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1. Intoduction

3. Numerical approach 5. Numerical results

HT-ATES concepts are currently considered for geothermal heat storage in the * Emphasis on reservoir segments governed by karst-dominated fluid flow Y -y

Upper Jurassic Reservoir (Malm) of the German Molasse Basin. This North - Three operating geothermal systems at depths of ca. 2000-3000 m TVD ___Confining unit Confining unit
Alpine Foreland Basin comprises a site of extensive implementation of comprise the basis of the numerical simulations Fe o ey

geothermal projects. Nevertheless, the suitability of the Upper Jurassic . . . . AN L AT s

aquifer for storage of high-temperature fluids has not been yet considerably * Reservoir is subdivided into three homogeneous modelled units

investigated. Here, we present our initial approach to assess the suitability of * Two impermeable units hydraulically disconnect the reservoir from

this reservoir for the development of HT-ATES system:s. overlying and underlying strata

* High-temperature heat storage through two vertical wells intersecting the
entire reservolir
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Fug. 1. Location map and vertical cross-section illustrating the southward dipping of the Upper Jurassic reservoir towards the North Alpine hitps://github.com/ajacquey/golem

Range, and respective encountered reservoir temperatures [1].

Fig. 5. Model cross-section illustrating the simulated temperature field at the end of the production phase from the warm wellbore after a) 1 year, b) 3 years, ¢) 6 years, and

Numerical coupled hydrothermal simulations are performed 4 Numerical model 010 os of aoeration.
to capture thermal and hydraulic effects of heat storage
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Evaluate the potential for HT-ATES application in the German * Physical parameters derived by weighted averages for each model unit [1]
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