

Regionalization of land use, groundwater and discharge along the Tarim River

Presented by Philipp Huttner

SuMaRiO Implementation Conference in Munich, Germany

Outline

- **1. Categorization of landuse in the Tarim River Basin**
- 2. Spatial distribution of the groundwater
- **3. Tarim Water allocation**
- 4. Salinization and the unsaturated zone
- 5. Regionalisation in the Decision Support System

1. Categorization in the Tarim River Basin

Our research domain: nearly 30 000 km²

Aim: Regional model for the whole basin

Challenge: develop methods and implement processes, which are offering satisfying accuracy within acceptable computational demand

1. Categorization in the Tarim River Basin

Main focus on the agriculture, the natural vegetation and the environmental impact:

- Cotton production
- Fruit production

• Tugai floodplains in the upper/middle AND the lower reaches

Natural vegetation

. Aisting

Three major research areas

Upper reaches	Middle reaches	Lower reaches
Aksu/Alar	Yingbaza	Arghan
Agriculture	Natural Flooding	Ecological releases
Salinization	River <-> Groundwater	Tugai vegetation
	Red Carden	
Holes a		

1.1. Agriculture in Aksu/Alar

• Dominated by the cotton cultivation

1.1. Agriculture in Aksu/Alar

Groundwater is highly influenced by the irrigation measure and the drainage measures

→ Salinization effects

1.1. Agriculture in Aksu/Alar

Groundwater modelling:

- Calibrate the model with the measured well data
- Run the model without the ET
- Result 1: underestimated irrigation volumes
- Result 2: undisturbed groundwater development

Input for the DSS

- Real groundwater recharge rates for every time step

1.2. Flooding in Yingbaza

1.2. Flooding in Yingbaza

- Mixture of agriculture and Tugai forests
- Salinization process
- River $\leftarrow \rightarrow$ Groundwater

Correlation of depth of impounded water and the resulting groundwater recharge

User input: water volume for flooding of natural vegetation

Result: Recharge matrix in the DSS

Lower reaches require special handling, due to the:

- landuse, which is composed only by Tugai floodplains

investigated by KU Eichstätt, TU Berlin, University Trier upscaling the insights on the micro-scale to the over-regional scale of the DSS

groundwater; which is highly dependent on the ecological releases

Extra investigation by a subproject of ETH Zurich

- Landuse limited to Tugai cells
- Dissemination process of Tugai trees
- Separate modelling of the groundwater
- Aim for the Daxihezi reservoir filling level
 - → Composed of the residue water of the upper reaches plus the contribution of the Boston Lake

(a) Day 14: start of the 1st release; (b) Day 30: during the 1st release; (c) Day 73: end of the 1st release

(d) Day 188: start of the 2nd release; (e) Day 281: end of the 2nd release; (f) Day 335: before release 3.1;

The tests of the different release strategies illustrates that a combination of different flood sizes and flood durations is the best method to ensure a sustainable forest in the lower region of the Tarim River. It is shown that the forest can be preserved in a corridor of at least 1000 m on both sides of the river bank. This strategy also allows for a dynamic management of the fluctuating water resources.

2. Spatial distribution of the groundwater

First model setup in MIKE SHE

2. Spatial distribution of the groundwater

Groundwater gradient in the Tarim Basin and the Taklamakan Desert

(Source: Li et al.,2000)

2. Spatial distribution of the groundwater

Depth of the groundwater table in the irrigation period

3. Tarim Water Allocation in the DSS

Schematic representation of the simulation

process

Water Volume available in the Tarim in [m³/year]

4. Salinization

4. Salinization

"ECe" = saturated paste extraction

0	11.45	19.64	34.83	57.15	69.62
9.93	16.93	26.73	38.67	61.16	81.35
10.4	18.16	33.93	42.93	62.03	97.88

5. Regionalisation in the Decision Support System

The core of the DSS and the main tool for the regionalization is the

Landuse grid

5. Regionalisation in the Decision Support System

5. Regionalisation in the Decision Support System

The groundwater resources are modelled by MODFLOW, which is started and evaluated by the DSS

Outlook

