

# **P**ARAMETER STUDY OF NOTCH EFFECT ON ALUMINIUM CROSS JOINTS WITH DIFFERENT ANGLES CONSIDERING MULTIAXIAL STRESS STATES

### Content

The fatigue behavior of aluminum components is of great importance in lightweight construction. In the course of a research project, the influence of multi-axial stress conditions on fatigue strength is to be investigated, among other things. A series of static and dynamic tests is planned for this purpose. Cross joints with different angles between longitudinal weld direction and force direction are to be tested and analyzed.

In a completed master thesis at the chair, the basic numerical models (Figure 1) of a cross joint with different weld angles (30°, 45°, 60°, 90°) were created, and initial analyses of the stress concentrations were carried out. Based on this, a parameter study (e.g. variation of widths and thicknesses) will be carried out in the course of this master thesis, from which a first general analytical description of the stress concentrations and an approach for a design concept will be derived. The focus is on the multi-axial stress states at the weld. If appropriate, possible eccentricities can also be implemented and considered.

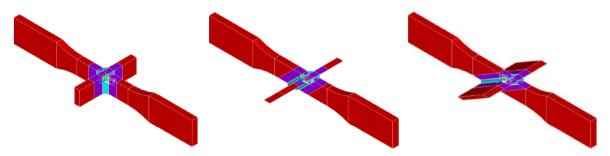



Figure 1: Numerical models of cross joint with different weld angles

#### Tasks

- Familiarization with ANSYS and the theory of fatigue behavior of aluminum
- Parameter study of notch effect at the cross joints with different weld angles
- Investigation of the multi-axial stress conditions at the weld seam
- (if appropriate implementation of eccentricities and possible influences from the restraint)
- Development of a first design concept for inclined welds
- Preparation and summary of the results

## Processing period

flexible, from now on

## Prerequisites

Good knowledge in mechanics, FEM and basics in fatigue knowledge beneficial

 Mail:
 dorina.siebert@tum.de

 Tel:
 089/289-22527

 Room:
 0101.Z1.0378