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ABSTRACT 

The influence of land use/cover (LULC) and climate changes on hydrological 

processes are not fully understood in data-scarce regions such as the Ouémé River 

Basin, Benin. However, this is crucial for sustainable water management, 

infrastructure design, flood mitigation, and improving food security. This study 

assessed the impact of historical and projected future LULC changes, and climate 

change on hydrological components: surface runoff, lateral flow, aquifer recharge, and 

evapotranspiration. Using Landsat images from 1986, 2000, 2015, and 2023, LULC in 

the basin were categorized through a supervised classification in Google Earth Engine 

into Forests, Savanna, Settlements/bare lands, Water bodies, and Agricultural lands. 

The classified LULC maps were used to estimate water balance in the Soil and Water 

Assessment Tool (SWAT) model. LULC was then projected for 2030, 2063, and 2100 

using the Cellular Automata-Markov projection, and future climate from 2021-2100 

was projected using the ACCESS-CM2 model precipitation and ensemble mean 

temperature from five CMIP6 climate models. These were subsequently used to 

project future water balance, and a linear regression was used to examine the 

relationship between LULC, climate, and water balance components. The 1986 LULC 

map showed that the basin was predominantly Savanna (70 %), but these and Forests 

have reduced in 2023 by 24 % and 4 %, respectively; while Settlements/bare lands and 

Agricultural lands have increased by 1 % and 27 %, respectively. These LULC 

changes resulted in increased surface runoff (32 mm/y) from 1986 to 2023, with a 

reduction in lateral flow (6 mm/y), baseflow (5 mm/y), aquifer recharge (22 mm/y), 

and evapotranspiration (6 mm/y). The highest rates of change were observed between 

2015 and 2023.  The projected future LULC changes under the business-as-usual 

scenario showed continued expansion of Settlements/bare lands and Agricultural lands 

at the expense of Forests and Savanna. The projected future climate under the 

“Sustainability” scenario, SSP1-2.6 showed gentler variability in rainfall patterns from 

2021 – 2100, and more drastic changes in precipitation and temperature under the 

“Regional Rivalry” scenario, SSP3-7.0. The projected future climate resulted in an 

increase in surface runoff and a reduction in subsurface flow where temperature and 

precipitation increased, and where precipitation reduced, surface and subsurface flow 

reduced. The combined future LULC and climate change increased surface runoff and 

reduced subsurface flow at a potential lower than LULC change alone and higher than 

climate change alone, with trends mirroring precipitation change patterns. The Partial 

Least Squares regression revealed that water balance in the basin is more sensitive to 

changes in Settlements/bare lands and Forests than Savanna and Agricultural land, and 

more sensitive to temperature than precipitation changes. The combined effect of 

increased runoff and reduced subsurface flows will increase the risk of people 

displacement and destruction of properties during flooding, and limit water availability 

for domestic and farming activities. Floods and droughts would lead to higher crop 

failures. Thus, sustainable land management practices such as reforestation, green 

urban spaces, conservation agriculture, and rainwater harvesting systems are 

recommended to limit runoff, reduce floods, and enhance water availability for 

domestic, industry and food production. 
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CHAPTER 1       INTRODUCTION  

1.1 Background 

Rapid population growth and urban expansion have increased the demand for food and 

water significantly. (Olofintoye et al., 2022). This increase in demand has led to the 

conversion of natural vegetation to cultivated lands to meet the food supply needs, 

with adverse implications for the overall ecosystem health and its ability to provide 

services. Land use/cover (LULC) is recognized for its crucial role in influencing 

hydrological processes in tropical basins where land surface dynamics and water are 

interrelated. In Benin, the Ouémé River Basin has been undergoing rapid shifts in 

LULC mainly due to agricultural extensification and urbanization, similar to many 

parts of West Africa. Additionally, the changes in precipitation patterns and 

temperature due to climate change are further making water resources management in 

the region complex. This is especially true when it comes to choosing between the 

immediate satisfaction of needs and the long-term sustainability of these resources. 

The changes in LULC and climate change affect water availability (Mbaye et al., 

2015), surface runoff patterns, and the overall ability of the basin to support life under 

extreme pressure from the environment and climate. Hence, understanding the 

dynamics of LULC and climate change and how they impact hydrological processes 

is crucial to achieving sustainable agriculture and zero hunger, as outlined in the 

Sustainable Development Goals (SDGs) 2 and 6.2. 

Agriculture is the main economic activity in Benin, with more than 90 % of production 

performed under rainfed conditions (Dossou et al., 2021b). Therefore, agricultural 

productivity is limited by water availability, especially during the dry season, 

preventing some farmers from planting during the dry periods. Additionally, 

agriculture is important to Benin’s Gross Domestic Product (GDP), contributing 26. 9 

% and it also employs over 60 % of the country’s workforce (World Bank, 2022). 

Thus, the limited water availability both spatially and temporally affects its use for 

domestic, agricultural, and industrial purposes (Togbévi et al., 2020). Efforts have 

been made to improve access to potable water (World Bank, 2018), however, there is 

still limited information on the availability and variability across the country’s 

landscape. 
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Ecosystem processes, such as the hydrological and carbon cycles are complex and 

difficult to predict, but regular assessment supports efforts to achieve SDG Target 6.5 

(“by 2030, implement integrated water resources management at all levels, including 

through transboundary cooperation as appropriate”) (Mclntyre, 2023) on integrated 

water resources management (IWRM), which is lagging globally. (United Nations 

Environment Programme, 2021). 

Characteristics such as LULC and soil properties influence how a watershed responds 

to rain by controlling surface runoff concentration and generation, and flood routing. 

The dynamics of how a catchment responds to rainfall can be assessed using LULC 

mapping to identify how changes in vegetation affect shifts in regional hydrology 

(Osseni et al., 2022). This is integral to achieving SDG Target 15.1 (“ensure the 

conservation, restoration, and sustainable use of terrestrial and inland freshwater 

ecosystems and their services, including forests, wetlands, mountains, and drylands by 

2020, in line with obligations under international agreements”) (Perron-Welch et al., 

2023) on ecosystem and biodiversity conservation. Geographic Information Systems 

(GIS) enhance such LULC assessments by providing efficient means of processing 

large datasets and geographical areas and enabling analysis and visualization of 

changes in the land surface characteristics (Obodai et al., 2019). When coupled with 

modelling tools, it provides valuable insights into future changes in LULC and climate, 

and how they could influence regional hydrology. Climate models for instance provide 

foresight into future climate scenarios, ensuring that water and landscape management 

strategies account for short-term fluctuations and long-term trends, which is essential 

for sustainable ecosystem management. 

 

1.2 Problem Statement 

Past studies within the Ouémé River Basin have explored the impacts of changes in 

LULC on water resources, with findings on surface runoff dynamics, groundwater 

recharge patterns, and their implications for local water management strategies. For 

instance, Hiepe (2008) studied how LULC affects water balance and soil erosion in 

the upper Ouémé basin (Bétérou catchment) using a 2000 LULC map from Landsat 

imagery and found that agricultural lands were more prone to soil erosion. Bossa et al. 
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(2014) also modelled the effects of LULC change on land and water degradation in 

the Ouémé basin using LULC change scenarios from projected socio-economic 

changes, specifically population growth, and a baseline LULC of 2003 Landsat 

imagery. Their study found a higher sensitivity of water yield and evapotranspiration 

to climate change, and surface runoff and groundwater flow to LULC change (Bossa 

et al., 2014). Hounkpè et al. (2019) also used LULC scenarios derived from socio-

economic change scenarios to assess the impact of LULC change on flood 

characteristics in the Zou sub-catchment of the Ouémé basin assuming 2003 LULC 

from the RIVERTWIN project as a baseline. Their study found that expansion in 

agricultural lands and reduction in natural vegetation enhance the incidence of floods 

in the Zou catchment. 

Abdulkadir et al. (2022) Predicted water balance in the upper Ouémé basin (Bétérou 

catchment) from 1998-2007 using LULC map from the Global Land Cover 

Characterization (GLCC) for April 1992 to March 1993 and observed that 

evapotranspiration was the highest component of water loss from rainfall while lateral 

flow was the least. Similar findings have been reported by Sintondji et al. (2014), who 

modelled water balance at the Savè outlet of the Ouémé basin using a LULC map of 

2003 by the National Centre of Remote Sensing and Forest Cover Monitoring 

(CENATEL), and Maforikan et al. (2023), who simulated water balance in the upper 

Ouémé basin (Bétérou catchment) using the 2003 LULC map from the RIVERTWIN 

project.  Additionally, Olofintoye et al. (2022) predicted water balance values in the 

Bétérou catchment with the GLCC LULC map from April 1992 to March 1993 and 

compared simulated water balance values in 1998, 2008, and 2017. Their study 

observed an increase in precipitation and groundwater flow between 1998 and 2008, 

and a reduction between 2008 and 2017. Surface runoff and evapotranspiration 

however reduced over the period.  

These past studies predicted water balance using single maps without considering 

LULC change or used derived scenarios of LULC from predicted socio-economic 

scenarios to assess changes in water balance in the future. Also, the studies did not 

explore the relationship between the LULC and the resulting changes in water balance, 

nor the consistency of the relationship across different periods. Additionally, most of 
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the past studies focused on parts of the basin. Furthermore, even recent studies have 

used single LULC data dating as far back as 1993 to assess water balance in the basin 

and did not project future LULC changes beyond 2030. Also, they did not use the 

CMIP6 scenarios which consider how socio-economic factors (population, economic 

growth, urbanization, technological development and development) lead to 

greenhouse gas emissions to project the influence of future climate on water balance. 

Furthermore, the combined impact of projected LULC and climate change on water 

balance has not been explored. Hence, there is a research gap in terms of understanding 

the impact of LULC and climate changes, and their combined influence on water 

balance across different spatial and temporal periods for the Ouémé River basin.  

This study therefore builds upon existing research by assessing LULC change impacts 

on water balance across different periods in the Ouémé River Basin. Firstly, LULC 

types in the basin from historical years until the present are mapped, and the quantity 

and rates of change in LULC are assessed. Secondly, the derived LULC maps with 

spatio-temporal differences in the distribution of LULC types, and observed climate 

data from 1998-2016 are used to estimate changes in water balance components such 

as surface runoff, baseflow, lateral flow, total aquifer recharge, and actual 

evapotranspiration. Furthermore, the effects of future LULC changes on water balance 

are estimated using LULC change modelling considering future years 2030, 2063, and 

2100. Finally, the Intergovernmental Panel on Climate Change (IPCC) Coupled Model 

Intercomparison Project phase 6 (CMIP6) Shared Socio-economic Pathways (SSPs) 

of climate emissions/concentration is used to predict water balance changes under two 

different climate mitigation and adaptation scenarios.  

 

1.3 Justification  

Water balance refers to rainfall distribution in a catchment and describes the 

hydrological cycle’s processes. The primary source of water in the hydrological cycle 

is rainfall. Land surface characteristics affect how rainwater is distributed in a 

watershed. For instance, where there is a vegetative cover or tree canopy, rainfall is 

usually intercepted and the rate and quantity of water flow on the land surface is 

reduced. However, where the land surface is bare or impervious, there is a direct 
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impact of the rain onto the land, and the rate and amount of runoff are increased due 

to the absence of any obstacles (usually vegetation) (Guo et al., 2019). When the native 

LULC in a region changes over time, it may affect the rainfall distribution, which 

pattern may differ from one catchment to another. Thus, assessing LULC changes is 

vital to understanding changes that may be occurring in the water balance of the 

catchment (Zhou et al., 2023). Furthermore, climate, including precipitation patterns 

and temperature variations, affect the dynamics of the hydrological cycle in a region. 

Particularly, where precipitation intensity and amounts increase beyond the infiltration 

capacity of the soil, the runoff amounts will differ from when there is a reduction in 

precipitation over time. The combined influence of changes in LULC and climate 

spatio-temporally will present even more complex interactions with water balance. 

The changes in rainwater distribution are closely associated with flooding in terms of 

peak flow, soil erosion, and water quality (pollution), which are all direct, visible 

outcomes of LULC changes (Guo et al., 2019). The less visible changes such as a drop 

in the groundwater table, which indicate a reduction in groundwater, baseflow, and 

lateral flows into rivers and streams are also important because they have implications 

on water availability for domestic, farming, and industrial purposes. Particularly, in 

areas where groundwater serves as a primary source of drinking water, and water for 

other purposes as is the case in Benin, water balance assessment provides insights into 

possible risks of water availability or unavailability for abstraction. According to the 

World Resources Institute, demand for water in Sub-Saharan Africa is projected to 

increase by 163 % by 2050, meaning that water-related challenges may intensify, 

emphasizing the need for urgent sustainable water resources management strategies.  

Furthermore, water balance assessment is crucial for urban planning and infrastructure 

design, including drainage systems, road networks, and buildings. It is also essential 

in the evaluation of agricultural productivity, especially in regions where rainfed 

agricultural sustains local livelihoods, such as in the Ouémé River Basin (Hiepe, 

2008). Water quality is influenced by soil erosion and sedimentation, which endanger 

aquatic life, leading to lower income for fish farmers in the basin. 

More so, the projected increase in global surface runoff is found to be closely linked 

with changes in land surface characteristics together with changes in precipitation 
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patterns (Zhou et al., 2023), and the projected variabilities in precipitation and 

temperature might amplify the risk of pluvial and flash floods (probably loss of lives 

and destruction to properties), extended dry periods, lower food productivity, and 

biodiversity losses (Intergovernmental Panel on Climate Change (IPCC), 2023a). 

Particularly, Sub-Saharan Africa could experience on average a reduction in maize 

productivity by about 5.8 % by 2100 if the increase in global surface temperatures 

approaches 4 ᵒC (Intergovernmental Panel on Climate Change (IPCC), 2023a).  

Therefore, effective water balance management can reduce flood and erosion risks, 

protect and improve soil health, and ensure water security in quality and quantity to 

meet the increasing population's needs by promoting infiltration rates. This study 

therefore offers insights into the effects of spatio-temporal changes in LULC and 

climate on water balance in the Ouémé River Basin as a foundation for sustainable 

water and ecosystem management in the basin. This is to ascertain the sensitivity of 

the water balance components to changes in LULC, precipitation and temperature. The 

results of this study are beneficial for understanding and informing decisions regarding 

flood risk, sustainable water resources, and ecosystem management within the region, 

to improve food productivity and reduce land degradation. 

 

1.4 Research Objectives 

This study aims to assess the impact of LULC and climate change on water balance in 

the Ouémé River Basin. To achieve the set aim, this study aims: 

1. Assess the spatio-temporal changes in LULC for Ouémé River Basin. 

2. Model water water balance using LULC maps from Objective 1: 

2.1 Simulate water balance components using the LULC maps in SWAT. 

2.2 Assess the relationship between LULC changes and changes in surface 

runoff, subsurface flow, aquifer recharge, and actual evapotranspiration. 

3. Evaluate future LULC changes impact on water balance components in the 

basin. 
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4. Evaluate future water balance under IPCC’s CMIP6 Shared Socio-economic 

Pathways future climate scenarios, SSP1-2.6 (Sustainability) and SSP3-7.0 

(Regional Rivalry). 

5. Assess the combined effect of projected LULC and future climate on water 

balance. 

1.5 Research Questions 

The main research question is: What is the impact of LULC and climate change on 

water balance in the Ouémé River Basin, and what are the impacts on water resources 

and ecosystem sustainability? 

Specifically: 

1. What LULC changes have taken place in Ouémé River Basin in the past? 

2. What impact have past changes in LULC had on water balance? 

2.1 What changes in water balance have been influenced by LULC changes? 

2.2 What relationship do historical LULC changes have with water balance 

changes? 

3. What potential impacts can future LULC changes have on water balance? 

4. What potential impacts can future climate change on water balance? 

5. What are the potential impacts of combined future LULC and climate change 

on water balance? 
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CHAPTER 2       LITERATURE REVIEW 

2.1 Introduction 

Water scarcity and water pollution are two challenges facing many developing 

countries, specifically in Sub-Saharan Africa, which have high vulnerability to the 

effects of climate change and variability (Olofintoye et al., 2022). Many of these 

countries also struggle with poverty, high reliance on rainfed subsistence farming for 

their livelihood, and rapid population growth which further increase their vulnerability 

(Santpoort, 2020). The growing population is a major driver of LULC changes, 

especially conversions of natural vegetation including forests and transitional savanna 

areas to expand food production and make room for settlements. These 

transformations on the land surface have brought about alterations in regional 

hydrology, revealed by the more erratic rainfall patterns and rising temperatures, and 

increasing incidences and impacts of floods and droughts across West Africa (Chalid 

and Mulyadi, 2021). 

LULC on the one hand influenced climate change, which also impacts water resources 

and the hydrological balance in a catchment.  The SDG report for 2022 highlights a 

reversal of the progress made towards improving health, eradicating hunger, and 

making basic services accessible to all, due partly to the COVID-10 pandemic, 

conflicts, and climate change. Demand and pressure on land have increased resulting 

in the expansion of croplands, urban areas, mining areas, and industrial centers at the 

expense of natural vegetation. These are drivers of LULC change and contribute to 

greenhouse emissions, thus worsening climate change.  

Regular monitoring and water balance assessment at local and regional scales improve 

effective water resources management efforts to ensure environmental sustainability. 

This deepens understanding of the impacts of human activities through LULC and 

climate change and provides valuable information for context-specific climate 

adaptation strategies (Ayanshola et al., 2018). 

In this section, relevant literature to the study topic is reviewed. 
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2.2 Change in LULC and Water Balance 

2.2.1 Classification of LULC 

Advancements in Remote Sensing (RS) and Geographic Information Systems (GIS) 

have provided accurate monitoring of diverse changes in the earth’s features, including 

changes in LULC. LULC classification is a method of grouping land surface features 

(in pixels) from satellite images based on their spectral characteristics using 

algorithms. This provides insights into understanding environmental processes and 

changes that eventually affect ecosystem functioning. There are two primary methods 

of LULC classification method: Supervised Classification and Unsupervised 

Classification (Sathya and Abraham, 2013). In a supervised classification the user 

directs the classification process by defining the number of LULC groups (categories) 

and setting reference areas based on which the LULC features would be trained 

(Lillesand et al., 2015). This reference data is also referred to as ground truth data or 

training data. Because the supervised classification is based on user-defined training 

data and categories, it provides more accurate and detailed LULC mapping 

information. Unsupervised classification, on the other hand, allows the classification 

algorithm to automatically identify LULC groups without any pre-defined training 

data (Liu and Wu, 2017; Maxwell et al., 2018). Although the unsupervised 

classification method is less accurate compared to the supervised, it is suited for 

exploratory studies.  

2.2.2 LULC Datasets and Algorithms 

Satellite imagery of the land surface is the main input in LULC classification, and they 

vary by the governing bodies, purpose, and spatial and temporal resolution. The 

evolution and launch of several satellites have made LULC data acquisition easier. 

One of the world’s longest-running satellites for monitoring land and coastal areas is 

the Landsat series package, led by the United States Geological Survey (USGS) and 

the National Aeronautics and Space Administration (NASA). The first of the Landsat 

series mission was launched in 1972 and has since seen the launch of other satellites 

with up to 11 bands (the 6th failed), with the main aim of monitoring changes to land 

and coastal areas over time. It is a popularly used land use/cover package worldwide, 

and its image resolutions are moderate including 30 m, 60 m, and 15 m depending on 
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the particular satellite. Secondly, there is the Copernicus Global Land Service (CGLS), 

a program under the European flagship program, Copernicus run by the European 

Union and the European Space Agency (ESA). The CGLS package has biophysical 

variables (e.g., Leaf area index, Soil water index, etc.) to describe the evolution of land 

surface (vegetation, water, etc.), and it comes in moderate to coarse spatial resolutions 

(50 m to >= 1 km). The Global Land Cover Characterization Database maintained by 

USGS at a spatial resolution of 1 km and 24 LULC groupings is another package used 

in West Africa ( Olofintoye et al., 2022).  

LULC classification algorithms often used include Maximum Likelihood 

Classification, Support Vector Machines (SVM), and Decisions Trees, such as 

Random Forests. The Random Forest algorithm is a robust ensemble learning tool that 

improves classification accuracy where the datasets are complex and non-linear 

(Belgiu and Dăgut, 2016). It builds decision trees with randomly collected data and 

makes a final decision from the average of the trees. It is less susceptible to overfitting 

and efficiently manages large datasets even with missing data. It is sensitive to input 

data quality, including the training data and satellite imagery. 

The training data is divided into two, a portion is used for training (usually 70 %) and 

validation (the remaining 30 % is not used for training). The accuracy of LULC 

classification is evaluated based on the validation data using metrics such as overall 

accuracy (OA), producer’s accuracy (PA), and user’s accuracy (UA). Furthermore, 

additional metrics including the quantity disagreement and allocation disagreement are 

used to quantify the source error in the classification process since the kappa statistic 

has been discovered to be inadequate for accuracy evaluations (Pontius Jr. and 

Millones, 2011; Obodai et al., 2019). Where there are multiple classified maps, the 

absolute change, relative, and rate of change of the LULC categories can be calculated 

between maps to quantify the changes over time and space. 

2.2.3 The Hydrological Cycle 

The hydrological cycle is the primary natural process that controls how water moves 

between land, atmosphere, and oceans to sustain life and stability on earth. The 

primary energy that drives the hydrological (water) cycle is solar energy from the sun, 
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which leads to water evaporation from oceans, and plants through evapotranspiration, 

and lands into the atmosphere, to condense and fall back as precipitation (Chakravarty 

and Kumar, 2019). Upon reaching the earth, this precipitation can flow over the land 

surface as surface runoff, be abstracted by plants, or recharge groundwater storage, 

carrying on the cycle.  

Changes in LULC and climate affect the hydrological cycle. Human interventions and 

interactions on land, including expansion of agricultural lands, deforestation, and 

urbanization (Aladejana et al., 2018) alter infiltration rates, resulting in changes in 

hydrological components, such as surface runoff, aquifer recharge, evapotranspiration, 

lateral flow, and baseflow (Hounkpè and Diekkrüger, 2018). These impacts are 

augmented by the uncontrolled emission of greenhouse gases contributing to rising 

global surface temperatures, and unpredictable rainfall patterns. These climate changes 

have been associated with more regular and intense droughts and floods, further 

stressing the water resources the growing population relies on (Lamboni et al., 2019; 

Hounkpè et al., 2022). Thus, this study assesses the interrelationship among LULC 

change, climate change, and changes in hydrological processes by assessing the 

relationships between LULC, climate and water balance changes to provide insights 

for informed water resources decisions in the basin.  

2.2.4 Hydrological Response to LULC Change 

The presence of vegetation in a land area plays a pivotal role in how the area responds 

to rainfall. This means that changes in vegetation cover through the expansion of urban 

and agricultural production lands inform the movement, distribution (Cornelissen et 

al., 2013), and water quality in the area (Yehouenou et al., 2017). In catchments where 

forest areas are cleared for farming or urban development, the land’s capacity to 

intercept rainfall and retain water is reduced due to vegetation loss, which may result 

in enhanced soil detachment and transport, runoff, and reduced groundwater recharge 

(Biao, 2017). An increase in surface runoff can cause higher peak flows leading to 

flooding, reduced baseflow during dry periods, and more droughts that limit farmers 

from cropping all year round (Barbier and Hochard, 2018). The impervious surfaces 

of urban areas such as tarred roads and pavements worsen these effects by providing 

little or no room for water infiltration into the soil. This increases the risk of flash 
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floods through increasing stormwater volumes during high-intensity rainfall events. 

Across West Africa, existing research has shown that urbanization contributes to 

changes in seasonal river flow patterns, and pollution through increased sediment 

transport from exposed soil surfaces (Bossa, 2012). Expansion in agricultural lands 

also alters evapotranspiration, especially in semi-arid areas (Togbévi et al., 2020).   

2.2.5 LULC Change Impact on Water Balance in Ouémé River Basin 

Existing research in Ouémé River Basin on LULC change has shown a trend of 

reducing natural vegetation and increasing Agricultural lands and Settlements/bare 

lands. Bodjrènou et al. (2023a) assessed the changes in LULC within the Ouémé River 

Basin using Landsat images from 1975, 2000, and 2013 and found that the 

predominant Savanna areas had declined from about 78 % to 57 % over the period 

while residential areas and cultivated areas expanded. Their study also found that the 

period between 2000 and 2013 had higher changes in LULC than between 1975 and 

2000. This demonstrates increasing rates of agricultural and urban expansion in the 

basin. Within the Ouémé Delta, beneath the Bonou outlet, Osseni et al. (2022) also 

revealed a considerable reduction in vegetation with the main drivers of changes in 

LULC alluding to the fertility of existing alluvia soils in the basin for agriculture, and 

urbanization. Hounkpè et al. (2019) assessed the impact of LULC changes on flood 

hazard within the Zou subbasin of the Ouémé basin using projected LULC scenarios 

based on expected socio-economic change scenarios (population, economic, etc.) from 

2020-2029. The study found that agricultural lands expanded while forest and savanna 

areas reduced over time. Their study also revealed a strong positive linear relationship 

between increasing Agricultural lands and an increase in flood magnitude and a 

negative relationship with increasing Forest and Savanna. This depicts that 

Agricultural land expansion enhances higher flood magnitudes, whereas Forests and 

Savanna reduce it, indicating the importance of vegetation on the land surface to 

reduce flood risk. Bossa et al. (2014) also undertook a scenario-based assessment of 

LULC change impacts on sediment transport and found that Savanna conversion into 

croplands increased surface runoff in the Ouémé basin from 2000-2029. Groundwater 

water flow decreased while sediment yield increased due to lower infiltration rates, 

and higher exposure of the soil surfaces to the impact of raindrops on cultivated lands 
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compared with savanna areas. Togbévi and Sintondji (2021) assessed the hydrological 

response of the Couffo basin, south.  

These studies did not consider multiple LULC maps over time to simulate water 

balance in the basin as done in this study. The few studies that considered LULC 

changes over time used LULC scenario maps based on expected socio-economic 

changes to predict water balance in the basin, however, the use of classified maps 

provides a surer way to assess spatio-temporal changes in LULC, which can then be 

used to assess changes in water balance. Secondly, existing research has not explored 

the relationship between LULC cover and water balance components such as surface 

runoff, lateral flow, base flow, actual evapotranspiration, and aquifer recharge using 

regression analysis as done in this study. Therefore, this study will offer deeper 

insights into spatio-temporal variations in LULC, its effects on specific water balance 

components, and their sensitivity to changes in specific LULC types. 

 

2.3 Climate Change and Water Balance 

2.3.1 Hydrological Changes Due to Climate Change 

Globally, water resources are highly impacted by changes in climate, through changes 

in precipitation patterns and temperature variabilities, and these changes affect patterns 

of water balance processes Mbaye et al. (2015). In extension, these changes in water 

balance component patterns affect freshwater availability and long-term water 

resources dependability. The rising population growth rate is increasing demand for 

land utilization for farming activities, industry, and city building in West Africa, 

making the region highly susceptible to the adverse impacts of climate change on water 

resources. 

Climate change is evidenced through lower and irregular rainfall, rising surface 

temperatures, extended drought periods, and an increase in evapotranspiration rates. 

These variations in the climate worsen water shortages, which in turn limit water 

availability for domestic, farming, and industrial processes, and limit food productivity 

(Soumaoro, 2021; Boatemaa et al., 2020; Ayanshola et al., 2018) through reduced soil 

moisture (and nutrients) for plant growth. Additionally, climate changes increase the 
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vulnerability to flooding through an increase in peak flows and result in the reduction 

of river water levels thereby reducing ecosystem services provision.  

Therefore, climate change plays a vital role in changes in a catchment’s water balance, 

especially because rainfall is the main input into river basin water balance.  

2.3.2 Water Balance Response to Climate Change in the Ouémé River Basin 

Existing research has shown the significant influence changes in climate have on the 

Ouémé River Basin’s hydrological processes. Biao (2017) assessed the impacts of 

climate change on river discharge trends using CMIP 5 Representative Concentration 

Pathway (RCP) scenarios RCP4.5 (intermediate emissions scenario with 4.5 𝑊/𝑚2 

radiative forcing by 2100) and RCP8.5 (high emissions scenario with 8.5 𝑊/𝑚2  

radiative forcing by 2100) at Bètèrou and Bonou stations of the Ouémé River Basin. 

The study found a reduction in river discharge at both stations and under the two future 

climate scenarios, with shifts toward extreme events including droughts, particularly 

for the extreme future scenario RCP8.5. Hiepe (2008) also assessed the impacts of 

climate change on soil erosion and found that climate change contributed to intensified 

rainfall events and more severe soil erosion. 

 Hounkpè (2016) also assessed heavy rainfall characteristics from 1921-2012 over the 

Ouémé River Basin and found that there was a general increase in heavy rainfall events 

over the basin, however across different return periods, there was a reduction in heavy 

rainfall events from the east to the west of the basin. The areas from the central to the 

upper Ouémé basin also had a decreasing likelihood of heavy rainfall events, however, 

this reduction in frequency was accompanied by more intense rainfall patterns which 

could lead to floods. To assess the impact of climate change on Benin, Dossou et al. 

(2021a) correlated Land Surface Temperature (LST) with NDBI (Normalized 

Difference Built-up Index), NDWI (Normalized Difference Water Index), NDVI 

(Normalized Differences Vegetation Index), and Potential Evapotranspiration (PET). 

Their study found a strong positive correlation coefficient between LST and NDBI and 

a strong negative coefficient between NDBI and NDVI. This suggests that expansion 

in built-up (areas) areas increases land surface temperature, while an increase in 

vegetation reduces land surface temperature. Hounkpè et al. (2022) investigated the 
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impact of climate change on high discharge in the Ouémé River Basin using the 

WaSiM model and found that an increase in rainfall intensity increased the 

vulnerability of communities to floods, especially when combined with LULC changes 

such as deforestation, urbanization, and agricultural expansion. 

Furthermore, Alamou et al. (2017) assessed future water resources availability under 

RCP4.5 and RCP8.5 in the Mékrou Basin, above the Ouémé Basin across three future 

periods, 2011-2040, 2041-2070, and 2070-2100. The study revealed a significant 

increase in PET until the end of the 21st century, with a higher increase rate under the 

RCP8.5 scenario than RCP4.5. Rainfall however increased at a steady rate from 2011-

2040 and decreased from 2041-2100, while mean annual discharge increased across 

the period and both scenarios with the magnitude of change varying with the projected 

period and RCP scenario. Similar findings were made by Lawin et al. (2019) who 

evaluated climate change impact on discharge in the Bétérou basin and the study 

revealed increasing discharge under the RCP4.5 and RCP8.5 future climate scenarios 

from the REMO regional climate model. Regarding crop production, Sonneveld et al. 

(2012) revealed that a reduction in rainfall amounts and increased variability caused 

by climate change led to more frequent crop failures in staples such as maize and yam 

production in the Ouémé basin. 

Alterations in a catchment’s hydrology due to climate change also affect the 

ecosystem’s ability to provide services, reduce freshwater availability and increase 

hazard risks.  The study by Togbévi et al. (2020) assessed the effect of climate change 

on hydrological ecosystem services such as household water supply and crop water 

needs in the Ouriyori subbasin of the Ouémé. Their study discovered that seasonal 

changes in rainfall and temperature resulted in high water stress conditions, which led 

to lower crop yields. Dossou et al. (2021a) examined the Ouémé River Basin’s 

ecosystem response to climate change between 2000 and 2016, and identified that the 

south is highly sensitive to a reduction in water levels in water bodies and an increase 

in land surface temperatures compared to the north. 

Generally, existing studies have not determined the relationship between climate 

change indicators, precipitation and temperature, and water balance components using 

regression analysis. The new IPCC socio-economic cum radiative forcing (SSP-RCP) 
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future scenarios of climate change have also not been used to assess future water 

balance patterns. These updated scenarios enhance understanding of future climate 

change scenarios by providing socio-economic factors underpinning future emissions. 

Hence this study builds on existing research in the basin by assessing the relationship 

between changes in precipitation temperature, and water balance, using the 

sustainability (SSP1-2.6) and Regional Rivalry (SSP3-7.0) future climate scenarios 

from CMIP6. 

 

2.4 LULC and Climate Change Modelling 

2.4.1 Modelling LULC Change 

Modelling of LULC change approaches includes Agent-Based Modelling, Neural 

Networks, Markov Chain, and Cellular Automata (CA) methods (Varga et al., 2019). 

These methods differ in their approach to projecting future changes in LULC. Pure 

CA models project changes in a cell based on time and the current state of its 

neighbouring cells at each time step. However, this bottom-up approach may not be 

able to capture the complexity of LULC systems where demand often drives LULC 

changes. The Markov chain also projects LULC changes using probabilities based on 

the current state and period between two historical maps. In Agent-based modelling 

the nearest neighbours change over time, introducing higher complexity while they are 

static in CA modelling. Most LULC change models use the classical land rent theories 

by Von Thünen and Ricardo, where land is allotted to purposes (uses) that return the 

highest economic rent based on their properties and location (Fujita and Thisse, 2013; 

McDonald, 2018). The CA-Markov model is used in this study to project future LULC 

changes in the basin. This model incorporates the spatial dimension of LULC change 

in CA with the Markov chain transition probabilities, which enables it to effectively 

project LULC changes in complex systems, capturing spatial (allocation) and temporal 

(quantity) patterns and interactions compared to statistical models (Sang et al., 2011; 

Viana et al., 2023). 
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2.4.2 Climate Change Modelling 

Climate models or General Circulation Models are computer programs developed to 

represent physical processes that describe how energy and matter are transferred 

through the atmosphere, land and ocean (MIT Climate Portal., 2023). Climate 

models are built by quantifying Earth system processes and defining them with 

mathematical equations, setting some baseline conditions, and climate forcing (e.g., 

greenhouse gas radiation) for projections and solving the equations repeatedly 

(Randall et al., 2007). Climate models use a three-dimensional grid to divide the 

Earth’s surface, namely: horizontal dimension (Latitude, Longitude), vertical 

dimension (to measure vertical variations in Atmosphere or Ocean), and Time 

dimension (e.g., hourly, daily, monthly). These dimensions define the resolution of 

the climate model, and the smaller the grid size (dimensions), the higher the 

resolution. Additionally, the higher the resolution, the higher the accuracy but is 

computationally intensive.  

Global Climate Models (GCM) cover the entire earth while Regional Climate 

Models (RCM) are downscaled versions of GCMs with higher resolution and detail 

than the GCMs. Global models can be downscaled using dynamic or statistical 

methods, and the biases can be reduced with bias-correction methods including 

Quantile Mapping, Linear Scaling, and Delta Approach. Examples of RCMs include 

REMO (Lawin et al. 2019) and CORDEX (Lamboni et al., 2019) models., and GCM 

examples are. Widely used climate models are the global models developed under 

the IPCC CMIP framework. These models comprise projections of historical and 

future climate under varying emissions/concentration scenarios. Over the years, the 

IPCC climate report scenarios have been used to model climate change globally. The 

CMIP5 RCP scenarios in 2008 replaced the Special Report on Emission Scenarios 

(SRES) from 2000 used in the Third and Fourth IPCC reports. Since 2023, the 

CMIP6 SSP scenarios have been introduced for the assessment of natural and 

human-induced changes in the environment’s impact on climate. CMIP6 SSP 

scenarios enable future climate projections from socio-economic conditions and 

global effective radiative forcing (Intergovernmental Panel on Climate Change 

(IPCC), 2023b). The CMIP6 SSP scenarios provide socio-economic factors that 

would lead to the concentrations of GHGs, which is lacking in the CMIP5 RCP 
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scenarios. Environmental changes such as greenhouse gas (GHGs) emissions from 

fossil fuels, deforestation and land degradation (Wheeler et al., 2016; O’Neill et al., 

2017), and fertilizer application (Walling and Vaneeckhaute, 2020) are considered in 

the SSP scenarios. These factors are important because they provide scenarios of 

climate mitigation and adaptation actions that can be used to assess the impacts of 

human activities on climate change better (Intergovernmental Panel on Climate 

Change (IPCC), 2023b). 

Presently, the CMIP6 SSP scenarios have not been explored for water balance 

assessment, and this study aims to fill this gap. 

2.5 Water Balance Modelling in a Watershed 

Limitations of measuring techniques and the variations in the temporal and spatial 

scales at which hydrological processes occur make the hydrological model crucial for 

understanding changes in the hydrology of an area (Beven, 2012). Hydrological 

modelling provides insights into the processes involved in water flow and projections 

for future scenarios, such as flood forecasting for early warning. Hydrological models 

have been developed for different aspects of water resources management. Challenges 

common to models in the inability to accurately mimic the physical properties of a 

watershed, due to uncertainties from the input data, model, parameterization, and 

human errors (Cornelissen et al., 2013).  

2.5.1 Hydrological Model Types 

Hydrological models vary based on their structure and functionality and thus influence 

the outputs from water resource studies. Generally, hydrological models can be 

defined as Deterministic or Stochastic, based on their mathematical structure. 

Deterministic models have a unique input which leads to a unique output, while in 

Stochastic models the same input may lead to different outputs. Hydrological models 

are also defined by their ability to represent the physical characteristics of the basin: 

Physically-based models derive the hydrological processes using the principles of 

physics and thermodynamics, while Conceptual models simplify the processes in their 

derivation. Some quasi-physical models have a blend of physically-based and 

conceptual models. Furthermore, hydrological models can be referred to as Lumped, 
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Distributed, or Semi-distributed according to their spatial complexity. Lumped models 

consider the watershed as a single homogeneous entity and use mean parameter values 

for simulating hydrological processes; distributed models consider the spatial 

distribution of variables and basin processes at a fine resolution (more detailed) 

(Paudel et al., 2011). On the other hand, semi-distributed models divide the watershed 

into subunits (sub-basins) and treat each subunit as lumped (Hounkpè and Diekkrüger, 

2018). Distributed models offer more detail but have potentially greater uncertainty 

due to higher complexity and require more input data and computation time compared 

to the lumped and semi-distributed models (Jajarmizad et al., 2012). 

2.5.2 Hydrological Models Applied in West Africa 

The Soil and Water Assessment Tool (SWAT) is a continuous semi-distributed small 

watershed to river-basin scale model used to simulate the quality and quantity of 

surface and groundwater and to predict the impact of land use and management 

practices, as well as climate change (Arnold et al., 1998). SWAT is developed partly 

by the United States Department of Agriculture (USDA) Agricultural Research 

Service and the Texas A&M AgriLife Research. Minimum input data required to run 

the SWAT model include precipitation and temperature, soil, elevation and 

topography, and LULC data.  

Another example of hydrological models used in West Africa is the “UHP-HRU 

Model, a spatially differentiated version of the UHP model” specifically designed for 

Benin (Cornelissen et al., 2013; Giertz et al., 2006) and the Water Flow and Balance 

Simulation Model (WaSiM), a spatially distributed model designed for water flow 

simulations above and below the land surface. Data requirements include 

meteorological (precipitation, temperature, etc.), LULC, and soil data in gridded 

format. It can also be used to conduct an impact assessment of climate and LULC 

change on hydrology (Schulla, 2014). 

The “Water Evaluation and Planning System (WEAP)” Model (Höllermann et al., 

2010) is used to study transboundary water allocation in assessing water demand and 

availability. Other models include “Génie Rural à 4 Paramètres Journaliers” (GR4J) 

(Cornelissen et al., 2013), 1-D SVAT model (Giertz et al., 2006), HEC-HMS, to 
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mention a few have also been used for hydrological modelling of watersheds in Africa. 

These models generally require rainfall data, temperature, land use, potential 

evapotranspiration, soil water retention capacity and topography, and discharge data 

(Nounangnonhou et al., 2018). Artificial Intelligence (AI) methods such as Machine 

Learning (ML) techniques are also being introduced into hydrological modelling 

because it is capable of handling large datasets and learning patterns quickly. AI has 

been applied in soil and water quality assessments, which are usually challenging in 

inaccessible or data-scarce regions (Werther et al., 2021; Al-Naji et al., 2021). 

In this study, SWAT is used because it can integrate physically-based processes with 

conceptual approaches (semi-distributed) to simply complex hydrological processes in 

large river basins like the Ouémé River basin (Arnold et al., 1998). It also incorporates 

uncertainty and sensitivity analysis of parameters affecting water flow in the separate 

SWAT-CUP tool, which makes calibration and validation efficient. SWAT has been 

applied and validated globally including West Africa. It is easily accessible with a 

user-friendly interface. SWAT inputs and outputs data formats are compatible with 

other software such as ArcGIS and QGIS, and programming languages like Python 

thereby enabling efficient data transfer and analysis. Due to its continuous processing 

method, it requires continuous climate data and hydrological data such as discharge, 

which is challenging due to data scarcity in Africa. However, calibration and validation 

in the SWAT-CUP provide a way to successfully calibrate discharge with the available 

data while still accounting for missing data (Abbaspour, 2015).  

 

2.6 Challenges in Water Balance Modelling and Assessment 

2.6.1 Water Balance Modelling Challenges 

Hydrological modelling provides valuable insights that enhance water resources 

management; however, there are challenges and uncertainties. One major challenge is 

the unavailability and/or inaccessibility of long-term, high-resolution observed data on 

variables, such as streamflow, precipitation and temperature, soil moisture, LULC, and 

evapotranspiration. Usually, the available data are inconsistent attributable to faulty or 

outdated measuring equipment or human errors which affect the accuracy of the 

models. The introduction of remote sensing tools has provided ways to efficiently and 
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accurately monitor environmental changes (Odusanya et al., 2021), however, it is not 

without shortfalls such as spatial and temporal resolution constraints and biases, which 

also introduce uncertainties in the model when used. In cases where satellite data are 

combined with ground-truth observations, modelling accuracy is improved but does 

not eliminate the uncertainties (Bodjrènou et al., 2023b). 

Spatial and temporal resolutions play an important role in water balance assessment. 

Assessment at larger spatial scales like the regional scale can capture overall trends, 

but it often misses the details peculiar to localized water management. Additionally, 

long-term assessments may capture variations that short-term assessments may not, 

which could lead to better conclusions about water availability and stability. 

2.6.2 Uncertainties in Water Balance Assessment 

Uncertainties in hydrological models stem from uncertainties in the models 

themselves. In SWAT, for instance, the water balance simulation depends on 

assumptions that simplify the catchment characteristics, and this can introduce some 

errors (Bailey et al., 2020). The sensitivity of the models to the quality of input data, 

particularly climate data, makes calibration and validation quite challenging especially 

in data-scarce areas. These issues are compounded by the unpredictable nature of 

climate and LULC changes, particularly in regions like West Africa where changes 

are occurring very rapidly. Climate models also vary in their assumptions about future 

emissions and trends of precipitation and temperature (Hayhoe et al., 2017; Lawin et 

al., 2019). Hence, these uncertainties make long-term projections of impacts on water 

balance more complex. 

In this study, available data including climate, LULC, soil, and discharge are used to 

assess the impacts of LULC changes on water balance components such as baseflow, 

surface runoff, lateral flow, actual evapotranspiration and total aquifer recharge using 

the SWAT model. The simulation in SWAT is divided into three periods, 1998-2008, 

2008-2016, and 1998-2016, to assess the effects of changes in LULC on water balance 

components over multiple periods assuming constant climate and soil data. This is so 

that any changes in water balance can be ascribed solely to LULC changes. The impact 

of future scenarios of changes in precipitation and air temperature patterns on water 

balance is evaluated using IPCC CMIP6 future climate model projections.  
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CHAPTER 3       MATERIALS AND METHODS 

3.1 Introduction 

This section outlines the data sources and methods used to assess the impacts of LULC 

changes and climate change on water balance in the Ouémé River Basin, Benin. The 

study area is first described, and then the classification of LULC types for different 

historical years is outlined. This is followed by water balance simulations using the 

LULC maps developed based on the classification. The subsequent sections focus on 

the projection of future LULC impact on water balance, the projection of future climate 

impacts on water balance, and the combined influence of projected future LULC and 

climate changes on water balance in the basin.  

 

3.2 Study Area 

The Ouémé River basin is situated between latitudes 6° 30’ N and 10° 00’ N, and 

longitudes 0° 52’ E and 3° 05’ E (Hiepe, 2008). It is the largest river basin in Benin, 

West Africa, covering about 43 % of the country’s land surface area. The basin spans 

a total area of 49,280 km2 (at Bonou outlet), with 89 % of its area in Benin, and 10 % 

and 1 % in Nigeria and Togo, respectively (Hounkpè, 2016). The basin is bounded to 

the north by the Atakora Mountains and discharges into the Ouémé Delta and the Gulf 

of Guinea at Cotonou, with an average flow rate of 170 m³/s. According to the Köppen 

climate classification, the Ouémé River Basin falls within the Tropical Savanna 

climate zone (Peel et al., 2007).  

The largest tributaries of the Ouémé River Basin are the Okpara River on the east-side 

and the Zou River on the west (Fig. 3.1). The Bétérou outlet is within the Upper Ouémé 

with 14,400 km2 sub-catchment area and elevations between 228 m and 617 m 

(Olofintoye et al., 2022). Luvisols dominate that sub-catchment, and LULC consists 

of savanna areas, croplands, and urban areas. The Bonou outlet falls in the Lower 

Ouémé where streamflow from the Ouémé basin drains into the Ouémé Delta south of 

Bonou. 
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Figure 3.1: Elevation map (a) showing the river networks, climate stations, mean 

rainfall, and temperature (1998-2016) for the Upper (b), Middle (c), and Lower (d) 

parts of the Ouémé River Basin  

 

3.2.1 Geology 

The geology of Benin is primarily composed of two types of rocks: (1) sedimentary 

rocks, found in the coastal areas in the south (including a portion of the lower Ouémé 

River Basin), the Kandi, and Volta basins; and (2) metamorphic and crystalline rocks 

within the Dahomeyan basement, which covers most of the Ouémé River Basin 

(Hounkpè and Diekkrüger, 2018). Due to the solid and compact nature of the 

metamorphic and crystalline rocks, they have low permeability, which slows 

groundwater recharge. However, where fractures are present, they create pathways that 

enhance water infiltration (Bossa, 2012). The impermeable nature of these rocks 

results in increased surface runoff, particularly during heavy rainfall events, 

contributing to high peak river flows. As a result, baseflow is typically lower and more 

seasonal compared to sedimentary formations. 

The eastern side of the Dahomeyan basement consists of a granite gneissic unit, 

characterized by amphibole-gneiss, biotite-gneiss, and syntectonic granites, which 

have a medium metamorphic gradient (Darko et al., 2019). In contrast, the western 

side is composed of granulitic and aluminous gneiss, including aluminous gneiss with 
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hypersthene, biotite-gneiss, and gneiss with pyroxenes, exhibiting a high metamorphic 

gradient. These variations in the metamorphic gradients and rock types across the 

eastern and western regions influence water movement, as the differing rock properties 

affect both surface and subsurface hydrology (Wright et al., 1985). 

3.2.2 Topography, Soil, and Hydrography of the Basin 

The land surface of the Ouémé River Basin is predominantly characterized by high 

peneplains (upper and lower slopes), which are nearly flat surfaces formed through 

prolonged soil erosion (Bossa, 2012). This history of erosion shapes the soil properties, 

which in turn strongly influence the basin's hydrology. Tropical Ferruginous Soils 

(Ferrugineux Tropical Lessive) which extend from the center to the northern parts of 

the basin are the dominant soil type (Fig. 3.2). These soils are formed through clay 

translocation and iron segregation, processes that promote horizon differentiation after 

earlier ferricretes were eroded (Faure and Volkoff, 1998). The ferruginous soils, 

particularly in the lower slope areas, are leached and indurated. Hydrologically, these 

soils tend to have reduced infiltration capacity due to their hardened layers, promoting 

surface runoff and increasing erosion risk. The inland valleys where Gleysols 

(hydromorphic soils) dominate have higher water retention, which supports 

groundwater recharge but may become waterlogged in some areas. This can influence 

streamflow dynamics and wetland formation in these valleys. Generally, Ferric 

Acrisols/Lixisols are present on the upper slopes (Bossa et al., 2014) with lower 

fertility, typically exhibiting moderate infiltration capacities, which can reduce runoff 

and promote subsurface flow. However, during intense rainfall events, these soils may 

contribute to lateral flow and baseflow into streams, influencing the basin’s 

hydrological processes. Ferrallitic soils are found in the southern parts of the basin on 

the coastal sedimentary rocks as ‘Terre de Barre’ and inland on some parts of the 

Dahomeyan crystalline basement. These soils are highly weathered and kaolinitic, rich 

in sesquioxides, and deep and sandy to loamy Acrisols (Faure and Volkoff, 1998). The 

ferrallitic soils, while having a high porosity, are often associated with lower nutrient 

retention due to leaching. Hydrologically, they support infiltration and groundwater 

recharge, though, in regions where the texture becomes finer within the soil profile, 

surface runoff may increase due to reduced permeability. These provide insights into 
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the spatial diversity in hydrological characteristics in the basin due to variations in soil 

properties across the basin.   

The landscape of the coastal sedimentary basin which contains the lower part of the 

Ouémé River Basin is tabular with low plateaus, and the hydrographic networks are 

widely spaced. The crystalline Dahomenyan basement is drained mainly by the Ouémé 

river southwards and rivers leading to the Niger River northwards. The upper portion 

of the Ouémé River Basin is characterized by steep convex slopes and lowering of 

thalwegs. The land surface of the basin is slightly undulating with generally low relief, 

strongly fractured with seasonally waterlogged linear depressions (Bossa, 2012; Faure 

and Volkoff, 1998). 

 

Figure 3.2: Soils found in the Ouémé Basin  

(Source: van Engelen and Ting-tiang, 1995) 

3.2.3 Climate 

The Ouémé Basin has two main seasons, namely, the wet and dry seasons. The south 

within the Guinean agroecological zone has a bimodal rainfall regime with two wet 

and two dry seasons, a short dry season during August, and a longer dry season from 

November to March. However, in the north, there is a single wet season from April to 

September and a dry season that ranges from October to March (Faure and Volkoff, 
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1998). The annual rainfall ranges from 900 mm to 1400 mm (from 1998 to 2016) and 

the mean temperature is between 25 °C and 30 °C (Olofintoye et al., 2022) (Fig. 3.1). 

The central part (Middle Ouémé) exhibits characteristics of the Upper and Lower 

Ouémé (transitional regime), with rainfall amounts from April to June higher than 

those in Upper Ouémé but less than that in Lower part. However, according to Faure 

and Volkoff (1998), “Benin has four bioclimatic zones, namely; (1) a littoral humid 

tropical zone (1200 to1400 mm of annual rainfall), (ii) a littoral and inland subhumid 

zone (900 to 1200 mm annual rainfall), (ii) a wetter inland zone (1200 to 1400 mm of 

annual rainfall), and (iv) a continental dry northern zone (1200 to 900 mm of annual 

rainfall)” (Faure and Volkoff, 1998).  

 

3.2.4 Vegetation 

The Ouémé River Basin lies mainly within the littoral and inland subhumid zone and 

a smaller portion of the wetter inland zone. The landscape in the Ouémé River Basin 

is made up of forests (including riparian), woodlands and savannas, agricultural 

landscapes, and degraded lands (Bossa et al., 2014; Bodjrènou et al., 2023a). The 

southern part of the basin is dominated by semi-deciduous tropical forests, with a mix 

of evergreen and deciduous tree species. These forests thrive in areas with higher 

rainfall and relatively fertile ferrallitic soils, which are leached but retain moisture and 

nutrients necessary for dense vegetation. Common tree species found in the basin 

include; African Mahogany (Khaya senegalensis), African Whitewood (Triplochiton 

scleroxylon), and Shinglewood (Terminalia superba) (Lokonon et al., 2017). These 

forests contribute significantly to carbon sequestration and biodiversity conservation 

(Wheeler et al., 2016), and thereby regulation of local microclimates. However, 

deforestation due to agricultural expansion and settlement growth is a pressing issue 

in the southern zones. Northward, vegetation transitions into savanna ecosystems, 

which dominate the middle and north of the basin. These areas are characterized by 

wooded savannas and tree savannas, with sparse tree cover interspersed with grasses 

and shrubs. Species such as the Shea tree (Vitellaria paradoxa), African Locust Bean 

(Parkia biglobosa), and African Copaiba Balsam tree (Daniellia oliveri) are common 

in the wooded savannas (Lokonon et al., 2018). The savanna regions are supported by 
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the less fertile ferruginous soils, which are more prone to soil erosion, but still capable 

of supporting these drought-tolerant species. The savanna vegetation plays an 

important role in livestock grazing and subsistence farming, though it is highly 

vulnerable to land degradation from overgrazing and shifting cultivation. Riparian 

zones along the Ouémé River and its tributaries feature gallery forests and wetland 

vegetation. The inland valleys support dense grasslands and seasonally flooded 

wetlands that provide important ecosystem services, including flood regulation, water 

purification, and habitats for wildlife. The middle and upper parts of the basin have 

been converted into agricultural lands, primarily for subsistence farming of crops such 

as maize (Zea mays), yams (Dioscorea spp.), and cassava (Manihot esculenta). Tree 

and crop plantations including cotton, cashew, cowpea, soybean, and oil palm are also 

present in this region (Dossou et al., 2021a). The expansion of agriculture has replaced 

native savanna vegetation, leading to soil degradation and loss of biodiversity. In some 

areas, particularly near settlements and in over-exploited lands, the vegetation is 

sparse, consisting of degraded woodlands and shrublands. These areas, often referred 

to as fallow lands or bare lands, are increasingly vulnerable to erosion and loss of 

productivity. 

3.3 Spatio-temporal Changes in LULC 

3.3.1 Data Sources 

Data for the LULC classification based on data quality, availability, accessibility, and 

the ability to provide substantive information on LULC changes were selected (Fig. 

3.3). Four Landsat images of the basin from the dry season of the years 1986, 2000, 

2015, and 2023 were sourced from the USGS database in Google Earth Engine (GEE) 

(Table 3.1). The period selection was guided by the need for a balance between 

capturing significant temporal changes in LULC, and the availability of high-quality 

satellite images. Though a 15-year interval was initially planned, constraints in image 

quality (for instance years before 1986) and accessibility necessitated some 

adjustments. The years 2000 and 2015 correspond with the establishment of the 

Millennium Development Goals (MDGs) and the Sustainable Development Goals 

(SDGs), respectively, which are significant efforts towards achieving environmental 
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sustainability. The 2023 also ensured that the most current state of LULC was 

incorporated to improve the relevance of the study for current and future planning.  

Google Earth Engine is a cloud computing system with a host of satellite imagery that 

covers various aspects of earth observation assessments. Images were selected from 

1st January to 31st March, and extended to 30th April where the image quality was 

insufficient. These dry season images have less cloud cover compared to the rainy 

season. A high percentage of cloud cover over the image obscures details on the 

images and affects the accuracy values obtained during classification. Therefore, 

images with lower cloud cover are recommended to improve accuracy in LULC 

classification. 

 

Figure 3.3: LULC Classification Workflow 

The GEE cloud computing database enables faster data analyses through cloud 

processing and in-built algorithms, which made assessing LULC changes in the large 

Ouémé River Basin faster and more efficient (Noi Phan et al., 2020). GEE also 

integrates various datasets with varying resolutions, which are updated from time to 

time. 
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Table 3.1: Satellite Data Applied in the LULC Classification 

Year LULC Data Used Resolution Number of 

Images  

Month 

1986 Landsat 5 TM  30 m 27 1st January – 30th 

April 

2000 Landsat 7 ETM+  30 m 23 1st January – 30th 

April 

2015 Landsat 8 

OLI/TIRS 

30 m 55 1st January – 31st 

March 

2023  Landsat 8 

OLI/TIRS 

30 m 57 1st January – 31st 

March 

 

3.3.2 Data Composition 

The composition of time series images is an important step in LULC classification. 

The “Simple-Composite Landsat” algorithm is available in GEE (Qiu et al., 2023). 

This algorithm uses the Tier 1 Landsat images which are radiometrically and 

geometrically corrected and selects a subset from each location, converting them to 

Top of Atmosphere (TOA) reflectance using Equation 3.1 and 3.2 for Landsat 5TM/7 

ETM+ (Chander et al., 2009) and Landsat 8 OLI/TIRS (US Geological Survey, 2019), 

respectively. The algorithm selects the lowest range of cloud and shadow percentages 

at each point and uses the “Simple Landsat Cloud Score” algorithm to calculate the 

median of the least cloudy pixels (Tassi and Vizzari, 2020).  

This Simple-Composite Landsat algorithm retains the spatial and spectral fidelity of 

the input images, which is important in LULC change detection and can be challenging 

when compositing with the surface reflectance (SR) images where data gaps are 

created during cloud-masking. The algorithm has proven to enhance the effective 

compositing of Landsat images and yield high mapping accuracy values (Qiu et al., 

2023; Xie et al., 2019).  

ρλ =
πLλd2

ESUNλ cos θs
      [3.1] 

ρλ =
MρQcal+Aρ

sin(θs)
      [3.2] 

Where;  
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ρλ = Planetary TOA reflectance [unitless] 

π = Mathematical constant equal to approximately 3.14159 [unitless] 

Lλ = Spectral radiance at the sensor’s aperture [W/(m2srμm)] 

ESUNλ = Mean exoatmospheric solar irradiance [W/(m2μm)] 

θs = Solar zenith angle [degrees] 

Mρ = Band-specific multiplicative rescaling factor from the metadata 

Qcal = Quantized and calibrated standard product pixel values (DN) 

Aρ = Band-specific additive rescaling factor from the metadata 

Therefore, the code for input in GEE for image composition requires; 

i. Image Collection (e.g., Landsat 5 TM Tier 1 scenes) 

ii. Region of interest (roi) which is a shapefile of the study area  

iii. Period of interest (e.g., 1986-01-01 to 1986-03-31) 

iv. Select input bands of interest 

3.3.3 LULC Classification 

A stratified random sampling method was used to select training samples (data) by 

polygons for the LULC types, and training data for each LULC type was collected 

randomly according to the proportion of the image covered by the LULC types, as 

recommended in LULC classification (Olofsson et al., 2014). Polygons were used 

instead of point to enable uniform collection of pixel data on LULC types considering 

the large size of the basin. These training data, also referred to as ground-truth data or 

reference data were collected from Google Earth Pro, field visit, and GEE base maps, 

following the good practices for LULC change assessment outlined in (Olofsson et al., 

2014). The ground-truth polygons were first collected for the most current year, 2023, 

through field visits to the study area and the high-resolution satellite layer of Google 

Maps using the Google Earth Pro interface. Then the ‘historical imagery’ tool in 

Google Earth Pro was used to visualize land surface maps from historical years, which 
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helped in collecting reference data for 1986, 2000, and 2015. These sets of training 

data were imported into GEE and superimposed as a shapefile onto the composited 

Landsat images, and using their spectral characteristics through indices and visual 

interpretation of the land features, more training samples were collected in GEE per 

image. In all, a total of 1471 training samples (Table 3.2) were collected throughout 

the basin for the four images (1986, 2000, 2015, and 2023). 

The next step in the classification process is training (the main classification) and 

validation (used for accuracy assessment). Seventy percent (70 %) of the total samples 

per year was used for training while 30 % was used for validation. The variable ‘count’ 

was applied to the algorithm to determine the number of images sampled for 

compositing in each year. To ensure higher accuracy of classification of features in the 

raster images, auxiliary variables including NDVI  and BSI (Bare Soil Index) were 

computed for the composite images of each time step and added to the image band set 

(Polykretis et al., 2020; Tassi and Vizzari, 2020).  

 

Table 3.2: Training Samples used for the LULC Classification 

 

Year 

Total Number of Sample Polygons per LULC Class 

Forest Settlement/Bare 

land 

Savanna Agriculture Water 

1986 68 57 44 86 36 

2000 39 44 56 89 21 

2015 89 82 92 253 33 

2023 34 46 73 197 32 

 

Five LULC classes (Table 3.3) were selected based on the FAO West African Land 

Cover Reference System (Di Gregorio et al., 2022), representing key ecosystems in 

West Africa: forest areas, savannas, agricultural lands, settlements/bare lands, and 

water bodies. These classes reflect the natural and human-induced changes, that affect 

the hydrological cycle. Forests play a significant role in evapotranspiration, retain soil 

moisture, reduce surface runoff, and enhance groundwater recharge. Savannas serve 

as transitional zones with moderate water balance effects. Agricultural lands increase 
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surface runoff and reduce infiltration, while settlements/bare lands lead to higher 

runoff and more extreme hydrological responses. 

In GEE, the Random Forest algorithm was used to perform a supervised classification 

to categorize the land surface features of the four composited images into the five 

different LULC classes. The ecosystem within the Ouémé River Basin consists mostly 

of a mixture of LULC types per area, where settlement areas are interspersed with 

farmlands, trees, plantations, and business centers, making it complex to map. The 

Random Forest Classifier can handle high-dimension data with complex interactions 

between variables, although it is sensitive to errors in the input data (Hengle et al., 

2015). Moreover, it has been proven to yield higher accuracy in land cover mapping 

and projections in Africa and many other parts of the world (Xie et al., 2019). The 

classification step therefore requires; 

• a composited image 

• feature collection containing training/validation polygons collected for each 

LULC class and given the same property name and specify percentage for 

training and validation. 

• the output bands of interest (e.g., Landsat 5 bands, NDVI, BSI) 

• extract confusion matrices of the training and validation 

• Output folder to export classified map (e.g., google drive). 

Table 3.3: Description of LULC Classes in the Ouémé River basin 

LULC Type Description 

Forest areas Areas with dense trees (including riparian 

forests) are mostly classified as forests. 

Settlements/Bare lands Cities, roads, bare (cleared) areas, towns. 

Savanna areas (Woodlands) Areas with sparse trees interspersed with 

grass, shrubs, and bushes. 

Agricultural lands Croplands, plantations, fallow lands 

Water bodies Rivers, lakes, wetlands, and areas covered 

with water for all or most of the year. 
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3.3.4 Classification Accuracy Assessment 

For each LULC map classified per year, a cross-tabulation matrix, also known as 

confusion or error matrix, of the validation samples in pixels was extracted from GEE 

and used to assess how well the classified maps depict the reality on the ground. 

General summary statistics for classification accuracy assessments include overall 

accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA), and kappa statistics. 

Recently, the kappa statistic has been found insufficient in explaining LULC change, 

therefore two other indices, quantity and allocation disagreement which are 

recommended were also used. Overall accuracy values greater than 85 % are generally 

considered indicative of strong to almost perfect agreement between the reference and 

predicted categories (García-Álvarez et al., 2022). 

Additionally, area-based statistics, recommended to address uncertainties and biases 

that could arise from the sampling and classification process, were conducted (Schmidt 

and McCullum, 2018; Olofsson et al., 2014). This area-based analysis intends to 

incorporate the standard error based on the total area of each LULC class. This way, 

the producer’s and user’s accuracies are assessed based on the map data and not just 

the validation data (30 % of training samples). Accuracy was determined at the 

category scale (per each LULC class) and for the overall classified image. The original 

confusion matrix from the validation step was converted into an area-based matrix 

representing the entire study area to compute unbiased area-based summary statistics 

of the classified image using Card’s equations (Olofsson et al., 2014; Pontius and 

Millones, 2011). This method involves calculating the area proportion from stratum 

weight, Wi of the predicted map, based on which the area-based summary statistics are 

recalculated. These statistics include the percentages of omission and commission 

errors quantified by the user and producer accuracies, respectively, standard error of 

area estimates, and corrected area estimates with 95 % confidence to account for 

uncertainty. Equations used for these computations accessed from the NASA Applied 

Remote Sensing Training Program (NASA- Applied Remote Sensing Training 

Program, 2018) are presented in Appendix 1.  

Quantity disagreement represents the difference between the classified map and 

validation data due to imperfections in the proportions of the categories, calculated as 
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the difference between omission and commission errors (sum of the proportion of the 

category in the classified map minus the sum of the proportion of the category in the 

reference from the error matrix) (Pontius Jr. and Millones, 2011). Allocation 

disagreement is the differences arising from mismatches in the spatial locations of the 

categories, expressed as “the sum of exchange (pairwise) and shift (non-pairwise) 

confusion between categories” (Obodai et al., 2019).  

3.3.5 Change Detection 

Once the classification accuracy was within acceptable ranges, the absolute magnitude 

of change in the area of the different LULC classes, their relative changes between the 

years, and the rate of change were estimated. The change detection was conducted 

using the “post-classification” tool under “Land Cover Change” within the Semi-

Automatic Classification Plugin (SCP) in the QGIS interface. This step develops a 

change map that illustrates the changes in the LULC types between two time points, 

and a change matrix that indicates the transitions and/or persistence of the LULC types. 

The following Equations (3.3, 3.4, 3.5) were used to calculate the magnitude of change 

(km2), the annual rate of change (%) and relative change (%) from the change matrices 

(García-Álvarez et al., 2022; Puyravaud, 2003). LULC maps were created using 

ArcGIS and QGIS software. 

Absolute change, AC = A2 − A1 (km2)      [3.3] 

Relative change, RC =
A2−A1

A1
 (%)      [3.4] 

Rate of Change, q = (
A2

A1
)

1

t2−t1 − 1 (%/y)     [3.5] 

Where A2 is the area of the LULC in the year t2, and A1 is the area in the year t1. 

The transition intensities are also generated for each land category between the LULC 

maps years (1986-2000, 2000-2015, 2015-2023) which tells the demand for the 

categories and which ones are more susceptible to change (Pontius Jr, 2022). The 

uniform transition intensity is calculated as the sum of the losses/gains over a period 

(Equation 3.6 and 3.7). The transition intensity analysis reveals how the LULC types 

change between the years (Equation 3.8 and 3.9). An active transition depicts a higher 

rate of change in the LULC category greater than the overall rate of LULC change in 



 

53 

 

the basin (uniform transition intensity), while a dormant category transition has a rate 

of change lower than the uniform transition intensity for that period (Pontius Jr, 2022; 

Aldwaik and Pontius, 2012).  

Gain =  Total area of category𝐦𝐚𝐩𝟐 (%) − area of category persistent (%)     [3.6] 

Loss = Total area of category𝐦𝐚𝐩𝟏 (%) − area of category persistent (%)  [3.7] 

Gain intensity (%) = (
Gain

Total area of categorymap2
) × 10   [3.8] 

Loss intensity (%) = (
Loss

Total area of categorymap1
) × 100   [3.9] 

 

3.4 Modelling Water Balance Based on Historical LULC in the Basin 

In this section, water balance is simulated using the four LULC maps developed in 

Objective 1 in the Soil and Water Assessment Tool (SWAT) hydrological model. 

Afterwards, the absolute areas of the LULC types across the different maps are 

regressed against the absolute amounts of average surface runoff, lateral flow, 

baseflow, total aquifer recharge, and actual evapotranspiration to examine the 

relationships between them, and the direction of those relationships. 

3.4.1 SWAT Model Set-up 

The SWAT model is a continuous semi-distributed river basin simulation model, 

quasi-physically based in nature, developed for the prediction of the long-term impact 

of land management decisions on water, sediment, and agricultural chemicals in 

watersheds (Arnold et al., 1998). In SWAT, the catchment is first divided into sub-

basins based on topography, and then into Hydrologic Response Units (HRUs), which 

SWAT uses to simulate loadings from the catchment (Arnold et al., 1998) (Fig. 3.4).  
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Figure 3.4: SWAT Modelling and SWAT-CUP Calibration and Validation Workflow1  

An HRU refers to the total area in a subbasin with a particular LULC, management, 

and soil, capturing the diversity of LULC and soils in the sub-basins. Loadings from 

each HRU are calculated separately and summed to obtain the total sub-basin loadings. 

Thresholds of LULC, soil, and slope are used to define HRUs (Her et al., 2015) which 

are used to generate parameter characteristics for the sub-basins, such as surface runoff 

curve numbers and saturated hydraulic conductivity for water balance simulations. 

Using threshold values of 2 % LULC type, 10 % soil type, and 20 % slope levels in 

defining HRUs provided an effective balance between model detail and computational 

efficiency in this study. The lower LULC threshold enables finer differentiation among 

areas reflecting the dynamic nature of LULC changes over change, which is a primary 

focus of this analysis, in contrast to soil and slope, which are relatively stable over 

time in the basin. Due to the nearly flat terrain characteristic of the basin landscape, 

three slope divisions were used for the SWAT model setup namely, 0-5 %, 5-10 %, 

and above 10 %. Daily temperature and precipitation data from 1998-2016 were the 

climate input (Table 3.4).  

 
1 surface runoff (SURF), lateral flow (LF), baseflow (BF), total aquifer recharge (TAR) and actual 

evapotranspiration (𝐸𝑇𝑎). Nash-Sutcliffe Efficiency (NSE), Percent Bias (PBIAS), Coefficient of 

Determine (R²), RMSE-observations Standard Deviation Ratio (RSR) 
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Table 3.4: Datasets Applied in this Study 

Sn. Data Type Source Resolution 

1. DEM (Digital Elevation 

Model 

SRTM (Shuttle Radar 

Topography Mission)  

30m 

2. Land Cover Maps Specific Objective 1 30m 

3 Daily precipitation and 

temperature (1998-2016) 

ERA 5 reanalysis, (Rauch et al., 

(2024) 

 

4. Soil map FAO soil database 1km 

 Measured discharge DGEau2, Benin  

 

3.4.2 Hydrology  

SWAT generates hydrological components using the water balance Equation 3.10, as 

shown in Fig. 3.5. It predicts runoff from the basin outlet by predicting the sub-

basins and routing to the channel (Neitsch et al., 2011). 

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑇𝑎 − 𝑤𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)𝑡
𝑖−1    [3.10]  

Where:  

 𝑆𝑊𝑡 is the final soil water content (mm H2O) 

𝑆𝑊0 is the initial soil water content (mm H2O) 

𝑅𝑑𝑎𝑦 is the amount of precipitation on day i (mm H2O) 

𝑄𝑠𝑢𝑟𝑓  is surface runoff on day i (mm H2O) 

𝐸𝑇𝑎 is actual evapotranspiration on day i (mm H2O) 

𝑤𝑠𝑒𝑒𝑝  is the amount of water entering the vadose zone on day i (mm H2O) 

𝑄𝑔𝑤 is the amount of return (interflow) flow on day i (mm H2O) 

 
2 DGEau – Direction Générale de l’Eau 
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Figure 3.5: Schematic Hydrological Cycle in the SWAT Model 

(Source: Neitsch et al., 2011) 

3.4.2.1 Surface Runoff  

Surface runoff is the flow that occurs along a slope whenever the rate of water 

application to the ground surface exceeds the infiltration rate. In SWAT, surface runoff 

can be estimated by either the modified Soil Conservation Service (SCS) curve number 

method (Equation 3.11) or the Green and Ampt infiltration method (Green and Ampt, 

1911). To use the latter, hourly rainfall is required, but the SCS curve number method 

can be run with daily rainfall, hence it was employed in this study (Neitsch et al., 

2011). In this method, surface runoff is calculated as a function of initial abstraction 

and retention parameters in addition to daily rainfall as follows: 

𝑄𝑠𝑢𝑟𝑓 =
(𝑅𝑑𝑎𝑦−𝐼𝑎)

2

(𝑅𝑑𝑎𝑦−𝐼𝑎+𝑆)
        [3.11] 

Where: 

QSURF is surface runoff (mm H2O) 

Rday is rainfall for the day (mm H2O) 

S is the retention parameter (mm H2O), 
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Ia is initial abstractions (mm H2O) including surface storage, infiltration before runoff, 

and canopy storage, expressed as 0.2𝑆. 

Daily curve number based on land use, soil, and antecedent moisture characteristics 

(Neitsch et al., 2002b) is used to estimate the retention parameter (Equation 3.12). 

𝑆 = (
25400

𝐶𝑁
) − 254        [3.12]  

CN is the curve number, ranging from 30 to 100, and represents runoff potential for 

different land uses, hydrological soil groups and antecedent moisture conditions. 

Lower CN values correspond to lower runoff potential and vice versa. The CN values 

defined for the LULC types and soil hydrologic groups from SWAT and FAO soil 

databases are presented as follows: 

Table 3.5: Calibrated CN values applied in the study 

LULC type SWAT name Soil hydrologic group 

A B C D 

Forest areas FRSD 31 59 72 79 

Settlements/bare lands URBN 67 77 83 87 

Savanna areas RNGB 39 61 74 80 

Agricultural lands AGRL 45 # 77 83 

 

 SWAT calculates the time concentration (where it takes longer than a day for runoff 

from a large sub-basin to get to the outlet from the beginning of a rainfall event) using 

the sub-basin slope length and channel velocity. SWAT includes a surface runoff 

storage (lag) feature to control the total amount of the surface runoff entering the main 

channel on any one day, denoted as surlag (Equation. 3.13). For a given time of 

concentration, more water is held in storage as surlag decreases, which smooths the 

streamflow hydrograph simulated. 

𝑄𝑠𝑢𝑟𝑓 = (𝑄𝑠𝑢𝑟𝑓
′ + 𝑄𝑠𝑡𝑜𝑟,𝑖−1) (1 − 𝑒

−𝑠𝑢𝑟𝑙𝑎𝑔

𝑡𝑐𝑜𝑛 )     [3.13] 

Where: 

𝑄𝑠𝑢𝑟𝑓 is surface runoff entering the main channel on a given day (mm H2O) 

𝑄𝑠𝑢𝑟𝑓
′  is surface runoff generated in the sub-basin on a day (mm H2O) 

𝑄𝑠𝑡𝑜𝑟,𝑖−1 is surface runoff lagged (stored) from the previous day (mm H2O) 
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Surlag is surface runoff lag coefficient. 

SWAT also estimates the maximum runoff flow rate that occurs during a rainfall event 

(peak runoff) which is indicative of the erosive power of a storm and is used to predict 

sediment loss using the Modified Rational formula (Neitsch et al., 2011) (Equation. 

3.14). 

Peak runoff, 𝑞𝑝𝑒𝑎𝑘 =
𝛼𝑡𝑐 ∙ 𝑄𝑠𝑢𝑟𝑓 ∙ 𝐴𝑟𝑒𝑎 

3.6 ∙ 𝑡𝑐𝑜𝑛𝑐
.      

 [3.14] 

Where: 

αtc is fraction of daily rainfall occurring during the time of concentration 

 Qsurf is surface runoff (mm H2O) 

Area is area of sub-basin (km2) 

tconc is time of concentration for the sub-basin and 3.6 is a conversion factor 

3.4.2.2 Lateral Flow 

Lateral flow occurs along the slope below the surface (above the groundwater table). 

SWAT calculates lateral flow (Equation. 3.15) using the Kinematic Storage model 

(Sloan and Moore, 1984) with saturated hydraulic conductivity, soil slope, hill slope 

length, and drainable volume of water as follows: 

𝑄𝑙𝑎𝑡 = 24 ∙ 𝐻𝑜 ∙ 𝑉𝑙𝑎𝑡 = 0.024 ∙  (
2∙𝑆𝑊𝑙𝑦,𝑒𝑥𝑐𝑒𝑠𝑠∙ 𝐾𝑠𝑎𝑡∙ 𝑠𝑙𝑝

∅𝑑∙𝐿ℎ𝑖𝑙𝑙
)    [3.15] 

Where: 

Qlat is lateral flow (mm/d) 

Ho is the saturated thickness normal to the hillslope at the outlet expressed as a fraction 

of the total thickness (mm/mm) 

Vlat is the velocity of flow at the outlet (mm/h) 

SWly,excess is the drainable volume of water (mm H2O) 

Ksat is the saturated hydraulic conductivity (mm/h) 
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Slp is slope (m/m) 

∅d is drainable porosity (mm/mm) 

Lhill is hill slope length (m) 

A lateral flow storage feature lags a portion of the lateral entering to the main channel 

when the tconc > a day.  

3.4.2.3 Groundwater Flow and Storage 

An aquifer is a geologic unit that can store and transmit water easily. An aquifer can 

be confined (bounded above and below by a geologic formation with a lower hydraulic 

conductivity compared to an aquifer) or unconfined (bounded above by the water 

table). SWAT simulates in each sub-basin an unconfined aquifer (shallow aquifer) 

which contributes to baseflow entering the main channel with the sub-basin and a 

confined aquifer (deep aquifer) which may contribute to streamflow outside the basin 

(Neitsch et al., 2011). The unconfined aquifer is recharged through percolation to the 

water table, while the confined is recharged from the land surface upstream end where 

the aquifer is exposed to the water table. Groundwater storage loses water mainly by 

discharge into water bodies (rivers and lakes), or upward movement from the water 

table into the capillary fringe (a saturated zone above the water table). Water balance 

in the shallow aquifer is determined from recharge through percolation and reductions 

through baseflow, seepage into the deep aquifer, and upward flow into the soil 

(Wrevap) or withdrawal through wells and boreholes (Equation 3.16). SWAT 

calculates the fraction of baseflow with a baseflow recession constant as shown in 

Equation 3.17 and 3.18. SWAT also calculates the water balance in the deep aquifer 

using Equation 3.19, and the amount of water that enters the soil zone during water 

deficiencies using Equation 3.20. 

𝑎𝑞𝑠ℎ,𝑖 = 𝑎𝑞𝑠ℎ,𝑖−1 + 𝑊𝑟𝑐ℎ𝑟𝑔,𝑠ℎ − 𝑄𝑔𝑤,𝑖 − 𝑊𝑟𝑒𝑣𝑎𝑝 − 𝑊𝑑𝑒𝑒𝑝 − 𝑊𝑝𝑢𝑚𝑝,𝑠ℎ  [3.16] 

Where: 

aqsh,i−1 is the amount of water stored in the shallow aquifer on day i (mm H2O) 

aqsh,i−1 is the amount of water stored in the shallow aquifer on day i − 1 (mm H2O) 
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Wrchrg,sh is the amount of recharge entering the shallow aquifer on day i (mm H2O) 

Qgw,i is baseflow or groundwater flow into the main channel on day i (mm H2O) 

Wrevap is amount of water moving into the soil zone in response to water deficiencies 

on day i (mm H2O) 

Wdeep is the amount of water percolating from the shallow aquifer into the deep aquifer 

on day i (mm H2O) calculated using a percolation coefficient 

Wpump,sh is the amount of water removed from the shallow aquifer by pumping or 

withdrawals on day i (mm H2O) 

Equation 3.17 and 3.18 are used to calculate groundwater or baseflow in the main 

channel.  

Qgw,i = Qgw,i−1 ∙ e−αgw∙∆t + Wrchrg,sh ∙ (1 − e−αgw∙∆t), if  aqsh,i > aqshthr,q [3.17]  

Qgw,i = 0,   if aqsh,i ≤ aqshthr,q    [3.18] 

 

Qgw,i−1  is baseflow into the main channel on day i − 1 (mm H2O) 

αgw is the baseflow recession constant 

aqshthr,q is the threshold water level in the shallow aquifer for groundwater flow to 

the main channel to occur mm H2O  

∆t is time step (1 day) 

The water balance for the deep aquifer is expressed as: 

𝑎𝑞𝑑𝑝,𝑖 = 𝑎𝑞𝑑𝑝,𝑖−1 + 𝑊𝑑𝑒𝑒𝑝 − 𝑊𝑝𝑢𝑚𝑝,𝑑𝑝     [3.19]  

Where: 

aqdp,i is the amount of water stored in the deep aquifer on day i (mm H2O) 

aqdp,i−1 is the amount of water stored in the deep aquifer on day i − 1 (mm H2O) 
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Wpump,dp is the amount of water removed from the deep aquifer by pumping on day 

i (mm H2O) 

During soil water deficiencies, water entering the vadose zone is calculated as: 

𝑊𝑟𝑒𝑣𝑎𝑝 = 𝛽𝑟𝑒𝑣 ∙ 𝐸𝑜        [3.20] 

 

3.4.2.4 Potential Evapotranspiration 

There are four methods SWAT provides for calculating evapotranspiration in the 

basin. These are the Priestley-Taylor method (Priestley and Taylor, 1972), 

Penman/Monteith method (Monteith, 1965; Allen et al., 1989), Hargreaves method 

(Hargreaves et al., 1985), and the ‘read in’ method where calculated potential 

evapotranspiration using other methods aside those as mentioned earlier can be 

inputted into SWAT. Generally, potential evapotranspiration represents the amount of 

water transpired by a short crop of uniform height, completely shading the ground with 

an unlimited water supply (Kirkham, 2005). The Penman-Monteith method combines 

components such as the latent heat flux density, slope of saturation vapour pressure-

temperature curve, canopy resistance, net radiation, and air, and water vapour pressure. 

The Priestly-Taylor method is suitable for estimating potential evapotranspiration in 

low advective conditions and is known to underestimate PET in semi-arid and arid 

areas.  

Due to data scarcity in the study region, the Hargreaves method for estimating 

Potential Evapotranspiration (PET) was applied (Hargreaves and Samani, 1985). This 

method requires maximum and minimum air temperature for a given day and 

extraterrestrial radiation (Equation 3.21) (Arnold et al., 1998).  

𝜆𝐸𝑜 = 0.0023 ∙ 𝐻0 ∙ (𝑇𝑚𝑥 − 𝑇𝑚𝑛)0.5 ∙ (𝑇𝑎𝑣 + 17.8)    [3.21] 

Where: 

λ is the latent heat of vaporization (MJ/kg) 

Eo is the potential evapotranspiration (mm/d) 

H0 is the extraterrestrial radiation (MJ/m2d) 
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Tmx is the maximum air temperature for a given day (ᵒC) 

Tmn is the minimum air temperature for a given day (ᵒC) 

Tav is the mean air temperature for a given day (ᵒC) 

The Hargreaves method has shown performance comparable to the more widely-used 

Penman-Monteith method in data-scarce regions, including parts of the basin in Benin 

and West Africa (Kilinzo et al., 2011; Adjei et al., 2023; Maforikan et al., 2023).  

3.4.2.5 Actual Evapotranspiration 

After determining the potential evapotranspiration, SWAT calculates the evaporation 

of rainfall intercepted by the plant canopy first, then calculates the maximum amount 

of transpiration and the maximum amount of soil evaporation (Chun et al., 2018) using 

a modified Ritchie (1972) approach. When the evaporative demand is more than the 

water stored in the canopy, SWAT divides the remaining water demand between the 

vegetation (transpiration) and soil (evaporation). The amount of potential transpiration 

under ideal conditions is calculated as a function of leaf area index (LAI) and potential 

evapotranspiration (Equation 3.22 and 3.23): 

𝐸𝑡 =
𝐸𝑜

′ ∙ 𝐿𝐴𝐼

3.0
    for 0 ≤ LAI ≤ 3.0     [3.22] 

𝐸𝑡 = 𝐸′𝑜   for LAI > 3.0      [3.23] 

Where: 

Et is the maximum transpiration on a given day (mm H2O) 

E′o is the potential evapotranspiration adjusted for evaporation of water from plant 

canopy (mm H2O) 

SWAT partitions the evaporative demand between the soil layers using a depth 

distribution to obtain the maximum allowable evaporation per layer (Equation 3.24). 

𝐸𝑠𝑜𝑖𝑙,𝑧 = 𝐸"𝑠  ∙  
𝑧

𝑧+𝑒𝑥𝑝(2.374−0.00713∙𝑧)
      [3.24] 

Where: 

Esoil,z is the evaporative demand at depth z (mm H2O) 

E"s is the maximum soil water evaporation on a given day (mm H2O) 
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z is the depth below the surface (mm) 

The coefficients in Equation 3.23 are selected to ensure 50%, and 95 % of the 

evaporative demand is extracted from the top 10 mm and 100 mm of the soil, 

respectively. SWAT allows modification of the distribution of soil evaporative 

demand with the soil evaporation compensation factor (ESCO). 

The outputs from the SWAT water balance simulation include average basin 

precipitation, surface runoff, lateral flow, baseflow/groundwater flow (shallow and 

deep), “revap” amount, deep aquifer recharge, total aquifer recharge, total water yield, 

percolation out of the soil, potential and actual evapotranspiration. The water balance 

for the sub-basins and HRUs is also obtained as output. 

3.4.3 Model Calibration and Validation 

SWAT input parameters related to soil, LULC, and channel characteristics of the basin 

were generated following the initial model run. From these, sixteen parameters were 

selected for calibration and validation based on their significant impact on hydrology, 

soil properties, and land use, as used in existing reaseach (Odusanya et al., 2021; 

Maforikan et al., 2023; Hounkpè, 2016) and the SWAT documentation (Neitsch et al., 

2002). These parameters were calibrated and validated using the SWAT-Calibration 

and Uncertainty Program (CUP) (Abbaspour, 2015). They include SCS runoff curve 

number (CN2), Groundwater delay (GW_DELAY in days), Threshold depth of water 

in the shallow aquifer required for return flow to occur (GWQMN), Baseflow Alpha 

factor, days (ALPHA_BF), Groundwater ‘revap’ coefficient (GW_REVAP), 

Threshold depth of water in the shallow aquifer for ‘revap’ to occur, mm 

(REVAPMN), Maximum rooting depth of soil profile (SOL_ZMX), Depth from soil 

surface to bottom of layer (SOL_Z), Moist bulk density (SOL_BD), Available water 

capacity of the soil layer (SOL_AWC), Saturated hydraulic conductivity (SOL_K), 

Manning’s “n” value for the main channel (CH_N2), Effective hydraulic conductivity 

in main channel alluvium (CH_K2), Maximum canopy storage (CANMX), Soil 

evaporation compensation factor (ESCO), Plant uptake compensation factor (EPCO). 

The SWAT model was calibrated first at Bétérou (upstream) and then at Bonou 

(downstream) with observed discharge data from 2000-2002 and the 2000 LULC map, 

utilizing the period 1998-1999 for model warmup. The 2000 LULC map was 
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calibrated because it falls within and more closely represents the LULC during the 

calibration period. This calibration method was applied because the Bétérou sub-basin 

contributes directly to Bonou subbasin as outlined in the SWAT-CUP user manual 

(Abbaspour, 2015). After calibration at Bétérou, final parameter ranges were used to 

initialize calibration at Bonou. The SUFI-2 (Sequential Uncertainty Fitting - 2) 

algorithm was employed, which uses the Latin-Hypercube Sampling (LHS) method to 

simulated discharge. During the calibration process, SWAT approximates the total 

uncertainty by computing the 95 Percent Prediction Uncertainty (95 PPU) between the 

2.5 % and 97.5 % ranges of the cumulative simulated discharge distribution. The 

parameter uncertainty range is initially broader and progressively narrowed based on 

the objective function while ensuring that most of the observed discharge points lie 

within the 95 PPU band. The p-factor and r-factor values are used to assess the 

uncertainty in the calibration and validation. The p-factor indicates the fraction of 

observed data falling within the 95 PPU range, with values between 0 and 1. Values 

closer to 1 indicate that more of the observed data falls within the 95 PPU, denoting 

most of the uncertainty in the observed data is accounted for. The r-factor describes 

the thickness of the 95 PPU, with lower values indicating a narrower uncertainty range 

(less uncertainty) and good model precision. The selected parameters were propagated 

and updated until values of simulated discharge were very close to the observed 

discharge, indicated by satisfactory objective function values as outlined by (Moriasi 

et al., 2007). Validation was performed with observed discharge data for 2003-2008 

at both stations. 

Calibration and validation performances were evaluated using statistical metrics such 

as the Coefficient of Determination (R2), Nash-Sutcliffe Efficiency (NSE), Percent 

Bias (PBIAS), and RMSE-observations Standard Deviation Ratio (RSR). The R2 

measures the proportion of variance in the observed discharge data that is explained 

(captured) by the simulated discharge data (Equation 3.25). The NSE is a normalized 

metric which assesses the predictive capacity of the model comparing it to using the 

mean value of the observed discharge values (Equation 3.26). It ranges from 0 to 1, 

with a value of 1 indicating a good fit between the simulated and observed discharge. 

The PBIAS assesses the bias in the simulated discharge, with negative values 

indication overestimation while positive values indicate underestimation (Equation 
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3.27). The RSR also standardizes the root mean square error using the standard 

deviation of the observed data (Equation 3.28). The Kling-Gupta Efficiency (KGE) 

also measures the goodness-of-fit between the simulation and observed discharge 

values (Equation 3.29). 

𝑅2 =
[∑ (𝑖 𝑄𝑜𝑏𝑠,𝑖−𝑄𝑜𝑏𝑠)(𝑄𝑠𝑖𝑚,𝑖−𝑄𝑠𝑖𝑚)]

2

∑ (𝑄𝑜𝑏𝑠,𝑖−𝑄𝑜𝑏𝑠)2
𝑖 (𝑄𝑠𝑖𝑚,𝑖−𝑄𝑠𝑖𝑚)

2       [3.25] 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜𝑏𝑠−𝑄𝑠𝑖𝑚)𝑖

2
𝑖

∑ (𝑄𝑜𝑏𝑠,𝑖−𝑄𝑜𝑏𝑠)
2

𝑖

       [3.26] 

𝑃𝐵𝐼𝐴𝑆 = 100 (
∑ (𝑛

𝐼=1 𝑄𝑜𝑏𝑠−𝑄𝑠𝑖𝑚)𝑖

∑ 𝑄𝑜𝑏𝑠,𝑖
𝑛
𝑖=1

)      [3.27] 

𝑅𝑆𝑅 =
√∑ (𝑄𝑜𝑏𝑠−𝑄𝑠𝑖𝑚)𝑖

2𝑛
𝑖=1

√∑ (𝑄𝑜𝑏𝑠,𝑖−𝑄𝑜𝑏𝑠)
2𝑛

𝑖=1

       [3.28] 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2    [3.29] 

Where:  

Qobs and Qsim are observed and simulated discharge (m3/s), 

Qobs and Qsim are mean observed and simulated discharge respectively, and (σ and β 

are mean and standard deviation respectively). 

3.4.4 Relationship between LULC Change and Water Balance 

The final parameter range which gave satisfactory results was used to simulate water 

balance for the other LULC maps, 1986, 2015 and 2023 maps. The water balance 

components were simulated for three distinct periods based on the available climate 

data period: 1998-2008, 2008-2016, and 1998-2016 without changing climate and soil 

data inputs. The isolation of LULC as the primary variable was to ensure that any 

changes observed in the water balance components were solely due to changes in 

LULC such as deforestation, agricultural expansion and urbanization. This approach 

resulted in twelve sets of water balance outputs, combining each LULC map with each 

time period, enabling the assessment of temporal variations in the impact of land cover 

change on water balance components. 
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Key water balance variables from the SWAT simulation output assessed include 

average annual surface runoff (mm), baseflow (mm), lateral flow (mm), total aquifer 

recharge (mm) and actual evapotranspiration (mm). Statistical analyses were used to 

examine the response of these water balance components to changes in the different 

LULC types across the LULC maps and assess the effect of LULC types on each 

component and the consistency of their relationship across the three simulation 

periods. These analyses are correlation, independent t-test, and Partial Least Squares 

(PLS) regression analysis. Initially, the average annual values of the water balance 

components per simulation were assessed for normality using the Shapiro-Wilk test, 

and the distribution was visualized in a Quantile-Quantile (Q-Q) plot. 

3.4.4.1 Correlation Analysis 

Following the assessment of normality, Pearson’s correlation coefficient was 

employed to examine the strength and direction of the relation between the different 

LULC types and the water balance components, which include average annual surface 

runoff (mm), lateral flow (mm), baseflow (mm), actual evapotranspiration (mm), and 

total aquifer recharge (mm). This analysis was conducted across the three simulation 

periods to identify any significant correlations. The inputs were the area (km2) of 

LULC classes for each map and the absolute amounts (mm/y) of the water balance 

components simulated per map. The correlation was assessed for the three periods 

simulated. 

3.4.4.2 Independent t-test Analysis 

An independent t-test was performed to examine if the mean values of the water 

balance components from the three simulations from the 1986 LULC map were 

statistically different from those obtained from the 2023 LULC. The test was applied 

at a 5 % significance level and 95 % confidence interval. The null hypothesis of the 

independent t-test assumes the mean water balance from the two LULC maps are 

equal, while the alternative hypothesis assumes the means are significantly different. 

A p-value less than 0.05 signifies a statistically significant difference between the 

means from the 1986 map and those from the 2023 map. This suggests that the LULC 

change (deforestation, urbanization, and agricultural expansion) between 1986 and 

2023 led to notable differences in the water balance components over time. The test 
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statistic value and sign also depict the level of difference between the means relative 

to the variability in the data and the direction. A smaller t-value suggests there is more 

variability in the data, making it harder to distinguish between the two groups. 

The input for the test includes the area of LULC types from the 1986 and 2023 maps 

and their corresponding absolute values of the water balance components. 

3.4.4.3 Partial Least Squares (PLS) Regression Analysis 

As a result of the high multicollinearity among the LULC types in this study, Partial 

Least Squares (PLS) regression was used to model the relationship between the LULC 

types and the water balance components for each simulation period (Equation 3.30). 

The PLS regression is a supervised learning method which handles collinearity in 

predictor (independent) variables by creating new (latent) variables from linear 

combinations of the original predictors that have the closest relation with the response 

variables (Geladi and Kowalski, 1986). Hence, the latent variables are created for both 

the predictor and response variables (Equation 3.31 and 3.32), and their loadings show 

the contributions of each of the original predictor and response variables to the latent 

variables. The PLS regression is especially recommended where the predictors are 

strongly correlated with relatively few samples and multiple response variables, and 

ordinary linear regression often fails. The regression coefficients (Equation 3.30) 

produced for each predictor variable quantify the expected change in the water balance 

components when there is a unit change in a particular LULC category. This offers 

insights into the effects of the LULC types on the water balance components, and how 

sensitive the different water balance variables are to specific LULC types changes 

(Aladejana et al., 2018). In this study, the predictor variables are the areas of the LULC 

types while the response variables are the absolute amounts of surface runoff, lateral 

flow, baseflow, total aquifer recharge, and actual evapotranspiration.  

Ŷ = 𝑋𝐵𝑃𝐿𝑆 = 𝑋𝑊(𝑃𝑇𝑊)−1𝑄𝑇       [3.30] 

Where: 

Ŷ is the predicted response variable (surface runoff, lateral flow, baseflow, actual 

evapotranspiration and total aquifer recharge)  

X  is the matrix of predictors (LULC types) 
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BPLS is the matrix of regression coefficients estimated by the PLS model  

W is the weight matrix that relates X to the latent scores T 

(PTW)−1 rescales the weights in W to align with the variance captured in each 

component 

Q is the matrix of the loadings for Y 

P is the matrix of the loadings for X 

 

In PLS regression, actual predictor and response variables are projected (decomposed) 

onto latent components as expressed in Equation 3.31 and 3.32. Further details on the 

PLS regression can be found in Abdi (2010) and Geladi and Kowalski (1986). 

𝑋 = 𝑇𝑃𝑇 + 𝐸            [3.31]                   

𝑌 = 𝑈𝑄𝑇 + 𝐹                        [3.32] 

Where: 

X is the matrix of the predictor variables 

Y is the matrix of the response variables 

T is the matrix of latent scores for X 

U is the matrix of latent scores for Y 

 

3.5 Future LULC Change Impact on Water Balance 

This section projected the possible future LULC change that can occur based on the 

‘business-as-usual’ trend shown in the classified maps in Objective 1. The classified 

LULC maps were used as input into the IDRISI Selva software for the analyses. The 

section begins with validation of the most current map and then a projection of future 

LULC for 2030, 2063 and 2100, and simulating water balance with the derived future 

maps. The years 2030, 2063 and 2100 were selected in line with the SDGs, African 

Agenda 2063 and IPCC global change projection timelines, respectively to enable 

evaluation of the results with the outcomes of these goals. 
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3.5.1 Validation of Projected 2023 LULC Map 

Accurate projection of LULC in a region requires validation of the projection methods 

being applied. The combined Cellular-Automata (CA) – Markov projection was 

utilized for projecting future LULC. The Markov transition tool can project the 

probability of LULC types to transition into other forms or persist over a future period 

based on the change between two known periods (Equation 3.33). The CA-Markov 

improves the LULC projection by incorporating the spatial pattern of change (from 

the CA component) in addition to the quantities generated by the Markov probabilities 

(Pontius and Malanson, 2005). It determines the future state of a cell (LULC class) 

based on its current state and the state of its neighbouring cells (Equation 3.34). The 

transition probabilities and areas were first estimated using the Markov transition in 

IDRISI Selva with the 1986 and 2015 maps and the time between them as input. The 

estimated transition probabilities and areas were used as input into the CA-Markov 

tool to simulate the LULC for the year 2023. The simulated 2023 map was assessed 

against the classified 2023 LULC map for its overall agreement, as well as quantity 

and location agreement. The validate tool in IDRISI Selva environment was utilized 

for this purpose. The total agreement, K-standard, K-location are some of the metrics 

produced after validation.  

𝑆𝑖,𝑗(𝑡 + 1) = 𝑓(𝑆𝑖,𝑗(𝑡), 𝑁𝑖,𝑗(𝑡), 𝑇)      [3.33] 

Where: 

Si,j(t + 1) is the future state (LULC class) of the cell at location (i, j) at time t + 1 from 

CA-Markov projection 

Si,j(t) is the current state of the cell at time t 

Ni,j(t) is the states of the neighboring cells 

T is the Markov transition probabilities matrix expressed as; 

𝑇 = [

𝑃𝑖𝑗 ⋯ 𝑃𝑖𝑛

⋮ ⋱ ⋮
𝑃𝑛𝑗 ⋯ 𝑃𝑛𝑛

]         [3.34] 

Where: 
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Pij is the probability of transitioning from LULC class i to j 

n is the number of LULC classes, each row summing to 1 as the total probability of 

transitioning from one class must equal 1 

3.5.2 Projection of Future LULC Maps  

The CA-Markov projection of the 2023 LULC map demonstrated a reasonable ability 

to learn from earlier LULC scenarios and make predictions, however, it also 

highlighted some deviations from reality. Hence, the 2023 classified map was used as 

a baseline to project future LULC for 2030, 2063, and 2100 to enhance the credibility 

and reliability of future projections and reduce error propagations from the simulated 

2023 map as recommended (Padial-Iglesias et al., 2021; Foody, 2010).  The 2023 and 

2015 classified LULC maps were used to project the 2030 LULC map, the 2023 and 

2030 maps were used to project for 2063, and the projected 2030 and 2063 maps were 

used to estimate LULC for 2100. The absolute change in the land cover categories and 

the rate of change in the LULC types for the periods 2023-2030, 2030-2063 and 2063-

2100 were calculated. This was to understand the quantity of change (%) and the rate 

of change (%/y) that could be expected between those years.  

3.5.3 Simulation of Future Water Balance Based on Projected LULC 

The projected LULC maps of 2023, 2030, 2063 and 2100 were used to simulate water 

balance in the calibrated and validated SWAT model to obtain the quantities of surface 

runoff, baseflow, lateral flow, total aquifer recharge, and actual evapotranspiration 

using the same climate data from 1998-2016. This ensures that any changes in water 

balance can be attributed solely to changes in LULC. The PLS regression was then 

implemented with the areas of the LULC types per future map (predictor variables), 

and their corresponding water balance component amounts (response variables) as 

input. The coefficients of the LULC types in predicting each water balance component 

were assessed to determine how sensitive the water balance components are to the 

different LULC types. 

 

3.6 Future Climate Change Impact on Water Balance 
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In this section, future climate in the Ouémé River Basin is first projected, and then the 

projected climate is used to simulate water balance to ascertain possible future changes 

in water balance resulting from future climate change like to be expected. 

3.6.1 Future Climate Projection 

3.6.1.1 Data Acquisition and Bias Correction 

Climate projections were performed using six (6) available Global models and their 

ensemble from the sixth IPCC Coupled Model Intercomparison Project (CMIP6) by 

the World Climate Research Programme (WCRP) framework which has been 

successfully used in Africa (Tanimu et al., 2024a; Zoungrana et al., 2024; Taonda et 

al., 2024) (Table 3.6). The historical and future climate scenario data for these models 

were downloaded from the Copernicus Climate Data Store (CDS) website (Copernicus 

Climate Change Service – Climate Data Store, 2021a) and tested, after which the best-

performing model for the basin was selected for the water balance simulations. To 

improve the accuracy of the models at the watershed scale, the historical and future 

scenario projected data of the models were downscaled and bias-corrected to reduce 

the systematic errors in model data due to factors such as coarse resolution. Statistical 

downscaling and Quantile Mapping methods were used to downscale and bias-correct 

the historical and future climate data of the global climate models to match the 

distribution of the reference (observed) data in the basin. The reference precipitation 

data used is the Climate Hazards Group InfraRed Precipitation with Station Data 

(CHIRPS), downloaded from the CDS website (Copernicus Climate Change Service-

Climate Data Store, 2021b). The CHIRPS data has a latitude-longitude resolution of 

0.05ᵒ × 0.05ᵒ (~5.3 × 5.3 km) and precipitation data from 1981 to present. For 

reference temperature data, the three-hourly European Center for Medium-Range 

Weather Forecasts Reanalysis 5 (ERA 5) data was used, also downloaded from the 

CDS website (Copernicus Climate Change Service – Climate Data Store, 2023). The 

ERA 5 reanalysis data has a latitude and longitude resolution of 0.25ᵒ × 0.25ᵒ and a 

horizontal resolution of 31 × 31 km, with data from 1940 to the present.  

The CMIP6 models have historical and future climate projections including data from 

1850 – 2014, and 2015 – 2100, respectively. The six models used for the precipitation 

and temperature projection are described in Table 3.6. Two scenarios of IPCC CMIP6 
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future socio-economic cum radiative change, the Shared Socio-economic Pathways 

(SSPS) were considered, namely, the SSP1-2.6 and SSP3-7.0 scenarios. Mean bias 

error (mbe) and correlation coefficient were used to evaluate the bias-corrected 

models’ precipitation and temperature data compared to the references. A negative 

mbe value signifies an underestimation while positive values indicate an 

overestimation. 

3.6.1.2 Scenarios: SSP1-2.6 and SSP3-7.0 

Climate scenarios describe how future climate may develop based on assumptions 

about key drivers including population growth, lifestyle, technological innovation, and 

economic processes. They can also be defined by geophysical forces such as emissions 

of greenhouse gasses (GHGs), aerosols and/or land use patterns (Lee et al., 2021). In 

the IPCC Sixth Assessment Report (AR6), potential future climate change is assessed 

by emissions and concentration-driven scenarios with Model Intercomparison Project 

(MIP) scenarios based on a combination of Shared Socio-economic Pathways (SSPs) 

and climate forcing (previously Representative Concentration Pathways). The SSPs 

are socio-economic developments regarding urbanization, population, economic 

collaborations, and human and technological developments that describe different 

global futures in the absence of climate change and additional climate policy. The 

implications of these socio-economic developments are defined in the form of 

emission and concentration outcomes dependent on Integrated Assessment Models 

(IAM models used to assess the interrelationship between different factors). The 

emission-driven scenario requires using the carbon and other gas cycle model 

emissions and the concentration-driven climate projection has a default concentration 

of CO2, CH4, N2O, among other GHGs coupled with aerosol emissions without 

considering the carbon cycle feedback. These scenarios provide insights to describe 

differing situations of evaluating climate mitigation, adaptation and residual damage. 

The first number in the scenario name refers to the SSP situation, while the second 

number refers to the approximate global effective radiative forcing (W/m2) reached 

by 2100. Two scenarios assessed in this study are SSP1-2.6 and SSP3-7.0.  

The SSP1-2.6, known as the ‘Sustainability’ scenario depicts a future climate where 

the world shifts gradually but pervasively towards a more sustainable path, 
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emphasizing more inclusive development that respects perceived environmental 

boundaries and is driven by an increasing commitment to achieving development goals 

and low challenges to mitigation and adaptation. It is also characterized by a 2.6 W/m2 

radiative forcing by the year 2100, and mean temperature values below 2.0ᵒ relative to 

1850 – 1900 climate with net zero CO2 emissions by the second half of the century 

(O’Neill et al., 2017; Riahi et al., 2017). The SSP3-7.0 is known as the ‘Regional 

Rivalry’ scenario where there is resurgent nationalism, concerns about 

competitiveness and security, and regional conflicts push countries to increasingly 

focus on national and regional issues, and low international priority for addressing 

environmental concerns thereby leading to strong environmental degradation (O’Neill 

et al., 2017). It is characterized by a 7.0 W/m2 radiative forcing by 2100, and is an 

intermediate-to-high reference scenario with high non-CO2 emissions, including high 

aerosol emissions. These scenarios were chosen because SSP1-2.6 has more 

simulations and represents better the current state of the world where conscious efforts 

are being made toward climate adaptation for sustainability, and the SSP3-7.0 scenario 

has been argued in the IPPC Sixth Report to be more plausible to unfold compared to 

the extreme warming scenario, SSP5-8.5. 

The main drivers of emissions across the SSPs include population growth of 8.5 – 9.7 

billion by 2050 and, an increase in global Gross Domestic Product (GDP) of 2.7 – 4.1 

% per year between 2015 and 2050, with energy demand reaching 480 to 750 EJ/y 

(compared to approximately 390 EJ/y in 2015) in the absence of any new climate 

policies (Lee et al., 2021). 

3.6.1.3 Data Analysis 

Global land precipitation and surface air temperature are two physical indicators of 

global climate change according to the IPCC (Chen et al., 2021). To assess the change 

in precipitation and temperature that is likely to occur over the basin, the projected 

average values across the basin were examined relative to the baseline climate from 

1995 to 2014 as done by the IPCC future scenario analysis (Lee et al., 2021). This 20-

year baseline period depicts the recent past climate and encompasses the years used in 

the initial SWAT modelling. The IPCC future periods namely, near-term (2021-2040), 

mid-term (2041-2060), and long-term (2081-2100) (Lee et al., 2021) projections of 
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precipitation, and minimum and maximum temperature were compared with the 

baseline values and the change between them were calculated. This revealed the 

average changes in precipitation and temperature (minimum and maximum) projected 

to occur under the SSP1-2.6 and SSP3-7.0 future scenarios over the catchment area, 

which has potential impacts on the hydrology within the basin. 
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Table 3.6: CMIP6 Climate Models Applied in this Study 

Model Full Name Institute Horizontal resolution 

(atmosphere) 

Horizontal 

resolution (ocean) 

ACCESS-CM2 Australian Community Climate 

and Earth System Simulator – 

Climate Model 2 

Australian Bureau of 

Meteorology in collaboration 

with other Institutions. 

1.875ᵒ  × 1.25ᵒ (85L) 1ᵒ (50L) 

MPI-ESM1-2-LR Max Planck Institute Earth 

System Model version 1.2 – 

Low Resolution) 

Max Planck Institute of 

Meteorology 
1.875ᵒ  × 1.875ᵒ (47L) 1.5ᵒ  × 0.5ᵒ (40L) 

MIROC-ES2L Model for Interdisciplinary 

Research on Climate – Earth 

System version 2 for Long-term 

simulations) 

Japan Agency of Marine-Earth 

Science and Technology, 

University of Tokyo, and 

National Institute for 

Environmental Studies. 

2.8ᵒ  × 2.8ᵒ (40L) 1ᵒ  × 0.5ᵒ (62L) 

IPSL-CM6A-LR Institut Pierre-Simon Laplace 

Climate Model version 6A – 

Low Resolution 

Institut Pierre-Simon Laplace 

(IPSL) 
2.5ᵒ  × 1.25ᵒ (79L) 1ᵒ  × 0.5ᵒ (75) 

EC-Earth-Veg-LR EC – Earth System version 3 – 

Vegetation – Low Resolution 

EC-Earth Consortium 0.7ᵒ  × 0.7ᵒ (91L) 1ᵒ (75L) 

AWI-ESM-1-1LR Alfred Wegener Institute Earth 

System Model Version 1.1 – 

Low resolution 

Alfred Wegener Institute (AWI) 1.875ᵒ  × 1.875ᵒ (47L) 1ᵒ (40L) 
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3.6.2 Future Water Balance Based on Future Climate Data 

Given the better performance of the ACCESS-CM2 model bias-corrected precipitation 

(Taonda et al., 2024), and the ensemble mean temperature (maximum and minimum) 

data compared to the other models, they were used for the water balance simulations. 

The future temperature and precipitation data for both SSP1-2.6 and SSP3-7.0 

scenarios were extracted and prepared according to the stations used in the SWAT 

model set-up in the format applicable in SWAT. The data were divided into the near 

term (2020-2040), mid-term (2041-2060) and long term (2081-2100) future scenarios 

of the IPCC climate action framework to ascertain the periodical differences as well.  

The relationship between future climate changes (precipitation and temperature), and 

simulated future water balance was then assessed between the scenarios SSP1-2.6 and 

SSP3-7.0. This aids in understanding how the different concentration scenarios 

influence the relationship between climate and water balance, providing insight into 

scenario-specific climate change impacts on water balance. The inputs were mean 

catchment values of precipitation (mm) and temperature (ᵒC) across the future periods 

(near term, mid-term and long term), and the simulated average annual values of 

surface runoff (mm), lateral flow (mm), baseflow (mm), total aquifer recharge (mm), 

and actual evapotranspiration (mm) for the future periods. 

 

3.7 Assessing the Impact of Combined Future LULC and Climate Change on Water 

Balance 

To assess the possible impact of future LULC changes and climate change on water 

balance simultaneously, the projected LULC for 2030, 2063 and 2100 were used 

together with the projected temperature and precipitation change for SSP1-2.6 and 

SSP3-7.0 scenarios according to the future periods. The near term (2021-2040) future 

climate was combined with LULC for 2030, while the mid-term future climate (2041-

2060) was combined with LULC for 2063, and long term (2081-2100) future climate 

with the 2100 LULC for the SWAT modeling. 

The average annual surface runoff, lateral flow, baseflow, total aquifer recharge and 

actual evapotranspiration were then assessed in terms of their absolute, relative and 
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rates of change, and the relationship between the combined LULC-Climate change and 

water balance. 
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CHAPTER 4       RESULTS 

4.1 Assessment of the Spatio-temporal LULC Change 

Under this section, results from the first objective on the spatio-temporal differences 

in the LULC type distribution across the four historical LULC maps 1986, 2000, 2015, 

and 2023, as well as their rates of change, are described. 

4.1.1 Mapping LULC in the Basin 

The results of the LULC mapping in the basin for 1986, 2000, 2015, and 2023 revealed 

that the Ouémé River Basin was originally covered with Savanna areas and Woodlands 

in its major parts (Table 4.1). These LULC types occupied more than 70 % of the basin 

in 1986, followed by Agricultural lands and Forest areas (Fig. 4.1). Settlement/bare 

areas and Water bodies had the least cover in the basin. In 2023, Agricultural land 

covered most of the basin (51 %), followed by Savanna, Settlements and bare lands, 

Forests and Water bodies. This indicates a considerable decline in Savanna and Forest 

areas, in contrast to an expansion in Agricultural lands and Settlement areas.  
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Table 4.1: Area (km2) and Percentage Cover of the LULC Classes from 1986 to 2023 

LULC Class 1986 2000 2015 2023 

km2  (%) km2  (%) km2  (%) km2  (%) 

Forest areas   3108.78  (6.31)    2096.11  (4.25)    1164.92  (2.36)      677.08  (1.37) 

Settlements/bare lands     273.49  (0.55)      372.76  (0.76)      603.65  (1.22)      807.47  (1.64) 

Savanna areas 34368.08  (69.74)  32468.83  (65.89)  28729.48  (58.30) 22501.23  (45.66) 

Agricultural land 11487.08  (23.31) 14310.59  (29.04) 18702.80  (37.95) 25263.42  (51.26) 

Water bodies       42.79  (0.09)       31.95  (0.06)       79.38  (0.16)       31.03  (0.06) 

Total   49280.23  (100.00) 49280.23    (100.00)   49280.23  (100)   49280.23  (100) 
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Figure 4.1: Classified LULC Maps of the Ouémé River Basin with Outlet at the Bonou 

Outlet for 1986, 2000, 2015 and 2023 

4.1.2 Accuracy Assessment 

The supervised classification of LULC in the Ouémé River Basin for 1986, 2000, 2015 

and 2023 yielded pixel-based overall accuracy values greater than 90 %. Additionally, 

the kappa, and producer’s and user’s accuracy values were all greater than 85 %, for 

all four classified maps (Table 4.2 and 4.3), indicating the reliability of the LULC 

maps for further analysis of changes in the basin.  

Table 4.2: Pixel and Area-based Accuracy of the Classified Maps 

Statistic 1986 2000 2015 2023 

Pixel-based 

Overall Accuracy (%) 92.90 92.58 90.63 92.93 

Kappa Statistic 0.90 0.89 0.86 0.90 

Area-based      

Overall Accuracy (%) 93.65 93.54 90.61 91.82 

 

The area-based accuracy analysis for the 2023 classified map yielded an overall 

accuracy value of 91.8 % ± 0.4, with total commission (overestimation) and omission 
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(underestimation) errors of 8.2 %. The quantity and allocation disagreement values 

were 2.3 % and 5.9 % respectively. Notably, the commission errors in Agricultural 

land estimation were of the equal magnitude to the omission errors in Savanna areas 

estimation. Additionally, the results indicated a 1 % underestimation in Settlement 

areas and bare lands.  

Conversely, the 1986 classified map, based on the area proportion analysis, 

demonstrated an overall accuracy value of 93.7 % ± 0.6, and a total error of 6.3 %. The 

exchange and shift errors (allocation disagreement) were 3.3 % and 0.8 %, 

respectively, representing more than 50 % of the total error. The quantity disagreement 

was 2.2 %.  

Regarding omission, Savanna areas estimation had the highest omission errors of 

about 3 % followed by Agricultural lands, Settlements and bare lands, Forest areas and 

Water bodies having the least omission errors. This suggests that areas that should 

have been classified as the aforementioned LULC types were either left out or 

misclassified as other LULC types. The value of exchange errors for Savanna areas 

was the same as that for Agricultural lands, indicating that most of the errors originated 

from misclassification between those two LULC types. Additionally, Settlements and 

bare lands were largely underestimated, leading to a producer’s accuracy value of less 

than 50 %.  

Similar results were obtained for the 2000 classified map, which had an overall 

accuracy value of 93.5 % ± 0.5, and producer accuracy values ≥ 70 % for most classes, 

except for settlement areas and bare lands which have a value of 37 %. Furthermore, 

the area-based accuracy for the 2015 map yielded an overall accuracy of 90.6 % ± 0.5, 

with producer and user accuracy values ≥ 59 % and ≥ 87 % respectively.  

Most errors were confusion between Savanna and Agricultural land, although a few 

Forests were misclassified as Savanna. Furthermore, some pixels of Water bodies were 

misclassified as forest and savanna areas, particularly along riparian forests and 

swamps. The area of Water bodies was higher in the 2015 classified map than the range 

of values observed in the other years, indicating an overestimation. The raw error 

matrix for the classified maps, together with the producer’s (PA), user’s (UA), overall 

accuracy (OA) and area proportions of the LULC classes are provided in Table 4.3. 
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The corresponding area-based unbiased error matrix consisting of the area proportions 

of each LULC class and their producer, user and overall accuracies, and adjusted areas 

at 95 % confidence interval are also shown in Table 4.4. 
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Table 4.3: Confusion Matrices (pixel counts) of Classified Maps of the Ouémé River Basin 

  Reference         

 Years LULC Class Forest 

areas 

Settlement/ 

bare lands 

Savanna 

areas 

Agriculture 

lands 

Water 

bodies 

Total UA OA 

Map 1986 Forest areas 933 0 52 2 0 987 0.95 0.93 

  Settlement/bare land 0 591 7 56 0 654 0.90  

  Savanna areas 43 3 2897 55 2 3000 0.97  

  Agriculture lands 0 67 147 1192 0 1406 0.85  

  Water bodies 2 1 6 1 194 204 0.95  

  Total 978 662 3109 1306 196 6251   

  PA 0.95 0.89 0.93 0.91 0.99    

 2000 Forest areas 1138 0 64 4 0 1206 0.94 0.93 

  Settlement/bare land 0 795 27 102 0 924 0.86  

  Savanna areas 53 10 4440 109 2 4614 0.96  

  Agriculture lands 14 94 242 2449 0 2799 0.88  

  Water bodies 4 0 1 0 236 241 0.98  

  Total 1209 899 4774 2664 238 9784   

  PA  0.94 0.88 0.93 0.92 0.99    

 2015 Forest areas 1159 0 75 3 1 1238 0.94 0.91 

  Settlement/bare land 0 1820 22 125 0 1967 0.93  

  Savanna areas 47 11 5471 377 0 5906 0.93  

  Agriculture lands 11 106 646 5217 0 5980 0.87  

  Water bodies 8 0 5 2 247 262 0.94  

  Total 1225 1937 6219 5724 248 15353   

  PA 0.95 0.94 0.88 0.91 1.00    

 2023 Forest areas 656 0 7 0 0 663 0.98 0.93 

  Settlement/bare land 0 2783 30 49 0 2862 0.97  
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  Savanna areas 10 25 5319 343 0 5697 0.93  

  Agriculture lands 8 58 615 6177 0 6858 0.90  

  Water bodies 1 5 2 1 237 246 0.96  

  Total 675 2871 5973 6570 237 16326   

  PA  0.98 0.97 0.89 0.94 1.00    

 

Table 4.4: Area-based Error Matrices and Adjusted Area Estimates at 95 % Confidence Interval of Classified Maps 

  Reference        

 Year LULC Class Forest areas Settlement/ 

bare land 

Savanna 

areas 

Agricultural 

lands 

Water 

bodies 

Total UA 

Map 1986 Forest areas 0.0596 0.0000 0.0033 0.0001 0.0000 0.0631 0.95 ± 0.01 

  Settlement/bare lands 0.0000 0.0050 0.0001 0.0005 0.0000 0.0055 0.90 ± 0.02 

  Savanna areas 0.0100 0.0007 0.6735 0.0128 0.0005 0.6974 0.97 ± 0.01 

  Agricultural lands 0.0000 0.0111 0.0244 0.1976 0.0000 0.2331 0.85 ± 0.2 

  Water bodies 0.0000 0.0000 0.0000 0.0000 0.0008 0.0009 0.95 ± 0.03 

  Total 0.070 0.017 0.701 0.211 0.001 1  

  Standard error of area (km2) 77.92 68.31 149.47 138.69 16.21   

  PA 0.86 ± 0.02 0.30 ± 0.04 0.96 ± 0.01 0.94 ± 0.01 0.64 ± 0.07   

  Adj. Area ± CI (km2) 3431 ± 153 829 ± 134 34557 ± 293 10398 ± 272 64 ± 32   

 2000 Forest areas 0.0401 0.0000 0.0023 0.0001 0.0000 0.0425 0.94 ± 0.01 

  Settlement/bare lands 0.0000 0.0065 0.0002 0.0008 0.0000 0.0076 0.86 ± 0.02 

  Savanna areas 0.0076 0.0014 0.6340 0.0156 0.0003 0.6589 0.96 ± 0.01 

  Agricultural lands 0.0015 0.0098 0.0251 0.2541 0.0000 0.2904 0.88 ± 0.01 

  Water bodies 0.0000 0.0000 0.0000 0.0000 0.0006 0.0006 0.98 ± 0.02 

  Total 0.049 0.018 0.662 0.271 0.001 1  

  Standard error of area (km2) 56.15 53.74 119.42 115.35 9.96   

  PA  0.82 ± 0.02 0.37 ± 0.03 0.96 ± 0.01 0.94 ± 0.01 0.69 ± 0.06   

  Adj. Area ± CI (km2) 2423 ± 110 872 ± 105 32604 ± 234 13336 ± 226 45 ± 20   
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 2015 Forest areas 0.0221 0.0000 0.0014 0.0001 0.0000 0.0236 0.94 ± 0.01 

  Settlement/bare lands 0.0000 0.0113 0.0001 0.0008 0.0000 0.0122 0.93 ± 0.01 

  Savanna areas 0.0046 0.0011 0.5400 0.0372 0.0000 0.5830 0.97 ± 0.01 

  Agricultural lands 0.0007 0.0067 0.0410 0.3311 0.0000 0.3795 0.88 ± 0.01 

  Water bodies 0.0000 0.0000 0.0000 0.0000 0.0015 0.0016 0.94 ± 0.03 

  Total 0.028 0.019 0.583 0.369 0.002 1.000  

  Standard error of area (km2) 35.74 35.93 123.45 121.98 1.48   

  PA 0.80 ± 0.02 0.59 ± 0.02 0.93 ± 0.01 0.87 ± 0.01 0.99 ± 0.01   

  Adj. Area ± CI (km2) 1356 ± 70 944 ± 70 28713 ± 242 18192 ± 239 76 ± 3   

 2023 Forest areas 0.0136 0.0000 0.0001 0.0000 0.0000 0.0137 0.99 ± 0.01 

  Settlement/bare lands 0.0000 0.0159 0.0002 0.0003 0.0000 0.0164 0.97 ± 0.01 

  Savanna areas 0.0008 0.0020 0.4263 0.0275 0.0000 0.4566 0.93 ± 0.01 

  Agricultural lands 0.0006 0.0043 0.0460 0.4617 0.0000 0.5126 0.90 ± 0.01  

  Water bodies 0.0000 0.0000 0.0000 0.0000 0.0006 0.0006 0.96 ± 0.02 

  Total 0.015 0.022 0.473 0.490 0.001 1.000  

  Standard error of area (km2) 16.48 34.28 114.52 115.58 0.37   

  PA 0.91 ± 0.02 0.71 ± 0.02 0.90 ± 0.01 0.94 ± 0.01 1.00   

  Adj. Area ± CI (km2) 739 ± 32 1098 ± 67 23290 ± 224 24123 ± 227 30 ± 0.7   
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4.1.3 Change in LULC over Time 

The period between 2015 and 2023 exhibited the fastest rates of losses and gains in 

LULC, spanning fewer years compared to the periods 1986 – 2000 and 2000 – 2015. 

Specifically, Savanna and Forest areas showed sharp reductions in area at rates of 3.0 

%/y and 6.6 %/y, respectively, while Agricultural lands and Settlement areas/bare 

lands exhibited sharp increases at rates of 3.8 %/y and 3.7 %/y respectively (Fig. 4.2). 

However, during the periods 1986 – 2000 and 2000 – 2015, the results revealed gradual 

annual changes, with reductions in Savanna areas (0.4% and 0.8 %) and Forest areas 

(1.9 % and 4.3%) and increase in Agricultural lands (1.5 % and 1.8 %).  

The magnitude of Forest cover loss exhibited a declining pattern over the period, yet 

the annual rate of deforestation increased, particularly during the period 1986 – 2000 

compared to 2000 – 2015.  Approximately 78 % of the Forests in 1986 have undergone 

degradation, resulting in a reduction of 2,431 km2 in area and an average of 64 km2 

loss per year. Similarly, by 2023, Savanna areas experienced a decline of 

approximately 11,867 km2, representing a total loss of about 35 % of its 1986 cover, 

with an average annual loss of 312 km2. 

On the other hand, Agricultural land increased by more than 100 % of their quantity 

in 1986, primarily as croplands (maize, beans, cassava, yam, pepper and other 

vegetables) and plantations (cashew, oil palm, cotton, orange, teak), with an annual 

increase of 363 km2. Settlements and bare land also expanded by over 100 % of their 

1986 area, resulting in a total gain of 534 km2, with an annual increase of 14 km2per 

year expansion primarily in settlement areas. The increase rate during 2000 – 2015 

was higher than during 1986 – 2000 for Settlements and bare lands, attributable to 

increasing population growth and urbanization rates. Overall, the average annual rates 

of change between 1986 and 2023 were as follows: Forest areas > Settlements/bare 

lands > Agricultural lands > Savanna areas > Water bodies, corresponding to -4.0 %, 

3.0 %, 2.2 %, -1.1 % and -0.9 % respectively. 
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Figure 4.2: Absolute Change (a), Relative Change (b) and Annual Rate of Change (c) 

of LULC in the Ouémé River Basin (add boundary and color the charts) 
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Figure 4.3: LULC Change Map over Time in the Ouémé River Basin3 

Analysis of the transitions between the LULC map years revealed significant insights. 

The uniform transition intensity in LULC types between 2015- 2023 was higher than 

that for 2000 – 2015, with 1986-2000 having the least (Table 4.5). The period from 

1986 and 2000, had Forest areas transitioning actively (higher intensity than the 

uniform intensity over the period), with the intensity of loss higher than the intensity 

of gain. Settlements/bare lands also transitioned actively but with higher gaining 

intensity than loss intensity. This is similar for Agricultural lands and Water bodies 

within the same period. Savanna areas, however, showed a higher loss intensity than 

gain intensity though the transition was dormant (lower than the uniform intensity over 

the period). Similar trends were observed for 2000 – 2015, except for Water bodies 

which had a higher gain intensity than loss intensity. However, from 2015 to 2023, 

Forest areas and Settlements/bare lands had lower transition intensities than the other 

two periods. Secondly, Savanna areas had higher transition intensities than earlier 

periods, and the loss intensity was active while the gain intensity was dormant. On the 

 
3 FRST – Forest areas, STB – Settlements/bare lands, SAV – Savanna areas, AGR – Agricultural lands 

and WAT – Water bodies 
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other hand, agricultural lands had lower transition intensities compared to the earlier 

years, with an active gain intensity but dormant loss intensity. 

In summary, it can be inferred that Savanna and Forests have been actively converted 

into Agricultural land and Settlements/bare areas. Notable areas witnessing massive 

settlement expansion include Parakou and Djougou in the north, Bohicon and Ketou 

in the south, and Save and Dassa-Zoume in the central parts of the basin.  Agricultural 

land expansion, on the other hand, occurred throughout the basin (Fig. 4.3), 

particularly in the north southeast and west, entering into the savanna areas/woodlands, 

protected areas, ‘classified forest’ areas and along water bodies. 

Table 4.5: Transition Intensities of LULC over Time  

LULC category Gain (%) Gain Intensity 

(%) 

Loss (%) Loss Intensity 

(%) 

 1986 – 2000 (uniform intensity = 36.09) 

Forest areas 2.88 67.62 4.93 78.17 

Settlements/bare lands 0.65 85.41 0.44 80.11 

Savanna areas 15.03 22.81 18.88 27.07 

Agricultural lands 17.50 60.28 11.78 50.52 

Water bodies 0.03 49.44 0.05 62.25 

 2000 – 2015 (uniform Intensity = 42.31) 

Forest areas 1.74 73.74 3.63 85.41 

Settlements/bare lands 1.08 88.01 0.61 80.58 

Savanna areas 15.98 27.41 23.57 35.77 

Agricultural lands 23.38 61.59 14.46 49.80 

Water bodies 0.14 83.84 0.04 59.86 

 2015 – 2023 (uniform intensity = 43.19) 

Forest areas 0.88 63.70 1.87 78.90 

Settlements/bare lands 1.26 76.63 0.84 68.74 

Savanna areas 13.91 30.47 26.55 45.54 

Agricultural lands 27.11 52.89 13.80 36.36 

Water bodies 0.03 55.38 0.13 82.56 

 

 

 

 

4.2 Modelling Water Balance Based on Historical LULC 



 

90 

 

4.2.1 SWAT Model Calibration and Validation 

The uncertainty assessment of the SWAT model calibration at Bétérou yielded a p-

factor of 0.63 and an r-factor of 1.09, while validation results showed a p-factor of 

0.54 and an r-factor of 1.19 (Fig. 4.4). At Bonou, the calibration produced a p-factor 

of 0.45 and an r-factor of 1.32, with validation values of 0.42 p-factor value and 1.28 

r-factor value (Figure 4.5). P-factor values ≥ 0.5 and r-factor values < 1.5 are generally 

considered acceptable (Abbaspour, 2015). 

 

Figure 4.4: Calibration and validation results at Bétérou station, showing simulated 

versus observed discharge, rainfall and the 95 PPU range (add arrows and bar to plot).  

 

Figure 4.5: Calibration and validation results at Bonou Station (outlet), showing 

simulated versus observed discharge, Rainfall and the 95 PPU range.  
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Despite the satisfactory performance, the negative Percent Bias (PBIAS) values 

obtained during both calibration and validation phases indicate a general 

overestimation of discharge by the model, although it remains within acceptable limits. 

The SWAT model calibration and validation results for the period 1998-2008 at 

Bétérou and Bonou stations within the Ouémé River Basin are summarized in Table 

4.6. The calibration process at both stations demonstrated satisfactory performance, 

meeting the recommended by Moriasi et al. (2007) and Gui et al. (2021). This 

satisfactory performance was also observed in the validation phase, indicating a good 

fit between the simulated and observed discharge at the two stations. 

Table 4.6: SWAT Model Calibration and Validation Results 

Station Model 

Performance 

NSE RSR PBIAS 𝐑𝟐 KGE 

Bétérou 

(upstream) 

Calibration  

(1998-2002) 

0.82 0.42 -6.6 0.85 0.74 

 Validation  

(2003-2008) 

0.81 0.43 -14.4 0.83 0.74 

Bonou 

(downstream) 

Calibration  

(1998-2002) 

0.91 0.31 -12.8 0.92 0.82 

 Validation  

(2003-2008) 

0.89 0.33 -10.7 0.90 0.84 

The four most sensitive parameters identified from the sensitivity analysis influencing 

the hydrology in the basin are: baseflow alpha factor, soil saturated hydraulic 

conductivity, curve number, and maximum canopy coverage (Table 4.7).  

Table 4.7: Parameter Sensitivity Results from SWAT model calibration at Bonou 

Parameter Name t-statistic P-Value 

GW_DELAY 0.031 0.975 

REVAPMN -0.065 0.948 

CH_N2 0.083 0.934 

GE_REVAP 0.095 0.924 

SOL_Z 0.096 0.923 

EPCO 0.207 0.836 

ESCO 0.271 0.787 

SOL_ZMX 0.277 0.782 

GWQMN -0.341 0.733 

SOL_BD -0.771 0.441 

CH_K2 -1.086 0.278 

SOL_AWC -1.804 0.072 
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CANMX 1.926 0.055 

CN2 -3.484 0.001 

SOL_K -9.339 0.000 

ALPHA_BF 10.160 0.000 

 

4.2.2 Estimated Water Balance Components 

The four classified maps from Objective 1 were used to simulate water balance to 

assess the effect of LULC change on water balance in the basin. The trend of LULC 

change revealed decreasing Forest and Savanna areas, with increasing Agricultural and 

Settlements/bare lands from 1986 to 2023. The analysis showed that Water bodies 

constituted less than 0.01 % of the basin area and exhibited irregular trends in change 

compared to other land cover types. Consequently, the impact of changes in water 

bodies on the water balance components was deemed negligible, and these areas were 

excluded from the statistical analyses to avoid potential inaccuracies in error 

estimation. 

The average annual precipitation over the basin from 1998-2016 was 1155.3 mm and 

the values for the sub-basins differ (Fig. 4.6). Analysis of the proportions of average 

annual basin values for water balance components (Table 4.8), including surface 

runoff, baseflow, lateral flow, actual evapotranspiration, and total aquifer recharge, 

across different LULC maps and periods revealed significant insights. Among these 

components, evapotranspiration accounted for the largest fraction of precipitation 

(57%), followed by total aquifer recharge (approximately 27%). Lateral flow and 

surface runoff contributed about 10%, while baseflow accounted for the smallest 

fraction.  
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Figure 4.6: Average Annual Precipitation per Sub-basin from 1998-2016  

 

Between the 1986 and 2023 LULC maps, surface runoff increased by approximately 

67 %, while baseflow, lateral flow, actual evapotranspiration, and aquifer recharge 

decreased across all periods. For instance, under the 1998-2016 simulation, a reduction 

of approximately 2,432 km² of Forest and 11,867 km² of Savanna areas, coupled with 

an increase of 534 km² in Settlements/bare lands and 13,776 km² in Agricultural lands, 

resulted in a 32 mm/y increase in surface runoff. Concurrently, baseflow, lateral flow, 

total aquifer recharge, and actual evapotranspiration, reduced by 12 mm/y, 6 mm/y, 26 

mm/y, and 5.9 mm/y, respectively. 
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Table 4.8: Average Annual Water Balance Values for the LULC Maps across 

Simulation Periods  

Period LULC 

Map 

Surface 

runoff 

(mm) 

Baseflow 

(mmx) 

Lateral 

flow 

(mm) 

Total 

aquifer 

recharge 

(mm) 

Actual 

evapotranspiration 

(mm) 

1998-2008 1986 47.15 17.74 114.34 318.41 645.00  
2000 54.03 17.47 112.17 313.75 645.40  
2015 62.40 17.40 110.40 309.98 642.50  
2023 77.81 16.31 108.21 299.33 639.90 

2008-2016 1986 50.79 20.03 119.02 338.03 692.70  
2000 58.86 20.77 116.58 332.33 692.80  
2015 68.65 19.50 114.50 327.63 689.80  
2023 85.13 18.04 112.10 316.40 686.90 

1998-2016 1986 47.59 56.92 114.35 329.38 671.20 

 2000 54.87 54.51 112.11 324.08 671.00 

 2015 63.72 52.05 110.25 320.01 668.10 

 2023 79.36 44.53 108.02 303.35 665.30 

The increase in surface runoff between 2015 and 2023 LULC maps was higher, 

compared to that between 1986 and 2000 maps, and 2000 and 2015 maps, contrary to 

the smaller number of years between 2015 and 2023 (Table 4.9). For the 1998-2016 

simulation, for instance, surface runoff increased by 15.6 mm/y between 2015 and 

2023, as compared to 7.28 mm/y and 8.6 mm/y increase from 1986 to 2000, and 2000 

to 2015 maps, respectively.  At the same time, a higher reduction was observed in 

baseflow, and total aquifer recharge between the 2000 and 2015 maps, than between 

1986 and 2000 maps or 2000 and 2015 maps. This trend was similar across the other 

two simulation periods, except for baseflow which had much higher reduction over the 

16-year simulation period (2.4 mm/y, 2.5 mm/y, and 7.5 mm/y between 1986-2000 

maps, 2000-2015 maps and 2015-2023 maps, respectively) than across the two 8-year 

simulation periods (0.27 mm/y, 0.07 mm/y, 1.09 mm/y and 0.74 mm/y, 1.3 mm/y, and 

1.5 mm/y). The trend of simulated discharge across the LULC maps showed increasing 

peak flows from 1986 > 2000 > 2015 > 2023, which agrees with some historical flood 

events in Benin such as in 2010 (Fig. 4.7). The Q-Q plots (see Appendix 2) indicated 

that these distributions were approximately normal. 
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Figure 4.7: Increasing Simulated Peak Flows across the Historical LULC Maps at the 

Bonou Station 
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Table 4.9: Change in LULC Versus Change in Water Balance across the Simulation Periods (align decimal places) 

LULC map Change in LULC  Change in water balance 

Forest 

areas 

(%) 

Settlements/

bare lands 

(%) 

Savanna 

areas (%) 

Agricultural 

lands (%) 

 Surface 

runoff (%) 

Baseflow 

(%) 

Lateral 

flow (%) 

Total aquifer 

recharge (%) 

Actual ET 

(%) 

  1998 – 2008 Simulation 

1986-2000 -32.57 +36.30 -5.53 +24.58  +14.59 -1.52 -1.90 -1.46 +0.06 

2000-2015 -44.42 +61.94 -11.52 +30.69 +15.49 -0.40 -1.58 -1.20 -0.45 

2015-2023 -41.88 +33.77 -21.68 +35.08 +24.70 -6.26 -1.98 -3.44 -0.40 

1986-2023 -78.22 +195.25 -34.53 +119.93  +65.03 -8.06 -5.36 -5.99 -0.79 

  2008 – 2016 Simulation 

1986-2000 -32.57 +36.30 -5.53 +24.58  +15.89 +3.69 -2.05 -1.69 +0.01 

2000-2015 -44.42 +61.94 -11.52 +30.69 +16.63 -6.11 -1.78 -1.41 -0.43 

2015-2023 -41.88 +33.77 -21.68 +35.08 +24.01 -7.49 -2.10 -3.43 -0.42 

1986-2023 -78.22 +195.25 -34.53 +119.93  +67.61 -9.94 -5.81 -6.40 -0.84 

  1998 – 2016 Simulation        

1986-2000 -32.57 +36.30 -5.53 +24.58  +15.30 -4.23 -1.96 -1.61 -0.03 

2000-2015 -44.42 +61.94 -11.52 +30.69  +16.13 -4.51 -1.66 -1.26 -0.43 

2015-2023 -41.88 +33.77 -21.68 +35.08  +24.54 -14.45 -2.02 -5.21 -0.42 

1986-2023 -78.22 +195.25 -34.53 +119.93  +66.76 -21.77 -5.54 -7.90 -0.88 
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4.2.3 Correlation between Historical LULC and Water Balance 

The analysis revealed a strong positive correlation between the area of Forests and the 

amount of baseflow, lateral flow, total aquifer recharge, and actual evapotranspiration, 

but a strong negative correlation with the amount of surface runoff (Fig. 4.8). This was 

similar for Savanna areas. In contrast, the area of Agricultural and Settlements/bare 

lands had a strong positive correlation with the amount of surface runoff generated, 

and a negative correlation with baseflow, lateral flow, total aquifer recharge and 

evapotranspiration. These findings indicate a substantial relation between changes in 

LULC and changes observed in the water balance components. Notably, the strong 

correlations remained consistent across the three simulated periods (Fig. 4.8), 

underscoring the persistent and significant influence of LULC changes on regional 

hydrology. 

 

Figure 4.8: Correlation between LULC types and Water Balance Components for 

1998-2008, 2008-2016, and 1998-20164  

 

4.2.4 Independent t-test Analysis 

Independent t-test analyses were conducted to determine if there were significant 

differences in mean values of water balance components between the 1986 and 2023 

LULC maps across the different periods. The results revealed significant differences 

 
4 Forest areas (FRST), settlements/bare lands (STB), savanna areas (SAV), agricultural lands (AGR), 

and water balance components, surface runoff (SURF), baseflow (BF), lateral flow (LF), actual 

evapotranspiration (ET actual) 
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(p<0.05) for surface runoff, lateral flow, and total aquifer recharge, while baseflow 

and actual evapotranspiration showed no significant differences. 

Specifically, the mean surface runoff of the 2023 LULC map (80.77 mm/y) was 

significantly higher compared to the 1986 (48.51 mm/y) with a difference of -32.26 ± 

7.99 mm (Table 4.10). The t-statistic for surface runoff (-12.88) was notably higher 

than those for lateral flow (3.15) and total aquifer recharge (2.9), indicating a strong 

sensitivity of surface runoff to changes in LULC across the three simulated periods. 

The mean lateral flow obtained for the 2023 map (109.44 mm/y) was significantly 

lower than that obtained for the 1986 map (115.90 mm/y). The mean total aquifer 

recharge was significantly higher in the 1986 map (328.61 mm/y) compared to the 

2023 map (306.36 mm/y). These findings suggest that the decrease in Forest and 

Savanna areas between 1986 and 2023 LULC maps together with the expansion of 

Settlements/bare lands and Agricultural lands led to a considerable increase in surface 

runoff and reduction in subsurface flow and evapotranspiration in the basin.  

Table 4.10: Independent t-test between LULC Map for 1986 and 2023  

Water Balance Component t-statistic P-value Difference (mm/y) 

± 95 % CI 

Surface Runoff (mm/y) -12.88 0.001 -32.26 ± 7.99 

Lateral Flow (mm/y) 3.15 0.034 6.46 ± 5.74 

Total Aquifer Recharge (mm/y) 2.90 0.044 22.25 ± 21.37 

Baseflow (mm/y) 0.34 0.753 5.27 ± 45.21 

Actual Evapotranspiration (mm/y) 0.29 0.788 5.60 ± 53.75 

 

4.2.5 Partial Least Squares (PLS) Regression Analysis 

Partial Least Squares (PLS) regression analyses were conducted to deepen the 

understanding of the relationship between LULC types and water balance components 

across the periods 1998-2008 (a), 2008-2016 (b), and 1998-2016 (c). The loading 

patterns for predictor variables (X) and response variables (Y) showed consistent 

trends over time (Figure 4.9). Components 1 and 2 are the latent variables unto which 

predictor and response variables were projected to reduce dimensionality. A higher 

loading value of a variable in a component means that this variable is strongly 

associated with that component, indicating that this variable plays an important role in 

explaining the relationship between the predictor and response variables. 
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Figure 4.9: LULC (X) and Water Balance Components (Y) Loadings of the PLS 

Models across the Periods 1998-2008, 2008-2016 and 1998-2016  

Component 1 was associated strongly with a reduction in Forest and Savanna areas 

and an expansion of Settlements/bare lands and Agricultural lands. This corresponds 

with a decrease in baseflow, lateral flow, total aquifer recharge, and actual 

evapotranspiration, but an increase in surface runoff. The second component 

displayed a strong association with Forest expansion and reduction in Savanna areas 

and a weaker correlation with increases in Agricultural and Settlements/bare lands. 

This corresponded with decreasing baseflow, total aquifer recharge, and actual 



 

100 

 

evapotranspiration, with a lower increase in lateral flow and surface runoff.  

The values of R2 obtained for PLS1 in Component 1 confirmed the correlation 

results, demonstrating a strong relationship between the LULC types and the water 

balance components in (R2 ≥ 0.85) across the three time periods (Table 4.11). This 

signifies that LULC changes explain more than 85 % of the variances in surface 

runoff, baseflow, lateral flow, aquifer recharge and evapotranspiration patterns. The 

root mean square error (RMSE) of the PLS1 model of all the water balance 

components ranged between 0.27 mm/y – 2.55 mm/y, signifying good predictive 

capability of the PLS1 model. Among the water balance components, actual 

evapotranspiration prediction had the highest RMSE value from the 1998-2016 

simulation, while lateral flow had the least from the 1998-2008 simulation. 

The results from PLS1 model coefficients show that a unit (1 km2) increase in 

Settlements/bare lands led to the highest influence (14.7 × 10−3 mm/y) on surface 

runoff, increasing it consistently across the three time periods in component 1. 

Agricultural lands also increased runoff (0.6 × 10−3 mm/y), while forest 

(−13.1 × 10−3 mm/y) and savanna areas (−0.7 × 10−3 mm/y) reduced it (where 

other LULC types are equal to zero) (Table 4.11). In contrast, lateral flow, baseflow, 

aquifer recharge, and actual evapotranspiration increased with a unit increase in 

Forest and Savanna areas, while the increase in Settlements/ bare lands and 

Agricultural lands decreased them. These trends were consistent across the three 

simulation periods.
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Table 4.11: PLS1 Regression Coefficients of Historical LULC across the Simulation Periods 

  PLS1 coefficients of LULC types per water balance component 

Period LULC type Surface runoff 

(10−3mm/y) 

per km2 

ΔLULC 

Lateral flow 

(10−3mm/y) 

per km2 

ΔLULC 

Baseflow 

(10−3mm/y) 

per km2 

ΔLULC 

Total aquifer recharge 

(10−3mm/y) per km2 

ΔLULC 

Actual 

evapotranspiration 

(10−3mm/y) per 

km2 ΔLULC 

1998-2008 FRST -2.96 0.61 0.12 1.79 0.53 

 STB 13.95 -2.74 -0.61 -8.46 -2.64 

 SAV -0.65 0.12 0.03 0.40 0.12 

 AGR 0.56 -0.11 -0.03 -0.34 -0.11 

 Intercept 67.61 109.86 16.90 305.91 641.87 

 R2 0.987 0.986 0.851 0.966 0.918 

 RMSE 1.301 0.269 0.210 1.290 0.631 

2008-2016 FRST -3.34 0.69 0.20 2.05 0.60 

 STB 15.65 -3.12 -1.10 -9.62 -2.94 

 SAV -0.72 0.14 0.05 0.45 0.14 

 AGR 0.63 -0.12 -0.04 -0.39 -0.12 

 Intercept 73.98 113.95 19.03 323.55 689.07 

 R2 0.992 0.986 0.760 0.978 0.942 

 RMSE 1.162 0.303 0.489 1.176 0.583 

1998-2016 FRST -3.08 0.63 1.15 2.37 0.61 

 STB 14.47 -2.83 -5.55 -11.49 -2.95 

 SAV -0.367 0.13 0.26 0.54 0.14 

 AGR 0.58 -0.11 -0.23 -0.47 -0.12 

 Intercept 68.91 109.72 49.08 313.10 667.41 

 R2 0.989 0.986 0.950 0.961 0.932 

 RMSE 1.223 0.278 1.038 0.474 2.548 
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Overall, changes in the area of Settlements/bare lands followed by changes in Forest 

areas, had the highest regression coefficients from model predictions of surface 

runoff, lateral flow, baseflow, total aquifer recharge, and actual evapotranspiration, 

indicating that they are key predictors of these water balance components in the 

basin. Component 2 showed inconsistent relationships between Forest areas and 

water balance, but Settlements/bare lands and Agricultural lands consistently 

increased runoff and reduced subsurface flow, aquifer recharge and actual 

evapotranspiration. Savanna areas reduced surface runoff and increased subsurface 

flows and aquifer recharge. 

PLS2 was trained on data from the 1998-2008 simulation and it gave R2 values of 

0.800 and 0.988 for predicted surface runoff for 2008-2016, and 1998-2016, 

respectively. Lower R2 values were obtained for lateral flow, baseflow, total aquifer 

recharge, and actual evapotranspiration (R2 = 0). This trend was similar for the 

PLS3 and PLS4 models. PLS3 trained on 2008-2016 simulation data gave R2 of 

0.749 and 0.847 for the period 1998-2008 and 1998-2016, respectively, predictions 

of surface runoff. Finally, PLS4 trained on 1998-2016 simulation data, also produced 

strong predictive power with R2 values of 0.987 and 0.869 when used to predict 

surface runoff of the 1998-2008 and 2008-2016 periods. Prediction of lateral flow of 

the 1998-2008 also gave high R2  value of 0.991. The predictions of the remaining 

water balance components showed low predictability (R2 = 0).  

The Variable Importance in Projection (VIP) values revealed varying degrees of 

influence of the LULC types on the different water balance components with similar 

trends across all three periods (see Appendix 4). For surface runoff, aquifer recharge 
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and actual evapotranspiration, changes in Settlements/bare lands, Savanna areas, and 

Agricultural lands had higher importance values than changes in Forest areas (VIP 

scores ≥1). Changes in Settlement/bare lands and Forest areas had a higher influence 

on lateral flow, while baseflow was more influenced by changes in Savanna areas, 

Agricultural lands and Forest areas. 

 

4.3 Impact of Projected Future LULC Change on Water Balance 

4.3.1 Validation of 2023 Projected LULC 

The simulated LULC map for 2023 showed good agreement with the classified map. 

The proportion of total, quantity, and location agreement are presented in Table 4.12. 

The CA-Markov projection used was able to predict the increase in agricultural lands 

from the north, south and north-east of the basin, similar to the pattern in the classified 

map (Fig. 4.10). It however predicted fewer changes in the central part of the basin 

than is observed in classified map. This is observable in how the validation showed a 

higher location disagreement than quantity disagreement. Overall agreement of greater 

than 70 % depicts acceptable projection performance (Leta et al., 2021). The dominant 

cover projected in the 2023 simulated map based on the transition trend between 1986 

and 2015 is Savanna, even though the dominant cover in the classified map is 

Agricultural lands. Hence, the model underestimated Agricultural lands by 12 %. It is 

imperative that most of the prediction errors were allocation errors, specifically 

misclassification between Savanna and Agricultural land. The model also projected 

more Forests than observed in the classified map, while underestimating 

settlements/bare lands.   Overall, the model performed satisfactorily in predicting   

LULC for 2023, and the results highlight the strengths and shortcomings of the CA-

Markov projections in this study. 
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Figure 4.10: The classified 2023 LULC (a) and CA-Markov simulated 2023 LULC (b) 

Maps 

Table 4.12: Area of LULC Types in the Classified and Simulated 2023 Maps 

 Classified 2023 

Map 

Simulated 2023 

Map 

Difference 

LULC Type km2  (%) km2 (%) km2  (%) 

Forest areas 677.08  (1.37) 1039.70  (2.11) +362.62  (+0.74) 

Settlements/bare 

lands 

807.47  (1.64) 700.26  (1.42) -107.21  (-0.22) 

Savanna areas 22501.23  (45.66) 28266.09  (57.36) +5764.86  (+11.70) 

Agricultural lands 25263.42  (51.26) 19215.45  (38.99) -6047.97  (-12.27) 

Water bodies 31.03  (0.06) 58.73  (0.12) +27.70  (+0.06) 

Total 49280.23  (100) 49280.23  (100)  

      

Performance metrics Value    

Total agreement    0.74    

Quantity agreement 

(disagreement) 

0.69 

(0.08) 

   

Location agreement 

(disagreement) 

0.70 

(0.18) 

   

 

 

a b 
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4.3.2 Projected Future Change in LULC 

The projected LULC for the years 2030, 2063 and 2100 under the ‘business as usual’ 

scenario are presented in Table 4.13. A general trend of reducing Forest areas, Savanna 

areas and water bodies, alongside increasing Settlements/bare lands and Agricultural 

lands was observed from 2030 to 2063 and 2063 to 2100 (Fig. 4.11).  The absolute 

magnitude of change in LULC differs with the future period and LULC type. The 

highest reduction in Forests (311.4 𝑘𝑚2) and Savanna (2218.5 𝑘𝑚2), and increase in 

Agricultural land (2042.0 𝑘𝑚2) was observed between 2030 and 2063, while the 

highest increase in Settlements/bare land was observed from 2063-2100. Forest areas 

reduce by 125.9 𝑘𝑚2 from 2023 to 2030, while Savanna areas reduce by 1211.6 𝑘𝑚2, 

and Agricultural and Settlements/bare lands increase by 1234.6 𝑘𝑚2 and 114.6 𝑘𝑚2, 

respectively. From 2063 to 2100, Forests further reduce by 159.9 𝑘𝑚2 and Savanna 

by 2158.3 𝑘𝑚2, while Agricultural and Settlements/bare land increase by 1748.5 𝑘𝑚2 

and 572.1 𝑘𝑚2, respectively. Overall, the highest average rates of change were 

reduction in Forest area (2.8 %/y) and Water bodies (7 %/y), followed by the rate of 

increase in Settlements/bare lands (1.4 %/y). The reduction in Savanna areas (0.5 %/y) 

and increase in Agricultural lands (0.4 %/y) had the lowest rates. The trend of projected 

LULC changes suggests continued deforestation and an increase in Agricultural and 

Settlements/bare land up to the end of the 21st century if activities on the land within 

the basin continue as have been in the past.  
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Figure 4.11: Projected LULC Maps for 2030, 2063, and 2100 using CA-Markov 

Projection 
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Table 4.13: Area of LULC Types in Projected 2030, 2063 and 2100 Maps 

 

 

 

LULC type 

Projected LULC Map Change in LULC 

2030 2063 2100 2063 – 2030 2100 – 2063 

km2  (%) km2  (%) km2  (%) %/y %/y 

Forest areas 551.15  (1.12) 239.76  (0.49) 79.89  (0.16) -2.49 -3.28 

Settlements/bare lands 922.11  (1.87) 1426.69  (2.90) 1998.81  (4.06) +1.33 +1.03 

Savanna areas 21289.64  (43.20) 19071.18  (38.70) 16912.85  (34.32) -0.33 -0.36 

Agricultural lands 26498.06  (53.77) 28540.09  (57.91) 30288.57  (61.46) +0.23 +0.18 

Water bodies 19.28  (0.04) 2.52  (0.01) 0.12  (0.00) -5.98 -9.13 

Total 49280.23  (100) 49280.23  (100) 49280.23  (100)   

 

Table 4.14: Change in Water Balance Based on Future LULC Maps 

Projected 

LULC 

Average Annual Amounts of Water Balance Components 

Surface runoff 

(mm) 

Lateral 

flow (mm) 

Baseflow 

(mm) 

Total aquifer 

recharge (mm) 

Actual evapotranspiration 

(mm) 

2023 79.36 108.02 44.53 303.35 665.3 

2030 110.94 66.44 39.00 314.53 670.4 

2063 119.42 65.36 35.88 307.71 669.8 

2100 128.15 64.27 31.22 301.93 667.9 

Change (%/y) 

2023-2030 +4.902 -6.708 -1.876 0.518 0.109 

2030-2063 +0.223 -0.050 -0.252 -0.066 -0.003 

2063-2100 +0.191 -0.045 -0.375 -0.051 -0.008 
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4.3.3 Relationship between Projected LULC Change and Water Balance 

Results from simulating water balance using the projected LULC maps for 2030, 2063 

and 2100 showed considerable differences (Table 4.14). Analysis of the changes in 

average annual surface runoff showed a steep increase between 2023 and 2030 (39.7 

%), and a fairly steady increase from 2030-2063 (7.6 %) and 2063-2100 (7.3 %). 

Lateral flow decreased by 38.5 % between 2023-2030, 1.6 % from 2030-2063, and 1.7 

% between 2063-2100. Baseflow showed similar rates of reduction for 2023-2030 

(12.4 %) and 2063-2100 (12.9 %), and lower reduction from 2020-2063 (8 %). Total 

aquifer recharge and actual evapotranspiration increased from 2023-2030 but reduced 

from 2030 to 2100. Total aquifer recharge increased by 3.7 % from 2023-2030 but 

reduced between 2030-2063 (2.2 %) and 2063-2100 (1.9 %). Actual 

evapotranspiration showed the lowest change over time with an increase of 0.8 % from 

2023-2030 and a reduction of 0.1 % and 0.3 % from 2030-2063 and 2063-2100, 

respectively. 

The PLS model coefficients of the relationship between the absolute average annual 

values of the projected water balance and the projected area of LULC types from 

Component 1 are presented in Table 4.15. The regression coefficients show that an 

increase in Settlements/bare land and Agricultural land results in an increase in surface 

runoff, and a reduction in lateral flow, baseflow, total aquifer recharge, and actual 

evapotranspiration. The effect (magnitude of regression coefficient) of 

Settlements/bare land was higher than that of Agricultural land. An increase in Forest 

and Savanna areas reduced surface runoff while increasing lateral flow, baseflow, total 

aquifer recharge, and actual evapotranspiration, with a higher influence of Forests than 

Savanna. 

Overall, the results show that in the future, further expansion in Settlements/bare land 

(e.g., urbanization) and Agricultural land is projected to enhance surface runoff and 

reduce subsurface flow and aquifer recharge, while expansion in Forest and Savanna 

areas (e.g., reforestation) will reduce surface runoff and improve subsurface flow and 

aquifer recharge. Forest areas and settlements/bare lands had the highest coefficients, 

suggesting they are key predictors (indicators) of changes in the hydrological 

processes assessed. The PLS model shows LULC changes over time explained more 
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than 90 % of the variances in the water balance components over time (R2>0.90). The 

RMSE values <1 also depict the strong predictive capability of the model in predicting 

the changes in water balance in the basin from changes in LULC 

.
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Table 4.15: PLS Regression Coefficients, 𝑅2 and RSME of Projected Future LULC Effect on Water Balance Components 

Projected LULC (km2) Surface runoff 

10−3mm/y per 

km2 ΔLULC 

Lateral flow 

10−3mm/y per 

km2 ΔLULC 

Baseflow 

10−3mm/y per 

km2 ΔLULC 

Total aquifer 

recharge 

10−3mm/y per 

km2 ΔLULC 

Actual evapotranspiration 

10−3mm/y per km2 

ΔLULC 

Forest Areas -4.60 1.06 1.75 3.17 0.37 

Settlements/bare land 2.36 -0.54 -0.91 -1.64 -0.18 

Savanna areas -0.52 0.12 0.20 0.36 0.04 

Agricultural lands 0.57 -0.13 -0.22 -0.40 -0.04 

Intercept 63.54 110.62 52.14 319.79 668.13 

R2 0.989 0.991 0.983 0.982 0.935 

RMSE 0.465 0.092 0.221 0.416 0.090 
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4.4 Impact of Future Climate Change on Water Balance 

4.4.1 Future Climate Projections for Scenarios SSP1-2.6 and SSP3-7.0  

The bias correction of the precipitation and temperature data from the climate models 

using the Quantile Mapping approach performed well. The total mean bias error (mbe) 

of the corrected precipitation and temperature data was lower than the raw 

(uncorrected) data plotted against the reference. For instance, the raw (uncorrected) 

precipitation of the ACCESS-CM2 model data plotted against the reference (CHIRPS) 

data gave mbe of −34.31 mm and a correlation coefficient of 0.78, while the corrected 

data gave mbe of -0.07 mm with a correlation coefficient of 0.76. The correlation 

between the corrected and uncorrected model data was strongly positive (r ≥ 0.96) 

across the six global climate models. The ACCESS-CM2 model precipitation 

performed better in capturing the trend in reference data, hence it was chosen for water 

balance assessments. The bias-corrected ensemble mean performed better for the 

minimum and maximum temperature data with lower mbe and higher correlation than 

the uncorrected data. Plots of the bias-correction results of the other models are 

presented in Appendix 3. 
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Figure 4.12 Bias-corrected Historical and Future precipitation (a), Minimum (b) and Maximum temperature (c) trends for the Ouémé River Basin, 

under SSP1-2.6 and SSP3-7.0 Scenarios for the Near, Mid-, and Long term future.
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Average precipitation and minimum and maximum temperature across scenarios and 

periods (near term (2021-2040), mid-term (2041-2060) and long term (2081-2100)) 

over the catchment area are presented in Fig.4.12, together with the projected changes 

over the catchment area (Table 4.16).  

The average precipitation of the baseline (historical) data (1995-2014) was 1223 mm, 

while the minimum temperature data ranged between 16 ᵒC – 27 ᵒC, and the maximum 

temperature between 22 ᵒC – 38 ᵒC (Fig. 4.13).  Relative to the baseline, precipitation 

is projected to increase under SSP1-2.6 and SSP3-7.0 scenarios, and across the future 

periods. In the near term, there is a higher increase in precipitation under SSP1-2.6 

than under SSP3-7.0, similar to the long term. However, during the mid-term, 

precipitation is higher under SSP3-7.0 than SSP1-2.6. The precipitation under SSP1-

2.6 generally increased from near term to mid-term (+0.4 %) and reduced from the 

mid-term to long-term (−1.4 %) more gradually compared to SSP3-3.70 where 

precipitation increases sharply from the near-term to mid-term (+2.8 %) and drops 

steeply from the mid-term to the long-term (−4.0 %). This suggests more extreme 

rainfall event scenarios under SSP3-7.0 compared to a gentler variability in rainfall 

under SSP1-2.6 scenario.  

The projected change in minimum and maximum temperature were fairly similar 

under SSP1-2.6 and SSP3-7.0 scenarios in the near term (Table 4.16). From the near-

term to mid-term, minimum temperature increases (+0.3 %) under SSP1-2.6 while 

maximum temperature reduces (−0.3 %). During the same period, minimum 

temperature increases by 0.8 % under SSP3-7.0 while maximum temperature increases 

by 0.7 %. Between the mid-term and long term, the minimum temperature reduces 

(−0.01 %) while maximum temperature increases by 0.8 % under SSP1-2.6. Under 

SSP3-7.0, minimum and maximum temperatures increase by 1.6 % and 0.8 %, 

respectively. 
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Figure 4.13: Projected Average Precipitation (a), Minimum (b) and Maximum (c) Temperature for Baseline Period, Near-term, Mid-term, and 

Long-term over the Basin under SSP1-2.6 and SSP3-7.0 

 

 

Table 4.16: Projected Changes in Climate Change across Climate Scenarios and Future Periods  

Change Climate Scenario Precipitation (%) Minimum Temperature (ᵒC) Maximum Temperature (ᵒC) 

Near-term – historical SSP 1-2.6 +4.66 +0.65 +0.49 

 SSP 3-7.0 +2.83 +0.63 +0.25 

Mid-term – historical SSP 1-2.6 +5.01 +0.96 +0.14 

 SSP 3-7.0 +5.61 +1.42 +0.96 

Long-term - historical SSP 1-2.6 +3.57 +0.95 +0.94 

 SSP 3-7.0 +1.57 +3.01 +2.36 
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4.4.2 Future Water Balance Based on Future Climate 

The projected precipitation for the three future periods (near term, mid-term and long 

term) was used to simulate water balance under constant LULC and soil conditions. 

This was done to ensure that changes in water balance were solely a result of climate 

change. Only the 2023 LULC was used for this analysis because it represents the most 

current conditions, which serve as a baseline for future projections. The difference in 

water balance components between the future periods was also computed to ascertain 

the amount of change possible between those periods.  

It can be observed from the change in water balance results in Fig. 4.14 and Table 4.17 

that, under SSP1-2.6 scenarios, surface runoff reduced both from the near- to the mid-

term and from the mid- to the long term. However, under scenario SSP3-7.0, surface 

runoff increased strongly from the near- to mid-term and reduced from the mid- to 

long term. Lateral flow and total aquifer recharge exhibited similar trends as surface 

runoff, with reductions from the near- to mid-term despite precipitation increase under 

SSP1-2.6 during the same period. Notwithstanding, lateral flow and aquifer recharge 

increased under SSP3-7.0 from the near to mid-term in response to a high increase in 

precipitation though temperature also increased within that period. From the mid- to 

long term, lateral flow, baseflow, and aquifer recharge reduced in response to the 

reduction in precipitation accompanied by increased temperature under SSP1-2.6 and 

SSP3-7.0.  However, actual evapotranspiration reduced steadily under SSP1-2.6 mid-

term to long term and increased from the near term to long term as temperature 

increased. 
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Figure 4.14: Estimated Water Balance Components based on Projected Climate in the 

near term, Mid-term and Long term Future 

 

Table 4.17: Change in water balance components between the SSP1-2.6 and SSP3-7.0 

future climate scenarios 

Change Climate 

Scenario 

Surface 

runoff 

(%) 

Lateral 

flow 

(%) 

Baseflow 

(%) 

Total 

aquifer 

recharge 

(%) 

Actual 

evapotranspiration 

(%) 

Near- to Mid-

term 

SSP1-2.6 -7.39 -0.60 +2.31 -0.13 +0.85 

 SSP3-7.0 +20.01 +4.37 -0.83 +3.16 +1.60 

Mid- to long-

term 

SSP1-2.6 -1.17 -4.64 -11.70 -5.15 -0.15 

 SSP3-7.0 -9.20 -10.79 -20.97 -11.85 +3.37 

4.4.3 Relationship between Future Climate and Water Balance 

A PLS regression was employed to estimate the relationship between the projected 

climate variables and the amount of surface runoff, lateral flow, baseflow, total aquifer 

recharge and actual evapotranspiration. The regression coefficients gave higher values 

for both precipitation (P) and temperature (T) in predicting surface runoff, total aquifer 

recharge and actual evapotranspiration than lateral flow and baseflow (Table 4.18). 

This indicates that both precipitation and temperature changes affect the changes in 
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Ouémé River Basin’s hydrology. Particularly, a unit (mm/y) increase in average 

precipitation is projected to increase surface runoff, lateral flow, baseflow, and total 

aquifer recharge but reduce actual evapotranspiration. The increase in surface runoff 

and decrease in actual evapotranspiration were minute under SSP1-2.6 compared to 

SSP3-7.0. With a unit (ᵒC) increase in mean temperature, surface runoff reduced under 

SSP1-2.6 while it increased under SSP3-7.0. The higher coefficients of change in 

lateral flow, baseflow, and total aquifer recharge with a unit increase in temperature 

demonstrate the high sensitivity of these components, even when precipitation 

increases. Actual evapotranspiration increased with a unit increase in temperature due 

to the higher evaporative demand under warmer climate conditions. Baseflow and 

actual evapotranspiration predictions gave the highest errors, meaning the PLS model 

could not capture the variability in those components well enough. 

Table 4.18: PLS Regression Coefficients of Future Climate Effect on Water Balance 

Components 

  PLS model coefficients 

Climate 

scenario 

Climate 

variable 

Surface 

runoff 

(mm/y) 

Lateral 

flow 

(mm/y) 

Baseflow 

(mm/y) 

Total aquifer 

recharge 

(mm/y) 

Actual 

evapotranspiration 

(mm/y) 

SSP 1-2.6 P (mm/y) 0.06 0.20 0.71 0.67 -0.02 

 T (ᵒC) -3.49 -8.82 -28.89 -28.38 2.70 

 RMSE 1.80 0.73 0.56 1.08 2.35 

SSP 3-7.0 P (mm/y) 0.21 0.19 0.45 0.61 -0.24 

 T (ᵒC) 1.79 -3.31 -13.26 -12.72 10.65 

 RMSE 0.86 0.76 2.6 0.68 4.34 

 

4.5 Combined Impact of Future LULC and Climate Change on Water Balance 

The projected future LULC for 2030 and climate for the near term (2021-2040) were 

used to simulate water balance. The 2063 and 2100 LULC maps were combined with 

climate for the mid-term (2041-2060) and long term (2081-2100), respectively. They 

were conducted under SSP1-2.6 and SSP3-7.0 to examine the combined impact of 

LULC and climate change on water balance. 

Surface runoff increased steadily from 2030 to 2100 under SSP1-2.6, while under 

SSP3-7.0, it increased from 2030-2063 and decreased from 2063-2100 (Fig. 4.15). The 

rate of increase in surface runoff from 2030 to 2063 was higher under SSP3-7.0 than 
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under SSP1-2.6 (Table 4.19). Lateral flow decreased from 2030-2100 under SSP1-2.6 

while under SSP3-7.0, increased from 2030-2063 and decreased from 2063-2100. 

Baseflow increased from 2030-2063 and decreased largely under both SSPs from 

2063-2100, with a higher magnitude of change under SSP3-7.0 than SSP1-2.6. Under 

SSP3-7.0, total aquifer recharge increased from 2030-2063 and decreased from 2063-

2100. The decrease in total aquifer recharge from 2063-2100 was higher under SSP3-

7.0 than under SSP1-2.6. Actual evapotranspiration under SSP1-2.6 increased from 

2030-2063 and decreased from 2063-2100, while under SSP3-7.0, it increased over 

the period up to 2100. The results show that both LLC and climate changes influence 

water balance in the basin The pattern of changes in water balance components was 

similar to the pattern of precipitation changes across the future periods for both SSP1-

2.6 and SSP3-7.0. The average annual values of surface runoff and lateral flow 

obtained for the combined projected LULC and climate change scenario were higher 

than those obtained for the projected climate alone and lower than those for the 

projected LULC alone. Baseflow values for the combined LULC-climate scenario 

were similar to those obtained for the sole projected climate scenario but higher than 

those obtained for the sole projected LULC.  

 

Figure 4.15: Estimated Water Balance Based on Combined Projected Future LULC 

and Climate under SSP1-2.6 (a) and SSP3-7.0 (b) Scenarios 
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Table 4.19: Change in Water Balance Components under Combined Projected LULC-

Climate Change 

Period Scenario Surface 

runoff 

(mm/y) 

Lateral 

flow 

(mm/y) 

Baseflow 

(mm/y) 

Total aquifer 

recharge 

(mm/y) 

Actual 

evapotranspiration 

(mm/y) 

2030-2063 SSP1-2.6 +0.44 -1.14 +0.22 -3.99 +5.8 

 SSP3-7.0 +18.95 +2.48 +3.59 +7.57 +10.6 

2063-2100 SSP1-2.6 +3.46 -4.73 -28.5 -27.25 -1.6 

 SSP3-.70 -2.82 -10.26 -54.24 -56.64 +|\\21.7 
 

The PLS regression coefficients from Component 1 show that under both SSP1-2.6 

and SSP3-7.0, an increase in precipitation, Forest and Savanna areas reduces surface 

runoff and actual evapotranspiration, while increasing lateral flow, baseflow and total 

aquifer recharge (Table 4.20). An increase in precipitation under SSP-3.70 increased 

surface runoff. An increase in temperature, Agricultural and Settlement/bare land 

increases surface runoff and actual evapotranspiration while reducing lateral flow, 

baseflow and aquifer recharge. Temperature had the highest coefficient, followed by 

precipitation, Forest areas, and Settlements/bare lands. Savanna and Agricultural land 

had the lowest coefficients. This signifies that changes in temperature, precipitation, 

Forest areas and Settlements/bare land are key predictors (indicators) of changes in the 

basin’s hydrological processes, as observed in Objectives 3 and 4. The variances in 

water balance components were reasonably explained by the variances in LULC and 

climate (𝑅2>0.7). 
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Table 4.20: PLS Regression Coefficients, 𝑅2 and RSME of the Relationship between Combined LULC-Climate and Water Balance Components 

Scenario Variable Surface runoff 

(mm/y) 

Lateral flow 

(mm/y) 

Baseflow 

(mm/y) 

Total aquifer 

recharge (mm/y) 

Actual evapotranspiration 

(mm/y) 

SSP1-2.6 P (mm/y) -0.04 0.06 0.33 0.33 -1.26 × 10−3 

 T (ᵒC) 1.78 -2.57 -14.02 -14.27 0.70 

 FRST -1.38 × 10−3 2.11 × 10−3 9.83 × 10−3 11.11 × 10−3 -2.32 × 10−3 

 STB 0.69 × 10−3 -1.04 × 10−3 -5.10 × 10−3 -5.55 × 10−3 0.85 × 10−3 

 SAV -0.17 × 10−3 0.25 × 10−3 1.22 × 10−3 1.34 × 10−3 -0.22 × 10−3 

 AGR 0.19 × 10−3 -0.29 × 10−3 -1.38 × 10−3 -1.52 × 10−3 0.26 × 10−3 

 𝑅2 0.950 0.976 0.901 0.955 0.502 

 RMSE 0.390 0.392 4.215 2.934 1.726 

       

SSP3-7.0 P (mm/y) 0.03 0.04 0.19 0.21 -0.63 

 T (ᵒC) 1.31 -0.86 -5.09 -5.09 2.86 

 FRST -8.42 × 10−3 2.88 × 10−3 18.97 × 10−3 18.28 × 10−3 -12.70 × 10−3 

 STB 3.23 × 10−3 -1.63 × 10−3 -10.01 × 10−3 -9.88 × 10−3 6.00 × 10−3 

 SAV -0.82 × 10−3 0.39 × 10−3 2.39 × 10−3 2.35 × 10−3 -1.47 × 10−3 

 AGR 0.98 × 10−3 -0.43 × 10−3 -2.69 × 10−3 -2.64 × 10−3 1.68 × 10−3 

 𝑅2 0.716 0.742 0.843 0.807 0.990 

 RMSE 4.448 2.221 9.798 11.021 1.376 
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CHAPTER 5       DISCUSSION 

5.1 Assessment of LULC Change in the Ouémé River Basin 

The spatio-temporal trends in LULC showed significant changes in LULC within the 

Ouémé River Basin. The 1986 LULC map revealed that the basin was predominantly 

Savanna, however over time, these areas and Forests have been cleared, converted 

mainly into Agricultural land and Settlements. This corroborates with findings by 

Bodjrènou et al. (2023a) who observed a reduction in Savanna areas, and expansion 

in Agricultural land and urban areas. Studies within areas around the basin, such as in 

the Couffo catchment (Togbévi et al., 2021) and Ouémé Delta (Osseni et al., 2022) 

have also indicated the conversion of naturally vegetated areas into croplands. These 

trend of LULC change affect the basin by increasing soil erosion and vulnerability to 

floods through enhanced surface runoff. Erosion hotspots were identified in the Ouémé 

River Basin by Hiepe (2008) especially in areas where Agricultural lands were rapidly 

expanding. Bossa (2012) also established that LULC changes in the basin enhanced 

soil degradation and increased sediment yield. Furthermore, Dossou et al. (2021b) 

discovered that intensive agriculture in the basin, particularly cotton and cowpea crops 

made the basin more vulnerable and fragile through land degradation. Communes 

(such as Djougou and Perere, and Bohicon, Covè, Glazoue, Zangnanado, Toffo and 

Djidja) within the basin, especially where Agricultural lands have expanded at the 

expense of natural vegetation, are more vulnerable to flooding (Hounkpè et al., 2022).  

The accuracy assessment of the classified maps demonstrated high agreement with the 

reference areas, indicating the reliability of the Simple Composite Landsat and the 

Random Forest Classifier algorithms with remotely sensed data in the GEE cloud 

computing platform for evaluating LULC information. However, challenges remain in 

accurately classifying Settlement areas and bare lands, which exhibit similarities in 

appearance and reflectance with Agricultural lands during the dry season for which 

images were used. The presence of clouds and the resolution of the Landsat image also 

influenced classification accuracy, highlighting the need for further refinement in 

classification methods and the potential benefits of higher-resolution satellite data 

(Fisher et al., 2018; Momeni et al., 2016).  
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The findings also show that deforestation and expansion in Agricultural lands and 

Settlement areas over time have accelerated in recent years, particularly between 2015 

and 2023.  This agrees with assessments of LULC change in Benin by the US 

Geological Survey, which identified the country as experiencing high annual 

Agricultural land expansion (Tappan et al., 2016). The rapid loss of tree cover in the 

basin affects ecosystem functioning, as Forests and Savanna serve as crucial carbon 

sinks (Wheeler et al., 2016). Consequently, the degradation of natural vegetation 

contributes to increased carbon emissions and exacerbates global warming and 

changes in climate (McNicol et al., 2018). Moreover, the susceptibility of the basin to 

extreme events like flooding is exacerbated by the degradation of natural vegetation, 

as highlighted by studies assessing flood risks in the region (Dossou et al., 2021b; 

Hounkpè et al., 2019). 

Population growth within and around the basin emerges as a primary driver of 

anthropogenically influenced land use/cover change. Increasing population leads to 

greater demand for food, water, and settlements, driving the expansion of Agricultural 

lands and Settlements/bare lands. Dense road networks (as seen around Bohicon, 

Djougou and Parakou) and access to water sources for irrigation further facilitate 

agricultural expansion. Soil in parts of the basin has also propelled the progressive 

expansion of agricultural and other economic activities within the basin, with different 

soil types supporting various agricultural activities (Osseni et al., 2022). Ferralitic soils 

in the southern part of the basin are suitable for plantations and commercial vegetable 

production, while ferruginous soils in the central and northern parts support crops like 

cotton, peanut, sorghum, millet, and tobacco. Additionally, the lower zones prone to 

ponding during rainfall, known as the ‘Bas-Fonds’ are utilized for rice production 

(Sinsin and Kampmann, 2010).  

Considering the projected continued population growth in Benin and Africa as a 

whole, as indicated by IPCC sixth report, it is important to manage LULC in the basin 

effectively, including reduced deforestation and more sustainable agricultural 

practices to ensure the sustainability of the environment and inherent resources 

including water and soil for improving food and water security. 
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5.2 Impact of Past LULC Change on Water Balance 

The SWAT model calibration and validation at the upstream Bétérou and downstream 

Bonou stations yielded satisfactory results with higher values of NSE (0.81-0.91), 

PBIAS (-6.6 - (-14.4)), R² (0.83-0.92) values (Moriasi et al., 2007; Gui et al., 2021). 

Although negative PBIAS values indicated some overestimation, they remained within 

acceptable limits. This suggests that though the model captures the basin’s overall 

hydrological processes well, there are some discrepancies, which could be attributed 

to the uncertainties in the input (e.g., climate data) and calibration procedure 

(Odusanya et al., 2021). At Bétérou, the p-factor values of the model calibration and 

validation were above the recommended threshold (0.50), indicating that more than 

half of the observed discharge data fell within the predicted uncertainty range, 

suggesting a reasonable predictive capacity of the model (Abbaspour, 2015).  

On the contrary, at Bonou the p-factor values were slightly below the threshold, 

signalling that more than half of the uncertainty in the observed discharge was not well 

captured by the calibration, due possibly to low-quality of input data or model 

parameterization (Fisher et al., 2018; Hounkpè and Diekkrüger, 2018). The r-factor 

values obtained at Bonou exceeded 1.2, reflecting a wider uncertainty band, a common 

challenge when simulating hydrological processes in complex tropical basins (Bossa 

et al., 2014; Saddique et al., 2020). Such findings suggest further calibration efforts, 

including incorporating higher-resolution satellite data or refining key parameters, 

may reduce this uncertainty. In addition, other hydrological processes can be 

considered to address the uncertainty and improve the model parametrization, such as 

the actual evapotranspiration or the vegetation growth coupled with an 

evapotranspiration estimation (Odusanya et al., 2021; Merk et al., 2024). 

The results from the independent t-test indicated significant differences between the 

mean surface runoff, lateral flow, and total aquifer recharge from the 1986 LULC map 

and the mean values from the 2023 map. This demonstrates that these water balance 

components are very sensitive to LULC changes. Though the difference in baseflow 

and actual evapotranspiration showed no statistical significance, the results still reflect 

important ecological effects (White et al., 2014), suggesting that these components are 

affected by LULC changes, though the changes may be more gradual or less 
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immediate. These findings corroborate with studies in the Upper and Lower Ouémé 

Basin which found that degraded and agricultural areas experienced lower soil 

infiltration capacity, resulting in higher runoff (Hounkpè and Diekkrüger, 2018; 

Abdulkadir et al., 2022). The reduction in aquifer recharge and lateral flow emphasizes 

the need for conservation agriculture practices such as cover cropping and minimum 

tillage (Togbèvi et al., 2022), to limit the already low-fertility ferruginous soils from 

further degrading and affecting food productivity (Hounkpatin et al., 2022; Dossou et 

al., 2021b).  

The PLS1 model in Component 1 demonstrated that LULC changes explained most of 

the variations (>85 %) in surface runoff, baseflow, lateral flow, actual 

evapotranspiration and total aquifer recharge of the basin. The regression coefficients 

showed that area of Settlements/bare lands consistently is a key predictor of surface 

runoff, with a unit increase in Settlements/bare lands enhancing runoff, likely due to 

restricted infiltration on impervious surfaces, and exposure of the bare soil surface to 

direct raindrops impact, thereby reducing infiltration and enhancing erosion (Togbévi 

et al., 2022). This suggests susceptibility to floods and a reduction in groundwater 

replenishment which may affect water availability for farming, domestic and industrial 

purposes. An increase in Forest area was associated with a reduction in surface runoff, 

and an increase in subsurface flow, aquifer recharge and actual evapotranspiration. 

This is attributable to the dense canopy of forests which enables interception of 

rainfall, and the forest litter which inhibits runoff, thereby enhancing infiltration rates 

(Honda and Durigan, 2016; Lokonon et al., 2018). When Agricultural land increases, 

surface runoff increases though lower compared to Settlements/bare lands, and reduces 

subsurface flow and aquifer recharge, thus revealing the adverse impacts of extensive 

land degradation for agricultural expansion. An increase in Savanna areas reduces 

surface runoff and increases subsurface flow, aquifer recharge and evapotranspiration, 

but at a lower potential than Forests. This demonstrates the reduced ability of open tree 

canopy areas to effectively reduce runoff and enhance infiltration. These trends could 

aggravate water scarcity and reduction in ecosystem services in the basin (Togbévi et 

al., 2020). Furthermore, in Component 2 the PLS models indicate an increase in Forest 

areas, Agricultural lands and settlement/bare areas which corresponded with an 

increase in surface runoff and a reduction in baseflow, aquifer recharge, and actual 
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evapotranspiration. This suggests that the hydrological response of Forests is more 

complex and potentially influenced by other factors such as land management 

practices (agro-forestry, selective logging, reforestation, impervious surfaces around 

trees), or fragmentation (continuous Forests or small patches). This implies that 

reforestation efforts must ensure continuous canopy coverage, while urban 

developments must consider more green areas around trees to enhance infiltration and 

reduce runoff. 

The high R² values obtained for surface runoff predictions across multiple periods 

suggest that the relationship between LULC change and runoff is robust and 

temporally consistent. This strong correlation reflects the immediate impact of reduced 

Forest and Savanna areas on surface runoff. However, the relatively lower R² values 

for baseflow, lateral flow, and total aquifer recharge across the three simulation periods 

(1998-2008, 2008-2016, and 1998-2016) indicate a low ability to generalize, 

suggesting that these components are less sensitive to short-term LULC changes, are 

more dependent on temporal variability (more sensitive to other factors such as 

climate) or may have a non-linear relationship with LULC changes. Higher baseflow 

was estimated during the 16-year simulation period compared to the two 8-year 

periods, attributable to slower response based on groundwater storage, rainfall 

variability and the hydraulic properties of the aquifer (Price, 2011). This underscores 

the need for a longer period assessment of LULC change impacts on subsurface 

hydrological components, in addition to applying other regression methods (e.g., non-

linear regression) for further insights. The uncertainties in the SWAT model 

groundwater estimations could also account for the inconsistencies in the baseflow 

estimated (Bailey et al., 2020). Additionally, the minimal change in actual 

evapotranspiration, despite changes in LULC, can be attributed to the fact that the 

expansion of tree crops such as cashew, orange, palm, and other plantations which are 

quite abundant parts of the basin can maintain similar levels of evapotranspiration, 

compensating for the loss of natural Forest and Savanna (Ellison et al., 2012). 

Assessing the impacts of Agricultural land expansion at the scale of specific crops may 

offer better insights into evapotranspiration trends. 
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The accurate prediction of surface runoff across the different periods indicates the 

consistency of its relationship with increasing Agricultural lands and Settlements/bare 

lands, and diminishing natural vegetation. The increasing runoff volumes across the 

LULC maps hint at increasing flood potential in rapidly urbanizing areas requiring 

urgent mitigation measures (Hounkpè et al., 2019; Nyatuame et al., 2020).  At the 

same time, the reducing baseflow and aquifer recharge has implications for long-term 

water availability for farming and domestic needs during the dry season (Togbévi and 

Sintondji, 2021).  

 

5.3 Impact of Future LULC Change Scenarios on Water Balance 

Examining the projected LULC and associated changes in water balance components 

from 2023 to the end of the 21st century using the CA-Markov projection showed 

various trends. The results indicate that projected changes in LULC differ with both 

the LULC type and the future period, suggesting that differences in demand for land 

resources (e.g., more food, industry expansion and processing companies), and 

surrounding conditions such as law enforcement (e.g., reforestation, ban deforestation) 

and climate limitations (less rainfall or droughts) could inform the type of LULC 

change that would occur. Over the period from 2023 to 2100, Forest cover is projected 

to decrease sharply likely due to continued urban expansion and food demands from 

population growth, as evidenced by the sharp increase in Settlements/bare lands over 

the same period. On the other hand, Savanna shows a gradual decrease throughout the 

period, while Agricultural land exhibits consistent growth, increasing most sharply 

between 2030 – 2063. These changes indicate that the expansion of Agricultural land 

might be more targeted at Forests possibly due to the inherent high moisture-holding 

capacity and fertility of soils in forested areas (Osseni et al., 2022) compared to 

Savanna areas. That study also projected a small increase in Forest and Savanna areas 

in the Ouémé Delta (below Bonou) for 2035. The expansion of Settlements/bare lands 

is attributable to the demand for settlements from the projected increase in population 

growth, and growth in industry operations such as the Special Economic Zones (SEZ) 

currently established in Benin under Law NO. 2022-38 as of 2023 to increase 

investments (Secrétariat Général du Gouvernement, 2023) in sectors including 
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agricultural processing (e.g., soya bean, cashew, cotton, fruits) into end products such 

as oil, fruit juice and clothing for export.  

The reflected impact of projected LULC changes on water balance shows that surface 

runoff increases throughout the period up to 2100. This trend corresponds with the 

decline in Forest cover and Savanna areas, and the increase in Agricultural land and 

Settlements/bare lands. A higher reduction in surface runoff with an increase in Forest 

cover than Savanna as observed from the PLS coefficients can be attributed to the 

denser tree canopy and litter in Forest areas compared to Savanna areas, to intercept 

rainfall and slow runoff. Additionally, a lower increase in surface runoff with an 

increase in Agricultural land than Settlements/bare land can be due to the availability 

of vegetation (crops) on Agricultural land which slows runoff to some extent compared 

to bare or impervious surfaces. The increase in surface runoff would increase the 

vulnerability of communes (Dossou et al., 2021b) within and south of the basin to 

flooding, including Cotonou and Porto-Novo, Benin’s capital, as projected by 

Hounkpè et al. (2019). Floods cause displacement of people and destruction of 

property as observed with the 2022 floods which affected over 70,000 people 

(International Federation of Red Cross and Red Crescent Societies (IFRC), 2023). 

Baseflow and lateral showed a decline over the period, while total aquifer recharge 

and actual evapotranspiration increased from 2023-2030, and then reduced from 2030-

2100. This highlights the varying response of subsurface and groundwater to 

deforestation and land degradation (Sanström, 1995). A large reduction in lateral flow 

from 2023-2030 is possible because deforestation may reduce the preferential flow 

channels created by Forest and Savanna tree roots within the soil (Wiekenkamp et al., 

2019; Guan et al., 2023). It may reduce the horizontal flow of subsurface water, and 

promote higher percolation, resulting in more aquifer recharge (Wang et al., 2024). 

The loss of Forest and Savanna vegetation may also reduce transpiration amounts and 

evaporation from rain interception, leading to more water stored in aquifers (Ranjan et 

al., 2006). The post-deforestation surface condition (or land use) also affects water 

balance response (Peña-Arancibia et al., 2019), where it is observed that actual 

evapotranspiration increased from 2023-2030, possibly due to the replacement of 

Forest trees with crops, which still contribute to evapotranspiration. The reduction in 
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subsurface flow, aquifer recharge and evapotranspiration from 2030-2100 has 

implications for subsurface water availability, due to decreased infiltration caused by 

natural vegetation loss, coupled with an increase in abstractions (from projected 

population growth) and urbanization. Particularly, they suggest potential risks for 

groundwater sources' sustainability and less water availability in the long term, 

especially given the national water supply services expansion initiative, where 

groundwater is the main source. Actual evapotranspiration remains relatively stable 

with a minimal decrease across the periods, likely because of the balance between 

Forest loss and increased tree crop areas (Lokonon, 2018). However, the steadily 

negative trend could reflect decreased vegetative transpiration as forested areas decline 

and the tree crops are harvested from time to time for building construction, logging 

for firewood, processing etc. 

5.4 Impact of Future Climate Change Scenarios on Water Balance 

The results indicate that the Quantile Mapping was able to reduce the biases in the 

precipitation and temperature data from the Global Climate Models, as similarly 

observed by M’Po et al. (2017a) when they compared Quantile Mapping with the Delta 

Approach and Linear Scaling bias correction method in the Ouémé basin.  Generally, 

the results showed an increase in precipitation from the near- (2021-2040) to mid-term 

(2041-2060), and a decline from the mid- to long-term (2081-2100) under both 

Sustainability (SSP1-2.6) and Regional Rivalry (SSP3-7.0) scenarios, as similarly 

observed by Alamou et al. (2017) using the RCP scenarios. Surface temperature, 

however, increased from the near- to mid-term, and while it increases until the end of 

the 21st century under SSP3-7.0, there is a nearly constant trend from the mid- to long-

term under SSP1-2.6. This suggests that, if activities within the basin focus on 

sustainable measures as in SSP1-2.6, less warm climate would be reached in the long-

term, however if not, warmer climate conditions are expected up to the end of the 21st 

century (Lee et al., 2021). 

The projected climate change showed minimal difference in the temperature values in 

the near-term future between the Sustainability (SSP1-2.6) and Regional Rivalry 

(SSP3-7.0) scenarios. This agrees with the IPCC Fifth and Sixth Assessment Reports 
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on future scenarios which have revealed that the near-term annual global surface air 

temperature (GSAT) levels depend less on the scenario chosen but are more influenced 

by the natural internal variabilities in the climate system such as ocean currents, 

atmospheric patterns, and uncertainties in models. This means that the absolute levels 

of annual GSAT are less sensitive to specific emission scenarios compared to long-

term where scenarios become more influential due possibly to accumulated effects of 

greenhouse gas emissions on global warming. Change in precipitation in the long-term 

future relative to the baseline (1995-2014) values of 3.49 % and 1. 49% for the SSP1-

2.6 and SSP3-7.0 scenarios, respectively, corroborates with the IPCC ranges of 0.0 %-

6.6 % and 0.5 % - 9.6 % for SSP1-2.6 and SSP3-7.0, respectively (Lee et al., 2021). 

The changes in minimum and maximum temperatures of 0.95 ᵒC (3.01 ᵒC) and 0.94ᵒC 

(2.68ᵒC) for the SSP1-2.6 (SSP3-7.0) scenarios in the long-term also agrees with the 

projections by the IPCC sixth report, which outlined an increase within the ranges 

0.5ᵒC – 1.5ᵒC, and 2.0ᵒC – 3.7ᵒC for the SSP1-2.6 and SSP3-7.0 scenarios, 

respectively.  

The reduction in surface runoff under SSP1-2.6 from the near-term to the long-term 

can be explained by the sustainable measures such as reforestation, that are 

implemented under that scenario, which cover/protect and improve soil infiltration, 

thereby reducing runoff rates, even under increasing rainfall pattern observed from the 

near- to mid-term. The increase in runoff from the near- to mid-term under SSP3-7.0 

can be attributed to the higher quantity of exposed land surface and impervious 

surfaces with no conservation measures in place, which enhance runoff, and the high 

magnitude can be explained by the sharp increase in rainfall from the near- to mid-

term. From the mid-term to long-term under SSP3-7.0, however, the sharp reduction 

in surface runoff can be due to the sharp decline in rainfall during the same period, 

which makes less water available even for runoff.  

Lateral flow and total aquifer recharge reduced from the near- to mid-term under 

SSP1-2.6 despite an increase in precipitation, and this can allude to a possible counter 

effect of surface temperature increase during the same period. Under SSP3-7.0, lateral 

flow and aquifer recharge increased from the near- to mid-term, possibly due to the 

higher increase in precipitation though temperature also increased within the same 
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period. From the mid- to long-term, lateral flow, baseflow, and aquifer recharge 

reduced, which is attributable to the high reduction in precipitation and the increase in 

temperature. It is also observed that, under the warmer SSP3-7.0 scenario where 

temperature increased, actual evapotranspiration increased possibly due to increased 

evaporation and transpiration demand from the warmer air (Hounguè et al., 2019). 

However, there was also a small reduction in actual evapotranspiration from the mid-

term to long-term under SSP1-2.6 possibly due to the reduction in precipitation which 

would reduce the amount of water available for evapotranspiration. 

The abrupt increase in precipitation from the near- to mid-term and sharp reduction 

from the mid- to long-term suggest more intense rainfall leading to floods (Hounkpè 

et al., 2022) and extended dry periods under SSP3-7.0. The increase in high-intensity 

rainfall corroborates the study Hounkpè (2016), who assessed the trend of heavy 

rainfall events over the basin from 1921 to 2012. The reduction in precipitation from 

the mid- to long-term under SSP1-2.6 and SSP3-7.0 suggests less frequent rainfall 

compared to the historical period (1995-2014), as similarly observed by M’Po et al. 

(2017b) who assessed the past and mid-century rainfall indices over the basin under 

RCP4.5 and RCP8.5 scenarios.  

The increase in surface runoff under SSP1-2.6 and SSP3-7.0 scenarios from the near- 

to mid-term also aligns with the observation of Alamou et al. (2017), who observed 

increased discharge under RCP2-4.5 and RCP5-8.5 climate scenarios from 2011-2100. 

These trends could lead to more flash floods, which cause displacement of communes 

and destruction of cultivated crops and properties as observed in the past. The extended 

dry periods could increase crop water stress leading to crop failure (Sonneveld et al., 

2012), especially under conditions of increased degradation and less/no sustainable 

environmental measures such as cover crops, reforestation, rain-harvesting systems, 

and green urban spaces. Moreover, the high reduction in subsurface flow and aquifer 

recharge with an increase in temperature indicates that the availability of water to meet 

the household needs of the populace (Togbévi et al., 2020), who mainly rely on 

groundwater sources might be limited in the future unless sustainable climate 

adaptation measures are used (Ariom et al., 2022). Cotton production, for instance, 

could be intercropped or rotated with other crops to improve soil fertility and reduce 
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the vulnerability of such areas to erosion and flooding under extreme rainfall (Dossou 

et al., 2021a).  

5.5 Combined Impact of Future LULC and Climate Change on Water Balance 

Results from combining projected LULC for 2030, 2063, and 2100, with projected 

future climate in the near term (2021-2040), mid-term (2041-2063), and long term 

(2081-2100) revealed influences of both LULC and climate change on water balance 

components.  

An increase in surface runoff from 2030-2063 depicts the reduction in natural 

vegetation (Forest and Savanna) and an increase in Agricultural and Settlements/bare 

land during that period observed in Objective 3. The higher magnitude of surface 

runoff in 2030 under SSP1-2.6 than SSP3-7.0 is attributable to the higher precipitation 

under SSP1-2.6 in 2030. The larger increase in surface runoff from 2030-2063 under 

SSP3-7.0 than SSP1-2.6 depicts the adverse effects of continued unsustainable 

practices (e.g., deforestation, urbanization without green infrastructure, agricultural 

expansion without conservation measures) in enhancing runoff (Hounkpè and 

Diekkrüger, 2018; Abdulkadir et al., 2022). At the same time, the increase in lateral 

flow, baseflow, total aquifer recharge and actual evapotranspiration under SSP3-7.0 

from 2030-2063 can be explained by the higher precipitation increase under SSP3-7.0 

(34 mm/y) than SSP1-2.6 (4 mm/y) from the near term to mid-term. Actual 

evapotranspiration increased from 2030-2063 under SSP1-2.6 and SSP3-7.0 in 

response to increased precipitation making more water available for 

evapotranspiration. An increase in deforestation, Settlements/bare and Agricultural 

land from 2030-2063 also increases the evaporative demand through higher land 

surface temperature. The high magnitude under SSP3-7.0 is attributable to the increase 

in temperature (0.75) while temperature reduced steadily under SSP1-2.6 (0.02).  

Furthermore, the gentle decrease in surface runoff from 2063-2100 agrees with the 

huge precipitation decrease of 49 mm/y for that period, which makes less water 

available for runoff.  The decrease in lateral flow depicts the effect of deforestation 

through a reduction in subsurface pathways created by Forest roots for preferential 

flow (Wiekenkamp et al., 2019). The reduction in baseflow and total aquifer aquifer 
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reflects the decrease in infiltration from increasing Agricultural and Settlements/bare 

lands. The higher reduction magnitude reflects the large precipitation decline in the 

long term (M’Po et al., 2017b) and the high sensitivity of baseflow and aquifer 

recharge to temperature rise as observed in Objective 4. Actual evapotranspiration 

reduced from 2063-2100 under SSP1-2.6 possibly due to the decrease in available 

water for evapotranspiration, despite the small increase in temperature (0.39 ᵒC). 

However, the increase in actual evapotranspiration under SSP3-7.0 can be explained 

by the higher air temperature (1.5 ᵒC) (Hounguè et al., 2019), and unsustainable 

practices such as deforestation for agricultural and settlement expansion. More abrupt 

changes in water balance components under SSP3-7.0 indicate probable extreme 

climate events of floods (Hounkpè et al., 2022) and droughts in the future. 

The changes in the components of water balance showed responses to both LULC and 

climate change. This depicts the interrelatedness of LULC, climate and hydrology 

(Sandström, 1995). However, the trends in water balance components more closely 

followed the trend of climate changes (Sharma et al., 2023), especially precipitation 

which is possible because precipitation is the main source of water in the hydrological 

processes.  

The PLS model confirmed that both LULC and climate change influence changes in 

water balance in the basin. An increase in precipitation and an increase in Forest and 

Savanna areas reduces surface runoff under SSP1-2.6 but increases runoff under SSP3-

7.0. This emphasizes the benefits of sustainable environmental practices such as 

reforestation prevalent under SSP1-2.6, which intercept rainfall and slow runoff as 

observed in Objective 4. While precipitation increases, more water is available for 

infiltration, explaining the increase in lateral flow, baseflow and total aquifer recharge 

under SSP1-2.6 and SSP3-7.0. An increase in temperature reduces surface runoff in 

SSP1-2.6 but increases runoff under SSP3-7.0 likely due to the absence of sustainable 

land practices under SSP3-7.0, compounded by deforestation and an increase in 

Settlements/bare and Agricultural lands. The coefficients also show that Forests reduce 

runoff and improve subsurface flow at a higher potential than Savanna, while 

Settlements/bare land enhances runoff and reduces subsurface flow at a higher 

potential than Agricultural land. It suggests the efficiency of dense vegetation cover 
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and litter to reduce runoff and floods under peak flow events. This improves infiltration 

improving aquifer recharge, which is crucial for groundwater availability for domestic, 

farming and industrial purposes. 

These findings highlight the interactions among LULC, climate and the hydrological 

processes in the basin, underscoring the need for sustainable land and water 

management and climate adaptation measures to improve food and water security and 

reduce extreme events such as floods and droughts. 

5.6 Contribution to Knowledge 

1. This study used multiple historical LULC maps over the Ouémé River Basin 

to assess changes in LULC, and examined the relationship between each LULC 

type and water balance components using linear regression analysis. 

2. Additionally, this study assessed the consistency of the relationships over 

different periods by simulating water balance over multiple periods. 

3. Furthermore, projections of future scenarios of LULC for 2030, 2063, and 

2100 and its impact on water balance were assessed. 

4. Finally, projections of future climate change from the IPCC CMIP6 data and 

scenarios were used to project future changes in water balance that can be 

expected up to 2100. 

5. The impact of combined projected changes in LULC and climate on water 

balance was assessed. 
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CHAPTER 6       CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

This study assessed the impact of land use/cover and climate change on water balance 

in the Ouémé River Basin by examining past trends and projecting future trends. The 

study has shown that deforestation as a result of the expansion of Agricultural lands 

and increasing Settlements/bare areas, and increase in precipitation and temperature 

have a strong influence on hydrological processes such as water balance components 

of surface runoff, lateral flow, baseflow, aquifer recharge, and evapotranspiration. The 

key conclusions are as follows: 

1. Spatio-temporal changes in LULC showed a reduction in Forests (-4.9 %) and 

Savanna (-24.1 %), with increasing Settlements/bare lands (1.1 %) and 

Agricultural land (28.0 %) from 1986-2023 (i.e., 38 years). 

2. The LULC change from 1986-2023 increased surface runoff (32 mm/y) and 

peak flows, suggesting high flooding vulnerability. Lateral flow (6 mm/y), 

baseflow (5 mm/y), aquifer recharge (22 mm/y), and actual evapotranspiration 

(6 mm/y) reduced, potentially leading to limited water availability for domestic 

and farming purposes. Changes in Settlements/bare land and Forests were key 

predictors.  

3. Future LULC projections for 2030, 2063 and 2100 suggest that continued 

trends of increasing Agricultural land and Settlements/bare land will increase 

surface runoff (31.6 mm/y relative to 2023) and reduce lateral flow, baseflow, 

aquifer recharge and actual evapotranspiration. The increase in runoff may lead 

to floods and increase water insecurity through reduced water availability due 

to reduced groundwater recharge in the future. 

4. The projected future climate for 2021-2100 under the SSP1-2.6 and SSP3-7.0 

scenarios shows highly variable rainfall and temperature patterns, that strongly 

influence water balance. This might aggravate the hydrological trends, leading 

to more extreme drought conditions, and intense rains, causing more floods, 

which will affect people, properties and crop production.  
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5. The combined projected future LULC and climate revealed the interactive 

impact of LULC and climate changes on water balance with intermediate 

values compared to the sole projected LULC and climate scenarios. Air 

temperature had the highest influence on water balance changes, though the 

water balance changes trend was similar to that of precipitation changes. 

 

6.2 Recommendations 

Policy 

1. It is recommended that the Ministry of the Living Environment and Sustainable 

Development (MCVDD) in Benin embark on more reforestation activities and 

discourage deforestation through regulation enforcement. 

2. The Ministry of Agriculture, Livestock and Fisheries should also encourage 

agricultural intensification with conservation agriculture practices, such as 

minimum soil disturbance, planting cover crops, diversified plant species 

(water efficient crops), and intercropping to protect the soil and reduce runoff. 

3. NGOs, Research Institutes, and the Ministry of Agriculture, Livestock and 

Fisheries should train farmers on the effect of continuous agricultural land 

expansion, and the benefits of conservation agriculture practices to limit future 

runoff impacts. Green urban infrastructure and vertical expansion of cities are 

also recommended for the Ministry of Planning and Development to reduce 

runoff. 

4. Finally, it is recommended that the Ministry of Planning and Development 

encourage and incorporate adequate green spaces in development plans to 

reduce the impacts of extreme rainfall and temperature, which lead to floods 

and heat-related illnesses. 

Research 
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1. Alternative satellite data (higher resolution if possible) and LULC 

classification algorithms should be considered to validate the results from this 

study. 

2. Further investigation into the impact of specific crop types on surface runoff, 

subsurface flows, and aquifer recharge, testing other hydrological models or 

coupling SWAT with a groundwater model (e.g., MODFLOW) to validate 

water balance estimations. 

3. The projection of LULC considering multiple land change models is suggested 

for further studies to improve the results from this study.  
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Appendix 

1. Area-based accuracy assessment computations 

1. Stratus weight, Wi =
Total Individual Class Area (km2)

Total Area of the classified pixels (km2)
  

2. Area proportion = Wi × (
Pixels in each LULC class

Toral pixels for each LULC class
)  

3. S(A^) = √∑
Wi×Ṕij−Ṕij

2

ni−1
5
i=1  

Where: 

S(A^) is the standard error of area estimate for LULC class i  

Ṕij is the value of LULC class i against class j in the area-based error matrix 

ni is the total number of classified pixels for LULC class i 

2. Water Balance Simulation 

 

Figure 2A: Quantile-Quantile Plot of Average Annual Water Balance across Historical 

LULC Maps (1986, 2000, 2015, and 2023) and different Simulation Periods 
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Figure 2B: Average annual surface runoff based on the four LULC across the three 

simulation periods. The label “letters” stand for the LULC map (A-1986, B-2000, C-

2015 and D-2023), and the “numbers” for the simulation period (1 is period 1998-

2008, 2 is period 2008-2016, and 3 is period 1998-2016) 
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Figure 2C: Average annual surface runoff simulated based on future LULC maps for 

2030, 2063 and 2100 over the basin 

 

 

 

 

 

 

 

 

 

 

 

3. Future Climate Projections (Bais-Correction results) 
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Figure 3A: Reference (CHIRPS) Precipitation versus Uncorrected (a) and Corrected 

(b) Climate Model Data, showing lower mbe for the bias-corrected model data 

 

a 
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Figure 3B: Precipitation data from the ACCESS-CM2, MIROC-ES2L, MPI-ESM1-2-

LR, IPSL-CM6A-LR, EC-EARTH3-Veg-LR and the ensemble mean, showing the 

bias-corrected, uncorrected (raw model data) and reference (CHIRPS) 
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Figure 3C: Reference (ERA5) Maximum Temperature versus Uncorrected (a) and 

Corrected (b) Climate Model Data, showing lower mbe for the bias-corrected model 

data 

 

 

a 

b 



 

155 

 

 

 
Figure 3D: Reference (ERA5) Minimum Temperature versus Uncorrected (a) and 

Corrected (b) Climate Model Data, showing lower mbe for the bias-corrected model 

data

a 
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4. Variable Importance in Projection (VIP) 

Table 1A: VIP scores obtained for the LULC types depicting their importance in 

influencing surface runoff (SURF), lateral flow (LATF), baseflow (BF), total aquifer 

recharge (TAR) and actual evapotranspiration (ET_actual) across the three periods. 

Variable Importance in Projection (VIP) scores 

1998-2008 

LULC 

type 

SURF LATF BF TAR Actua l 

ET 

FRST 0.966 1.445 0.998 0.964 0.981 

STB 1.002 0.639 0.946 0.994 1.003 

SAV 1.016 0.962 1.048 1.024 1.018 

AGR 1.015 0.759 1.005 1.017 0.997 

𝑹𝟐 0.996 0.934 0.954 0.985 0.968 

2008-2016 

LULC 

type 

SURF LATF BASF TAR ET 

FRST 0.969 1.016 1.096 0.970 0.974 

STB 1.004 0.999 0.933 0.979 1.005 

SAV 1.013 0.987 1.017 1.035 1.018 

AGR 1.014 0.997 0.946 1.015 1.002 

𝑹𝟐 0.997 0.995 0.946 0.980 0.980 

1998-2016 

LULC 

type 

SURF LATF BASF TAR ET 

FRST 0.967 1.014 0.967 0.966 0.968 

STB 1.003 0.999 0.985 0.999 1.009 

SAV 1.015 0.988 1.031 1.017 1.016 

AGR 1.014 0.998 1.015 1.016 1.006 

𝑹𝟐 0.997 0.995 0.988 0.98 0.986 

 

 


