

Short manual to the EXCEL-tool: TRUSS

1. Announcements / Preparations

Announcements

This short manual to the EXCEL-based tool TRUSS which accompanies the course in Non-linear FEM shall help to give a first introduction and some hints concerning the possibilities and the handling of the software.

Where to download:

EXCEL-based tool TRUSS can be downloaded at the Moodle page of the course Non-linear FEM or the homepage of the chair of structural analysis under Home/Software/Education/Truss

Content:

The manual is subdivided in three main parts:

- Sections 2-7 explain the basic steps in a simple example (two-bar truss)
- Section 8 presents the different solution algorithms (i.e. path following methods) and section 9 illustrates some special features
- Section 10 and 11 explain how to export & import models.
- Section 12 answers some questions and shall give hints to work around some bugs

If you would like to enhance the tutorial with more hints you are cordially invited.

Preparations

Generally: This tutorial implies the use of Microsoft EXCEL® 2007, 2010 or 2013.

General preparations in Excel:

TRUSS consists of one main file *Truss-16.xlsm*, which is an EXCEL® file with macros. For this reason you have to enable the use of macros in EXCEL®. There are two ways to do so:

1. Standard settings:

By default macros are blocked and EXCEL[®] and when opening the main file *Truss-16.xlsm* EXCEL[®] asks if you would like to activate them. You have to confirm this.

Datei	Start	Einfügen	Seitenla	yout Form	neln Date	n Überpi	rüfen Ar	isicht Entwi	cklertools A	dd-Ins	Acrobat	Team			
	🔏 Aus	ischneiden	Arial	* 10	· A A	= =	₩,-	📑 Zeilenumb	ruch	Standa	rd	•	< IN	<u> </u>	Sta
Einfüger ~	- For	mat übertragen	FK	<u>u</u> - <u> </u>	🍐 - <u>A</u> -		∎ 4≢ 4≢	•a• Verbinden	und zentrieren	• 🕎 •	% 000 50	,00 Bedi	ngte / ierung * fo	Als Tabelle Irmatieren *	Sta
Zv	vischenal	blage 🖓		Schriftart	5	i	Au	srichtung			Zahl	G.	_		
🧵 Sic	herheitsv	warnung Einig	e aktive Inh	alte wurden d	eaktiviert. Klic	ken Sie hier, u	m weitere De	tails anzuzeiger	Inhalt akti	vieren					
	D36	• (=	f_x												
	А	B	С	D	E	F	G	Н	- I	J	K	L	M	N	
1 2 3		Read	B	c	eqn.#	displa	acemen	nodes	-		No	n-linea	r Tru	SS	
4		Attentions Ober									Le	hrstuh	l für S	Statik	
5		Attention: Star	cinput in ce	II B7!										1	
7		1	× 0	y	2	u	current	support	E	lements		Project: Tr	_01_vonN	lises	
8		2	1	1	0	Support	Support	support				Some comp	onte:		
9		3	2	0	0	support	support	support		Loads		Joine comm	ienta.		
10												Columnsu, v	(, W		
11												 Define sup 	port condi	tions by a te	xt str
12		┠───┼										note: blank	is a text	sungalso	,

? = 8 : Mri - [C

2. Allow macros by default:

Main Menu in EXCEL 2013

Then go to *Trust Center* and click on *Trust Center Settings*.

Trust Center in EXCEL 2013

Go to Macro Settings and activate the check box Enable all macros.

Trust Center in EXCEL 2013

Remark: This option allows Excel in general the usage of Macros!

Start a calculation

- Download the program from the website of the course NFEM
- Unzip the file to a local directory (e.g. Desktop)
- Open the file *Truss-16.xlsm* (above of Cell A1, a security warning dialog appears; click on "Options" and mark the buttons "enable this content" in order to activate the macros).
- The file is already filled with the input of the following 2-bar-truss example.

Start with the nodes-sheet

In the following, the principles of how to work with the program will be explained in a short example. If you encounter an error message, have a look at Section 10.

Example:

Task: Analyse the deformation behaviour of the system given above. Follow the primary path using proper path-following methods and determine critical points.

2. Nodes & Boundary Conditions

at in	A	В	С		D	E	F	G	Н		J	К	L M
	(Read		вс		eqn.#	displ	acemen	nodes			No	n-linear Truss
			_		_							l e	hrstuhl für Stati
		Attention:	Start inp										inotani rai otati
		node	8		у	z	u	U U	W		Flomonte		
		1		0	0	0	support	support	support		ciements		Some comments:
		2		1	1	0			support				Columnet u v w
		3		2	0	0	support	support	support		Loads		Define support conditions by s
											20005		note: blank"" is a text string a
-				-+									-
-				_					_				 Degrees of freedom (dof) are
				_									Cell must be empty. Blank is r
													• Link degrees of readom by er
													Two dofs are linked by the sar
													integer number of your choice
											-		
											Plot		Define elastic spring stiffness
							support	support	support				Columns x, y, z
									support				Enter x, y, z coordinates
							support	support	support		Restart		
													 Define contact conditions (rigit
													x > xref, meaning: x undef
_											Time Step		y < yrer, meaning: y under
-													
													Display
										— <u> </u>	new		Press buttons:
				_									BC boundary condit
1.1	No	odes / Der	nents 🧳	Load	ls 🖉 Pre	dictor /	Grafik 🖊 S	tiff 🖉 Svs	tem / Movie	4			

• Initialize a new problem by clicking on

new

- Enter the node numbers and the respective coordinates
- Enter the support conditions for every node:
 Every node has 3 degrees of freedom (DOF) u,v,w in the global directions x,y,z which can be either fixed free. To ensure that a DOF is **fixed**, this means the deformation in this direction is blocked, enter any string in the appropriate cells (e.g. *"support"*). In case the DOF should be **free** leave the cell empty. If the support consists of a **spring**, enter the spring's stiffness in these cells.
- Read in the entered data by clicking Read (you automatically jump to the Elements-sheet)
 By clicking on BC , eqn.# or displacement , you can switch between the following views in the Nodes-sheet:

BC	Boundary conditions (initial view)
eqn.#	Equation number of the specific DOF
displacement	displacement of the specific DOF

3. Elements

. A	A	В	С	D	E	F	G	Н		J	K	L	M	N 🗆
1														· · · · · · · · · · · · · · · · · · ·
2		Read					Elo	monto		Non li	noor T	ruce		
3							Ele	ments		NOII-II	ilear i	Tuss		
4														=
5		Attention:	Start input in	cell B7!										
6		Element	Node i	Node k	E	A	Fo	Formulation		Nodes	Formulat	tions		
7		1	[1	2	1	1	0	GL		Houses	GL (Green-Lagrange Engineering strain		
8		2	. 2	3	1	1	0	GL			EUL I	Euler Almansi		
9										Loads	LOG L	ogarithmic Linear		
10										Loads		cirical		
11														
H 4	🕨 🕅 🔣 No	ode: 📜 Eler	nents 🖉 L	oads 🖉 Pre	edictor 🏑 (Grafik 🖉 St	iff 🖉 Syste	em 🏑 Movie						▶ [

- Enter the element number, its beginning (i) and ending node (k)
- Enter the Young's modulus **E** and the cross-section **A**
- F_0 would be the pre-stress, which we don't need for the moment. Just leave it empty (i.e. = 0)
- Choose the element formulation. Use the acronyms explained in the blue box on the right.

Read

• Read in the entered data by clicking

(you jump automatically to the Loads-sheet)

4. Loads

- 4	А	В	С	D	Е	F	G	Н	I	J
1										
2		Read	unso	aled		Loads		- Non-l	inear '	Truss
4									intour	
5		Attention:	Start input in	cell B7!	Step:	11	Hist	orv		
6		Node i	Fs	Εy	Fz	Load factor	Step	Factor		
7		2	0	-1	0	1,00E-02	. 1	0,01		Nodes
8							2	0,02		
9							3	0,03		Elemente
10							4	0,05		Elements
11							5	0,1		
12							6	0,0136		
13							7	0,015		
14							8	0,3		Reset
15							9	0,5		Load Step
16							10	0,7		
17							11	1		Plot
18							12			1101
19							13			
20							14			
21							15			
22							16			
22										

- Define the position of the loads by entering the node-number (column B)
- The components of the load $(F_{x_x}F_{y_y}F_z)$ have to be given in global directions (negative sign \rightarrow opposite direction to the global axis); per node only one set of loads $(F_{x_y}F_{y_y}F_z)$ can be used.
- Enter the load factor in the red marked cell e.g. **0,01** . All loads will be scaled with the **one and only** load factor λ .

Read

• Read in the entered data by clicking

(you automatically jump to the Grafik-sheet)

5. Graphic

6. Solving the problem

A pop-up menu "solution options" automatically appears, giving three solution algorithms:

- load control
- arc length method
- displacement control

Note: these algorithms and their handling will be explained more in detail in section 7.

This dialog is also available by clicking

Sol.Options

- in the System-sheet.
- Choose "load_control" as solution algorithm (for this example).
- Check all display-options in the "general parameters" column.
- Choose a solver and set the number of "max. Iteration" to e.g. 80.
- Confirm with **OK**

Stiffness Solve Loads Nodes Predictor Plot Grafic Sol.Options Automatic Bracketing Movie 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 33 4 25 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 4 5 26 27 28 9 30 31 32 33 4 5 5 6 37 38 9 9 4 1 42 **Iterations** Du Rhs 0.707 0 Truss Arch 0.5 0,45 0.4 0,35 0.3 ਲੈ0,25 **~** v det 8 0,2 0,15 0,1 0,05 0 õ -0,002 -0.004 -0.006 -0.008 -0.01 -0,012 -0,014 -0.016 Displacements H ◀ ▶ ▶ Nodes / Elements / Loads / Predictor / Grafik tiff System Mov MovieData 🖉 🖣

Now the system-sheet is available:

DlgDiagram

data

dof

curves

add new curve:

disp

2

h: disp2 v: lambda t: v

h: disp1 v: lambda t: u

•

-

label

add

quit

ok

vertical

data

dof

detK

•

The diagram depicts the "Load Factor – Displacement" Curve.

The data to be shown in the diagram can be chosen by clicking on

|--|

In this dialog you can enter and add (or remove) specific curves of the diagram.

- To remove a line, select it and the click on **remove**
- To add a line, specify the data plotted in the horizontal and the vertical axis. For displacements ("disp"), select the DOF which should be used. You can find the DOF for a certain displacement of a node in the Nodes-sheet by clicking on

remove

- Do not forget to label the new data curve with a meaningful label.
- To add the new data curve click on add
- Confirm with **OK**

Above the diagram, you can see the equation system with the current stiffness matrix, the load, the residuum (RHS) and displacement for the specific DOFs.

to solve the equation system and to go one step further on the path of equilibrium. The load-

Press **Solve** to solve the equation syster displacement curve will be updated accordingly.

For control: the residuum vector (right hand side vector) **Rhs** should be approximately equal to zero.

A	В	C D	E	F	G	Н	1	J	К	L	М	N	0	Р	
2	Solve	Loads	Nodes	Predictor		Plot	Grafic	Sol.Optic	ns	Stiffness	Auto	matic	Bracketing	Movie	E
3					_										4-17
5	Iterations		Kt		Du		Bhs		u						+
6	4		1	2											
7	c	1 0,65275	i48	0)	0		0						
8		2	0 0,544050	07	-1,44E-0	9	-4,86E-17		-0,080071						
9															
10							\sim								
12						True	e Arch								
13						TTUS	SAICH								$\left \cdot \right $
14			0,5												
15															
16			0,45				+ +								
17															+
18			0,4				+ +		+						+
20															
21			0,35	_					-						
22															
23			0,3												
24											_				
25			a.25						_						
20			ě								ĸ				
28			8 0.2								``				
29			2												
30			0.15												
31															
32			0.1												
33															
35			0.05												+
36			0,05 Y												+
37			<u>~</u>												\square
38			0	-0.01 -0.	02 -0.03	-0.04	-0.05 -0.06	-0.07	-0.08 -0.	09					
39			-												
40						Displace	ements								
41															<u> </u>
		ba /1 anda /1	Dec distant	C-EL C		110	a Allanda D	ata II d						-	
	odes 🧹 Element	ts / Loads / I	Predictor 🔬		un j Syst	em (Mo)	e 🔬 MovieD	ata 🖉 🖣			1111				
To compu	te the next	time step	on the p	oath of e	quilibri	um, clio	ck on	Loads	an	id enter	r a nev	v load	-factor ir	the Lo	ads

Confirm with

Read

In the System-sheet press **Solve** to solve the new equation system. The load-displacement curve will be updated accordingly.

7. Movie

By clicking on **Movie** you come to the Movie-sheet where you can watch the results for each time step. The view of the system (Grafik-sheet) can be changed by rotating and moving.

Basic functions are:

- Scroll
- Rotation (all axes)
- Scaling factor
- Time steps

8. Solution algorithms

Clicking on

Sol. options

in the System-sheet gives options for the solution algorithm:

The goal of all algorithms is to find the next point of equilibrium on the unknown load-displacement curve.

in the System-sheet in order to

- By using the "load control method" displacements are calculated to satisfy equilibrium to the given load factor.
- The "displacement control method" determines the load factor to satisfy equilibrium for prescribed displacements.
- The "arc length method" creates a scaled tangent vector (predictor) at the end of the existing equilibrium path. The initial point of this vector is the midpoint of a circle, the length is the radius. For the so-defined circle the intersection with the equilibrium path will be evaluated. This intersection is the next point of equilibrium, which is displayed in the plot. In general both, the load factor and the displacements, are changed at the same time by prescribing the predictor.

8.1 Load-control

 \rightarrow Already described in the example above.

8.2 Displacement Control

Click on **Solution options** get to the following dialog:

• Activate "displacement control" .

• This method requires the prescribed displacement for one DOF.

For our example this could be the vertical displacement of the top node: displacement v of node 2

OK

- Confirm your input with
- Click on **Nodes** to get to the nodes-sheet. Here you can enter the prescribed displacement for the specified node in the now the *red marked cell*.

	А	В	С	D	E	F	G	Н	I	J	к	L	М	N	
1 2 3		Read	в	c	eqn. #	displac	emen r	odes		ПП	No	n-linea	r Trus	S	
4		Attention:	Start input in	cell B7!							Lei	hrstuhl	für St	tatik	
6		node	×	У	z	u	v	w		Elements		Some comme	nts:		-
8		2	1	1	0		-0,05	0				Columna u.			
9		3	2	0	0	0	0	0		Loads		• Define st	upport co	nditions by	5
11												note: bl	ank " " i	is a text s	•
12												• Degrees (of freedo	m (dof) are	
14												Cell mus	lly. t be empt	y. Blank i	
16												• Link deg	rees of r	eedom by e:	r
18 19										Plot		relation. Two dofs xx is an	are link	ted by the	-
	•	Node	es Elem	nents L	oads F	Predictor	Grafik	s (1		Þ]

Read in the new displacement by clicking on Read

.

- Back in the System-sheet, solve the equation system by clicking on **Solve** The load-displacement curve will be updated accordingly.
- Repeat the last 3 steps for more incremental steps on the path of equilibrium.

7.3 Arc Length Method

Hint: In the Nonlinear Truss Program, a secant is used instead of a tangent for the specification of the direction of the

Sol. options

predictor. Therefore, it is necessary to do a first iteration-step with the "load control method" in order to obtain 2 points from the equilibrium path to determine the direction of the secant.

Procedure:

In the System-sheet:

- Check "arc length method" in the of the System-sheet.
- Check also "constraints" in the column of "Display".
- Confirm your choices with
- Click **Predictor** to get to the Predictor-sheet.

OK

• An equation system appears in matrix notation.

In the column C the current displacements and the current load factor are displayed. Column D shows the distance of the next point of equilibrium in the direction of the displacements and the load vector respectively, which will be reached with the next predictor.

	× A		В	C	D	E	F	G	Н	1	J	K	L	E
1														-
2			Read					Droc	linter		Non li	noor T	-	
3	i		Read					Frec	lictor		NOII-II	near r	russ	
- 4														≣
5	i		Attention:	Start input in	cell B7!			_						
6	i	[DOF	ulλ	Δυ Δλ	eigen vec.	combi.	Predictor	2					
- 7			1	0,00E+00	0,00E+00	0	1	0	1,00E+00		Nodes			
8			2	-0,080071	-5,05E-02	0		-0,130558						
9			λ	0,05	3,00E-02	0,03		0,08	Į			1		
- 10)										Elements			
11												<u> </u>		
12	2													
13	}													
14	ļ.										Devet	L		
15	5										Reset			
16	6													
17	'													
18	}										FIOT			-
10	1		1 /=1	·		P. 1.	CI / CI	.55 / 0 1				1		1
14	-	NO	aes 🏑 Eler	ments 🔬 Li	olog 📜 Pre	edictor 🦯	zafik 🔬 St	iff 🔬 Syste			1111			

- Change the length of the predictor (column H) e.g. 1.0
 Note that the length of the new predictor is always calculated relatively to the length of the last increment (the length of the last secant).
- The new value has to be read in. Read
- Back in the System-sheet, solve the equation system by clicking on The load-displacement curve will be updated accordingly.
- Repeat the last 3 steps to change the length of the predictor again and calculate more steps on the equilibrium path.

9. Special features

 If the "arc length method" is active the equilibrium path can be generated automatically: Click on Automatic and enter the number of incremental steps which should be done.

Note that the length of the predictor will be constant for these incremental steps.

2) You can go back in your calculation to any previous step using the

Reset -button:

Solve

for the "load control method" in the Loads-sheet

for the "displacement control method" in the Nodes-sheet

and for the "arc length method" in the Predictor-sheet sheet

3) When the "arc length method" is selected you can find critical points (det K = 0) by clicking on **Bracketing** and entering a giving amount of steps, if you are next to such critical point.

Types of critical points:

- bifurcation point (detK = 0)
- limit point (detK = 0 and horizontal tangent of the equilibrium paths)
- turning point (detK = 0 und vertikal tangent) \rightarrow not in this example
- 4) How to get secondary path in this diagram?
 - a. Set the "Combi" factor in the Predictor-sheet to **0**. The search direction of the predictor will be changed from the primary path to the secondary path.
 - b. The new input again has to be read in by clicking **Read**
 - c. Continue solving the problem as described in section 7.3.

10. Export

You can export your calculation example into an *.xlsx* file (EXCEL[®] file without macros) which contains all your input like nodal coordinates, elements and loads – and also solution information if you already solved your problem. The exported *.xlsx* file is only a data storage. In order to run an exported file, look at chapter 11. Import.

	Α	В	С	D	E	F	G	Н	1	J	K L M I
1 2 3		Read	В	c	eqn. #	disp	lacemen	nodes		ΠП	Non-linear Truss
5		Attention: St	art input in ce	ell B7!							Lenrstuni für Statik
6		node	Х	у	Z	u	V	W		Flements	Project: Tr 01 vonMises
7		1	0	0	0	support	support	support			,
8		2	1	1	0			support		sheel	Some comments:
9		3	2	0	0	support	support	support		LUaus	
10							_				Columnsu, v, w
11							_		-		Define support conditions by a t note: blank"" is a text string als
12										-	note, blank is a text stillig ala
14							-			Plot	 Degrees of freedom (dof) are gr
15											Cell must be empty. Blank is no
16										Time Step	
17										- <u> </u>	 Link degrees of reedom by enter Trus defenses bisland by the set
18											integer pumber of your choice
19											integer number oryour choice
20											 Define elastic spring stiffness b
21						support	support	support		Restart	
22							_	support			Columnsx, y, z
23						support	support	support		new	 Enter x,y,z coordinates
24											Define sectors different (sinid
25											Define contact conditions (rigid x > yref_meaning; x _ undefer
20											v < vref. meaning: v undefor
21										Import	"less than" or "greater than" is p
29										import	
30									1		Display
31										Export	Press buttons: BO bounder: condition
32											BC Doundary conditio
33	-										displacement displacement
4 4 ▶	V Noo	des Element	ts / Loads /	Predictor	Grafik / St	iff / Syste	m / Movie	MovieData	GraficSetU	Jp / Optil 4	

11. Import

You can import the data base of an exported example by clicking on Import in the nodes sheet and selecting the respective *.xlsx* file.

0	Attention: S	tart input in ce	ell B7!									Tur Otatin
6	node	Х	у	Z	u	V	w		Elements		Project: Tr	01_vonMises
7	1	0	0	2	0 support	support	support	-				
8	2	1			0		support		Loads		Some comm	ents:
9	3	- 4	((, 	usuppon	support	support	-			0.1	
10							_				Define sup	<u>. W</u> port conditions by a text
12					-		-	-			note: blank	" is a text string also
13					-							io a tone on high a co
14									Plot		 Degrees of 	freedom (dof) are gene
15											Cell must b	e empty. Blank is not er
16									Time Step		Link da ara	fhh
17											Link degree Two defe or	s of reedom by enterin
18											integer num	ber of your choice
19											integernan	
20									Destart		 Define elas 	tic spring stiffness by a
21					support	support	support		Restan			
22							support				Columnsx, y	<u>Z</u>
23					support	support	support		new		 Enter x,y,z 	coordinates
24											Define cont	act conditions (rigid ob-
26											x > xref. me	aning: x undeforme
27										_	y < yref, me	aning: y undeforme
28								6	Import		"less than"	or "greater than" is poss
29										/	Diaplay	
30									Export		 Press butto 	ne:
31									Lapon		BC	boundary conditions
32											egn.#	gerenated equations
33											displaceme	nt displacements (a
4 4 1	Nodes Elemen	ts / Loads	Predictor	Grafik /	Stiff / System	Movie	MovieData	GraficSetUp	∕ Opt∏ ∢			-11
	Nodes Elemen	ts / Loads /	Predictor	/ Grafik / S	Stiff / System	Movie /	MovieData	GraficSetUp	Opt∏ ◀ [

take results of previous run.

Then you have to confirm the node, elements and loads by clicking **Read** at the respective sheets. Now you are able to visualize the results of the previous run in the movie sheet, or to continue your non-linear calculation.

12. Remarks

If you encounter problems with the movie sheet, try the Refresh

button on the movie sheet.

Sometimes also clicking

new

on the nodes sheet can help.

Please let us know if you encounter any errors / bugs, so that we can fix them as soon as possible.

Last modification: 22.04.2016, ag