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INTRODUCTION

| Correction of BHT values using Monte Carlo Techniques

_ Q

Forecasting downhole temperatures T = Toure * 2. (1) Adepth A variety of analytical and numerical BHT correction methods exist, all of which require different
Is of great interest for deep geothermal o . Input parameters. Those parameters are often documented with poor quality, incompletely,
energy development. The production | P g 1 or not at all.

temperature of a well is mainly
determined by the static formation
temperature (SFT) in the reservoir, consiant 5
which is insufficiently known even in

well-developed reservoirs. Spatial
representation of downhole temperature
Is important for risk assessment in the
planning phase of geothermal projects,

The most commonly used methods require the following input parameters:

T» temperature of the drilling mud

t: duration of the circulation of the drilling fluid

t shut-in times (times between drill stop and BHT measurements)
k thermal diffusivity of the formation and drilling mud

a radius of the borehole

. BHT correction applied at each well: T
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