
Conclusion
m we detected a potential rockslide (approx. 10  m³ of rock involved) at the Zugspitze summit crest4

m first ERT measurement in August 2014 revealed a mostly frozen north slope and mostly unfrozen south slope of the crest
m tensile strength and P-wave velocity of Zugspitze limestone decrease respectively 15% and 30% from subzero (-20°C) to 
positive temperature (20°C)
m we want to develop and calibrate a rock-ice-mechanical model of stability changes in thawing permafrost rocks 
m we plan to develop a 2D numerical failure model of the rock slope at the Zugspitze summit incorporating the influence of 

warming permafrost
m work is in progress due to the first year of my PhD
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Task 3: Spatial and temporal assessment of rock instabilities
m Spatial pattern of instability
m  discontinuity analysis (including orientation, persistence, spacing, roughness, aperture and 

filling)
m  SRT (see task 2) --> spatial discontinuity pattern in the underground
m  discontinuous extensometer measurements (since 2009)

Temporal pattern of instability
m  continuous hourly crackmeter measurements (2009-2010 and since 08/2014; Fig. 13 and 14)

m Results for spatial pattern (2009-
2014):

m total deformations up to -8.5 cm
m deformation rates between -0.5 cm and -2 cm
m largest deformations (transects H5-6 and H7-8) at 

mostly unfrozen south slope across persistent 

Fig. 15: Crack movements at extensometer sections adjacent to 
transect A-B.
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Task 2: Assessment of spatial permafrost distribution

m  Electrical Resistivity Tomography (ERT) and Seismic Refraction Tomography (SRT) along transect A-B (Fig. 11)
m  Calibration of geophysics in the field: temperature measurements by iButtons/loggers (in 10-80 cm depth in the rock along transect A-B; Fig. 7)
m  Calibration of geophysics in the lab: Resistivity and P-wave velocity measurements of Zugspitze limestone samples (Fig. 12)

Result of ERT:
m  large zones of high resistivity (> 60-100 k m) at the north face of the crest indicating frozen rock, and large zones of lower resistivity (< 60 Ω

k m) at the south slope indicating unfrozen conditionsΩ
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Results for p-wave velocity of Wetterstein limestone:
m decrease of 15% from saturated frozen to saturated unfrozen 

condition 
m average for frozen samples: 6877 +/- 337 m/s 
m mean for unfrozen samples: 5959 +/- 818 m/s
m DRÄBING & KRAUTBLATTER (2012) measure p-wave velocity of 

Wetterstein dolomite: increase of 70% (3723 to 6383 m/s) 
parallel to cleavage and increase of 220% (1879 to 6068 m/s) 
perpendicular to cleavage when freezing

Fig. 3: Seismic measuring device in the laboratory (Photo: R. Scandroglio)
Fig. 4: Boxplot of p-wave velocities in 51 Zugspitze limestone samples.

Fig. 6: Sketch of rock-ice mechanical model referring to permafrost affected rocks (KRAUTBLATTER et al. 2013)

m Next steps:
m  tests on i) mode I and II fracture toughness (Kic and Kiic) of intact rock bridges and ii) 

friction along rock discontinuities without ice infill (3 and 4 in fig. 6)
m  tests under positive and sub-zero temperatures with i) compressive loading device (fig. 1) 

and ii) direct rock shearing machine in cooling box (fig. 5)

m  P-wave velocity: indicator of rock resistance to fracturing/failure due to its close 
correlation to mode I fracture toughness (CHANG et al. 2002)

m  SRT along transect A-B (task 2) combined with mode I fracture touhgness lab-tests --> 
degree of rock slope resistance to fracturing/failure at test site

Task 1: Temperature related changes in rock-mechanical properties

Results for Brazilian tests / indirect tensile strength of 
Wetterstein limestone:

m decrease of 30% from saturated frozen to saturated unfrozen 
condition

m average for frozen samples: 6.6 +/- 2 Mpa 
m mean for unfrozen samples: 5.1 +/- 1.4 MPa

Fig. 1: Instrumentation for Brazilian tests in the laboratory (Photo: R. Scandroglio). 
Fig. 2: Boxplot of Brazilian tests with 29 Zugspitze limestone samples.
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Study site
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S N m  Wetterstein crest (2885 m a.s.l.), ca. 150 m south-west of 
Zugspitze summit, Germany

m  potential rockslide at the south face of the crest that 
involves about of rock410  m³ 

m  characterized by degrading permafrost

m  mostly positive rock temperatures at south slope 
(GUDE & BARSCH 2005)

m  persistent ice-filled cave and joints confirm presence 
of ice at the crest

m  deep thermokarst caves, persistent faults and bedding 
planes which unfavourably dip out of the slope face
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Fig. 7: View from Zugspitze summit onto study site. Red dotted line presents 
transect A-B of geophysical permafrost monitoring.
Fig. 8: One of the most persistent faults at the site dipping into the southern slope 
face (photo: M. Krautblatter).
Fig. 9: Rock deformations at the crest (photos: M. Krautblatter).
Fig. 10: Cross-section of the crest showing one of the most persistent faults at the 
test site (fig. 8) delimiting the estimated   m³ of sliding rock mass.410
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m climate-induced degradation of permafrost can influence 
stability of rock slopes in alpine environments

m increasing number of rockfalls/rockslides of all magnitudes 
originate from permafrost-affected rock faces

m shear resistance of rocks reduces under thawing conditions:

m  fracture toughness of intact rock bridges, compressive 
strength, tensile strength and shear strength

m impact of thawing rock on its mechanical properties that 
control early stages of destabilization remains poorly 
understood

Background

m How is the impact of thawing rock on its mechanical 
properties?

m --> focus on deformations and stability changes along 
discontinuities

m Zugspitze summit lies close to lower permafrost 
extension limit in northern Alps (NOETZLI et al. 2013) 

m --> sensitive for permafrost degradation and rock 
instability

m How could / actually does permafrost degradation 
influence rock slope instability at the Zugspitze summit 
crest?
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