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Background Aim of study Research concept Task 2: Assessment of spatial permafrost distribution
. . . . . Field work at study site Q Electrical Resistivity Tomography (ERT) and Seismic Refraction Tomography (SRT) along transect A-B (Fig. 11)
O climate-induced degradation of permafrost can influence O How is the impact of thawing rock on its mechanical Calibration in O Calibration of geophysics in the field: temperature measurements by iButtons/loggers (in 10-80 cm depth in the rock along transect A-B; Fig. 7)
stability of rock slopes in alpine environments properties? Task 2: Assessment of spatial laboratory O Calibration of geophysics in the lab: Resistivity and P-wave velocity measurements of Zugspitze limestone samples (Fig. 12)
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Saturated Frozen Fig. 2: Boxplot of Brazilian tests with 29 Zugspitze limestone samples. QO potential rockslide at the south face of the crest that QO discontinuous extensometer measurements (smce 2009)
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average for frozen samples: 6877 +/- 337 m/s
mean for unfrozen samples: 5959 +/- 818 m/s

DRABING & KRAUTBLATTER (2012) measure p-wave velocity of
> u | Wetterstein dolomite: increase of 70% (3723 to 6383 m/s)
= _ parallel to cleavage and increase of 220% (1879 to 6068 m/s)
perpendicular to cleavage when freezing

6000 ; QO mostly positive rock temperatures at south slope

(GUDE & BARSCH 2005)

Q persistent ice-filled cave and joints confirm presence
of ice at the crest
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O total deformations up to -8.5 cm

| —_— _— | QO deformation rates between -0.5 cm and -2 cm

: - | — — O largest deformations (transects H5-6 and H7-8) at
: | — — mostly unfrozen south slope across persistent
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Fig. 15: Crack movements at extensometer sections adjacent to
transect A-B.
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Fig. 3: Seismic measuring device in the laboratory (Photo: R. Scandroglio)
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Fig. 4 Fig. 4: Boxplot of p-wave velocities in 51 Zugspitze limestone samples.

Conclusion

O we detected a potential rockslide (approx. 10° m? of rock involved) at the Zugspitze summit crest

O first ERT measurement in August 2014 revealed a mostly frozen north slope and mostly unfrozen south slope of the crest
O tensile strength and P-wave velocity of Zugspitze limestone decrease respectively 15% and 30% from subzero (-20°C) to
positive temperature (20°C)

Cave structure allows
profile view of the
shear zone. Ice filled
joints are exposed.

o Next steps:

QO tests on i) mode | and Il fracture toughness (Kic and Kiic) of intact rock bridges and ii)
friction along rock discontinuities without ice infill (3 and 4 in fig. 6)
Q tests under positive and sub-zero temperatures with i) compressive loading device (fig. 1)
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and ii) direct rock shearing machine in cooling box (fig. 5) A g 1k O we want to develop and calibrate a rock-ice-mechanical model of stability changes in thawing permafrost rocks
a0 7= O we plan to develop a 2D numerical failure model of the rock slope at the Zugspitze summit incorporating the influence of
O P-wave velocity: indicator of rock resistance to fracturing/failure due to its close i Fig. 10 warming permafrost

correlation to mode | fracture toughness (CHANG et al. 2002) A OBViETonal 758 QO work is in progress due to the first year of my PhD

. . B. hydrostatic pressure F. 7 V' 7 . . d . R dd d/
Q SRT along transect A-B (task 2) combined with mode | fracture touhgness lab-tests --> ig. 7: View from Zugspitze summit onto study site. Red dotted line presents

Shear resistance transect A-B of geophysical permafrost monitoring.

C. ice segregation
degree of rock slope resistance to fracturing/failure at test site

i . Fig. 8: One of the most persistent faults at the site dipping into the southern slope References
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Fig. 10: Cross-section of the crest showing one of the most persistent faults at the
test site (fig. 8) delimiting the estimated 10" m?3 of sliding rock mass.

Fig. 6: Sketch of rock-ice mechanical model referring to permafrost affected rocks (KRAUTBLATTER et al. 2013)
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