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Non-Uniform Rational B-Spline basis functions
Classical Finite Element Analysis (FEA) uses typically C 0-continuous basis functions across the elements which
also attain low polynomial order for numerically confronting Boundary Value Problems (BVPs). On the other
hand, Isogeometric Analysis (IGA), firstly proposed in [1], makes use of high order basis functions the so-called
Non-Uniform Rational B-Spline (NURBS) which in addition attain higher than C 0-continuity across the elements.
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Figure: Piece-wise polynomial basis functions.

The NURBS basis functions can be iteratively computed in 1D as:

Ni ,0 (ξ) =

{
1 if ξ ∈ [ξi , ξi+1[ ,
0 elsewhere ,

and Ni ,p (ξ) =
ξ − ξi
ξi+p − ξi

Ni ,p−1 (ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1 (ξ)

Ri ,p (ξ) =
Ni ,p (ξ)∑n

j=1 Nj ,p (ξ) wj
.

The main benefits in using the above basis for the analysis consist in the exact geometry representation, adjustable
smoothness across the knot spans (elements) and high order field approximation.
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Figure: Problem placement for the Kirchhoff-Love shell in multiple
domains

Isogeometric analysis is extended to account for mul-
tiple domains, see [2, 3]. This extension is necessary
because the vast majority of the CAD models comprise
multipatch geometries. Correspondingly, the decom-
posed Kirchhoff-Love shell BVP reads,

nαβ
∣∣
α
− qαB β

α + bβ = 0 , in Ω \ Γc ,

nαβBαβ + qα|α + b3 = 0 , in Ω \ Γc ,

mαβ
∣∣
α
− qβ = 0 , in Ω \ Γc ,

d = 0 , on ⊂ Γd ,

ω = 0 , on ⊂ Γd ,

nαuα = p , on ⊂ Γn

mαuα = r , on ⊂ Γn

d(i) − d(j) = 0 , on Γ(i ,j)
c ∀i , j = 1, . . . , n ,

ω(i) + ω(j) = 0 , on Γ(i ,j)
c ∀i , j = 1, . . . , n ,

Three methods are employed for the establishment of a weak form to the coupled system. The first one is the
Penalty, for which the Newton-Raphson subproblem in the i-th iteration writes, K(1)
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The second one is the Lagrange Multipliers method, which introduces two additional Lagrange Multipliers fields,
one for each interface condition. The corresponding equation system for the Newton-Raphson subproblem writes,
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... . . . ... ... ...
0 · · · K(n)

T,̂i
Λ(n) Z (n)

Λ(1)T
· · · Λ(n)T

0 0
Z (1)T

· · · Z (n)T
0 0




δd̂(1)
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As last, the augmented Lagrange Multipliers method is elaborated. This method is essentially the Lagrange
Multipliers method enhanced with the penalty terms.
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Figure: Slit annular plate: Ultimate deformation and moment field m22.
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Figure: Load displacement curves.

A comparison of the methods is
demonstrated with a nonlinear bench-
mark problem proposed in [4] and the
corresponding results are given. Em-
phasis must be given to the smooth-
ness that the methods deliver across
the patch interfaces. All methods pro-
duce almost the same results, which
verifies the consistency of the ex-
tended variational formulations. In re-
gard to the Penalty method, the choice
of the penalty factors must be careful
so that they are large enough to satisfy
the interface conditions but not de-
teriorate the condition number of the
equation system. In relation to the La-
grange Multipliers method, attention has to be taken in the choice of the discretization for the Lagrange Multipliers
fields, because improper choice can lead to indeterminate systems.

Non-matching grid data transfer between classical finite element and isogeometric grids

Figure: Projection phase

The method of choice within this study is the so-called Mortar method,
which is based on the minimization of the gap function d(S)

h − d(F)
h

between the structural and the fluid mesh displacement fields in the
L2 (ΓFSI) space, namely:∫

ΓFSI

(
d(S)

h − d(F)
h

)
· µ dΓ = 0 ∀µ ∈

(
L2 (ΓFSI)

)3
.

In its discrete form, the mortar method writes:

d̂(F) =
(
C(F)

)−1
C(S)d̂(S) ,

where the hat in the above vectors indicates that they contain the re-
spective degrees of freedom. The coupling matrices are given by:

C(S) =

∫
ΓFSI

(Nµ)TR dΓ and C(F) =

∫
ΓFSI

(Nµ)TN(F) dΓ ,

Nµ, R and N(F) being the basis function matrices for the Lagrange Multipliers field µ, the structural and the
fluid mesh displacement field across the interface, respectively.
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Figure: Clipping of the projected fluid elements

In the mortar
method the choice
Nµ = N(F) is made,
so that the trans-
formation matrix
T =

(
C(F)

)−1
C(S)

is symmetric, pos-
itive definite and
diagonally dominant.
A unique interface
must be identified so

that the above integrals can be evaluated. Especially in case of data exchange between B-Spline surfaces and
Finite Volume elements, the bases are always non-conforming across the interface. For this reason each fluid
node is orthogonally projected onto the B-Spline surface. Then, the integration is performed at the sub-element
level. If the discrete virtual work over the interface is to be preserved, namely δW (S) = δW (F) on ΓFSI, then
matrix TT can be used for the force transfer.

Flow over semispherical pressurized membrane
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Figure: Problem setting for the pressurized semisphere in flow.

A pressurized semispherical membrane
is employed in a fluid-structure inter-
action environment for the comparison
of the results obtained by the classi-
cal FEA and IGA for the discretiza-
tion of the structural field. The mem-
brane has Young’s modulus, poisson’s
ratio and structural density equal to
102 KN/m2, 0.3 and 1700 Kg/m3, re-
spectively, whereas it’s radius and it’s
thickness are equal to 50 cm and 1
mm, respectively. In addition, the
membrane is subject to internal pres-
sure equal to 10 N/m2 so that it stays
in semispherical shape when no other
loading conditions are prescribed. For the structural problem both classical FEA and IGA are employed us-
ing the software Carat++, Chair of Structural Analysis, Prof. Dr.-Ing. Kai-Uwe Bletzinger. The fluid is as-
sumed to be the air, modelled as a Newtonian incompressible fluid with density and dynamic viscosity equal
to 1.225 Kg/m3 and 18.27× 10−6 Kg/m/s, respectively. Open∇FOAM, see http://www.openfoam.org/,
is an open source software which was used in this study for the fluid problem. On the other hand, EMPIRE,
see http://empire.st.bv.tum.de/ is used for the communication of the fields across their interfaces.
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Figure: Modelling and discretization of the semispherical membrane.

(a) Classical Finite Element Membrane. (b) Isogeometric Membrane.

Figure: Deformation of the membrane structure at t = 0.4 s.
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