

# **Environemental Engineer**

# **Master's Programme**

Modulhandbuch

Academic Year 2013-2014



# Hydrological and Environmental River Basin Modelling

## **1. General Information**

# Module Number

BGU54008

#### Module Name

Hydrological and Environmental River Basin Modelling

# Module Level (Bachelor or Master) Master

Abbreviation

# Subheading

\_\_\_\_\_

\_

# Duration

Wintersemester

#### Language

English

# Frequency

One semester



## 2. Workload

| Total                                            | 120 hours |  |
|--------------------------------------------------|-----------|--|
| Preparation for examination(s) (ca. 3 – 4 weeks) | 50 hours  |  |
| Homework (ca. 3 hours per week)                  | 45 hours  |  |
| Lecture preparation and follow-up work           | 27 hours  |  |
| Independent study time:                          |           |  |
| Exercises: 14 weeks 2 hours per week             | 28 hours  |  |
| Lecture: 15 weeks 2 hours per week               | 30 hours  |  |
| Contact hours per week:                          |           |  |

#### **Total Study Time:**

Contact hours per term (58 hours) + independent study time (122 hours) = 180 hours

## Credits

1 credit corresponds to 30 working hours (180 hours/30) This module carries 6 credits

## **Total Workload** 180 hours

**Course Attendance Time** 60 hours

**Independent Study Time** 120 hours



# 3. Examination

The Assessment will be divided in two parts.

In the first part the Student has to write a small document in which the resulting model, including input and results is described at the end of the term. The second part is a written exam. The theoretical part contains 33,3 % and the calculation part 66,6 % of the total points.

Examination Type

Written and Project

**Examination Duration** 90 minutes

Homework No Term Paper Yes Oral Presentation No Discussion No

#### Supplementary / Repeat Examinations

Examination(s) can be repeated in the following semester

#### 4. Description

#### (Recommended) Prerequisites

#### Intended Learning Outcomes

At the end of the module, students are able to understand the transfer of process flows from natural hydrologic- and nutrient cycles to an ecohydrological softwaremodel. In addition to that they will be able to understand different methods for the calculation of single components of ecohydrological cycles and their interplay. Moreover students will be able to use an ecohydrological model and to analyse model outputs. The students will be able to identify different influencing factors and to evaluate the meaningfulness of model results.

#### **Course Contents**

The main goal in this module is to give an comprehensive overview in the main aspects of ecohydrological modeling.

Structure and interaction of different components of an ecohydrological model will be explained as well as associated calculation methods.



Water quality aspects and influencing factors from land use and land management practices will be discussed. Additionally, mathematical descriptions for crop growth and the related water and nutrient demand of different plants will be introduced.

In addition to lectures, students will apply their theoretical knowledge in guided exercises. Using an ecohydrological software model (SWAT) they will setup, calibrate and validate a model for a real catchment.

## **Teaching and Learning Methods**

Lectures (PowerPoint presentations), Exercises

#### **Teaching Aids Employed**

PowerPoint presentations, Technical Manuals

#### Literature

Neitsch, S., J. Arnold, J. Kiniry, and J. Williams (2011). Soil and water assessment tool- theoretical documentation version 2009. Report, Grassland, Soil andWater Research Laboratory – Agricultural Reserach Service, Blackland Research Center - Texas AgriLife Research.

Winchell, M., R. Srinivasan, M. diLuzio, and J. Arnold (2007). ArcSWAT Interface for SWAT2005

- User's Guide http://www.geology.wmich.edu/sultan/5350/Labs/ArcSWAT\_ Documentation.pdf: Blackland Research Center and Grassland, Soil and Water Research Laboratory (USDA Agricultural Research Service)

Arnold, J., J. Kiniry, R. Srinivasan, J. Williams, E. Haney, and S. Neitsch (2011). Soil and Water Assessment Tool- Input/Output File Documentation Version 2009. <u>http://swat.tamu</u>.edu/media/19754/swat-io-2009.pdf: Grassland, Soil and Water Research Laboratory, Agricultural Reserach Service, Blackland Research Center Texas AgriLife Research.



# 5. Organizational Information

#### **Contact Person**

Jochen Scholtes MSc, jochen.scholtes@tum.de Fuad Yassin Msc, ga38yaf@mytum.de

#### Lecturer (s)

Prof. Dr.-Ing. Markus Disse, <u>markus.disse@tum.de</u> Jochen Scholtes MSc, <u>jochen.scholtes@tum.de</u> Fuad Yassin Msc, ga38yaf@mytum.de

#### Examiner (s)

Prof. Dr.-Ing. Markus Disse, markus.disse@tum.de

#### Courses

| Nature of Instruction:<br>Name:<br>Modelling | lecture<br>Hydrological and Environmental River Basin |
|----------------------------------------------|-------------------------------------------------------|
| SWS:<br>Nature of Instruction:               | 2<br>exercises                                        |
| Name:<br>Modelling<br>SWS:                   | Hydrological and Environmental River Basin 2          |

## **Module Appropriation**

Master Environmental Engineer, Field of study 2 and 3