structures subjected to high cycle variable amplitude fatigue. In

particular this work is characterized by the following novelties :

• Initial flaws are described with a probabilistic approach based on experimental

data.

• An original model of the load is presented, which permits representing di↵erent

types of service histories (section 6.2).

• A comprehensive fatigue crack growth and fatigue threshold model based on ex-

perimental data is proposed and validated. The model accounts for the stochas-

ticity of the crack growth phenomenon and for plasticity induced closure (chapter

3 and section 3.6). The model is more accurate than the usually applied models,

but simpler from a statistical point of view.

• A new bi-dimensional fatigue crack growth and failure evaluation algorithm is

implemented based on the integration of the Forman-Mettu model (or Nasgro

equation) and a block approximation of the stress sequence (sections 2.4.2.4, 4.5,

4.6, 6.2.1).

• Original and very e�cient probabilistic reliability evaluation schemes are pro-

posed, implemented, and verified on a case study. They are based on state of

5
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the art fracture mechanics concepts, most recent fatigue crack growth and failure

assessment methods, advanced statistical approaches (sections 4.8, 5.3, 6.3).

In the following the key steps for fatigue reliability evaluation are identified and the

way they are tackled and developed in this work is summarized.

First of all hypothesis on the presence of preexisting flaws, which may behave like

cracks or from which cracks may grow, must be formulated. Manufacturing and welding

processes, as well as non destructive tests have to be considered when defining the

probability of the existence of flaws and their dimensions and shape. Usually in the

literature the maximum size of the flaws, corresponding to the non-destructive tests

threshold, or an equivalent flaw size, is adopted (82). In this work a probabilistic model

for the preexisting surface flaws is developed (section 4.3) based on experimental data.

The presence of preexisting flaws and the distribution of their depth is experimentally

analyzed, as reported in the first part of chapter 5.2.

A further key factor for the fatigue reliability analysis is the description of the stress

sequence. In many studies concerning fatigue reliability, the stress is assumed constant

or deterministic block sequences are adopted (56, 167). These sequences are however

often not representative of the real service load to which the structure is subjected. In

this work in-service stress measurements, presented in section 5.4.1 are used to produce

two types of stress sequences. For the analysis presented in chapter 5 completely

randomized stress sequences are generated from the empirical cumulative distribution

function of the measured stress amplitude. For the analysis presented in chapter 6, the

concept of Markov random processes is applied (see sections 2.3 and 6.2). An innovative

method to generate random stress sequences and simulate di↵erent service conditions

is proposed and implemented. The method permits to obtain di↵erent stress sequences

varying only one parameters, that is the correlation length of the sequence.

Once the model for the stresses is defined, it is necessary to evaluate the fatigue life

and the failure mode. This task can be accomplished either with a cumulative damage

approach (81) or with a fatigue crack growth approach. In this work a fatigue crack

growth evaluation approach is adopted, because it is more suitable to variable stress

cases. An overview on fatigue crack growth is o↵ered to the reader in sections 2.2

and 2.4. Section 2.5 addresses the topic of probabilistic fatigue crack growth, which is

related to the intrinsic stochastic nature of the fatigue phenomenon. The evaluation of
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crack growth implies not only a fatigue crack growth algorithm, but also a structural

integrity model and failure evaluation criteria. In this thesis a new comprehensive

fatigue crack growth model and an original algorithm for the fatigue crack growth

evaluation and failure are presented (chapter 3 and sections 4.5, 4.4, 2.6 and 4.6).

Chapter 3 describes the large experimental activity aimed at investigating the influence

of material properties on the fatigue threshold and to propose a suitable description of

the fatigue crack growth stochasticity. The stochasticity of the fatigue crack growth is

expressed with one random variable (the fatigue threshold), while usually two or more

random variables are used: the models developed up to now are more complicated and

the fatigue life prediction is less accurate (17). The threshold variation with the stress

ratio and the related crack closure are expressed using cyclic yield strength and the

applied stress intensity factor, while usually the yield stress related to the maximum

applied stress is considered, which does not permit to take into account the specimen

geometry (88). The fatigue crack growth and failure algorithm herein presented have

unique features, which are not present in any commercial software. It permits to take

into account any kind of randomly generated stress sequence and uses a comprehensive

and validate fatigue crack growth model as well as a state of the art failure evaluation

approach. The main lack of fatigue crack growth algorithm proposed in the literature

is the application of simple and unrealistic fatigue crack growth model which do not

describe precisely the fatigue threshold region, which is actually the most influent one

when treating high cycle fatigue (127). The algorithm herein proposed can describe

very accurately the experimental data and indeed it is computationally e�cient.

Finally, a proper reliability evaluation method has to be chosen, based on the num-

ber of random variables and on the expected probability of failure. An overview of

the state of the art reliability evaluation methods is given in 2.7. In this work e�cient

reliability evaluation schemes are proposed and are used to investigate the influence of

the stress sequence and of the failure criteria on the reliability (section 6.3). For the

first time a fatigue reliability evaluation is approached applying a time discretization

of the Markov stress process with subset simulation method. This scheme joins the

subset simulation method, a random process model of the load and the state of the art

Forman-Mettu model applied to a bi-dimensional fatigue crack growth scheme. This

represents an extremely innovative e�cient method in the field of high cycle fatigue.

Additionally, also a mean approximation of the stress process is applied and solved
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with the first order reliability method (FORM): this is a new solution of the fatigue life

evaluation problem and represents an extremely e�cient method to solve the fatigue

life evaluation problem. It is also proven that this approximated method gives good

predictions in the case of uncorrelated stress sequences. Finally the numerical exam-

ple demonstrates that a random variable approach can be used with FORM to obtain

correct reliability predictions in the case of high correlated sequences.
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Background

2.1 Introduction

The reliability of components subjected to high cycle fatigue can be evaluated using

two approaches. One is based on S-N curves and damage accumulation rules. The

other one is based on fatigue crack growth evaluation.

Damage accumulation approaches are aimed at predicting fatigue life under variable

amplitude loading taking into account the number of fatigue cycles applied at various

stress levels and evaluating the damage level with a simple linear rule, as in the classical

formulation of the Palmgren-Miners rule (93, 111) or with more complex non-linear

rules (115, 160). A review of cumulative fatigue damage theories can be found in

(44). This approach is used basically because experimental data in terms of S-N curves

are easy to obtain, even though experiments are costly. However the S-N approach

does not provide any information regarding the crack depth during the fatigue crack

growth and the failure mode. An additional limitation is that this approach is based on

experimental data and no extrapolation to conditions di↵erent from the experimental

ones is possible. For example in (24), a stochastic crack growth model for variable

loading is developed and compared with the results obtained using the Miner‘s rule,

demonstrating that the S-N diagram does not predict the influence of load order on the

fatigue crack growth.

Approaches based on fatigue crack growth evaluation are applied in this work,

because they have the following advantages:

• the crack depth as a function of the number of cycles can be calculated;
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• the sequence of applied stress cycles can be taken into account;

• the stochasticity of any input parameter, such as the initial crack depth, the

material properties, the parameters describing the fatigue crack growth curve,

can be accounted for and the distribution of crack depths as a function of the

number of cycles can be determined;

• experimental data collected in di↵erent conditions can be extrapolated and used.

This section o↵ers to the reader an overview and an historical background on fatigue,

crack growth, variable amplitude loading and reliability evaluation. These concepts

and knowledge are the basis on which the reliability evaluation models presented in the

further sections are developed.

2.2 Fatigue: crack initiation and growth

The phenomena of fatigue can be divided into four phases: crack initiation, small-crack

growth, long-crack growth and failure.

Crack initiation When no pre-existing imperfections are present, cracks initiate on

the surface by the mechanism of persistent slip bands, which are the embryonic fatigue

cracks (144). Alternatively, cracks may nucleate from pre-existing imperfections, such

as micro voids or inclusions, or defects which act as stress intensificators. The number

of cycles for initiation is highest when cracks nucleate from a defect-free surface and it

is smallest when pre-existing imperfections or notches lead to crack initiation.

Small-crack growth Depending on their size, cracks can be divided into two groups:

small and long cracks, which exhibit a very di↵erent fatigue crack growth behavior.

According to standard ASTM E647 (7) ”a crack is defined as being small when all

physical dimensions (in particular, both length and depth of a surface crack) are small in

comparison to a relevant microstructural scale, continuum mechanics scale, or physical

size scale”. Small cracks can grow at faster growth rate than long cracks and can also

grow below the so called ”long crack threshold” (92, 116, 129, 145). Among the di↵erent

approaches to identify the small cracks regime, it is worth mentioning the one proposed

by Kitagawa and Takahashi (67), which shows that the threshold for the crack growth

varies with the crack size, depending on the fatigue limit of a plain specimen and on

the fatigue threshold for long cracks. The model identifies a characteristic dimension,
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2.2 Fatigue: crack initiation and growth

called El Haddad’s parameter (38), which is the boundary between the small crack

region and the long crack region. Murakami contributed to a further development of

this model by proposing the square root of the crack area as characteristic dimension

(100).

Long-crack growth The growth of long cracks can be fully described with linear elas-

tic fracture mechanics models, while the same does not hold for small cracks. Cracks

nucleating from a defect-free surface go through the small crack phase until they reach

the long crack dimension. Cracks generated from pre-existing imperfections can be-

have right from the start as long cracks, depending on the initial dimension of the

imperfection.

Failure Failure occurs when a critical condition is reached, given by the combination

of crack size and stress. failure can occur according to di↵erent failure modes.

2.2.1 Pre-existing surface flaws and probability of detection

The present work is concerned with the reliability of structural components containing

initial surface flaws. In particular, the work is focused on tubes having some surface

imperfections deriving from the manufacturing process and constituting pre-existing

cracks. The crack initiation phase and the small-crack growth phase are absent in

this particular case. The surface imperfections are usually monitored after the pro-

duction, in order to assure that their size is limited and below a given value, called

non-destructive test threshold. To this aim, non-destructive tests (NDT) are carried

out, mainly using ultrasonic or eddy current methods. The inspection performance of

the NDT equipment is influenced by many variables, such as the flaw size, its orien-

tation, the environmental conditions as well as by the signal noise (142). Therefore a

curve indicating the probability of detection (POD) as a function of the defect size can

be drawn, as depicted in figure 2.1.

In this work the depth of the characteristic flaw or crack size is called a0. The

probability density function of the crack depth after the manufacturing process before

the NDT tests is the prior probability density function f 0(a0). The probability density

function of the crack depth after the NDT tests is the posterior probability density

function f 00(a0) and can be evaluated considering the probability of detection POD(a0)

and applying the Bayes’ rule (122). The posterior probability density function f 00(a0)
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Initial flaw size a0 

Probability*of*
detec/on*
POD(a0)* 1*

0*

Figure 2.1: Curve of the probability of detection, POD, versus the flaw size: there is a

transition region where the probaility of detection increases from 0 to 1 with the flaw size.

is the probability density function of the cracks given the event of no detection ND

and can be expressed as:

f 00(a0) = f(a0|ND) =
f 0(a0)[1� POD(a0)]R1

0 f 0(a0)[1� POD(a0)]da0
(2.1)

2.2.2 Parameters influencing the fatigue threshold

The third phase identified above is the long-crack growth. The long-crack growth is

driven by the applied stress intensity factor range (�K), a parameter which accounts for

the geometry of the structure, the crack’s shape and dimension, the applied nominal

stress range. A threshold in terms of stress intensity factor range �Kth exists for

long cracks fatigue growth, defining the applied �K value above which cracks grow

and below which no fatigue crack growth is possible. The long crack growth fatigue

behavior is usually expressed in terms of fatigue crack growth rate da
dn versus �K.

During the long crack growth three domains can be identified: the near-threshold

region, the straight-line region, also called Paris region, because it is described by the

Paris law, the unstable growth and failure region. These three domains are illustrated

in figure 2.2.

When treating the reliability of components subjected to high cycle fatigue, the

fatigue threshold is a parameter of paramount interest, being the boundary between
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ΔKth$ ΔK$

da/dn$

Paris$region$

Near1threshold$region$

Unstable$crack$growth$
and$failure$

No$crack$
growth$

Figure 2.2: The three crack growth curve’s domains: the near-threshold region, the

straight-line region, also called Paris region, because it is described by the Paris law, the

unstable growth and failure region.

crack propagation and non-propagation. In other words it represents the boundary

between a safe-life and a damage tolerant design. The fatigue threshold is defined as

the value of stress intensity factor under which no propagation occurs. For practical

purposes, in the standard ASTM E647 (7) the fatigue threshold of long cracks is defined

as the stress intensity factor causing a propagation rate of 10�7 mm/cycle.

Many experimental observations reported in the literature show that the near

threshold region is a↵ected by load ratio, microstructural features and mechanical prop-

erties, while the Paris region is not influenced by these parameters (79, 126, 148). The

reason for this behavior is that the crack tip opening displacement and the crack tip

plastic zone size in the near threshold region are of the same order of magnitude of the

microstructural features, while in the Paris region they are much larger than the char-

acteristic microstructural dimension. In other words, in the near threshold region, the

stress field at the crack tip is directly influenced by the microstructural features that

surround the tip, while in the Paris region the average material properties contribute

to the crack growth.

To understand why the above mentioned parameters influence the threshold zone,

crack closure has to be considered. When a crack grows due to cyclic loading, theo-

retically one expects that the crack surfaces open during the positive part of the stress
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cycle, i.e. when the stress is increasing from zero to a positive value. When the stress

decreases the surfaces are expected to close and adhere completely when the applied

stress is zero. The mechanism of closure causes the crack to open at an applied stress

level �open higher than the minimum applied stress �min even if this is equal or higher

than zero. Therefore the e↵ective stress intensity factor applied to the crack is reduced:

the e↵ective stress range is ��eff = �max��open and the corresponding e↵ective stress

intensity factor range is �Keff = Kmax � Kopen. A higher level of closure increases

Kopen and decreases �Keff , as schematically depicted in figure A.1. Thus, in presence

of closure, the measured fatigue threshold is higher than that measured in absence of

closure, due to the lower �Keff actually acting on the crack. The amount of closure

is related to the stress ratio R = �
min

max

, to the yield stress of the material and to the

microstructural features.

Closure 
region 

Fatigue cycles 

Κopen 

Κmax 

Κmin 

ΔΚ 

ΔΚeff 

Figure 2.3: Crack closure: the applied stress is �K = K
max

�K
min

, but the e↵ective

stress is �K
eff

= K
max

�K
open

. The crack tip opens at K
open

The threshold value in absence of closure is often called intrinsic component of the

threshold of the material. The intrinsic component, according to most of the models, is

described through considerations based on the energy necessary for dislocation move-

ment to permit the crack advance. The threshold increment due to closure is called ex-

trinsic component of the threshold and can be observed at low values of R. The extrinsic

component is also a↵ected by microstructural morphology (39, 68, 125, 126, 148, 168)

and by the monotonic or cyclic yield strength, which determines the extension of the
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plastic zone size at the crack tip (29). Closure can be induced by plasticity, roughness

and oxide (148). The plasticity induced closure was the first one to be observed by

Elber (40, 41), later other mechanisms were discovered.

It is observed in most of the materials that the threshold value decreases as the stress

ratio R increases, since at low stress ratio Kopen > Kmin. The yield stress influences the

threshold mostly through the plasticity induced closure, which increases as the yield

strength decreases, because the size of the plastic zone size at the crack tip is larger for

lower yield strength’s materials. Therefore it is generally expected that a lower yield

strength leads to higher threshold values. Finally, the microstructure exerts an influence

on threshold through the roughness-induced closure, caused by crack deflections in

correspondence to microstructural inhomogeneities and grain boundaries. It has to

be underlined that all the above mentioned mechanisms interact simultaneously and a

model able to predict the closure level for various types of materials is not available.

The influence of material properties and closure on the fatigue threshold are explained

in more detail in appendix A.

2.3 Variable amplitude loading

Most structural components are subjected to variable amplitude loading, also called

spectrum loading (10), during their service life. Early on, scientists realized the need for

describing and properly modeling the load sequences to which components are subjected

during their service life. Most of the structures and the mechanical components are

actually subjected to variable stress during their service life and predictions using data

related to constant stress experiments require a model for the variable stress sequence.

2.3.1 Historical background

In the 1930s, engineers working in aeronautics realized that in-service stress cycles

have variable amplitude. Measurements of service loads were carried out and first load

spectra were published by Kaul (65). In 1939, Gassner introduced the first variable

amplitude load sequence (49) for testing aeronautical structures. Laboratory experi-

ments require simple load sequences, which however should be representative of the real

service conditions. The Eight-Block-Program Test proposed by Gassner is a sequence

of loading blocks, now known as Gassner sequence. Within each block, stress cycles are
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identical; between blocks, the stress amplitude changes while the mean value remains

the same. The lengths of the blocks are defined such that stress amplitudes follow the

lognormal distribution. The Gassner sequence consists of eight varying blocks, whose

sequence is fixed and predetermined. After eight blocks, the sequence is repeated (140).

This procedure is the core of the operational fatigue strength approach to the design

of components under variable amplitude loading (50, 136). With the availability of

hydraulic testing machines, more realistic load sequences could be applied for testing.

Such load sequences can be derived from experimental measurements. For example,

the SAE Fatigue and Evaluation Committee selected test load sequences from exist-

ing strain measurements (43, 151). Exhaustive information on fatigue testing under

variable amplitude loading can be found in (141), while a review of the standard load

sequences used for fatigue testing and on the generation of testing load histories from

experimental measurements can be found in (56).

For the first time Lardner (71, 72, 73) and Rau (124) proposed to model variable

amplitude loading by random processes. In (71, 72) an approach for the reliability

evaluation under random loading is described using the crack propagation law proposed

by (55). Rau (124) describes the fatigue crack growth as a random process, since it

is the consequence of the application of loads, which are viewed as a random process.

In his work, the hypothesis that the propagation of the fatigue crack is independent of

the order of application of the stresses is formulated. This assumption holds when the

load is a stationary and ergodic random process and when a high number of cycles is

applied, so that variations due to the order of application of the stresses average out.

At the beginning of the 1970s, Schijve investigated the influence of the load sequence

on fatigue life (133). In his study, the e↵ect of the load sequence on crack propagation is

investigated by performing experiments applying random loading sequence with short

and long blocks of cycles. It was observed that the random load sequences could lead to

fatigue lives that di↵er from those evaluated using laboratory tests with simplified load

sequences, demonstrating the importance of appropriately representing the randomness

of fatigue loads. According to (133), the predicted life does not depend so much on

the sequence, provided that it is random in some way or programmed with a short

period, which confirms the findings by (124). Simplified loading sequences consisting

of repeated large blocks may lead to non conservative fatigue life predictions due to
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sequence e↵ects. Following these studies, the need to account for the stochasticity of

fatigue crack growth under variable loading was recognized.

2.3.2 Load as a random process

When describing load sequences from experimental load measurements, procedures for

identifying load cycles from the stress time history are necessary (84). Standardized

procedures reported in (10) are: level-crossing counting, peak counting, simple-range

counting and rainflow counting. These methods result in a sequence of stress cycles that

are characterized by their stress ranges, ��, and stress ratios R, or alternatively by

their minimum and maximum stresses �min and �max. Consequently, the load sequence

can be statistically described by the random processes {��(n)},{R(n)}, i.e. for every

stress cycle n there is a random variable pair {��(n)} and {R(n)}. Values of {��(n)}

and {R(n)} at di↵erent cycles are generally correlated.

In this work the discussion is limited to stationary load processes, since the assump-

tion of stationarity is su�cient for most relevant applications, and for ease of notation

the processes are denoted by {��} and {R}.

Under the assumption of a Gaussian copula model, a stationary random process is

fully characterized by its marginal distribution and its autocovariance function (83).

These can both be determined from observed load sequences. Alternatives are pre-

sented by Markov chain models as presented e.g. in (86, 112, 130), which require the

definition of the stress cumulative distribution function and autocovariance function.

In general, Markov process models, due to their flexibility, can represent the real de-

pendence among stress cycles more accurately. For example, switching Markov models

(112) can well represent di↵erent modes of operations of mechanical systems and struc-

tures, and representation of non-stationary processes is facilitated by Markov chains

(86). However, given the uncertainties associated with determining in-service stresses

in real structures, the Gaussian copula model is su�ciently accurate for many engineer-

ing applications. It is pointed out that the marginal distribution of the stress ranges,

��, and stress ratio, R, is not a↵ected by these modeling assumptions.
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2.4 Fatigue crack growth evaluation under constant and

variable loading

2.4.1 Models of fatigue crack growth

Starting from an initial flaw or notch, cracks will form and grow under cyclic loading.

Cracks that grow in two directions usually exhibit a near elliptical or semi-elliptical

shape (105). Thereby, the crack front advances in all directions, with coordinates

xi, xj , xk, as depicted in figure 2.4:

xi x
k

xj

O 
Figure 2.4: Crack with a near semi-elliptical shape and various cracks advance

directions, where O is the origin.

Crack growth in any direction xi is described by a di↵erential equation expressing

the crack growth rate, dx
i

dn , as a function of the stress intensity factor range along the

crack front in the xi direction, �Kx
i

:

dxi
dn

= hx1(�Kx
i

, R, �) (2.2)

where R is the stress ratio and � is a set of parameters related to the material

properties. For the case of the Paris law we have dx
i

dn = C · �Km
x
i

with parameters

� = [C,m]. Alternative models for hx
i

include di↵erent modifications of the Paris law,

e.g. the bilinear crack growth model adopted in (5, 127) or the Forman-Mettu model,

which is detailed in appendix B and which is used in the numerical investigations

presented later.

The evaluation of fatigue crack growth requires knowledge of the stress intensity

factor along the entire crack front. A large body of research has focused on deriving

analytical or numerical expressions for �Kx1 , including (45, 99, 105, 146, 161). For
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certain geometries, exact or approximated analytical solutions are available, in other

cases FEM analysis is necessary, e.g. (25, 51, 98, 135). If the geometry of the crack is

approximated by a perfect semi-elliptical or elliptical shape, then it is fully described

by the semi-lengths of the two axes, called a and c, which correspond to the two main

growth directions (105), as shown in figure 2.5. In the following, this approximation

will be used.

ac 

Figure 2.5: Scheme of an elliptical crack with semi-axes a and c, corresponding

to the main growth directions.

The stress intensity factor ranges in the two directions a or c, denoted by �Ka

and �Kc, are a function of the geometry of the component, the crack dimensions

a and c, and the applied stress range. It is distinguished between the membrane

stress range, ��m, and the bending stress range, ��b, which varies along the section.

In absence of residual stresses, both components can be directly evaluated from a

total stress range �� = ��m + max(��b) (165). For ease of presentation, only ��

is considered. Therefore, the stress intensity factor range can be written in terms

of �Ka = �Ka(a, c,��, �) and �Kc = �Kc(a, c,��, �) and equation 2.2 can be

rewritten as follows:

da

dn
= ha(�Ka(a, c,��, �), R, �) (2.3)

dc

dn
= hc(�Kc(a, c,��, �), R, �) (2.4)

where:

• da
dn and dc

dn are the crack growth rates in directions a and c;

• ha and hc are the functions describing the crack growth rate;
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• R is the stress ratio;

• � is a set of parameters describing material properties;

• � is a set of parameters describing the geometry of the component containing the

crack.

If crack closure and load interaction e↵ects are taken into account, a corresponding

model has to be included in the fatigue crack growth rate equations. Di↵erent models

for crack closure are available to describe the delaying e↵ects of high loads, such as the

Wheeler model (157), the Wilenbourg model (158), the more realistic Newman model

based on a strip yield type plastic zone (104), the partial crack closure model valid in

the near-threshold region (37, 114).

2.4.2 Evaluation of fatigue crack growth

In the following, the evaluation of one- and two-dimensional crack growth under con-

stant and variable amplitude loading is presented. The parameters R, � and � are

assumed constant. Generally they may be modeled as deterministic or random vari-

ables.

2.4.2.1 One-dimensional crack growth with constant amplitude loading

For one-dimensional crack growth, the crack is fully characterized by its depth a, as

shown in figure 2.6. Crack growth is thus fully described by equation 2.3 where c

disappears.

a 

Figure 2.6: Scheme of a one-dimensional crack with crack depth a.

With constant amplitude ��, the crack growth can be evaluated from the boundary

condition on the initial value of crack depth a0. By reformulating equation 2.3 and

integrating on both sides, one obtains:
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2.4 Fatigue crack growth evaluation under constant and variable loading

n =

Z n

0
dn =

Z n

0

da

ha(�Ka(a,��, �), R, �)
(2.5)

where n is the number of stress cycles to reach the crack depth a.

Equation 2.5 can be solved numerically. For special cases, analytical solutions exist

(e.g. for the simple Paris law (84)). If the interest is in finding the crack depth a as

a function of the number of stress cycles n, a root finding algorithm can be employed;

this algorithm requires evaluating the integral in equation 2.5 for di↵erent values of a.

2.4.2.2 Two-dimensional crack growth with constant amplitude loading

In case of two-dimensional crack growth, the crack is described by its depth a and

its width c. Crack growth is described by two coupled di↵erential equations given in

equations 2.3 and 2.4. An approximate solution of these coupled di↵erential equations

is obtained through a step-wise solution. Let b denote the number of cycles in each step.

In the ith step, the crack advances from ai, ci to ai+1, ci+1. If the ratio of crack depth

to width is fixed in each step to (ac )i, then the stress intensity factors can be rewritten

as �Ka = �Ka(a, (
a
c )i,��, �) and �Kc = �Kc(c, (

a
c )i,��, �). The two di↵erential

equations can be integrated separately, as shown in equations 2.6 and 2.7.

�na =

Z n
i+1=n

i

+�n
a

n
i

dn =

Z a
i+1

a
i

da

ha(�Ka(a, (
a
c )i,��, �), R, �)

(2.6)

�nc =

Z n
i+1=n

i

+�n
c

n
i

dn =

Z c
i+1

c
i

dc

hc(�Kc(c, (
a
c )i,��, �), R, �)

(2.7)

In equations 2.6 and 2.7, the integrals are evaluated for fixed values of ai+1 and ci+1.

In order to find the crack dimensions after b cycles, an iterative procedure is required.

A root-finding algorithm is employed to find values of ai+1 and ci+1 which assure that

�na = �nc = b. The above is an approximation due to the assumption of a constant

ratio (ac )i. An exact solution could only be obtained by cycle-by-cycle evaluation of

the increment of a and c, which corresponds to setting b = 1 in equations 2.6 and 2.7,

with associated large computational e↵orts. The error of the approximation increases

with increasing b. The two-dimensional problem could be simplified and reduced to a

one-dimensional problem if (ac ) were assumed constant throughout the entire process

or if a parametric relation between a and c were defined as c = c(a), see e.g. (142).
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2.4.2.3 One-dimensional crack growth with variable loading

With random variable amplitude fatigue loading, the stress range �� and the stress

ratio R are a function of n. Therefore, equation 2.3 is rewritten to:

da

dn
= ha(�Ka(a,��(n), �), R(n), �) (2.8)

In the following, the evaluation of crack growth described through equation 2.8 for

a deterministic realization of the random stress process {��}, {R} is presented. There-

after, the solution for a random stress process {��},{R} through a mean approximation

is described.

Solutions for deterministic realizations of a random stress process For a

given realization of the stress process, {(�̃�(1), R̃(1)); ....; (�̃�(l), R̃(l)); ....; (�̃�(N), R̃(N))},
an exact solution can be obtained through performing a cycle-by-cycle calculation. The

crack increment during the lth cycle is simply:

da(l) = ha(�Ka(a, �̃�(l), �), R̃(l), �) (2.9)

and the crack depth a(l + 1) is;

a(l + 1) = a(l) + da(l) (2.10)

Unfortunately, the cycle-by-cycle calculation is not computationally feasible for

high-cycle fatigue. This holds in particular when the randomness of the stress process

must be taken into account. An approximate solution can be obtained by representing

the load sequence with blocks of b cycles with constant stress amplitude and constant

stress ratio, as presented in section 6.2.1 and 6.2.2. The crack growth during the ith

block �ai is now obtained from the solution for constant amplitude loading given in

section 2.4.2.1, i.e. �ai is found from the following condition:

b =

Z a
i+1=a

i

+�a
i

a
i

da

ha(�Ka(a, �̃�i, �), R̃i, �)
(2.11)

�̃�i and R̃i are the values of the stress process realization at the midpoint of the

ith block. Equation 2.11 can be used whenever the load is given as a deterministic

sequence of stress ranges and stress ratio values, as for example in (13, 49, 78, 94, 109).

22



2.4 Fatigue crack growth evaluation under constant and variable loading

If the stress process is random, equation 2.11 can be used to evaluate the crack growth

for realizations of the stress process in a simulation approach, as presented later in this

work.

Solutions for a mean approximation of a random stress process Crack growth

is a cumulative process, in which the contributions of the individual stress cycles are

added up. This motivates a piecewise approximation of the random crack growth

process by the mean crack growth. This approach has been followed by a number

of authors, e.g. (85, 127). The crack growth rate, da
dn , expressed in equation 2.8, is

approximated by its expected value with respect to {��} and {R}:

da

dn
⇡ E{��},{R}[ha(�Ka(a,��(n), �), R(n), �)] (2.12)

da

dn
⇡

Z 1

�1

Z 1

0
ha(�Ka(a,��, �), R, �) · f��,R(��, R)d��dR (2.13)

Where f��,R is the joint cumulative distribution function of ��(n) and R(n) and

n can be dropped if the process is stationary.

The expected value of the fatigue crack growth rate, E{��},{R}·[ha(�Ka(a,��(n), �), R(n), �)],

does not depend on n if the process is stationary. Therefore, for given distribution of

��(n) and R(n), the crack growth becomes a function of a, � and � only:

da

dn
⇡ E{��},{R}[ha(�Ka(a,��(n), �), R(n), �)] = h0a(a, �, �) (2.14)

The validity of the mean approximation is based on the following conditions for the

stress process:

• strong stationarity: the probability distribution of the stress process does not

depend on n;

• ergodicity, i.e. the statistics of the entire process can be deduced from a single

realization of the process;

• su�ciently mixing, i.e. the total number of cycles considered, N , is much larger

than the correlation length of the process.
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The requirement of a su�ciently mixing stress process will be further substantiated

in the numerical investigations presented later in section 6. With the mean approxi-

mation, crack growth can be evaluated through the direct integration of equation 2.5,

where ha is replaced by h
0
a.

To illustrate the mean approximation, let us consider the original Paris law, where

R(n) is disregarded and where the material parameters are � = [C,m]:

da

dn
= C ·�Km = C · (Y (a) ·��(n) ·

p
⇡a)m (2.15)

Separating the variables and integrating on both sides:

Z a

a0

(Y (a) ·
p
(⇡a))�mda = C ·

Z N

0
(��(n))mdn (2.16)

Under the condition that {��(n)} is stationary, ergodic, su�ciently mixing and that

N is large, the integral over n on the right hand side of equation 2.16 is approximated

by an integral over ��(n):

Z N

0
(��(n))mdn ⇡ N ·

Z 1

0
f��(��) ·��(n)md�� = N · E{��}[��(n)m] (2.17)

Note that the approximation is correct in the limit as N ! 1. Inserting this

approximation into equation 2.16 leads to:

Z a

a0

(Y (a) ·
p
⇡a)�m · da ⇡ C ·N · E{��}[��(n)m] (2.18)

Solving for N gives:

N =

Z a

a0

da

C · (Y (a) ·
p
⇡a)m · E{��}[��(n)m]

(2.19)

This is equal to the solution of equation 2.5, where ha is replaced by the mean

approximation of the crack growth in equation 2.15:

ha = E{��}[C · (Y (a) ·��(n) ·
p
⇡a)m] = C · (Y (a)

p
⇡a)m · E{��}[��(n)m] (2.20)

The quantity {E{��}[��(n)m]}
1
m can be viewed as an equivalent stress range (61,

159).
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2.4 Fatigue crack growth evaluation under constant and variable loading

As shown above, the mean approximation is asymptotically correct as N ! 1 for

the case of the Paris law. This is due to the fact that Paris law allows to separate

the variables a and �� and, therefore, the integration can be performed as in equation

2.16. For the general case of a crack growth law ha(�Ka(a,��(n), �), R(n), �), this

separation is not possible. However, for common crack growth laws, the mean approx-

imation is still reasonably close under the stated conditions. This is also demonstrated

by the numerical investigations presented later.

2.4.2.4 Two-dimensional crack growth with variable amplitude loading

With random variable amplitude fatigue loading, equations 2.3 and 2.4, are rewritten

to:

da

dn
= ha(�Ka(a,

a

c
,��(n), �), R(n), �) (2.21)

dc

dn
= hc(�Kc(a,

a

c
,��(n), �), R(n), �) (2.22)

When the load history is given as a realization of a random process, an exact solution

can be obtained performing a cycle-by-cycle crack growth evaluation, as reported in

equations 2.9 and 2.10 for the one-dimensional case. However, this is not practically

feasible for most applications. Alternatively, an approximated crack growth evaluation

is possible by representing the load sequence with blocks of b cycles with constant stress

amplitude and constant stress ratio, in analogy to the solution in equation 2.11 for the

one-dimensional case:

b =

Z a
i+1=a

i

+�a
i

a1

da

ha(�Ka(a, (
a
c )i, �̃�i, �), R̃, �)

(2.23)

b =

Z c
i+1=ci+�c

i

c1

dc

hc(�Kc(c, (
a
c )i, �̃�i, �), R̃, �)

(2.24)

Equations 2.23 and 2.24 must be solved iteratively for �ai and �ci, respectively,

using a root finding algorithm as described earlier. The approach of equations 2.23

and 2.24 is implemented in commercial software such as NASGRO (47) and AFGROW

(12). In analogy to the one-dimensional crack growth model, a mean approximation

can be used to compute the crack growth under a random process fatigue load. The
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fatigue crack growth rate in both directions a and c are approximated by their expected

value with respect to the loading process.

da

dn
⇡ E{��},{R}[ha(�Ka(a,

a

c
,��(n), �), R(n), �)] = h

0
a(a,

a

c
, �, �) (2.25)

dc

dn
⇡ E{��},{R}[hc(�Kc(c,

a

c
,��(n), �), R(n), �)] = h

0
c(c,

a

c
, �, �) (2.26)

Using the mean approximation, the crack growth evaluation is reduced to the prob-

lem described in section 2.4.2.2, where ha and hc are replaced by h
0
a and h

0
c, respectively.

The resulting coupled di↵erential equations cannot be solved in one integration step

but must be computed for blocks of cycles following equations 2.6 and 2.7.

2.5 Probabilistic fatigue crack growth

So far, the random nature of fatigue loads is considered, which are ideally modeled

as random processes. However, fatigue crack growth involves additional intrinsically

random factors and the model parameters are subject to uncertainty. When evaluating

the reliability under fatigue crack growth, these random factors and uncertainties must

be addressed.

The scatter in fatigue data was discussed as early as 1927 (97), but it was only after

the large replicate experiments at constant amplitude loading performed by Virkler

(155) that the intrinsic stochasticity of fatigue crack growth was investigated in more

details. This intrinsic stochasticity of fatigue crack growth is due to variability of

material properties and material inhomogeneities. As can be observed from the data

obtained by Virkler, shown in figure 2.7, two random e↵ects can be distinguished (110):

(a) each curve has an irregular shape (high frequency stochasticity); (b) the mean crack

growth curve of each experiment is di↵erent (low frequency stochasticity).

High frequency stochasticity (a) can be modeled with a random process approach,

such as the one proposed by Yang and Manning (164). Low frequency stochasticity (b)

can be modeled with a random variable approach, i.e. by randomizing the coe�cients

of the fatigue crack growth law (17, 42, 76, 110, 153). In addition to the inherent

stochasticity, which can be observed in experiments, the evaluation of fatigue crack
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0 1 2 3 4

x 10
5

0

5

10

15

20

25

30

35

40

45

50

number of cycles

cr
a
ck

 le
n
g
th

 [
m

m
]

Figure 2.7: Virkler’s experiments (155): the 68 curves of crack length versus number of

cycles.

growth under service conditions is subject to variability of the loading, as has been

addressed earlier, and model uncertainties. The latter can also be addressed by a

random variable approach (84).

2.5.1 Random process approach

Approaches based on random processes have been developed in the 1980s to describe

the intrinsic stochasticity of the crack growth observed during large replicate tests with

constant amplitude loading, such as those shown in figure 2.7. The aim is to describe

the stochasticity of fatigue crack growth under constant or variable loading due to

the heterogeneous material structure. The random process model adopted by many

authors, e.g. (30, 31, 63, 64, 74, 110, 150, 162, 164), is:

dxi
dn

= X(n) · hx
i

(xi,��, R, �, �) (2.27)

whereX(n) is a random process and xi is either crack depth, a, or half-width c. Most

authors do not provide a physical interpretation of X(n), but its correlation length can

be fitted to experimental data (119). The resulting crack size has the smallest statistical

dispersion if X(n) is uncorrelated as in (31), and the highest statistical dispersion if

X(n) is fully correlated.
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The main limitation of this approach is the lack of physical meaning of the random

process {X(n)}.

2.5.2 Random variable approach

The parameters of the fatigue crack growth models can be represented as random

variables (139) (163). The assumption is that these parameters are random or uncertain

but do not vary during the crack growth process. They can represent specimen-to-

specimen variability, randomness in the initial condition as well as model uncertainties.

Proper attention has to be paid to the modeling of the correlation among the ran-

dom variables (17). As an example, the parameters C and m of Paris law are highly

correlated, and the same holds for most empirically determined material parameters.

To obtain the distribution of the crack size one has to solve functions of random vari-

ables. For special, simplified cases, analytical solutions are available. In the general

case, numerical solutions are required, such as Monte Carlo simulation. For computing

the reliability under fatigue crack growth, structural reliability methods are available,

which are discussed in section 2.7.

A realistic description of the fatigue crack growth requires a combination of the

random variable approach with the random process model. To reproduce the random-

ness of the crack growth curves shown in figure 2.7, random processes are necessary to

represent the variability within each curve and random variables are required to repro-

duce the observed specimen-to-specimen variability. In principle, the random process

model can include the latter as well, by using correlation functions that do approach

a non-zero, positive value for values of n ! 1. However, such correlation functions

cannot be modeled by markovian processes and a combined modeling approach is thus

preferable.

A number of authors have combined the random variable model with the random

process model e.g. (36) (110) (138). To evaluate the combined model, the statistics of

the fatigue crack growth process for given values of the random variables are computed.

These conditional statistics must then be integrated over the outcome space of the

random variables, using the total probability theorem. Methods for the computation

of the reliability for the combined model are presented in paragraph 2.7 of this section.
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2.6 Failure evaluation

2.6 Failure evaluation

When fatigue crack growth evaluation is carried out for reliability assessment, failure

criteria have to be defined. In the context of reliability analysis, these criteria are

expressed by limit state functions.

2.6.1 Limit state function

Let X denote the set of random variables of the model. By definition, a failure event

is defined through a limit state function g(X) in such a way that failure occurs when

g(X)  0. The probability of failure is thus evaluated as pF = Pr{g(X)  0}. In

the case of fatigue crack growth, X includes the initial crack dimensions a0 and c0,

the material properties and fatigue crack growth parameters �, the set of the geomet-

ric parameters � and the applied stress amplitude and stress ratio {��},{R}. Fur-

thermore, to make explicit the dependence of the limit state function on the total

number of fatigue stress cycles N , the limit state function is written as g(X,N) =

g(a0, c0, {��}, {R}, �, �, N).

In structural reliability, it is convenient to define a failure domain ⌦F in the outcome

space of the random variables as:

⌦F (N) = {g(X,N)  0} (2.28)

The probability of failure can then be expressed as a multidimensional integral of

the joint PDF of X over the failure domain (35, 91, 121):

pF (N) = Pr{g(X,N)  0} =

Z

⌦
F

(N)
fX(x)dx (2.29)

where dx = dx1, dx2, ...dxn. In general, the solution is an n-dimensional integral

cannot be obtained analytically. Structural reliability methods have been especially

developed to solve integrals of this form. These methods are explained in section 2.7.

2.6.2 Failure criteria

In case of a fatigue crack growth evaluation based on a fracture mechanics approach,

the failure criteria can be of two types:

• failure occurs when a critical crack size, typically the wall thickness, is reached;
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• failure occurs by plastic collapse failure or unstable crack growth.

The expression of the first criterion (critical crack size failure, CCSF ) is straight-

forward, as failure occurs when a(N) � acr, where acr is the critical crack depth. The

corresponding limit state function for this failure criterion can be written as:

g1(X,N) = acr � a(X,N) (2.30)

where a(X,N) is the crack depth as evaluated following section 2.4.

As far as the second criterion is concerned, in this work the critical crack driving

force failure (CDFF ) condition is adopted from (165).

The CDFF involves a limit value for the ligament yielding factor, Lr,max, and a

limit value for the applied J-integral, Japplied. Failure occurs when either one of those

is exceeded during any stress cycle n, i.e. when Japplied � Jmat or when Lr � Lr,max.

These two failure modes thus lead to the following two limit state functions:

⇢
g2(X,n) = Lr,max � Lr(X,n)
g3(X,n) = Jmat � Japplied(X,n)

(2.31)

With random variable amplitude loading, both Japplied(X,n) and Lr(X,n) become

random processes. To assess the CDFF failure condition therefore implies the solution

of a first passage problem (84). An exact solution is obtained by evaluating the limit

state functions at every cycle.

The failure occurs if any of the limit state functions becomes negative. Therefore,

combining all failure conditions into a single limit state function gives:

g(X,N) = min[g1(X,N),min|n=1:Ng2(X,n),min|n=1:Ng3(X,n)] (2.32)

Alternatively, the limit state function can be expressed in terms of the number of

cycles to failureNfail, which can be evaluated with a crack growth algorithm considering

the three failure modes defined above. The numbers of cycles to failure for each failure

mode are Nfail,1, Nfail,2 and Nfail,3 and are defined as

Nfail,1(X) = min{n}
s.t. acr  a(X,n)

(2.33)

Nfail,2(X) = min{n}
s.t. Jmat  Japplied(X,n)

(2.34)
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2.6 Failure evaluation

Nfail,3(X) = min{n}
s.t. Lr,max  Lr(X,n)

(2.35)

The actual number of cycles to failure Nfail is the minimum of the three. The

corresponding limit state function becomes:

g(X,N) = min[Nfail,1(X), Nfail,2(X), Nfail,3(X)]�N (2.36)

The limit state functions 2.32 and 2.36 are equivalent. However, equation 2.36

has the advantage that the three failure criteria are all expressed in the same unit,

the number of cycles. This is beneficial for most structural reliability methods, as it

ensures that the limit state function is not ill-conditioned.

2.6.3 Numerical evaluation of the limit state function for variable

amplitude loading

Under variable amplitude loading, an exact solution requires an evaluation of the fail-

ure criteria 2 and 3 at each stress cycle (we are dealing with a first passage problem).

For most practical problems, an approximate solution is required. In the following, we

consider an approximated crack growth evaluation that is based on the block approx-

imation introduced in section 2.4.2.4. In the block approximation to the fatigue crack

growth the stress range �� and the load ratio R in each block are fixed. However, for

assessing the failure criteria 2 and 3 (equation 2.31), it is the maximum stress �max

in each block that is of relevance. Therefore, the block approximation proceeds by

assessing the failure criteria in each block where the applied ligament yielding factor

Lr and the applied J-integral are computed with �max. In each block i, �max,i is a

random variable, which is dependent on the fixed value ��i and Ri. Unfortunately,

an analytical solution for this distribution is not available in the general case. For

the special case of no correlation among stress cycles, one can neglect the dependence

of the maximum �max on the midpoint value of the stress range ��; the cumulative

distribution function of the maximum stress is obtained as:

F�
max,i

(�) = [F�(�)]
b (2.37)

If the stress cycles are correlated, i.e. when the correlation length z increases, the

distribution of the maximum stress �max,i conditional on the fixed value �i (which is a
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function of ��i and Ri) can be evaluated numerically. However, this is a cumbersome

procedure. In many instances, the CDFF criteria are not leading to significantly di↵er-

ent results than the critical crack depth criterion. Therefore, a practical solution is to

assess the relevance of the CDFF criteria under the assumption of no correlation and

under the assumption of constant amplitude loading (full correlation). If the influence

of the CDFF criteria under these two limiting cases is found to be small, this indicates

that these criteria can be neglected for practical purposes. Otherwise, the evaluation

of F�
max,i

conditional on �i is required. Further discussion is written later in chapter

6.

2.7 Reliability evaluation methods

This section presents three methods to evaluate the reliability. The Monte Carlo sim-

ulation method is the most common one and most straightforward and is applied in

section 5. The first order reliability method (FORM) o↵ers the advantage of reducing

the computational time, but it is applicable only to small dimensional problems, i.e.

when a reduced number of random variables are considered. The subset simulation

method is suitable to evaluate small probability of failure with a reasonable number of

simulations without restrictions on the number of random variables. FORM and subset

simulation method are applied in the analysis presented in chapter 6.

2.7.1 Monte Carlo Simulation Method

The Monte Carlo Simulation (MCS) method (123) is generally used for solving multi-

dimensional integrals or integrals for which no analytical solution is available.

When solving Eq. (44), MCS consists in generating ns samples, ui, i = 1, ...i, ...ns,

of U, and evaluating the limit state function G(Ui) for each sample. The number nF of

samples for which G(Ui)  0 is evaluated, and an estimate of the probability of failure

is computed as:

pF =
nF

ns
(2.38)

The MCS method is straightforward to apply, but often requires a significant com-

putational e↵ort, especially when the probability of failure is low. This is due to the fact

that the MCS estimate has a coe�cient of variation of approximately 1p
n
s

p
F

= 1p
n
F

.
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2.7 Reliability evaluation methods

As an example, in order to estimate a probability of failure of 10�4 with a c.o.v. of

20%, a total of 2.5 · 105 samples are required.

The latin hypercurbe is a sampling method which ensures that all the portions

of the distributions of the input random variables are represented and permits more

precise estimations in respect to the standard random sampling method (90).

2.7.2 First Order Reliability Method

The First Order Reliability Method (FORM)(54, 121) is an e�cient alternative to the

MCS method for reliability problems with a limited number of random variables. It uti-

lizes a linear approximation to the limit state function in the space of standard normal

random variables U. The limit state function is linearized at the so-called design point,

u⇤ = [u⇤1;u
⇤
2; ...;u

⇤
n], which is point in the failure domain with the highest probability.

Sometimes, u⇤ is referred to as the most likely failure point, and is obtained by solving

the following constrained optimization problem (120):

u⇤ = min|u|
s.t.G(u)  0

(2.39)

where |u| is the Euclidian norm of u. The limit state function is linearized at u⇤:

G0(u) = G(u⇤) +
@G(u)

@u1
|u=u⇤ · (u1 � u⇤1) + ...

@G(u)

@un
|u=u⇤ · (un � u⇤n) (2.40)

The probability of failure associated with this linearized limit state function is the

FORM approximation, and it is defined entirely by |u⇤|, as:

pF = Pr{G0(U)  0} = �U (�|u|⇤) (2.41)

�U is the standard normal CDF. The FORM reliability index is defined as �FORM =

|u|⇤.
FORM facilitates a sensitivity analysis of the random variables U or X. Sensitivity

factors ↵i are obtained as the normalized gradient vector at the design point:

↵i =
u⇤i
|ui|

(2.42)
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The sensitivity factors ↵i take values between -1 and 1. The larger their absolute

value, the higher the influence on the reliability. Positive values of ↵i indicate that

an increase in ui or xi leads to an increase of the probability of failure, while negative

values of ↵i are related to a decrease of the probability of failure for an increasing ui

or xi.

FORM is computationally e�cient in low dimensions, but can become cumbersome

and ine�cient with increasing number of random variables, due to the optimization

problem in equation 2.39. For this reason, FORM is not practical when modeling the

fatigue load as a random process, which involves a large number of random variables.

It is however applicable in combination with the mean approximation approach.

2.7.3 Subset simulation

The subset simulation method (19) is a technique based on the Monte Carlo method,

which can be used to e�ciently evaluate small probabilities of failure in problems in-

volving a large number of random variables is involved. In subset simulation, inter-

mediate failure events Ei = {G(U)  oi}, i = 1, ..., B, are defined. By requiring

o1 � o2 � ... � oB = 0, it holds E1 � E2 � ... � EB = ⌦F , i.e. Ei is a subset of Ei�1,

which in turn is a subset of Ei�2 and so on. The probability of failure can be expressed

as:

PF = Pr(
B\

i=1

Ei) = Pr(EB|EB�1) · Pr(
B�1\

i=1

Ei) = Pr(E1)
BY

i=2

Pr(Ei|Ei�1) (2.43)

where P (Ei|Ei�i) is the conditional probability of Ei given Ei�1. The samples re-

quired to estimate the conditional probabilities Pr(Ei|Ei�i) are obtained by means of a

Markov Chain Monte Carlo (MCMC) sampling approach using the modified Metropolis-

Hastings (M-H) algorithm from (19). This algorithm allows to generate samples from

the conditional distribution of U given Ei�1, F (U |Ei�1). The conditional probabil-

ity Pr(Ei|Ei�i) is then evaluated from these samples using a Monte Carlo approach.

The constants oi are selected so that the probabilities Pr(Ei|Ei�i) are large, typically

around 0.1. Therefore, the number of samples required for computing each conditional

probability is relatively small, typically around 500. Furthermore, the required number

of samples increases only linearly with a decrease in the order of magnitude of the

probability of failure.
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3

Experimental investigation on

crack growth and threshold for

structural steels

3.1 Introduction

When investigating high cycle fatigue behavior of components carrying some initial

surface flaws, the fatigue threshold is a key input for the fatigue crack growth evaluation,

since it defines the minimum stress intensity factor required for crack growth.

Since the fatigue crack growth rate proportional to the crack length, most of the

crack life is spent in the near threshold region and only a small portion is spent in the

Paris region. Additionally, it is well known that the fatigue threshold is a stochastic

parameter and the fatigue crack growth behavior is a stochastic phenomenon (17) (23).

Therefore, a correct fatigue crack growth evaluation requires an accurate model for the

transition from the threshold zone to the Paris region and a proper description of the

stochasticity of crack growth.

Many models present in the literature use simplifies equation (127) or describe the

fatigue crack growth stochasticity with many random variables (17).

The objective of this section is to propose a comprehensive model able to describe

the fatigue crack growth curves and the fatigue threshold region for di↵erent stress

ratio, accounting also for the stochasticity of the crack growth phenomenon in a simple

even though accurate way. This is achieved in two steps. First the influence of the
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3. EXPERIMENTAL INVESTIGATION ON CRACK GROWTH AND
THRESHOLD FOR STRUCTURAL STEELS

C Mn Si P S Ceq

 0.21  1.7  0.5  0.025  0.010  0.54

Table 3.1: Chemical composition of the steels investigated in this work. Chemical compo-

nents are expressed in terms of percentage by mass. C
eq

= C + Mn

6 + Cr+Mo+V

5 + Ni+Cu

15 .

Material Grade OD [mm] x WT [mm]

355L E355 SR 223 x 16.5

355H E355 SR 120 x 15

410L E410 SR 270 x 20

410H E410 SR 170 x 15

Table 3.2: Steel grade according to EN 10305-1 (9) and tubes’ dimension (OD is the

outer diameter and WT is the wall thickness).

material properties on the fatigue threshold is investigated, considering that according

to the literature the fatigue threshold �Kth is mainly related to the characteristic

microstructural domain size D and to the monotonic or cyclic yield strength Y S or

�yc (see appendix A). Then the stochasticity of fatigue crack growth is experimentally

analyzed and a proper simple model to describe it is proposed.

3.2 Materials

Four materials, from tubes produced according to EN 10305-1 (9) are selected. The

tubes are produced with a cold drawing process, which increases the yield strength of

the material through a strain hardening mechanism. Indications regarding the chemical

composition of the investigated steels are reported in table 3.1.

Table 3.2 describes the materials in terms of grade and dimension.

3.2.1 Microstructural characterization

The characteristic microstructural dimension of the materials D, namely the ferritic

grain size for ferritic-pearlitic steels, and the high angle domain size of bainitic struc-

tures, is measured. The ferritic grain size is determined according to the procedure

described in ASTM E 112-96 (1) using the lineal intercept method. This same method

36



3.2 Materials

Material D [µm]

355L 25.2

355H 25.0

410L 11.2

410H 4.7

Table 3.3: Average size D of the characteristic microstrucutural domain.

Material Y S[MPa] UTS[MPa]

355L 500 603

355H 590 705

410L 600 717

410H 720 775

Table 3.4: Monotonic tensile properties.

is applied also to EBSD (electron backscattering di↵raction) acquisitions to measure

the high angle domains of bainitic structures.

Table 3.3 shows the size of the characteristic microstructural domain for each ma-

terial.

3.2.2 Mechanical characterization

The materials’ mechanical characterization is aimed at investigating the monotonic

tensile properties as well as the cyclic behavior, which is of interest when considering

high cycle fatigue crack growth. Additionally, the materials’ fracture toughness is of

interest for reliability analysis when considering the failure region and the failure mode.

3.2.2.1 Monotonic tensile properties

The monotonic tensile properties are measured according to the standard EN 10002-1

(2). Table 3.4 summarizes the mean value of monotonic tensile yield strength, Y S, and

ultimate tensile strength, UTS.

3.2.2.2 Cyclic behaviour

To investigate the cyclic behavior, strain controlled fatigue tests are carried out ac-

cording to ASTM E 606 (4). Table 3.5 shows the parameters of the cyclic curves
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Material E[MPa] H[MPa] n �yc[MPa]

355L 190150 812 0.12 396

355H 192742 693 0.07 450

410L 198889 1197 0.15 480

410H 198633 1221 0.14 520

Table 3.5: Monotonic tensile properties

interpolated with the Ramberg-Osgood expression, reported in equation 3.1, as well as

the cyclic yield stress �yc, which is referred to a 0.2% residual strain.

✏ =
�a
E

+ (
�a
H

)
1
n (3.1)

where � is the stress, ✏ is the strain, E is the elastic modulus, H and n are material’s

constant.

Figure 3.1 shows the Ramberg-Osgood interpolation of the experimental data.

3.2.2.3 Fracture toughness

Experimental data of fracture toughness previously obtained on compact test (CT)

specimens at room temperature (32) are available only for material 355H. The frac-

ture toughness is described using a three-parameter Weibull distribution (165), the

cumulative distribution function of which is expressed as:

P (Kmat) = 1� exp

"
�
✓
Kmat �Kmin

K0 �Kmin

◆k
#

(3.2)

where k, Kmin and K0 are respectively equal to 5, 28.7MPa
p
m and 40MPa

p
m,

according to the maximum likelihood fitting of the experimental results.

3.3 Fatigue crack growth tests

With the aim of investigating the influence of the material properties on the fatigue

threshold and the stochasticity of fatigue crack growth, several tests are carried out.

This section describes how the experimental plan is designed, the methodology

applied for the tests, the data analysis and the final results.
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Figure 3.1: Ramberg-Osgood interpolation of the experimental data: stress �

versus strain ✏
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R � [MPa
p
m] �dev nreplicates

0.1 0.4 0.22 4

0.3 0.4 0.22 4

0.7 0.2 0.05 1

Table 3.6: Number of replicates for experimental conditions

3.3.1 Design of experiments

An experimental plan is designed with the aim of evaluating di↵erences in the threshold

of the four materials described in section 3.2 as well as its variability. Experimental

conditions are defined by the material and the applied stress ratio R. The load ratio

of interest for this work are positive and range from R = 0.1 to R = 0.7.

The method of the operative characteristic curves (95) is used to assess the minimum

sample size necessary to discern a significant di↵erence in the experimental output. To

this aim the following approximated equation is used:

nreplicates =
(z↵

2
+ z�)2 · �2

dev

�2
(3.3)

where � is the quantity that has to be discerned, i.e. the minimum di↵erence that is

considered significant, �dev is the estimated standard deviation of the output quantity,

z↵

2
and z� are the normal standard variables corresponding to the value of the standard

normal cumulative distribution function ↵
2 and � respectively, being ↵ the probability

of type I error and � the probability of type II error (96), nreplicates is the number of

necessary replicates. The required inputs for equation 3.3 are the expected standard

deviation of the output, �dev, and the quantity to be discerned, �.

The value of �dev is estimated analyzing a set of available data of fatigue threshold

obtained previously on similar materials (22), applying the Fischer test (96). The value

of � is set evaluating a significant wall thickness reduction as a function of the fatigue

threshold for non propagating conditions for the maximum design value of the stress,

using available data for steel grade E355 SR. Table 3.6 shows the values of �, �dev and

the estimation of nreplicates.
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3.3 Fatigue crack growth tests

3.3.2 Test method

Fatigue crack growth tests are carried out according to the standard ASTM E 647 (7)

using single edge notched bend (SENB) specimens, obtained from tubes in direction L-

C (longitudinal circumferential), produced according to the indication of the standard

ASTM E399 (8).

Specimens are pre-cracked using the compression pre-cracking technique (48, 58,

107, 108, 143) . This technique consists in applying constant compressive load cycles in

order to generate a naturally non-propagating closure-free crack very similar to natural

cracks present in real structures, thus permitting to obtain more realistic threshold

values. The length of the pre-crack is influenced by the extension of the monotonic

plastic zone created by the stress amplitude of the first compression cycle (16, 18).

Figure 3.2 shows a specimen mounted on a resonant test machine during pre-cracking.

Figure 3.3 shows the inner surface of a tested specimen where pre-crack is marked with

heat tinting. At the sample boundary, where plane stress conditions act, the monotonic

plastic zone is larger, thus causing a larger pre-crack.

Figure 3.2: Specimen mounted on a resonant test machine during pre-cracking

The tests are carried out on a servo-hydraulic machine equipped with a 20 KN load

cell and the crack length is assessed with the compliance method mounting a clip on

gage.

Fatigue tests are carried either with the compression pre-cracking constant ampli-

tude method (CPCA) or with the compression pre-cracking load reduction method

(CPLR) (27). The first method is used to obtain the crack growth behavior from the
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Figure 3.3: Inner surface of a tested specimen where precrack is marked with

heat tinting. The precrack is larger at the sample boundary where plain stress

conditions act.

near threshold region to the Paris region and requires a constant amplitude loading.

The second method is applied to evaluate the fatigue threshold and requires both a

constant amplitude loading phase as well as a load amplitude reduction phase. The

�K decreasing procedure in the CPLR test program is applied according to the indi-

cations reported in (7) in order to reach the fatigue threshold, which is defined as the

value of applied �K which causes a propagation rate of 10�7 mm/cycle. Figures 3.4

and 3.5 illustrate the two procedures.

Most of the tests are carried out at constant load ratio (R=0.1, 0.3 and 0.7). Some

constant Kmax tests, starting from an initial value of the load ratio of R=0.7, are per-

formed, with the aim of evaluating an additional reduction of the threshold in absence

of closure.

The tests are carried out at three di↵erent laboratory, namely at Tenaris Dalmine

Research and Development laboratory (TD), at Centro Sviluppo Materiali (CSM)

and at Politecnico di Milano (PM). In order to check the consistency of the data

obtained by the di↵erent laboratories, one test is carried out applying the same CPCA

procedure on three samples of the same material in the three laboratories. Figure 3.6

shows that the three Paris curves obtained by the three laboratories are superimposed,

thus confirming the consistency of the data.

Figures 3.7 and 3.8 show a specimen mounted on a servo-hydraulic test machine

during the test at TenarisDalmine laboratory and at Politecnico di Milano, respectively.
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Figure 3.4: CPCA experimental procedure: the test is carried out at constant

amplitude loading, increasing at each step the applied stress intensity factor

untill the crack starts growing.
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Figure 3.5: CPLR experimental procedure: in the first part a constant ampli-

tude load is applied, then a �K decreasing procedure.
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Figure 3.6: Three Paris curves obtained applying the same test procedures

by the three laboratories: TenarisDalmine Research and Development laboratory

(TD), Centro Sviluppo Materiali (CSM) and Politecnico di Milano (PM). The

data are superimposed.

Figure 3.7: Specimen mounted on a servo-hydraulic test machine during the

tests at TenarisDalmine laboratory.
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Figure 3.8: Specimen mounted on a servo-hydraulic test machine during the

tests at Politecnico di Milano.
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3.3.3 Data analysis method

The experimental data are analyzed using the procedure described in the following.

• Raw data (crack length, number of cycles, maximum and minimum applied load)

are analyzed and the crack growth curves in terms of da/dN versus �K are

extracted using the polynomial method suggested by ASTM E 647 (7).

• The fatigue threshold of each material is evaluated at various load ratio as the

value of applied �K which causes a propagation of 10�7mm/cycle, according to

ASTM E 647 (7).

• Experimental data are fitted with the Nasgro equation (53) (46) (see Appendix

B) using the least square method. First, the best fitting parameters for the

relation of �Kth versus R are obtained for each material, then the best fitting

parameters for the relation between the fatigue crack growth rate, da/dN and�K

are evaluated. The opening stress, i.e. the e↵ect of the plasticity induced crack

closure is modeled using the McClung correction, which has been demonstrated to

successfully correlate the crack opening stresses for various specimen geometries

(87, 88, 89) (see section 4.5 and appendix B).

3.3.4 Test results

Figure 3.9, 3.10, 3.11 and 3.12 show the experimental data for each material and the

fitting with the Nasgro equation.

As can be observed in figures 3.9, 3.10, 3.11 and 3.12, the fatigue crack propagation

curves rarely cross because tests, showing a low threshold value, tend to show high

crack growth rates also in the Paris region. This behavior suggests that the stochastic-

ity of the crack growth is mainly controlled by the variation of the threshold, since the

threshold variation creates a fanning e↵ect which reproduces the experimental obser-

vations. In other words, it can be stated that the dispersion of the threshold controls

the dispersion of fatigue crack growth. For this reason, in the probabilistic model de-

scribed in sections 5 and 6, the stochastictiy of the crack growth is expressed describing

the fatigue threshold as a random variable, and considering deterministic all the other

parameters of the fatigue crack growth model.
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Figure 3.9: Fatigue crack growth experimental data for material 355L and the

corresponding fitted Nasgro equation: fatigue crack growth rate da

dN

versus the

stress intensification factor range �K.
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Figure 3.10: Fatigue crack growth experimental data for material 355H and

the corresponding fitted Nasgro equation: fatigue crack growth rate da

dN

versus

the stress intensification factor range �K.
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Figure 3.11: Fatigue crack growth experimental data for material 410L and the

corresponding fitted Nasgro equation: fatigue crack growth rate da

dN

versus the

stress intensification factor range �K.
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Figure 3.12: Fatigue crack growth experimental data for material E410H and

the corresponding fitted Nasgro equation: fatigue crack growth rate da

dN

versus

the stress intensification factor range �K.
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3.4 Fatigue threshold statistical analysis

Figures 3.13, 3.14, 3.15 and 3.16 show the normalized fatigue threshold, �Kth,

versus the load ratio, R, for the four materials as well as the Nasgro fitting and the

95% confidence band. For confidentiality reasons, the values of �Kth are normalized

in respect to the fitted value of �Kth at R = 0.1 for material 355L. In all cases the

Nasgro equation fits well the experimental data.
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Figure 3.13: Normalized fatigue threshold experimental data for material 355L

and the corresponding fitted Nasgro equation with its 95% confidence interval.

3.4 Fatigue threshold statistical analysis

The fatigue threshold experimental data are statistically analyzed with the aim of

assessing di↵erences in the variance or in the mean of the threshold of the four materials

at the three load ratio applied during the experiments. The threshold of each material

at a given load ratio is assumed normal distributed. Twelve groups of experimental

data are considered, each containing the threshold data of a material at a given load

ratio. The following statistical tests are applied:

• Bartlett’s test to assess the equality of the variance (20) (137);

• One-way ANOVA and a multiple comparison procedure based on Tukey’s test to

assess the di↵erence of the mean (11) (95).
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Figure 3.14: Normalized fatigue threshold experimental data for material 355H

and the corresponding fitted Nasgro equation with its 95% confidence interval.
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Figure 3.15: Normalized fatigue threshold experimental data for material 410L

and the corresponding fitted Nasgro equation with its 95% confidence interval.
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Figure 3.16: Normalized fatigue threshold experimental data for material 410H

and the corresponding fitted Nasgro equation with its 95% confidence interval.

3.4.1 Equality of the variance

Bartlett’s test is used to assess if di↵erent sample set have identical variance, assuming

that they are normal distributed. According to this test, all the threshold groups have

the same standard deviation, namely 0.17 MPa
p
m, with a probability (p-value) of

0.83.

3.4.2 Equality of the mean

The one-way ANOVA tests the equality of the means of two or more samples containing

mutually independent observations, assuming that i) all sample populations are nor-

mally distributed, ii) all sample populations have equal variance, iii) all observations

are mutually independent. Table 3.7 shows the results of the ANOVA, reporting the

probability (p-value) that the samples have the same mean for each of the three values

of the applied load ratio. The data at R=0.1 are unlikely to have the same mean, while

the likelihood increases for R=0.3 and for R=0.7.

The multiple comparison procedure, permits to evaluate which material shows a

di↵erent threshold than the others at the same load ratio. Figure 3.17 shows the
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R p-value

0.1 9.66 · 10�4

0.3 8.89 · 10�2

0.7 1.11 · 10�1

Table 3.7: ANOVA: probability that the samples at R=0.1, R=0.3 and R=0.7 have the

same mean
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Figure 3.17: Multiple comparison procedure: the normalized mean values of the threshold

and its 95% confidence interval for each load ratio for the four investigated materials.

normalized mean values of the threshold and their 95% confidence interval for each

material at each load ratio.

According to ANOVA and the multiple comparison procedure it can be stated that:

• at R=0.1 material 355L has a di↵erent threshold than the other materials.

• at R=0.3 and R=0.7 no statistically significant di↵erence in the threshold of

the four materials can be stated, even if material 410H at R=0.3 is likely to

have a lower threshold than the others. As explained in appendix A, when the

load ratio increases, the threshold tends to reach its asymptotic intrinsic value

in absence of closure. Since the closure level is proportional to the load ratio

and to the microstructural domain size, considering that material 410H has the

smallest characteristic microstructural dimension, D, it is reasonable to infer that

its threshold decreases faster than that of the other materials as the load ratio

increases.
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3.5 Crack paths, crack closure and microstructure in the threshold region

3.4.3 Pooled data analysis

Based on the results obtained in the previous analysis of the separate groups, the

pooled data are analyzed in order to assess their normality, to evaluate the significant

di↵erence of the threshold at R = 0.1 and to evaluate the pooled standard deviation.

Assuming that at R=0.1 the fatigue thresholds of material 355H, 410L and 410H

are from the same population, and that at R=0.3 and at R=0.7 the data of all materials

are from the same population, the statistical analysis is accomplished as follows:

• the Lillefors test (77) is applied to evaluate the normality of the population,

considering that the test can be applied to a minimum group of four data. In all

cases the normality of the data is confirmed with a 99% significance level.

• applying a z-test (96) to the pooled data, it can be stated that the di↵erence

between the threshold of E355L and the other materials at R=0.1 is 0.5 MPa
p
m

with a 95% significance level. At R � 0.3 no di↵erence in the mean fatigue

threshold of the four materials can be detected.

• applying the Bartlett’s test on the pooled data, the standard deviation of the

groups appears to be the same and it is equal to 0.2 MPa
p
m.

According to the statistical analysis on the pooled fatigue threshold data, the ma-

terial mechanical and microstructural properties in the explored range do not influence

significantly the fatigue threshold, except in the case of one material, which shows

a higher threshold than the others and o↵ers therefore more conservative conditions.

Therefore, considering that most of the fatigue life is spent in the near threshold region,

they are also not expected to exert a significant influence on the reliability.

3.5 Crack paths, crack closure and microstructure in the

threshold region

With the aim of investigating the relation between fatigue crack growth and microstruc-

ture for the chosen materials, the crack paths are observed using the optical microscope.

Crack branching and tortuosity are caused by the microstructural features that the

crack encounters while it grows, while second phase particles or inhomogeneities may
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stop the crack propagation (75) and (149). The observation of crack paths o↵ers an

insight in the fatigue behavior of the materials, connecting the experimental threshold

data with the microstructural characteristics. Samples of each material tested at each

load ratio, subjected to the load reduction, namely �K decreasing test procedure, are

polished and etched in order to observe the crack paths. The main remarks related to

the observations of the crack paths are the following:

• Material 355L, which has a low yield strength, shows crack deviations and branch-

ing along the entire crack path at any load ratio (see figure 3.18).

• Material 355H and 410L show also crack deviations, especially at R = 0.1 and

R = 0.3, but branching in this case is absent (figure 3.19);

• Crack paths of materials 355L, 355H and 410L show deviations located most of

the times at grain boundaries and cracks mainly stop at grain boundaries or at

pearlite islands (figure 3.20);

• Material 410H, having a bainitic structure, shows path deviations at R=0.1, while

at higher load ratio values, the path seems not to be influenced by the microstruc-

ture (see figure 3.21).

Figure 3.18: Crack path observed with the optical microscopy: deviations and

branching (material 355L).
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Figure 3.19: Crack path observed with the optical microscopy: deviations are

evident (material 410L)

Figure 3.20: Crack path observed with the optical microscopy arresting at a

pearlite island (material 355H).
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Figure 3.21: Crack path observed with the optical microscopy: no influence of

the microstructure (material 410H).

These observations suggest that crack paths are more easily subjected to the in-

fluence of the microstructural features in low yield materials, when branching and

deviations are more often observed. Cracks in high yield strength structures are less

a↵ected by the microstructural features.

3.6 Discussion

The results shown in figures 3.9, 3.10, 3.11 and 3.12 show that the stochasticity of

the crack growth requires the application of a random variable model, while a model

based purely on a random process approach would be insu�cient (see considerations

on probabilistic fatigue crack growth in sections 2.5). Similar considerations can be

done observing figures 3.13, 3.14, 3.15 and 3.16.

A random variable description of the threshold combined with a proper model for the

closure, which describes the dependence of the fatigue threshold with the stress ratio,

allows an exhaustive description of the fatigue crack growth behavior. The dependence

of the fatigue threshold on the stress ratio can be well fitted using the Nasgro model

and expressing the plasticity induced closure as a function of k
max

k
flow

(see Appendix B),

where kflow is expressed as a function of the cyclic yield strength. This approach has

already been implemented in (32), where it has been successfully applied to describe

the experimental data related to fatigue threshold of small and long cracks.
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These experimental observations are the starting point for the fatigue crack growth

model algorithm presented in section 4.5 and for the random variable definition de-

scribed in section 5.3.

3.7 Concluding remarks

In this chapter the influence of the material properties on the fatigue threshold and the

stochastic fatigue crack growth behavior of four di↵erent materials are investigated by

performing several fatigue crack growth tests.

According to the statistical analysis on the fatigue threshold data, the material

mechanical and microstructural properties in the explored range exert a moderate in-

fluence on the fatigue threshold at low stress ratio, while at higher stress ratio no

significant di↵erence between the fatigue threshold of the investigated materials can be

detected.

The fatigue crack growth tests provide evidence that the stochasticity of the crack

growth is mainly controlled by the dispersion of the threshold. For this reason in the

probabilistic models for fatigue crack growth described in section 5 and 6, the only

parameter of the crack growth equation assumed as a random variable is the thresh-

old. The threshold variation with the stress ratio can be well modeled by using the

cyclic yield strength to describe the plasticity induced closure. Based on experimental

evidence, the overall fatigue crack growth behavior at various load ratio can be suc-

cessfully described applying the Nasgro model for the fatigue crack growth and for the

threshold, randomizing the threshold and describing the closure as a function of the

cyclic yield stress.

The observation of the crack paths provides an insight on the interaction between

microstructure and crack growth in the near threshold region: crack paths are more

easily subjected to the influence of the microstructural features in low yield materials,

while cracks in high yield strength structures are less a↵ected by the microstructural

features.
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4

Case study: description of the

adopted models

4.1 Introduction

When dealing with reliability of components subjected to variable amplitude fatigue

loading, the following input models are necessary:

• a model for initial crack size, if initial cracks are present, alternatively a model

for the crack nucleation;

• a structural integrity model to evaluate the stress intensity factor at the crack

tip;

• failure criteria and the corresponding limit state functions;

• a fatigue crack growth equation;

• a model for the variable amplitude fatigue load;

• a probabilistic model for the reliability evaluation.

This section introduces the case studied in this work and is dedicated to the de-

scription of the models used in the reliability evaluation reported in the following. The

adopted models of the load are not described here, but separately in sections 5 and 6.
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4.2 Case study

This work focuses on tubular components and the case studied addresses tubes for

hydraulic cylinders produced from cold drawn seamless steel tubes. These tubes are

subjected to cyclic variable amplitude internal pressure during their service life. The

manufacturing process introduces some imperfections on the external surface of the

tubes, from which cracks may grow.

Based on experimental observations described in section 5.2, surface flaws are modeled

as shallow semi-elliptical surface imperfections, characterized by the depth, a, and the

semi-length, c (13, 15).

Figure 4.1 shows a sketch of a pipe containing a semi-elliptical surface flaw subjected

to internal pressure.

ID 

OD 

WT a 
2c 

P 

Figure 4.1: Transversal and longitudinal sections of the tube subjected to in-

ternal pressure, P . On the external surface an initial flaw characterized by the

depth a and the semi-length c is present. The geometry of the tube is defined

by the outer diameter, OD, the wall thickness, WT , and the inner diameter,

ID.

4.3 Model for the pre-existing flaws distribution and POD

model

In the application considered in this case study, pre-existing surface imperfections due

to the manufacturing process are assumed to be present on the tubes’ surface and their

initial depth is modeled as a random variable for the purpose of reliability evaluation.

The distribution of pre-existing flaws’ depth, f 0(a0), is determined during an experi-

mental activity, described in section 5.2 and published in (13). The depth of initial
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4.4 Structural integrity model

surface imperfections, a0, on tubular components is limited by application of non de-

structive tests (NDT). Therefore the probability of detection, POD (see 2.2.1), is taken

into account and it is modeled as a lognormal cumulative distribution function (166)

(60), as reported in equations 4.1, 4.2 and 4.3:

POD(a0) = �

✓
ln(a0)� ✓

⇢

◆
(4.1)

⇢2 = ln

"
1 +

✓
�POD

µPOD

◆2
#

(4.2)

✓ = ln(µPOD)�
1

2
⇢2 (4.3)

where ✓ and ⇢ are the parameters of the lognormal distribution, related to the mean,

µPOD, and the standard deviation, �POD, according to equations 4.2 and 4.3.

4.4 Structural integrity model

Two structural integrity models are implemented, with the aim of evaluating the ap-

plied stress intensity factor for surface semi-elliptical flaws during fatigue loading. In

the first model, the hoop stress is assumed constant through the cylinder wall and the

stress intensity factor is evaluated according to the solution for a semi-elliptical surface

crack in a flat plate (16, 106). In the second model, the membrane and the bending

components of the stress are taken into account and the stress intensity factor is eval-

uated according to the solution for external semi-elliptical surface cracks in cylindrical

vessels (69).

The solution for a semi-elliptical surface crack in a flat plate o↵ers conservative

though reasonable results, is easier to implement and requires less computational time.

For this reason, it is applied in the reliability evaluations presented in sections 5 and

6. In the following, the equations for the two models are reported.

4.4.1 Semi-elliptical surface cracks in flat plates

Figure 4.2 shows a scheme of the model of a semi-elliptical surface crack in a flat plate.

The stress is considered constant along the wall thickness according to the approx-

imated equation of the hoop stress for a thin-walled cylinder subjected to internal
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2c 
a 

c 

a 

WT 

φ"

Figure 4.2: Scheme of the model of a semi-elliptical surface crack in a flat plate:

membrane stress �
m

and bi-dimensional fatigue crack growth.

pressure (33)

� =
P · ID
2 ·WT

(4.4)

where P is the internal pressure, ID and WT are the internal diameter and the wall

thickness of the tube. The stress intensity factor, K, is calculated as (16):

K = �x · � ·
p
⇡a (4.5)

where � is the boundary correction factor, � is the applied stress, a is the crack depth

and c is the crack semi-length. The boundary correction factor is obtained according

to the stress intensity solution for a semi-elliptical surface crack in a flat plate (106),

and it is a function of various geometrical parameters:

�x = f(
a

c
,

a

WT
,
c

L
,�) (4.6)

where L is the length of the component, � is a parametric angle equal to 0 degrees

when referred the c direction, equal to 90 degrees when referred to the a direction.

4.4.2 Semi-elliptical external surface cracks in thick tubes

This model considers the membrane and the bending components of the stress. The

hoop stress throughout the tube wall is evaluated with the equation for thick-walled

cylinders subjected to internal pressure (33):

�(r) =
P ·R2

i

R2
o �R2

1

� R2
i ·R2

o · P
r2 · (R2

o �R2
i )

(4.7)

where Ro and Ri are the outer and the inner radius respectively, r is the radius,

ranging from Ri to Ro, P is the internal pressure. The value of the external pressure is
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4.5 Fatigue crack growth algorithm and Nasgro equation

assumed equal to zero. The membrane and the bending stress components, indicated

as �m and �b respectively, are obtained as:

�m =
�max + �min

2
(4.8)

�b =
�max � �min

2
(4.9)

where the maximum value of the stress is obtained on the inner surface, �max =

�(ID/2), and the minimum value on the outer surface, �min = �(OD/2).

The applied stress intensity factor is evaluated according to the solution reported

in (69) for external semi-elliptical surface cracks in cylindrical vessels:

K =
p
⇡a

3X

i=0

�ifi(
a

WT
,
2c

a
,
Ri

WT
) (4.10)

where the stress components, �i, are determined by fitting the stress as:

�(u) =
3X

i=0

�i(
u

a
)i0 < u < a (4.11)

The functions fi are given in (69) for the stress intensity factor in direction of a

and of c.

4.5 Fatigue crack growth algorithm and Nasgro equation

The fatigue crack growth algorithm is implemented according to the general two-

dimensional model with variable amplitude loading described in section 2.4.2.4.

The Forman-Mettu model (46), otherwise called Nasgro equation (47, 53) is used.

According to this model, the threshold as a function of the load ratio R = K
min

K
max

(Kmax

and Kmin are the maximum and the minimum stress intensity factors in a fatigue cycle)

is expressed as:

�Kth,R =
�Kth,0


1� f

(1�A0)(1�R)

�(1 + CthR)
(4.12)

where �Kth,0 is the fatigue threshold range at R = 0, Cth is a fitted model pa-

rameter, A0 is a function of the maximum stress and of the constraint (see equation

B.3 in appendix B) and f is the Newman’s crack opening function, accounting for the

plasticity induced crack closure using the Newman model (103), originally defined as
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f = �
o

�
max

, where �o is the crack opening stress. Based on the experimental observa-

tions chapter 3, the e↵ect of the plasticity induced crack closure is modeled using the

McClung correction (87), which has been demonstrated to successfully correlate the

crack opening stresses for various specimen geometries (see also section 3.6 and (32)).

The fatigue crack growth rate is expressed as:

hx =
dx

dn
= C

✓
1� f

1�R

◆
�K

�m
·

✓
1� �Kth,R

�K

◆p

⇣
1� Kmax

Kmat

⌘q (4.13)

where x is the crack length, either a or c, n is the number of cycles, R is the load

ratio, C, m, p and q are fitting parameters, �K is the range of the stress intensity factor,

�Kth,R is the fatigue threshold at load ratio R, defined in equation 4.12, Kmax = �K
(1�R)

is the maximum stress intensity factor, Kmat is the fracture toughness of the material.

Further details on the model and the numerical values used in this work can be

found in appendix B.

4.6 Failure evaluation

4.6.1 Failure criteria

Two failure criteria are considered (see also section 2.6.2):

1. leakage, i. e. stable crack growth until the crack depth reaches a critical crack

size (critical crack size failure, CCSF );

2. crack driving force failure condition (CDFF ) i.e. when the applied crack driving

force exceeds the fracture resistance of the material (165), which accounts for

both plastic collapse and unstable crack growth.

The CDFF assessment is implemented according to the indications reported in

(165). The criterion is based on the evaluation of the ligament yielding factor

Lr =
�ref
Y S

(4.14)

where �ref is the so called reference stress and Y S is the yield stress.

Failure by plastic collapse is encountered when Lr � Lrmax, where Lrmax is the

plastic collapse limit:
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Lrmax =
Y S + UTS

2 ·Rel
(4.15)

where UTS indicates the ultimate tensile stress and Rel is the elastic limit.

Unstable crack growth is encountered when J � Jmat, where

J = Je · f(Lr)
�2 (4.16)

Je =
K2

a,max

E(1� ⌫2)
(4.17)

Jmat =
K2

mat

(1� ⌫2)
(4.18)

with J the J-integral, Je the elastic component of J , Ka,max the highest value of K

in direction a during a stress cycle, E the elastic modulus and ⌫ the Poisson’s ratio,

Kmat the fracture toughness of the material in terms of K and Jmat the corresponding

fracture toughness in terms of J .

The expression for f(Lr) is the following

f(Lr) = (1 + 0.5L2
r)

�0.5[0.3 + 0.7 · exp(�µL6
r)]0  Lr  1 (4.19)

f(Lr) = f(Lr = 1) · L
n�1
2n

r 1  Lr  Lrmax (4.20)

where

µ = min[
0.001E

Y S
; 0.6] (4.21)

n = 0.3(1� Y S

UTS
) (4.22)

When considering semi-elliptial surface cracks in flat plates, Lr is evaluated accord-

ing to (165) as:

Lr =
�

(1� ⇣) · Y S
(4.23)

⇣ =
a · c

WT (c+WT )
(4.24)

Being the expression for ⇣ valid only when the length of the component, L, is larger

than WT + c (WT is the pipe’s wall thickness).

When considering external semi-elliptical surface cracks in thick tubes, Lr is eval-

uated as (69):

Lr =
�r
Y S

=
g(⇣)�b

3 +
q

g2(⇣)
�2
b

9 + (1� ⇣)2�2
m

(1� ⇣)2Y S
(4.25)
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g(⇣) = (1� 20⇣3)(
a

2c
)0.75 (4.26)

where ⇣ is defined in equation 4.24, �b and �m are the bending and membrane

components of the stress, respectively.

4.6.2 Proposed algorithm for the evaluation of the limit state function

In the previous section 2.6.2 the limit state function for fatigue crack growth is defined

according to equation 2.36. In practice, the direct evaluation of the limit state function

according to this equation can lead to numerical problems. In particular, the number of

cycles to failure Nfail(X) can become very large or even infinite if the fatigue threshold

�Kth is never exceeded. To remediate these numerical problems, it is often convenient

to modify the formulation to:

g(X) = {min[Nfail,1(X), Nfail,2(X), Nfail,3(X), Nstop]�N}·{1�min[0, (�Kmax��Kth)]}
(4.27)

which can be rewritten as:

g(X) = {Nmin �N} · {1�min[0, (�Kmax ��Kth)]} (4.28)

Here Nstop is the maximum number of cycles up to which the fatigue crack growth

is evaluated. Obviously, it must be Nstop > N . �Kmax is the maximum stress inten-

sity factor in Nstop cycles and �Kth is the fatigue threshold. When using the mean

approximation (paragraph 2.4.2.3 and 2.4.2.4), �Kmax and �Kth are replaced by their

expected values E{��}{R[�Kmax] and E{��}{R[�Kth].

The term {1 �min[0, (�Kmax ��Kth)]} accounts for the possibility that the fa-

tigue threshold �Kth is never exceeded and the crack does not propagate. The term

has value 1 if crack propagation occurs, and a value larger than 1 when no crack prop-

agation occurs. The term (�Kmax��Kth) ensures that the limit state function is not

constant in the non-propagation case, which is relevant for avoiding numerical problems

in structural reliability methods.

Figure 4.3 shows a sketch of the function g(X), defined according to equations 4.27.

It is worth noticing that when propagation occurs the function g(X) is not continuous,
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but it is defined at steps of b cycles, with b the length of the blocks used to carry out

the fatigue crack growth evaluation (see section 2.4.2.4).

x 

g(X) No propagation Propagation 

Nstop-Ntarget 

b"

g(X)=0 

Design point 

Figure 4.3: 2-D Sketch of the limit state function g(X) defined according to equation

4.27. g(X) is plotted against one generic component of the vector X of the input random

variables, exemplarily assuming that increasing x increases the probability of failure.

Figure 4.4 shows a scheme of the di↵erent cases that can be encountered when eval-

uating the crack propagation and the failure conditions: no propagation, propagation

without failure, failure by leakage or by the crack driving force condition.

In the flow chart of figure 4.5, an algorithm for evaluating Nmin (equations 4.27

and 4.28) is shown. This algorithm applies the block approximation of section 2.4.2.4

for two-dimensional crack growth evaluation under variable amplitude loading.

4.7 Verification

The crack growth algorithm evaluation and the failure criteria is tested using the com-

mercial software AFGROW (12) and full scale tests data on tubes with artificial notches

of 0.3 mm depth obtained by electro discharge machining (EDM) (32) tested at R = 0.1.

The integration of equations 4.13 for the two crack growth directions, a and c, is done

using blocks of b = 104 number of cycles. Figure 4.6a shows the results obtained

using the model of a centre semi-elliptical surface flaw on a plate subjected to pure

tension stress. Figure 4.6b shows the results obtained using the model of an external
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a 

n 

No failure 

CDFF 

Leakage 
a=acr 

No propagation 

N 

Figure 4.4: Scheme of the di↵erent cases that can be encountered when evaluating the

crack propagation and of the possible failure conditions: no propagation, propagation with-

out failure in N cycles, failure by leakage (CCSF ) or by the crack driving force condition

(CDFF ).

semi-elliptical surface flaw on a thick pipe.

The life prediction obtained with the crack growth model and with AFGROW are

in good agreement in both cases. The model of a semi-elliptical surface flaw in a flat

plate subjected to uniform stress o↵ers more conservative predictions than the thick

pipe model. Additionally, the former model permits to achieve faster computational

times, being �x (equation 4.6) expressed analytically, while the latter model requires

the numerical interpolation of multi-variables geometry numerical functions to obtain

the appropriate values of the weight functions fi, (equation 4.10). The life prediction

obtained with the crack growth model are also in good agreement with the full scale

tests. In all cases the predicted curve is within the 90% scatter band of the experimental

data. The model of a semi-elliptical surface crack in a thick pipe (figure 4.6b) delivers

a slightly unconservative prediction, which can be justified by the fact that the model

assumes that initial surface flaws behave like long crack, and does not consider any

nucleation time. The model of a semi-elliptical surface crack in a flat plate (figure 4.6a)

o↵ers reasonable conservative results.
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no 

yes 

INPUTS 
a0/c0 - initial ratio  
a0 - initial crack length 
Nstop  - number of cycles at which the algorithm stops  
b - number of cycles in each block 
γ, δ parameters describing geometry and material properties 
stress sequence 
#

Nmin=Ni 
 

Nmin=Nstop 
 
 

Ni<Nstop 

!
!
!
!
!
!
!
!
!
!
  

Two dimensional crack growth 
evaluation 

a 
c 

i=i+1 
 

a≥acr 
OR 

J≥Jmat 

OR 
Lr≥Lr,max  

yes 

i=1   Ni=0 

no 

ai+1=ai+Δai 

ci+1=ci+Δci 

Ni+1=Ni+b 

Figure 4.5: Flow chart of the algorithm used to calculate the number of cycles to

failure, N
fail

, necessary for the evaluation of the limit state function. The failure criteria

are implemented according to equations 2.30 and 2.31. The crack growth is evaluated

according to equations 2.6 and 2.7
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(a) Semi-ellitpical surface crack in a flat plate

Artificial surface flaws
3 mm

0.3 mm

(b) Semi-elliptical surface crack in a thick pipe

Figure 4.6: Full scale test data (32) (cylinders with 0.3 mm EDM notches ) with their

maximum likelihood interpolation and its 90% scatter band compared with the present

crack growth model prediction and AFGROW evaluation (13). For confidentiality reasons

no quantitative data concerning the number of cycles to failure can be disclosed.

4.8 Probabilistic model

The probabilistic models presented in this study are based on the experimental obser-

vation that undetected surface flaws below the NDT threshold can grow under fatigue

loads, spending most of their life in the near threshold region, in which the fatigue

crack growth has a stochastic behavior. The models evaluate the crack growth under

variable amplitude loading using the previously described algorithm for the evaluation

of the limit state functions (section 4.6.2).

Being the case studies focused on tubes for hydraulic cylinders, which are compo-

nents having a moderate length (1 to 3 m on average), the average number of imper-

fections present in a component must also be taken into consideration when calculating

the probability of failure. In the case study herein presented experimental data show

that not all components contain a flaw, as the density of surface flaws is small compared

to the average surface of a hydraulic cylinder. Therefore the probability of a flaw to

be present in the component must be considered in order to avoid an overestimation of

the probability of failure. Thus, the final probability of failure, Pf has to be calculated

72



4.9 Validity and limits of the models

according to equation 4.29:

Pf = Pr{F |flaw} · Pr{flaw}+ Pr{F |noflaw} · Pr{noflaw} (4.29)

where Pr{flaw} and Pr{noflaw} are respectively the probability of having a flaw

in a components or not; Pr{F |flaw} and Pr{F |noflaw} are the probability of failure

respectively when a flaw is present or absent.

The distribution of the flaw size is experimentally obtained. In section 5.2) the

experimental results are derscribed and it is demonstrated that the flaw size does not

depend on the tube dimension. No inference regarding the surface flaw density are

given. For the sake of simplicity, in the following numerical calculations it is assumed

Pr{F |noflaw} = 0 and Pr{flaw} = 1. Being actually Pr{flaw} < 1, the the results

are conservative. T

4.9 Validity and limits of the models

Two main assumptions are formulated when establishing the input models for the

reliability evaluation. One is the existence of initial surface flaws behaving like long

cracks. This hypothesis is reasonable and conservative. It permits to neglect the cracks

nucleation phase and the short crack behavior. The other main assumption is the

absence of retardation e↵ects due to overloads and other load interaction e↵ects. This

hypothesis permits to simplify the fatigue crack growth model and it is reasonable as

long as high cycle fatigue is considered and as long as the the stress can be described

with a stationary ergodic random process. In the case for example of a constant stress

sequence with sporadic overloads, the retardation e↵ects should not be neglected.

4.10 Concluding remarks

The fatigue crack growth presented in this chapter is based on the Forman-Mettu model

and on the fatigue crack growth experiments presented in chapter 3. The algorithm

predicts successfully the full scale experimental results and its prediction corresponds

to the AFGROW commercial software prediction.

The proposed algorithm for the evaluation of the limit state function considers three

di↵erent failure criteria according to the most state of the art assessment method for
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structure containing flaws. The limit state function for a finite fatigue life is smartly

built: it is always finite and monotonic in respect to each variable. These features avoid

numerical problems when the failure domain is explored.

The proposed fatigue crack growth algorithm as well as the limit state function

defining the failure domain are key requirements for the reliability evaluation presented

later in this work. Their innovative implementation represents a distinct and unique

feature of the reliability evaluation methods developed in this study, because they

permit to take into account any kind of randomly generated stress sequence and uses

a comprehensive and validate fatigue crack growth model as well as a state of the art

failure evaluation approach.
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5

Fracture mechanics based fatigue

reliability under variable

amplitude loading: random

variable approach

5.1 Introduction

Manufacturing process, service conditions and material properties are factors to be

considered when designing structural components subjected to fatigue. Exemplarily,

in this work tubular components, produced according to the standard EN10305-1 (9)

and EN10297-1 (3) are considered. For these products, non-destructive tests (NDT)

are optional and their flaw acceptance level is at the discretion of the manufacturer.

Typically, values between 0.3 mm and 10 percent of the wall thickness (10% WT) are

adopted as NDT threshold value. The case study analyzes tubular components used

for the hydraulic cylinders application. During their service life, they are subjected to

variable amplitude internal pressure and no inspections are planned. Therefore, the

distribution of initial flaws, the applied service loads, the material fracture toughness,

the fatigue threshold and the characteristic crack growth curve are key parameters to

be considered for a safe design.

This chapter proposes a reliability assessment method implemented with a random

variable approach and with a fracture mechanics based fatigue crack growth model,
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which is used to investigate the influence of simplified approaches on the reliability

evaluation, assessing the most important factors influencing the prediction of fatigue

life under variable amplitude loads .

The random variable approach takes into account the stochasticity of the fatigue

crack growth, randomizing the fatigue threshold according to the experimental data

presented in paragraph 3.3.4, and the fracture toughness variability (see paragraph

3.2.2.3). The random variable approach is used also to describe the variability of the

initial flaw depth, the distribution of which is evaluated with the experimental activity

presented in the first part of this section.

The case study herein tackled is based on service stress measurements of hydraulic

cylinders of earthmoving machines (paragraph 5.4).

5.2 Experimental assessment of the distribution of initial

surface flaws depth

Some imperfections may be present on the surface of cold drawn tubes due to the manu-

facturing process. Their maximum depth is limited by the threshold of non-destructive

tests. According to experimental observations, there are two di↵erent populations of

surface discontinuities: one having a characteristic depth of one order of magnitude

lower than the NDT threshold, as shown in figure 5.1, another having a characteristic

depth of the same order of magnitude as the non-destructive tests threshold. Flaws

with a depth of the same order of magnitude of the NDT threshold can be detrimen-

tal for the behavior of tubes subjected to fatigue, since they are able to propagate,

although their depth is smaller than the NDT threshold. Figure 5.2a shows a flaw on

the surface of a tube, figure 5.2b shows a scanning electron microscopy (SEM) image

of a longitudinal section of a surface flaw of depth of approximately 150µm.

5.2.1 Methodology

With the aim of assessing the statistical distribution of the largest initial surface flaws,

an extensive experimental activity on cold drawn and stress relieved tubes (15) pro-

duced according to (9) (3), is carried out. Tubes previously subjected to eddy current

NDT with a threshold set at 5% of the wall thickness are inspected using magnetic

powder. The length of detected flaws is measured using a pocket rule, as shown in

76



5.2 Experimental assessment of the distribution of initial surface flaws
depth

Figure 5.1: SEM image of the longitudinal section of micro-defects (13).

(a) Measure of flaw length (b) SEM image of the longitudinal section

of a surface flaw of about 150µm depth.

Figure 5.2: Surface flaws of the same order of magnitude as the NDT threshold (13).

figure 5.2a, while their depth is measured with a micrometer gauge after grinding the

surface of the tube and measuring the depth of the ground surface.

The experimental data are analyzed with the aim of assessing whether di↵erent

data sets can be described with the same distribution. The parameters of each data set

are estimated with the maximum likelihood method. Then the simultaneous confidence

interval test and the likelihood ratio test are applied to the data (101, 102). Finally,

the parameters are also estimated for the set of the pooled data.

5.2.2 Experimental results

Several tubes from seven production batches, with di↵erent diameter and wall thickness,

are inspected, the total examined surface is 363m2. Table 5.1 summarizes the geometry

of the tubes from each examined batch as well as the total examined surface.

Some tubes do not contain any flaw detectable with magnetic particles, while some

contain more than one. All examined surface discontinuities have a ratio a
c (a is the

flaw’s depth and c is the flaw’s semi-length) lower than 0.1, which means they are long

and shallow longitudinal flaws, having a shape similar to a semi-ellipse.
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lot # OD [mm] WT [mm] Examined surface [m2]

1 125 12.5 86

2 130 15 33

3 150 10 63

4 185 12.5 48

5 160 12.5 63

6 185 17.5 42

7 225 17.5 28

Total 363

Table 5.1: Geometry of the inspected tubes.

As suggested by (34), the depths of flaws are usually described with a Weibull or

a lognormal distribution. Figure 5.3 shows the lognormal, the Weibull and the largest

extreme value distribution (LEVD) probability papers of lots 1, 2 and 3, which have

a su�ciently large number of samples, as well as the probability paper of the pooled

data, in which the flaw depth is expressed as percentage of the tubes wall thickness.

A LEVD distribution, the cumulative distribution function of which is reported in

equation 5.1, is chosen to describe the depth of surface flaws, since it is the most

suitable to experimental data, according to the Kolgomorov-Smirnov test (52). Its

CDF is:

F (a) = exp


�exp

✓
�a� �

�

◆�
(5.1)

The simultaneous confidence interval test (96) is applied in order to evaluate the

dependence of the LEVDmaximum value estimates of � and � on the tube wall thickness

or diameter. Figure 5.4 shows the simultaneous confidence interval test, where � and

� are normalized with respect to the pooled data best fitting � and �. The confidence

intervals overlap and no dependence of the parameters � and � on the batch or on the

tubes outer diameter and wall thickness is observed. Therefore, flaws from di↵erent

batches can be described with the same parameters � and �.

Alternatively the maximum likelihood ratio test is used to assess the equality of

the parameters � and � for the batches 1, 2 and 3. The same conclusions as above are

obtained.
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(a) Lognormal probability paper for lots 1, 2,

3

(b) Lognormal probability paper for the

pooled data

(c) Weibull probability paper for lots 1, 2, 3 (d) Weibull probability paper for the pooled

data

(e) LEVD probability paper for lots 1, 2, 3 (f) LEVD probability paper for the pooled

data

Figure 5.3: Lognormal, Weibull and LEVD probability papers of the crack depth, a,

expressed as percentage of tube wall thickness (for confidentality reasons no absolute values

can be disclosed) (13).
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Figure 5.4: Simultaneous confidence interval tests: �

�

, �

�

and �

�

versus outer diameter

and wall thickness (13).
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5.3 Reliability assessment method

The reliability assessment method presented in this section is based on the definition

of the limit state function given in 2.6.1 and on the corresponding algorithm for its

evaluation described in 4.6.2, in which Nstop = N , that is the fatigue crack growth is

evaluated for a number of cycles correspondent to the service life. The latin hypercube

Monte Carlo method (see paragraph 2.7.1) is used for the evaluation of the probability

of failure, given the probabilistic model described in 4.8.

The fatigue crack growth is assessed according to the procedures indicated in para-

graphs 2.4.2.4 and 4.5, given a stress sequence extracted randomly from its spectrum

(see further paragraph 5.4.1). The Nasgro equation is applied (see section 4.5), which

parameters are deduced from the experimental results presented in paragraph 3 and

are available in appendix B.

Three random variables are considered in the model: the initial flaw’s depth, a0,

the fatigue threshold, �Kth,0, and the material fracture toughness, Kmat.

The distribution of initial flaw’s depth is experimentally obtained, as described

in section 5.2. According to experimental observations, surface flaws are modeled as

shallow semi-elliptical surface imperfections, characterized by the depth, a, and the

semi-length, c. The initial value of the ratio a
c is assumed fixed and equal to 0.1. The

probability of detection and the posterior flaw distribution are modeled as described

in section 4.3. Figure 5.5 shows an example of the probability density function before,

f 0(a0), and after, f 00(a0), the non-destructive tests as well as the curve of the probability

of detection of the NDT, where µPOD is fixed at 5% WT.

Kmat is modeled with a Weibull distribution, as described in section 3.2.2.3.

�Kth,0 is a normal distributed random variable (23) since, according to the exper-

imental data presented in chapter 3. The dispersion of propagation lifetimes appears

to be controlled by the dispersion of the threshold and the uncertainty in the fatigue

crack growth rate can be described by the uncertainty in the threshold (see comments

in paragraphs 3.3.4). Notice that according to the experimental data on the inves-

tigated materials the fatigue threshold has a smaller coe�cient of variation than the

other random variables.

The structural integrity model of a semi-elliptical surface crack in a flat plate sub-

jected to tension loading is used (see section 4.4.1), since it delivers more conservative
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Figure 5.5: f 0(a0), f 00(a0) and POD(a0), where a0 is expressed as percentage of the

tube wall thickness (for confidentiality reason no quantitative information can be disclosed)

(13).

results and permits to achieve faster computational times (section 4.7). This model can

be applied, assuming that the crack growth evaluation and the failure criteria verified

in section 4.7 are valid also in cases of variable amplitude loads.

5.4 Case Study

The case study presented in this section is related to tubular components for hydraulic

cylinders, produced from cold drawn tubes made of the material 355H (see chapter 3

and appendix B for the details on material’s properties).

5.4.1 Service stress measurements

Stress measurements are conducted on excavators’ hydraulic cylinders to estimate ser-

vice stress spectra. Selected histories are joined and extrapolated to 360 working hours.

The Peak Over Threshold method is used to extrapolate these histories (113). Stress

spectra extrapolated withe the Rainflow method (10) from experimental measurements

are shown in figure 5.6.

Assuming that a cylinder has a service life of 20.000 hours (8 hours per day, for 250

days a year for 10 years), the corresponding service life, N , is obtained for each loading
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Figure 5.6: Stress spectra measured on earth moving machines extrapolated to 360 work-

ing hours (13).

Case 1 Case 2 Case 3 Case 4

Service Stone loading & soil digging Soil digging

��max [MPa] 84 138 110 100

N 1.8 · 107 4.6 · 107 2 · 107 1.1 · 107

Table 5.2: Case studies of service stress measurements

condition. Table 5.2 summarizes the kind of service, the maximum applied stress range,

��max and the service life, N , for each spectrum presented in figure 5.6.

5.4.2 Approaches for the evaluation of the probability of failure

The probability of failure for the four stress cases described in table 5.2 is evaluated

using the following approaches:

a. A simplified semi-probabilistic approach, assuming a fixed initial flaw depth equal

to 5%WT, which is a common NDT acceptance level, and assuming that the con-

dition for failure is the propagation of the initial flaw. Referring to the algorithm

for the evaluation of the limit state function in section 4.6.2, this corresponds to

setting N = 1.
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Approach Scheme Initial flaw Failure condition

a) Simplified

semi-probabilistic

model

5% WT
Crack propaga-

tion

b) Simplified

probabilistic

model

LEVD distributed
Crack propaga-

tion

c) Semi-

probabilistic

model with crack

propagation

5% WT Nmin < N

d) Probabilistic

model
LEVD distributed Nmin < N

Figure 5.7: Approaches adopted to evaluate the probability of failure (13).

b. A simplified probabilistic approach, considering randomly distributed initial flaws

and assuming that the condition for failure is the propagation of the initial flaw

(N = 1).

c. A semi-probabilistic approach, assuming a fixed initial flaw depth equal to 5%WT,

evaluating the crack growth with the algorithm described in section 4.5, the con-

dition for failure with the limit state function given in equation 2.33 and the

algorithm described in section 4.6.2.

d. A fully probabilistic approach, considering randomly distributed initial flaws,

evaluating the condition for failure with the algorithm described in section 4.6.2.

Summarizing, the failure condition for approaches a and b is the propagation of

the initial flaw, while the failure condition for approaches c and d is the leakage or the

failure by crack driving force condition before N cycles.

Figure 5.7 summarizes the approaches adopted to evaluate the probability of failure.

5.4.3 Results and discussion

Figure 5.8 shows the results evaluated for the four cases described in table 5.2 using

the approaches described in paragraph 5.4.2. The probability of failure is evaluated
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Figure 5.8: Probability of failure for the various approaches. The probability of failure

is normalized with respect to the highest value.

assuming that each component contains one flaw and that the stress spectra have a

constant load ratio equal to 0.1. Furthermore, the probability of failure is normalized

with respect to the highest value.

The probability of failure obtained with approach d is considered the most accurate

result, used as a reference.

The probability of failure obtained assuming a fixed initial flaw depth equal to 5%

WT is lower or equal than that evaluated considering the distribution of initial flaws,

since on average the flaws are smaller than 5% WT.

For Case 2, which has the most demanding spectrum, the use of the di↵erent ap-

proaches does not make any significant di↵erence in the evaluation of the probability

of failure. However, a higher di↵erence can be obtained for Case 1, which has a lower

maximum stress and a spectrum with a quite flat shape. Results for Case 3 and Case
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4 depend much more strongly on the adopted approach.

The great overestimation of the probability of failure obtained for Cases 3 and 4,

when adopting simplified approaches, is due to the fact that, when steep spectra with

moderate maximum stress values are applied, only the largest flaw propagate under a

small portion of the spectrum. Therefore, especially in these cases, it is essential to

take into account the distribution of initial flaws as well as the crack growth under the

variable amplitude stress, in order to obtain an accurate estimation of the reliability of

the component.

It is also worth noticing that the probability of failure obtained with approach d is

not directly related to the maximum applied stress, but it depends also on the spectrum

shape and on the service life. For example, Case 1, having a flat spectrum, has a higher

probability of failure than Case 3, which has a spectrum with a steep shape, even

though Case 1 has a lower maximum applied stress.

5.5 Concluding remarks

This chapter presents a large experimental activity to measure the distribution of the

initial flaw depth on the surface of tubes. It shows that the depth distribution is

independent from the tubes dimension.

A reliability assessment method is also presented in this chapter. The method, ac-

cording to experimental observations, adopts a fracture mechanics fatigue crack growth

algorithm and a random variable probabilistic approach. The random variable approach

takes into account the stochasticity of the fatigue crack growth, randomizing the fatigue

threshold the variability of the initial flaw depth, the distribution of which is evaluated

with the experimental activity presented in the first part of this section.

A distinct feature of the methods is the description of initial flaw size with a random

variable approach based on experimental data, while often the maximum size of the

flaws, corresponding to the non-destructive tests threshold, or an equivalent flaw size,

is adopted (82). Another innovative aspect is the reliability evaluation algorithm itself,

which have unique features, which are not present in any commercial software. It

permits to take into account any kind of randomly generated stress sequence and uses

a comprehensive and validate fatigue crack growth model as well as a state of the art

failure evaluation approach.
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The reliability is assessed for four case studies derived from real service spectra

measurements on hydraulic cylinders of earth moving machines.

The probability of failure is then compared with the results obtained with simplified

approaches.

The comparison of the results shows that generally a correct life assessment of com-

ponents subjected to variable amplitude fatigue loads has to be carried out considering

the distribution of initial flaws and the crack growth under randomly applied load spec-

tra. The shape of the spectrum is a key factor. Simplified hypothesis, such as fixed

initial flaw size or the assumption that crack propagation implies failure, may lead to a

large overestimation of the probability of failure, especially in cases of medium or high

maximum applied stresses.
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6

Fracture mechanics based fatigue

reliability under variable

amplitude loading: random

process model

6.1 Introduction

The results of chapter 5 show that for a correct life assessment of components subjected

to variable fatigue loads the stochasticity of the inputs and the shape of the stress

spectrum is a key factor.

This chapter proposes a model of the load, which permits representing di↵erent

types of service histories, by modeling the load as a Markov random process having

a variable correlation length. Advanced reliability evaluation methods, such as subset

simulation (19) and first order reliability method (54, 121), are applied, in order to

avoid the large computational e↵ort required by the Monte Carlo simulation method.

To assess the fatigue reliability under variable amplitude loading, time discretization is

combined with the subset simulation, which allows handling the resulting large number

of random variables. Results are then compared with those obtained with the first

order reliability method for approximations of the time-variant loading (14).

Additionally this chapter investigates the influence of the failure criteria on the

reliability evaluation. Two classes of failure modes are investigated: (i) one defined
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by the crack reaching a critical crack size and (ii) one caused by plastic collapse or

by unstable crack growth. Results show that the failure criteria are also an important

issue in the frame of fatigue reliability analysis. While the failure mode itself is a

significant factor for an applied design, its influence on the reliability evaluation is not

easily predictable.

6.2 Markov process model of the load

A gaussian copula type model for fatigue load processes, which is simultaneously a

Markov process, is described in the following. This model is applied later in this

chapter for numerical investigations, because it has the advantage that the dependence

structure is represented by a single parameter. For simplicity, only the stress range is

modeled as a random process {��}, the stress ratio R is assumed to be constant and

its value is R = 0.1. The marginal distribution of �� is defined through its cumulative

distribution function (CDF) F��. Let ��(n) be defined through a transformation T 0

from a standard Normal variate V (n) as:

��(n) = T 0(V (n)) = F�1
��(�(V (n))) (6.1)

where � is the standard normal CDF and F�1
�� is the inverse CDF of ��(n). If it

is imposed that V (ni) and V (nj) have the joint Normal distribution, then the corre-

sponding pair of stress ranges ��(ni) and ��(nj), defined through the transformation

in equation 6.1, are said to follow the gaussian copula. The autocovariance function

of the process {��} is described through an autocovariance function KV V of the un-

derlying standard Normal process {V }, which is here assumed to be of the exponential

type with correlation length z:

KV V (�n) = Cov[V (n), V (n+�n)] = exp(��n

z
) (6.2)

The process {��} does not have the same autocorrelation function as the underlying

Gaussian process {V }, however, the di↵erence between the two is generally small.

K����(�n) is obtained from KV V (�n) by means of the Nataf transformation (80). It

can be shown that with the exponential autocovariance function, the process {V } has

the Markovian property (152):
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Figure 6.1: Randomly generated sequences of the stress range��, with identical marginal

distribution and varying correlation length z.

FV [V (nj)|V (nj�1), V (nj�2), ..V n1] = FV [V (nj)|V (nj�1)] (6.3)

Consequently, also the process {��} is a Markov process:

FV [��(nj)|��(nj�1),��(nj�2), ..��n1] = F��[��(nj)|��(nj�1)] (6.4)

With this model, the dependence structure is characterized solely by the correlation

length z. To illustrate the e↵ect of z, figure 6.1 shows three di↵erent realizations of

stress range processes {��} with identical marginal distribution but varying correlation

length.

6.2.1 Discretization of the fatigue load process into blocks

For practical purposes, it is computationally advantageous to approximate the random

load sequence by blocks of cycles with constant amplitude and stress ratio. Such blocks

can be defined from the original fatigue load process {��} by dividing the sequence of

cycles {n1, n2, ...nj , ...ntot} into blocks of b cycles. Each block i is characterized by a

stress range��i that is equal to the value of the stress cycle at the mid-point of the block

��i =��(i� 1
2 )·b

. Unlike the blocks of the Gassner sequence, or similar deterministic

load sequences, the loading blocks obtained with this method still represent a random

process. The resulting stress range process has the same marginal distribution F�� as

the original one. The autocovariance function of the block approximation of �� is:
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Figure 6.2: Approximated load sequences built as blocks of length b = 20 cycles, super-

imposed on the load sequences shown in figure 6.1. The value of �� at each block is equal

to the mid-point value of the original random process at each block.

K�̌��̌�(�n) = K����(k · b)� �n� k · b
b

[K����(k · b)�K����((k + 1) · b] (6.5)

with k = floor(�n
b ).

The error in the covariance is small as long as the correlation length is much larger

than the block size, z >> b. Figure 6.2 exemplarily illustrates the stress range block

sequence corresponding to the realizations of the stress ranges shown in figure 6.1, with

a block length b = 20 cycles. It can be observed that the approximation becomes better

with increasing correlation length z.

6.2.2 Generation of a Markov process load sequence for reliability

analysis

To solve the structural reliability problem formulated in equation 2.29, the multidi-

mensional integral in the space of X is rewritten to an integral in standard normal

space:

pF (N) =

Z

⌦
F

(N)
fX(x)dx =

Z

G(U,N)0
�n(u)du =

Z

G(U,N)0
�(u1)�(u2)...�(un)du1du2...dun

(6.6)

where U = [U1; ...;Un] are uncorrelated standard normal random variables, �n is the

n-variate uncorrelated standard normal PDF, and G(U,N) is the limit state function
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in the space of U-variables. Underlying equation 6.6 is the equality Pr{g(X,N) 
0} = Pr{G(U,N)  0}. In order to determine G(U,N) from g(X,N), a probability-

conserving transformation T from U to X is required (35, 91, 121):

G(U,N) = g(T (U), N) (6.7)

Due to the large number of random variables used to represented the discrete load

process ��1, ...,��l, an e�cient procedure is required for this transformation. The

Markovian property of the process ��1, ...,��l (see equation 6.4), facilitates the appli-

cation of the Rosenblatt transformation for this purpose (57, 121). First, the random

variables U1, ...Ul are transformed into the correlated standard normal random variables

V1, ..., Vl sequentially:

V1 = F�1
V1

· (�(U1)) = U1 (6.8)

V2 = F�1
V2

· (�(U2|V1)) =
U2 � µV2|V1

�V2|V1

(6.9)

V3 = F�1
V3

· (�(U3|V1, V2)) = F�1
V3

· (�(U3|V2)) =
U3 � µV3|V2

�V3|V2

(6.10)

Vl =
Ul � µV

l

|V
l�1

�V
l

|V
l�1

(6.11)

The conditional mean and standard deviation of Vl given Vl�1 are:

µV
l

|V
l�1

= Vl�1 · ⇢ (6.12)

�V
l

|V
l�1

=
p

1� ⇢2 (6.13)

where the correlation coe�cient ⇢ is equal to the covariance between Vl�1 and

Vl, defined following equation 6.2. Due to the stationarity of the load process, ⇢ is

equal for all l. Finally, ��1, ...,��l are obtained from V1, ..., Vl through the marginal

transformation defined in equation 6.1.
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6.2.3 Variable amplitude stress for numerical investigation

The gaussian copula type stress amplitude process is characterized by its CDF F��(��)

and by the correlation length z. In the subsequent calculations three F��(��) are

considered: two empirical and one analytical CDF, which are depicted in figure 6.3.

The two empirical ones, C1 and C2, are obtained from service stress measurements on

hydraulic cylinders of earth moving machines (13) and correspond to Case1 and Case

3 of table 5.2. The analytical one, CW , is a 3-parameters Weibull with the same mean

and standard deviation as C1.

Table 6.1 summarizes the statistical properties of the three load sequences: the

maximum stress range value, ��max, the service life, N , the mean and the standard

deviation of the stress range, µ�� and ���. The correlation length z is varied to

investigate its e↵ect on the reliability.
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Figure 6.3: Cumulative distribution CDF of the three applied load models.
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C1 C2 CW

��max [MPa] 84 110 1
N 1.8 · 107 2 · 107 1.8 · 107

µ�� [MPa] 42 34 42

��� [MPa] 28 23 28

Table 6.1: Properties of the three applied load models: maximum stress range ��
max

,

number of fatigue cycles during the service life N , mean of the stress range µ��

, and

standard deviation ���

.

6.3 Innovative solutions for the reliability evaluation

In chapter 5 the reliability evaluation is carried out using the latin hypercube Monte

Carlo simulation method (see section 2.7.1). This section presents advanced solutions

for the evaluation of the fatigue reliability.

The reliability assessment described in the following are based on the definition of

the limit state function presented in section 2.6.1 and on the corresponding algorithm

for its evaluation described in section 4.6.2.

As in the previous chapter (see section 5.3), three random variables are considered:

the initial flaw size, a0, the fatigue threshold, �Kth,0, and the material fracture tough-

ness, Kmat. Notice that the material fracture toughness is relevant only if the crack

driving force failure criterion is considered (see section 4.6.1 for the description of the

failure criteria). The structural integrity model of a semi-elliptical surface crack in a

flat plate subjected to tension loading is applied (see section 4.4.1). The block length,

b, used for the simulations is 104 or smaller.

Three approaches to the reliability evaluation are implemented, which correspond

to di↵erent models of the stress range process:

• Random process approach (RP): the load is modeled as a Markov process (see

sections 2.3.2 and 6.2) with various correlation lengths and the reliability is eval-

uated with a subset simulation algorithm (see section 2.7.3). In the implemented

algorithm, the constants oi defining the intermediate failure events are chosen

such that P (Ei|Ei�1) = 10�1, and 500 samples are generated at each intermedi-

ate simulation step. Therefore, in each step Nstop (see paragraph 4.6.2) is chosen

in order to reach a 10�1 probability of failure. The load sequences are generated
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applying the method proposed in section 6.2.2. The results obtained with subset

simulation are verified for the stress model C1 against a Monte Carlo simulation,

as shown in Appendix C.

• Random variable approach (RV): the load is modeled as a random variable and

the first order reliability method (FORM, see section 2.7.2) as well as Monte Carlo

simulation (MCS, see section 2.7.1) are applied. Modeling the load as a random

variable is equivalent to a Markov process with infinite correlation length.

• Mean approximation approach (MA): the mean approximation is applied (see

section 2.4.2.3 and 2.4.2.4) and the reliability is evaluated with FORM. Since the

mean approximation does not consider interdependency among stress cycles, it is

equivalent to a random process with correlation length zero z = 0.

6.4 Results - critical crack size failure criterion

In this section, the results obtained for the critical crack size failure criterion are re-

ported. The results obtained when considering also the crack driving force failure

criteria are presented in paragraph 6.5.

Figures 6.4 show the plots of the probability of failure, pF , versus the correlation

length z of the stress range process {��} with CDF C1, C2, CW and for the di↵erent

reliability evaluation approaches RP, RV and MA. Results for z = 1, 103, 105, 107, 109

are obtained describing the load as Markov random process and applying a subset sim-

ulation algorithm (SuS RP). Results for z = 1 refer to the case of the load described

as a random variable and solved with Monte Carlo simulation or with first order re-

liability method (MCS RV and FORM RV). Results for z = 0 are obtained applying

the mean approximation with respect to the stress process and solving with FORM

(FORM MA).

It can be observed from figure 6.4 that the correlation length z of the stress range

process has a strong e↵ect on the resulting reliability. When the CDF C2 is applied,

which is the one with the highest reliability, the probability of failure varies by four

orders of magnitude, from 10�6 to 10�2! The highest probability of failure occurs for

values of z close to the service life time. For z � 107, the probability of failure decreases

again until it reaches the value corresponding to the random variable case (z = 1).
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Figure 6.4: Probability of failure p
F

versus correlation length of the stress range process

z corresponding to the three models: C1, C2, CW . Results for z = 1, 103, 105, 107, 109 are

obtained describing the load as Markov random process and applying a subset simulation

algorithm (SuS RP). Results for z = 1 refer to the case of the load described as a random

variable and solved with Monte Carlo simulation or with first order reliability method (MCS

RV and FORM RV). Results for z = 0 are obtained applying the mean approximation with

respect to the stress process and solving with FORM (FORM MA).

Values of z in the range 106 � 107 correspond to cases with a few distinct service

conditions during the service life. These are the most unfavorable cases, since they

imply a high probability of enduring a high load level during an extended time period.

Shorter correlation lengths correspond to a single service condition with randomly

varying stress ranges. In these cases, lower failure probabilities are observed because

the mixing of the stress ranges decreases the actual uncertainty in the loading (law of

large numbers). Finally, for z � 107, the probability of having a high load level during

lifetime decreases, and therefore the probability of failure slightly decreases.

There is a good agreement between the results obtained describing the load as a

random process with a high correlation length (z = 109) and applying a random variable

approach. The probability of failure obtained applying the mean approximation is close

to the one obtained with the load modeled as a random process with a short correlation

length (z = 1). It should be noted that the correlation length z = 1 refers to the

specification of the stress process; however, due to the block approximation in the

fatigue crack growth evaluation, the correlation length of the simulated stress process

is larger than the specified z = 1 (see comments in section 6.2.1). This e↵ect is relevant

only for the small correlation lengths, i.e. z = 1 and z = 103. It can also explain
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the slight di↵erence in figures 6.4a and 6.4c between the pF calculated with the mean

approximation and with a random process with correlation length z = 1.

The probability of failure of case CW is slightly higher than that of C1, even

though the two correspond to stress range processes with the same mean and standard

deviation. The di↵erence between the results can be explained by the fact that in

the case of CW the distribution of the stress ranges is analytically defined and has

no upper limit, which implies a heavier tail of the distribution. The e↵ect of the two

di↵erent distribution forms can also be observed in figure 6.5, which compares the

mean approximation for cases C1 and CW . Figure 6.5a shows the expected value of

the fatigue crack growth rate E[ dadn ] = h0a(a,
a
c , �, �) (equations 2.25) as a function of the

crack length a (see paragraph 2.4.2.4). The expected value of the fatigue crack growth

rate evaluated with CW is higher than that evaluated with C1. Fig. 6.5b shows the

crack depth a versus the number of fatigue cycles n applying the mean approximation

with respect to the stress distributions C1 and CW at the design point u⇤ of the FORM

solution for case C1. It is observed that the analytical Weibull distribution CW leads

to a lower number of cycles to failure, which is in agreement with the di↵erences in the

probabilities of failure observed between figures 6.4a and 6.4c.

Figure 6.4 shows that the correlation of the load sequence has a significant influence

on the fatigue reliability. To better understand the reasons for this e↵ect, it is helpful

to look at some realizations of the crack growth process for di↵erent values of the

correlation length z. In figure 6.6a, random realizations of the crack growth with a

stress range correlation length z = 1 are shown for two di↵erent values of the initial

crack size a0. In 6.6b, random realizations of the crack growth are shown for the case

where the stress range is a random variable (z = 1). Comparing the results for z = 1

and z = 1 shows the e↵ect of a small correlation length: the randomness of the stress

range process essentially disappears due to the law of large numbers. Therefore, the

resulting randomness is much smaller in this case, and the reliability is significantly

higher. This is also confirmed by FORM sensitivity results shown later.

In figure 6.7 random realizations of the crack growth are shown for correlation

length z = 107, together with the underlying load sequences. This value of z is of

the same order of magnitude as the service life, and it is the value with the highest

failure probability (figure 6.4). It can be clearly observed how the stress range processes

correspond to a few distinct service conditions during the service life. This implies a
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Figure 6.5: Mean approximation for cases C1 and CW : (a) expected value of the fatigue

crack growth rate E[ da
dn

] = h0
a

(a, a

c

, �, �) as a function of the crack length a; (b) crack depth

a versus the number of fatigue cycles n calculated with the mean approximation at the

design point u⇤ of the FORM solution for case C1.
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Figure 6.6: Crack depth a versus number of fatigue cycles n with initial crack depth

a0 = 0.0003 m or a0 = 0.00056 m and fixed fatigue threshold.

high probability of enduring a high stress range level during an extended time period,

which leads to fast growth of the crack.

6.4.0.1 FORM sensitivity analysis

The FORM algorithm provides sensitivity factors ↵i that describe the influence of the

random variables on the failure probability (paragraph 2.7.2). Table 6.2 and 6.3 show

the FORM sensitivity factors ↵i for the random variable approach (corresponding to

z = 1) and the mean approximation approach (corresponding to z = 0). In the random

variable approach, the most influent variables are the stress range �� and the initial

value of the flaw depth a0, while the fatigue threshold �Kth has little influence on the

reliability due to its small coe�cient of variation (see section 5.3). The negative sign of

↵�K
th

indicates that a decrease in the value of �Kth leads to a decrease in reliability.

With the mean approximation approach, the only two random variables are �Kth and

the initial crack depth a0. As seen from table 6.2, the reliability is determined mainly

by the latter.
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Figure 6.7: Crack depth (black) and stress range (gray) versus number of cycles with

initial crack depth a0 = 0.56 mm and fixed fatigue threshold. The crack growth is evaluated

for realizations of the stress range modeled as a random process with a correlation z = 107

based on the empirical C1. Three randomly generated load histories are exemplarily shown.

C1 C2 CW

↵�� 0.83 0.89 0.72

↵�K
th

-0.04 -0.01 -0.036

↵a0 0.56 0.44 0.68

Table 6.2: FORM sensitivity analysis for the random variable approach

C1 C2 CWl

↵�K
th

-0.18 -0.03 -0.036

↵a0 0.98 0.99 0.99

Table 6.3: FORM sensitivity analysis for the mean approximation approach
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Figure 6.8: CDF of the maximum stress range in a block of b = 104 number of cycles

for the random variable model of the stress range and for the random process model with

correlation length (z = 1).

6.5 Results - Critical crack size failure and crack driving

force failure criteria

Following section 2.6.3, the crack driving force failure criteria are considered for the

two limit cases:

• RV: the stress range is a random variable (z = 1, assumption of full correlation);

• RP: the stress range is a random process with correlation length z = 1 (assump-

tion of no correlation).

The reliability computations are performed with a block size of b = 104. For the

RP case, the CDF of �max,i, the maximum stress during b cycles, is evaluated following

equation 2.37, and it is shown in figure 6.8 together with the CDF for case RV. In

the RV case, the maximum stress is constant throughout the entire service life and the

CDF is independent of b. For load models C1 and C2, the maximum stress in RP case

is essentially equal to the upper limit of the stress distribution �UL. For load model

CW, where stress ranges follow the Weibull distribution, the stress distribution has no

upper limit and high values of �max,i are expected.

Figure 6.9 shows the probability of failure pF versus correlation length z calculated

by applying either the critical crack size failure criterion alone or in combination with
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Figure 6.9: Probability of failure versus correlation length zwhen applying either the

critical crack size failure criterion alone or in combination with the crack driving force

failure criteria. For z = 1, results are computed with SuS; for z = 1, the MCS is applied.

the crack driving force failure criteria. The results show that the crack driving force

failure criteria have a significant influence on the reliability only for load model CW

and no correlation (z = 1). In this case, the probability of failure is close to one, which

is not surprising when looking at the CDF of �max,i in figure 6.8c. Since a total of

over 103 load blocks occur during the service life, these maximum stresses would lead

to failure even without the presence of a crack. In all other cases shown in figure 6.9,

the reliability is only slightly influenced by the crack driving force failure criteria. For

z = 1 there is no e↵ect (the di↵erences are due to the variability of the MCS).

To understand the e↵ect of the crack driving force failure criteria in the case of a

random process model with a correlation length z � 1, some additional considerations

are necessary. Figure 6.10 shows the empirical CDF of the maximum stress in a block,

for the RV case and for the RP case with z = 1 and z = 107 (load model C1). The

resulting CDF of case z = 107 is in-between the CDFs of the other two cases, which is

to be expected given that those are the limit cases.

Figure 6.11 depicts the empirical distributions of the crack depth a that causes fail-

ure according to the crack driving force failure criteria. These distributions correspond

to the three CDFs of the maximum stresses given in figure 6.10. The critical crack

depth applied in the critical crack size failure criterion is 21 mm. The mean crack

depth at which the crack driving force failure occurs is close to the critical crack size
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criterion in all cases: it is 19 mm for the random variable load model, 18 mm and 15

mm for the random process models with z = 107 and z = 1 respectively. Therefore,

the crack driving force failure criteria are reached just slightly before the critical crack

size criterion, in particular since the crack growth rate increases strongly with crack

size (see figures 6.6 and 6.7).
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Figure 6.10: CDF of the maximum stress for the random variable case (RV) and for the

random process case with z = 1 (RP z = 1) and z = 107 (RPz = 107), evaluated for the

load model C1 with blocks of b = 104 cycles.

From the above observations it follows that if the e↵ect of the crack driving force

failure criteria is small already for z = 1, it is reasonable to assume that it will be low

also for values of z � 1. This is the case for load models C1 and C2. If the e↵ect of

the crack driving force failure criteria is significant for z = 1, additional computations,

such as a cycle-by-cycle evaluation may become necessary.

6.6 Discussion

The results of the numerical investigation point to the importance of accurately model-

ing the characteristics of the stress range process, in particular its correlation structure.

In reliability analysis of structural components subject to fatigue, it has generally been

assumed that the fatigue stress cycles are either fully correlated or uncorrelated. The
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Figure 6.11: CDF of the critical crack size for the crack driving force failure criteria for

the random variable case (RV) and for the random process case with z = 1 (RP z=1 ) and

z = 107 (RP z = 107), evaluated for the load model C1 with blocks of b = 104 cycles.

results shown in figure 6.4 demonstrate that both these assumptions can overestimate

the reliability. They indicate that the highest probability of failure occurs when the

correlation length of the stress range process is of the same order of magnitude as the

service life. This corresponds to structures that are subjected to a few distinct service

conditions or mission types over their life-time. In these situations, the assumption of

uncorrelated fatigue stress cycles leads to predictions of the probability of failure that

may be several orders of magnitude too low. As shown in this chapter, e↵ective meth-

ods for considering the correlation structure of the stress range process in reliability

analysis exist when using fracture mechanics based fatigue models. When applying S-N

models, however, this e↵ect cannot be accounted for.

For the specific case study investigated in this work, unstable crack growth, as

represented by the crack driving force failure criteria, has only a limited e↵ect on the

reliability. A similar behavior is expected in many structures subject to high-cycle

fatigue. The e↵ect can be appraised by determining the probability distribution of the

crack size at which unstable crack growth occurs (figure 6.11). If it can be ruled out

that unstable crack growth plays a significant role, the reliability assessment is greatly
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simplified, as it becomes su�cient to assess the critical crack size failure criterion.

However, even if unstable crack growth has a limited e↵ect on the reliability, it may

still be necessary to consider it in case that not only the probability of failure but also

the failure mode is of relevance. This can be the case for example in pipelines and

pressure vessels where one needs to distinguish between failure by leakage and failure

by burst.

6.7 Concluding remarks

The work presented in this section provides an insight on the importance of the load

model and its influence on the simulated load histories, on the crack growth and on the

reliability evaluation.

Random processes with varying correlation lengths are successfully applied to de-

scribe various types of fatigue loading, corresponding to di↵erent mission types. Al-

ternatively, in order to reduce the computational e↵ort, the fatigue crack growth is

evaluated applying a a mean approximation of the random stress process or the stress

range is treated as a random variable. These simplified methods provide a good esti-

mation of the reliability which applies in some cases, such as:

• when the load is totally uncorrelated (mean approximation)

• when the load can be assumed totally correlated (random variable)

For the first time a fatigue reliability evaluation is approached applying a time

discretization of the Markov stress process with subset simulation method and a mean

approximation of the stress process is applied and solved with the first order reliability

method (FORM).

The results show that the correlation length of the load process has significant

influence on the estimated reliability; the probability of failure can vary up to several

orders of magnitude for the same marginal probability distribution of stress amplitudes.

These observations point out to the importance of an accurate modeling of the fatigue

load processes. Also the selection of the failure criteria appears to have a di↵erent e↵ect

depending on how the maximum load is modeled. All failure modes must however be

included to allow assessing the consequences of failure.
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Conclusions

In this thesis a damage tolerant approach is adopted to evaluate the reliability evalua-

tion of structures subjected to variable amplitude fatigue stress.

To this aim three key steps are identified: (i) the modeling of stochastic fatigue

crack growth for fatigue life estimation, (ii) the modeling of variable amplitude stress

sequences, (iii) the reliability estimation. For each step innovative solutions are imple-

mented.

The fatigue life estimation (i) is based on the Forman-Mettu model, which de-

scribes accurately all the phases of the fatigue crack growth process. The stochasticity

of the fatigue crack growth phenomenon is investigated by means of many fatigue crack

growth experiments, in which the fatigue threshold and the fatigue crack growth curves

are obtained. The plasticity induced crack closure is accounted for through the cyclic

yield stress. A comprehensive model to describe the fatigue crack growth curves and

the fatigue threshold for di↵erent stress ratio, accounting also for the stochasticity of

the crack growth phenomenon, is successfully implemented and verified with full scale

tests as well as with a commercial software (32). The behavior of the experimental fa-

tigue crack growth curves suggests that the stochasticity of the crack growth is mainly

controlled by the variation of the threshold, since the threshold variation creates a

fanning e↵ect which reproduces the experimental observations (13). This work shows

that the stochasticity of the fatigue crack growth can be described simply with only

one random variable. So far usually multiple correlated random variables have been

used to describe the stochasticity of the fatigue crack growth, implying the assessment
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of the distribution of each variable as well as the correlation between them. This last

procedure is more complex and can easily lead to erroneous estimations which can af-

fect the life-time evaluation. The use of one random variable simplifies the statistical

assessment and reduces the approximation in the models, thus limiting bias in the re-

sults coming from erroneous assumptions.

The modeling of the variable amplitude stress sequences (ii) is implemented with

Markov processes, characterized by a cumulative density function and by a correlation

length. This model permits to describe various types of fatigue loading, corresponding

to di↵erent mission types. The Markov process model o↵ers a limited computational

time for the sequence generation and an ease of implementation. Additionally it per-

mits to define analytically and uniquely the stress model, which can then be reproduced

for numerical analysis or laboratory tests. Results show that the correlation structure

of the stress range process has a significant influence on the estimated reliability. The

probability of fatigue failure varies by several orders of magnitude for di↵erent corre-

lation lengths. So far, studies regarding fatigue under variable amplitude loading have

been focused on the load interaction e↵ects, but have not explicitly described the in-

fluence of the stress sequence on the fatigue crack growth. The present thesis shows

that, even if load interaction e↵ects due to plasticity are neglected, the structure of the

stress sequence has a tremendous e↵ect on reliability evaluation (14).

The reliability estimation (iii) is implemented with the traditional Monte Carlo

method and, for the first time, combining a time discretization of the Markov stress

process with subset simulation method. Additionally a mean approximation and a ran-

dom variable approach for the stress are combined with first order reliability method to

explore approximated solutions with faster computational time. Numerical investiga-

tions are presented in this work using the Monte Carlo simulation method and the new

methods proposed in this thesis in relation to the case study of tubular parts loaded

with internal pressure carrying initial semi-elliptical surface flaws. They are used to

investigate which factors have the most significant influence in the reliability evalua-

tion, how these factors a↵ect the reliability and when approximated approaches can be

applied.
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Results show that the initial flaws depth and the stress model are the factors which

exert the most significant influence on the reliability evaluation when variable amplitude

fatigue loading are applied (13, 14). Simplified conservative approaches, which assume

a fixed initial flaw depth or which do not properly take into account the fatigue crack

growth under variable amplitude stress, may lead to an erroneous estimation of the

probability of failure, especially when the stress distribution have a large standard

deviation and a high upper tail. The numerical investigations show also that the failure

criteria may exert an influence on the reliability depending on the model adopted for

the stress (14).

For stress range processes that are ergodic and have limited correlation, the mean

approximation of the stress is suitable; for constant stress ranges, the random variable

model is applicable; in all other cases, the load block model in combination with the

subset simulation provides a practical tool for assessing the reliability (14).

It is therefore recommended to accurately define the distribution of the initial flaws

depth, as well as the distribution and the correlation of the stress. The possibility

to apply any approximation should be accurately evaluated, based on experimental

evidence and designers should be aware of the error to which the adopted approximation

can lead in terms of reliability estimation. All the failure modes should also be included,

unless it can be clearly demonstrated that neglecting some of them does not a↵ect the

reliability evaluation.

7.1 Validity and limits of the results

The assessments presented in the work are based on the following assumptions: (i)

initial surface flaws, behaving like long cracks, are present on the components’ surface,

(ii) the variability of the load can be described by the variability of its amplitude, while

the load ratio is assumed constant, (iii) retardation and acceleration e↵ects due to load

interaction can be neglected.

The first assumption (i) permits to neglect the nucleation phase of cracks as well

as the short crack behavior. However, inclusion of crack nucleation and small crack

growth into the reliability analysis would be straightforward, by combining the crack

growth model with a crack nucleation model and a small crack growth model.
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7. CONCLUSIONS

The second assumption (ii) is introduced for simplicity, in order to focus the analysis

on the variability of the stress amplitude. In analogy to the stress ranges, the stress

ratios can be modeled through a random process, and can be included in the reliability

analysis. Additional work would be necessary to determine the characteristics of such

a stress ratio process, which would be correlated to the stress range process.

The presented crack growth model also does not include retardation and acceleration

e↵ects due to load interaction (iii). Their e↵ect is considered marginal when random

stress sequences described by a su�ciently large number of cycles in respect to the

service life are applied, since retardation and acceleration e↵ects on average cancel out.

These e↵ects can be included without the need for modifying the presented reliability

evaluation methods. The representation of the load interaction e↵ects will however be

a↵ected by the block approximation of the stress range process.

7.2 Future work

Further work should be dedicated to the investigation of the fatigue crack growth

stochastic behavior in the negative stress ratio domain, since the experiments carried

out in this work refer only to positive stress ratio, i.e. to cases when the maximum

and the minimum stress have the same sign. In the case of negative stress ratio, the

contribution of plasticity induced closure might need a modified description, which can

not be foreseen based on the available results.

Further work should also be devoted to investigate more accurately the e↵ects of the

failure criteria on the reliability, depending on the adopted model of the stress and on its

correlation structure. In this respect it would be useful to dedicate further research to

the development of a model for the maximum stress in a block approximation approach.

The maximum stress model should be based on real service measurements and should be

applicable to any measured stress sequence. This would allow a proper evaluation of the

failure modes accounting for unstable crack growth and plastic collapse. Additionally,

the influence of the failure criteria on the reliability evaluation needs to be further

investigated, since its dependence on the stress process is complex and require further

analysis.
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Appendix A

Influence of mechanical

properties and microstructural

features on the fatigue threshold

of steels

A.1 Introduction

Fatigue threshold is defined as the applied stress intensity factor, �K, which makes

the crack propagation rate lower than 10�7 mm/cycle. It is measured experimentally

according to the standard ASTM E-647-08 (7). Many studies have been carried out

since more than 20 years on the fatigue threshold for long cracks, which is a parameter

of great importance when designing a structure subjected to fatigue loads. Some stud-

ies describe experimental observations and apply empirical models (75, 117). Others

propose theoretical models based on energy considerations, dislocation dynamics and

crack tip plasticity (79, 118, 126, 148). The objective of this annex is to o↵er to the

reader an overview on the literature on the influence of mechanical and microstructural

features on the fatigue threshold of steels. To this aim, the closure mechanisms have

to be introduced first.
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A. INFLUENCE OF MECHANICAL PROPERTIES AND
MICROSTRUCTURAL FEATURES ON THE FATIGUE THRESHOLD
OF STEELS

A.2 Closure mechanisms and their influence on the fa-

tigue threshold

The mechanism of closure reduces the e↵ective stress intensity factor applied to the

crack, because it causes the crack to open at an applied stress level, Sopen, higher than

the minimum applied stress, Smin. Figure A.1 shows the e↵ect of closure in the cyclic

stress acting on the crack: the applied stress is �� = �max � �min, but the e↵ective

stress is ��eff = �max � �open. Di↵erent mechanisms, which impede the growth of

cracks under constant amplitude loading, are described in the following paragraphs.

Various mechanisms can act at the same time and it is di�cult to evaluate accurately

the individual contributions (144).

Closure 
region 

Fatigue cycles 

σopen 

σmax 

σmin 

Δσ 

Δσeff 

Figure A.1: Crack closure: the applied stress is �� = �
max

� �
min

, but the e↵ective

stress is ��
eff

= �
max

� �
open

. The crack tip opens at �
open

A.2.1 Plasticity induced closure

Linear elastic fracture mechanics assumes that only the field ahed of the crack tip

determines the crack growth. Experiments by Elber (40) have shown that crack growth

is also influenced by the nature of crack face contact. The propagation of a fatigue crack

under constant amplitude loading gives rise to a wake of plastically deformed material.

The plasticity induced crack closure can be described with the strip yield model,

which was firstly proposed by Dugdale and Barenblatt (16). The model assumes a
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A.2 Closure mechanisms and their influence on the fatigue threshold

slender plastic zone at the crack tip with a closure stress equal to the material yield

strength.

A.2.2 Oxide induced closure

Oxide induced crack closure is due to surface oxidation during fatigue loading. The ox-

idation of the freshly formed fracture surface is mostly caused by moist atmosphere. In

the near threshold region, that is for a low stress intensity factor, �K, and at low stress

ratio R oxide layer is continuously broken and reformed, thus leading to the formation

of an oxide layer 20 times thicker than the freshly formed one. Oxide induced crack

closure is promoted by high temperature, moisture containing environments, low R and

low �K levels, high cyclic frequencies, low strength and coarse grain microstructures

(144).

A.2.3 Roughness induced closure

In the near threshold regime a cristallographic fracture process is promoted, producing

a faceted fracture morphology. An increase in crack closure is due to the tortuous

crack path induced by the cristallographic growth in conjunction with mixed mode

sliding and mismatch between the crack face asperities. Roughness induced closure is

also caused by crack deflection and consequently surface roughness created when the

crack encounters a grain boundary or a second phase (68, 148, 149). Measuring surface

roughness on the specimen fracture surface is a method to evaluate the amount of

roughness induced closure and to compare the behaviour of various materials (29, 66).

In the near threshold region roughness induced closure is the prevalent mechanism of

closure, and prevails over plasticity induced closure (62). Roughness induced closure

is strictly related to the microstructure and provides an explanation for the e↵ects of

microstructure on fatigue threshold (126, 144, 156).

A.2.4 Measurement of closure

Closure can be measured through the measurement of the compliance (7), which is

the slope of the displacement versus force curve. Figure A.2 shows a graph of the

displacement versus the applied load in presence of closure. The shape of the graph

113



A. INFLUENCE OF MECHANICAL PROPERTIES AND
MICROSTRUCTURAL FEATURES ON THE FATIGUE THRESHOLD
OF STEELS

suggests that the crack does not close completely until zero load and that there is a

transition region in which the closure level changes continuously.

Force&

Displacement&

Closure&region&

Transi4on&region&

No&closure&region&

Figure A.2: Scheme of the displacement versus the applied force in presence of closure.

A.3 Parameters influencing the threshold

Experimental observations have shown that the near threshold region is a↵ected by

stress ratio, microstructural features and mechanical properties. The Paris region is

not influenced by these parameters (79, 126, 148). The reason for this behavior is

that the crack tip opening displacement and the crack tip plastic zone size in the near

threshold region are of the same order of magnitude as the microstructural features,

while in the Paris region they are much larger than the characteristic microstructural

dimension.

A.3.1 Influence of stress ratio

Closure is active at low stress ratio, while its e↵ect is reduced at high stress ratio

(26, 28, 128, 132). This explains the experimental observation of a threshold’s strong

dependance on the stress ratio, R: the fatigue threshold decreases as the stress ratio

increases. This trend is observed for values of R within a certain range, which is about

�2 R 0.7, depending on the material. Outside this range threshold values tend to
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be constant. Commonly it is considered that closure is absent for stress ratio above 0.5-

0.7, depending on material microstructure and properties. The dependance of closure

with stress ratio can be expressed as (144):

Kopening

Kmax
= f(R) (A.1)

Where f(R) depends on the material and on the testing conditions.

The dependance of the threshold on the stress ratio has been modeled with various

simple empirical relations, such as (26, 75, 134):

�Kth,R = A�BR (A.2)

�Kth,R = D(1�R)� (A.3)

Where A, B, D and are empirical constants. According to the Nasgro equation,

the threshold is modeled as (53):

�Kth,R =
�Kth,0


1� f

(1�A0)(1�R)

�(1 + CthR)
(A.4)

Where R is the stress ratio, f is a closure function, A0 is a constant used in the

formulation of f , �Kth0 is the threshold at R=0, ↵ is the crack length, Cth is an

empirical constant. These equations are valid in a limited range of R, usually for -

2<R<0.7. Outside this range the threshold tends to be constant and a lower or an

upper bound of the threshold have to be considered. The value of R at which the

threshold reaches its minimum value as well as the threshold sensitivity with R are

influenced by the microstructure (70). For example, low yield strength materials or

large grain size materials are more sensitive to R changes than materials with a high

yield strength or a fine structure.

A.3.2 Influence of microstructural domain size and yield strength

Both roughness and plasticity induced closure depend on microstructural characteristic

size and material yield properties, thus causing the �Kth to be dependent on these

characteristics (147). According to considerations based on crack closure mechanisms,

an increase in the threshold is obtained when the mean free path, which corresponds to
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the characteristic microstructural domain size, increases and when the yield strength

decreases (29, 125).

Many authors have observed that at the threshold the size of the plastic zone at

the crack tip equals the size of the characteristic microstructural domain (29), (168).

Plasticity induced closure increases as the plastic zone size at the crack tip increases

(118), thus being higher for low yield strength materials and for materials with a large

characteristic microstructural dimension, which is grain size for ferritic steels (29) (148),

high angle domain size for martensitic or bainitic steels (168) and pearlite colony size

for eutectoidic steels (39). The morphology of the microstructure exerts an influence

on the extension of the plastic zone size, as shown in (68).

Experimental results show that the dependance of the threshold with the the yield

strength varies for di↵erent types of microstructures: the threshold increases with yield

strength for ferritic structures and decreases for martensitic or bainitic structures (148).

This result reflects the fact that yield strength is not an independent factor a↵ecting

the threshold. Yield strength depends on characteristic microstructural dimension (for

example for ferritic steels grain size and yield strength are related by the well known

Hall-Petch relation), dislocation density and precipitates.

A.3.3 Influence of microstructural inhomogeneities and second phases

The crack propagation rate is also influenced by the microstructural dishomogeneities.

For example grain boundaries retard the crack growth rate.

Crack branching and tortuosity are other phenomena related to the microstructural

features that the crack encounters while it grows and they slow the crack propagation

rate. A tortuous crack path and branching for example create micro and macro rough-

ness. For example in (75) it is shown that in ferritic-pearlitic steels, the roughness

induced closure is strongly influenced by the distance between pearlitic lamellae.

During �K decreasing tests, it is often observed that the crack stops propagating

when it encounters a second phase particle or an inhomogeneities. For example the

crack stops in correspondence with the interface between ferrite and pearlite.
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A.4 Intrinsic and extrinsic threshold concept

The threshold value in absence of closure is often called intrinsic component of the

threshold of the material. The intrinsic component, according to most of the models, is

described through considerations based on the energy necessary for dislocation move-

ment to permit the crack to advance. These models result in an intrinsic threshold de-

pendent on elastic modulus (149), parameters describing the crystal lattice (magnitude

of the Burger vector) and texture (Taylor factor) (28, 156). The extrinsic component

of the threshold is mainly due to closure and can be observed at low values of R. The

extrinsic component is a↵ected by material microstructural features, such as the char-

acteristic size of the microstructural domain (grain size, packet size, prior austenitic

grain size, pearlitic interlamellar spacing, pearlite colony size), which represents the

mean free path that a crack encounters without being deviated by microstructural in-

homogeneities (39, 125, 126, 148, 168). The extrinsic component is also a↵ected by

microstructural morphology (68) and by the monotonic or cyclic yield strength, which

determines the extension of the plastic zone size at the crack tip. The intrinsic thresh-

old is independent from yield stress and varies in a limited range for various steels. The

extrinsic threshold shows a strong dependance on stress ratio and for high stress ratio

shows highly scattered values for various steels.

A.5 Two parameters threshold representation

Recently some authors have proposed a two-parameters threshold concept. According

to their observations, both Kmax and �K must be higher than their threshold value to

permit the crack growth (79, 131, 154). According to (131) closure e↵ects are absent

and the phenomena attributed to closure can be explained with a unified �K �Kmax

threshold approach. This approach, which refuses the concept of closure, is however

rejected by some scientists (59).

A.6 Factors a↵ecting the fatigue threshold

Summarizing, the main factors a↵ecting the threshold, as reported in the previous

paragraph, are: the characteristic microstructural domain, the yield stress and the

stress ratio. However, it must be underlined that the yield stress is dependent on the
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characteristic microstructural domain, because one of the strengthening mechanisms in

steel is grain size refinement, (the others are dislocation density increase, second phase

particles and solid solution (117)).
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Appendix B

Fatigue crack growth model:

Nasgro equation

The Forman-Mettu equation (46), also called Nasgro equation (47, 53), provides a model

for the fatigue threshold, �Kth, shown in equation B.1, and for the crack growth rate,
dx
dn , shown in equation B.2.

The threshold variation with stress ratio is described as:

�Kth,R =
�Kth,0


1� f

(1�A0)(1�R)

�(1 + CthR)
(B.1)

where �Kth,0 is the fatigue threshold range at stress ratio R = 0, Cth is a fitting

parameter, A0 is a function of the maximum stress and of the constraint (see equation

B.3). f is Newman’s crack opening function (103), originally defined as f = �0
�
max

, with

�0 the crack opening stress. This function accounts for the plasticity induced closure,

which is the main source of closure.

The fatigue crack growth rate is expressed as:

hx =
dx

dn
= C

✓
1� f

1�R

◆
�K

�m
·

✓
1� �Kth,R

�K

◆p

⇣
1� Kmax

Kmat

⌘q (B.2)

where x is the crack length, either a or c, N is the number of cycles, R is the stress

ratio, C, m, p and q are fitting parameters, �K is the range of the stress intensity factor,

�Kth,R is the fatigue threshold at stress ratio R, defined in equation B.1, Kmax = �K
(1�R)

is the maximum stress intensity factor, Kmat is the fracture toughness of the material.
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Parameter Value

C 1.33 10�11MPa
p
m with da

dN in mm
cycle

m 2.85

p 0.3

q 0.01

Cth 0.48

Table B.1: Forman-Mettu equation parameters

The opening stress due to plasticity induced closure is a function of the stress ratio

R, of the stress state, defined by the constraint ↵ and of the ratio �
max

�
flow

.

The Newman’s crack opening function f is originally defined as follows.

A0 = (0.825� 0.34 · ↵+ 0.05 · ↵2) · [cos(⇡
2

�max

�flow
](

1
↵

) (B.3)

A1 = (0.415� 0.071 · ↵) · �max

�flow
(B.4)

A2 = 1�A0 �A1 �A3 (B.5)

A3 = 2A0 +A1 � 1 (B.6)

f = max{R,A0 +A1R+A2R
2 +A3R

3} (B.7)

Usually the opening stress is expressed as a function of �
max

�
flow

, as reported in equa-

tions B.3 and B.4. In this work the opening stress is expressed as a function of

the normalized stress intensity parameter, Kmax/Kflow (Kflow = �flow ·
p
⇡a and

Kmax = �x · �max ·
p
⇡a ), which has been demonstrated to successfully correlate the

crack opening stresses for various specimen geometries (87) (88) (89). The flow stress

is assumed equal to the cyclic yield stress: �flow = �yc.

The reliability evaluations presented in sections 5 and 6 are carried out applying

the values of the parameters reported in table B.1, and using the mechanical properties

in table B.2, which refer to material 355H (see section 3.2).
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Parameter Value

Yield strength Y S[MPa] 590

Cyclic yield strength �yc[MPa] 350

Ultimate tensile strength UTS[MPa] 705

Elastic modulus E [MPa] 210.000

Poisson’s ratio ⌫ 0.3

Table B.2: Mechanical properties
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Appendix C

Verification of the subset

simulation algorithm

Figure C.1 shows the probability of failure pF versus the correlation length z of the

random process of the stress referred to the empirical cumulative distribution function

of the stress C1 (figure 6.3). The results obtained with the subset simulation algorithm

are consistent with the 95% confidence band of the MCS simulations.
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10-4

10-3

10-2

10-1

101 103 105 107 109

SuS RP
MCS RP and
95% confidence interval

pF

z

Figure C.1: Probability of failure versus correlation length of the stress random

process, having cumulative distribution function CDF1, obtained applying sub-

set simulation method (SuS RP) and Monte Carlo simulation method (MCS

RP). The results are obtained considering the critical crack size failure con-

dition and evaluating the fatigue crack growth using b = 104 cycles for each

block.
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