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A Tutorial on Prograding and Retrograding Hypo- and

Hyper-pycnal Deltaic Formations into Quiescent Ambients �

Kolumban Hutter†

†Bergstrasse 5, 8044 Zürich, Switzerland, hutter@vaw.baug.ethz.ch

Abstract

Sediment transport from mountainous rivers into a quiescent ambient with simultaneous for-
mation of deltas is reviewed. To focus on the principal physical processes attention is restricted
to flow in vertical cross-sections with no changes perpendicular to the plane of the flow. The bed
load transport in the river is derived for quasi-steady situations using sediment mass balance and the
MOHR-TERZAGHI shear stress-pressure relation with the angle of internal friction, φ as the essential
frictional parameter. The emerging model is a diffusion equation for the upper surface of the moving
sediment layer and corresponding boundary conditions. Its diffusivity is expressible in terms of the
hydraulic discharge, the densities of the sediment and the turbid water, the angle of internal friction
and a parameter characterizing the bed-parallel sediment velocity in terms of the average velocity in
the turbid layer. When this river flow enters quiescent water, two different classes of deltas can be
formed. When the entering water is either neutrally buoyant or lighter than the ambient water, the
sudden reduction in tractive force along the bed generates a conspicuous avalanching flow to depth.
This leads to steep-sloped foreset deposits with delta fronts inclined by the angle of internal friction.
Such so-called GILBERT-type deltas are governed by a jump requirement of the sediment flux across
the shore line and the geometry of the receiving basin. When the inflowing discharge is denser than
the receiving ambient water, it will dive down as a turbulent under-current. The basal sediment trans-
port in this subaqueous density current is analogous to the subaerial case and again described by a
diffusion equation with similarly determined diffusivity. The combined dual subaerial-subaqueous
sedimenting process is mathematically very similar to a (generalized) STEFAN problem, e.g. the
freezing of an ice cover on a lake. We present (mostly analytical) solutions for (i) bedrock-alluvial
transitions, (ii) overtopping failure of a dam, (iii) topset-foreset diffusion processes for hypo- and
hyper-pycnal deltas. Laboratory experiments demonstrate the adequacy of the models.

�This manuscript intends to serve as a basis for the learning student or scientist. In all modesty, most work is by others and
only a few small ideas seem to be my own. No claim of completeness is made, but I hope that a glimpse of elegance of this
theory is recognizable. If it is so, it is the merit of the authors of the referenced papers.
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1 Introduction. Estuarine development due to riverine sediment inflow

1.1 Fluvial-deltaic sedimentation in lakes from rivers

Sediment transport in alluvial rivers constitutes in mountainous lakes the dominant mode of sediment

delivery. These modes arise generally in two different forms, as bedload transport of the coarse grains

and as suspended matter of the clay and silt fractions. The amount of the dense, coarse movable sediment

depends on the driving stress – in quasi-steady flows expressed by the MEYER-PETER [41] or similar

formulae – the packing of the river bed and the size composition of the sand comprising the transported

total sediment mass. Of the total sediment load a nominal threshold grain diameter φthresbedload essentially

separates the moving sediments into two classes, (i) the bedload, moving in the bottom saltation layer

and (ii) the fine grains, which are suspended in the turbulent water above the saltation layer. The relative

proportion of the dense bedload-mass flow and the suspended dilute sediment-mass diffusion depends

in quasi-steady states on the local inclination of the river, provided this slope is smooth and suffers only

small changes with position.

At the entrance of a river into relatively quiescent waters, an artificial reservoir, lake or the ocean,

the entering bed and sediment loads will suddenly be subjected to an abrupt change of the hydrodynamic

conditions, and depending on the relative hydro-physical changes, the subsequent process will differently

evolve according to these conditions.

In what follows, we introduce a few terms from the geological nomenclature, which will facilitate

later discussions, see SWENSON et al. (2000), [63], LAI & CAPART (2007), [33] and Fig. 1:

• Sediment laden river flow will be referred to as subaerial flow and the region of river flow is called

topset.

• Correspondingly, the flow immediately beyond the shoreline is called the subaqueous flow, and the

region of this flow is denoted as foreset. Beyond the delta region it is often called the bottomset.

• If the entering fluid flow as a mixture of water and sediment is lighter than, or equal to, the wa-

ter density of the ambient, the flow characteristics will be called hypopycnal and homopycnal,

respectively, if it is denser than the mixture density of the ambient, then it is called hyperpycnal.

Dismissing the complex transition conditions in the immediate vicinity of the advancing (or retreat-

ing) shoreline, the downstream subaqueous deposits differ for the three mentioned pycnal characteri-

zations from one another. The sudden change in speed that occurs when the river water crosses the

shoreline and enters the region of calm water generates ‘for homopycnal and hypopycnal flows, in which

the entering discharge is either neutrally buoyant or lighter than the ambient fluid, a sudden reduction

in tractive force along the bed [. . . ]. This leads to steep-sloped foreset deposits controlled by the angle

of repose (approximately angle of internal friction)’ (LAI & CAPART, 2007, [33]). The coarser grains

will avalanche down the shore slope and the fines will stay afloat in a near surface jet-boundary layer

and settle out further downstream as bottomset beds. ‘Such deltas, and their topset-foreset-bottomset

architecture were first described in a classical work by GILBERT (1890), [19] and are accordingly known

as Gilbert-type deltas’ (LAI & CAPART 2007, [33]).

Two quantities characterize GILBERT-type delta wedges, (i) the shoreline position sptq, which is the

horizontal distance of the shoreline (see Fig. 1a) from a Cartesian origin far upstream in the topset and
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Figure 1: Alluvial river deltas under hypo- or homopycnal, GILBERT-type (a), and under hyperpycnal (b) conditions,
illustrating the common nomenclature. GILBERT-type deltas have plane frontal slopes at the angle of repose of the coarse
grained sediment, and delta growth is by granular avalanching. Hyperpycnal deltas evolve under the action of a turbidity
current, and the basal sediment transport is analogous to sediment transport in alluvial rivers. The horizontal position of
the shoreline is x � sptq. Similarly, the toe of the slope break is given by x � uptq. Figure after LAI & CAPART (2007),
[33], with changes, c© J. Geophys. Res. Earth Surface

(ii) the delta toe uptq, which is the horizontal distance from the same Cartesian origin of the intersection

point between the deposit-wedge front and the basement. The latter is in geological applications taken

as a subsiding fault block or any well defined lower boundary of the Earth mantle, in engineering-type

sedimentology of lake deposits a well defined lake bottom surface in the recent past or at present. Of

interest are the time evolutions of sptq and uptq. The following geological nomenclature is commonly

used (see VOLLER et al., 2006, [66]).

• Regression and transgression refer, respectively, to the foreward p 9sptq ¡ 0q and landward p 9sptq  
0q migration of the shoreline.

• Progradation and retrogradation refer, respectively, to the foreward growth p 9uptq ¡ 0q and land-

ward retreat p 9uptq   0q of the entire fluvio-deltaic system.

1.2 Morpho-dynamics of hypo-, homo- and hyper-pycnal flows

According to LAI & CAPART (2007), [33] hyperpycnal flows occur when the inflowing discharge is

denser than the receiving ambient water. This may occur e. g. when floodwater, laden with sediments,

enters fresh water lakes, or when cold river water from snow melt enters a lake of warmer water. In

these cases the denser river water will form a density current (Fig. 1b) moving down the littoral slope,
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approximately in the direction of steepest descent of the lake bathymetry from the plunge point of the

river. Entrainment of ambient water in such density currents is generally small (and in a first approxi-

mation negligible), because stable stratification inhibits turbulence at the upper boundary of the density

current, (ELLISON & TURNER, 1959 [12], TURNER, 1973, [65]). Such flows maintain therefore, in

general, their boundary-layer character as long as their density is larger than that of the ambient fluid. If

this remains so through the entire depth such turbidity currents may travel over considerable distances,

decaying primarily due to a continuous and size dependent settling-out of their suspended matter.

Whereas hypopycnal deltas have steep slopes of the size of the angle of internal friction, hyperpycnal

deltas are much less steep, with generally convex shape (FLEMING and JORDAN 1989, [14], 1990 [26];

KOSTIC et al, 2002, [28]; KOSTIC and PARKER, 2003, [29], [30]). The steepest inclination occurs

at the plunge point (Fig. 1b) and is commonly substantially smaller than the angle of repose of their

Gilbert-type counter parts. As one moves farther away from the plunge point, their inclination tapers

and smoothly approaches the far distant bathymetric profile. Moreover, the deltaic deposition rates in

(mountainous) lakes are large as compared to the far distant sediment depositions due to the early fall-

out of the coarse-grained suspended matter. It follows that in a first approximation for the estimation of

the formation and erosion of deltas the far downstream lake bathymetry may be assumed to be steady.

Contrary to processes on geological time scales, this assumption is appropriate for applications in water

engineering.

Fluvio-deltaic sedimentation thus appears basically in two different forms, for homo- and hypopycnal

flows as GILBERT-type deltas, and as hyperpycnal deltas. Both grow chiefly by dense granular transport

at the bed, for GILBERT-type deltas as granular avalanches, which continuously adjust their slope to

the angle of repose, for hyperpycnal deltas much like subaqueous streams of which the granular motion

follows classical bedload transport rules.

In geological applications of Pleistocene or Holocene time scales transgressive and regressive ocean

shore movement is linked to the sea level rise and fall and the corresponding topset and foreset estuarine

developments (PITMAN, 1978, [56]). Furthermore, grain size variation in ocean or lake sediment cores

is linked to the particle size segregation of delta deposits in alluvial basins (PAOLA et al. 1992, [52]).

These models all operate with a subaerial bedload mode in the topset region and Gilbert-type deltas in

the foreset. On the other hand, engineering applications may concern formation and decay of tributary

dammed lakes (CAPART et al. 2010, [7]) or reservoir infill during and immediately after heavy rain fall

(LAI & CAPART, 2009, [34]), or forced alteration of delta geometries with the intention to regulate the

alluviation. These situations are characterized by hyperpycnal type foresets for which the Alpine Rhine

River (Alpenrhein) at Lake Constance is a typical case. ‘During flood conditions, the Rhine carries into

the lake a large suspended load composed of 10% clay, 70% silt and 20% sand, at concentrations of up

to 6000 mgl�1 (MÜLLER & FÖRSTNER, 1966, [44]; ROTH et al., 2001, [58]). This inflow generates

turbidity currents along the bottom, with underflow velocities of more than 1 ms�1 (LAMBERT, 1982,

[36]), carrying the clay and silt fractions to the deeper parts of the lake, [58]. The associated delta

morphometry is illustrated in Fig. 2. Upstream of the shoreline the long profile of the Rhine River plain

exhibits a mild inclination and a slightly concave curvature. At the shoreline a sharp break of slope is

observed. Downstream the subaqueous foreset exhibits a steeper gradient and a concave profile of more

marked curvature. Near the shoreline break, the maximum inclination of the foreset is of the order of 6�

(ADAMS et al. 2001, [2]), much greater than the topset slope, but well below typical angles of repose.
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Figure 2: Rhine River delta (Alpenrhein) at Lake Constance, Switzerland. (a) Present subaerial and subaqueous long
profile of the Rhine (after HINDERER, 2001, [23]). (b) Progradation of the subaqueous delta foreset from 1885/89 to
1979 (after KENYON & TURCOTTE, 1985, [27]; data from MÜLLER, 1966, [43], supplemented by more recent profiles
from HINDERER, 2001, [23]), from LAI & CAPART (2007), [33], c© J. Geophys. Res. Earth Surface

Towards the deep end of the lake, the leading edge of the foreset bed connects smoothly with the lake

bathymetry. The shape of the delta front thus differs significantly from GILBERT’s description. Plotted

in Fig. 2b, the recorded evolution of the Rhine river delta front between 1885/89 and 1979 further shows

that foresets have maintained a similar morphology over almost a century of progradation’, after LAI &

CAPART, 2007, [33]).

In the ensuing analysis we shall be involved with both GILBERT-type and hyperpycnal-type delta

formations; however, our interest is less in the geological application on Pleistocene and Holocene time

scales, but rather on decadal to century time scales, for which engineering-type regulations of foreset

alluviations are of interest.

2 Sediment transport in the river

As Fig. 1 suggests, the topset is characterized by river dynamics and its fluvial transport. With the some-

what restricting simplifying assumptions stated below, the sediment transport process can be described

by a diffusion equation for the interface position Z � ζ̂pX, tq between the bedload layer and the suspen-

sion layer above it, see Fig. 3. ‘The diffusion metaphor has long been used in modeling river systems

[. . . ]1 and has been applied to deltas (KENYON & TURCOTTE 1985 [27]) and foreland basins (FLEMING

& JORDAN 1989 [14]; JORDAN & FLEMING 1990 [26])’. A detailed derivation is given by PAOLA et al.

1992 [52] using the MEYER-PETER MÜLLER formula [41] for sediment transport. Here, we follow LAI

& CAPART 2007 [33], who base their derivation on the COULOMB-TERZAGHI yield criterion. These au-
1PAOLA et al. 1992 [52] cite a large number of references, of which we mention here SONI 1981 [62], GILL 1983 [20]

and ZHANG & KAHAWITA 1987 [70] but CULLING 1960 [10] remains unmentioned as an early example of derivation of the
diffusion equation for erosion problems.
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Figure 3: (a) Side view of a plane river section consisting of a turbid, particle laden fluid layer of homogeneous density ρ,
mass flow 9m and thickness h, underlain by the moving sediment-water layer of constant density ρ0, volume flux q parallel
to the bed and thickness δ. Both are assumed to move immiscibly on an immobile bed, also assumed of density ρ0 and
inclined by the slope of angle β. The Cartesian coordinate system px, tq is aligned with the bed. (b) Element of length dx
of the moving sediment-water mixture with volume fluxes at the two side faces. Its growth in thickness is rpB ζ{B tqdtqsdx
and a possible external source is rσpx, tqdtsdx. (c) Column of the particle laden and the sediment-water mixture with the
corresponding gravity forces and basal shear traction τb and basal normal pressure pb. (d) Horizontal-vertical coordinates
pX,Zq and sediment-water interface Z � ζ̂pX, tq and corresponding inclined px, zq coordinates with z � ζpx, zq

thors present a clearly formulated list of assumptions on which their diffusion equation for Z � ζ̂pX, tq
is based. As with previous derivations the important information is a formula for the diffusivity in terms

of parameters characterizing steady channel flows.

In what follows we list the salient assumptions which are imposed to derive the diffusion equation.

• The river flow in the valley stretch above the plunge point (the topset region) can be assumed to

be one-dimensional. Sources in terms of precipitation or point sources from side tributaries are

treated as continuous prescribed functions of space and time: σpx, tq. This assumption is not very

critical since the lowest stretch of a river before entering a basin is generally very flat, shallow and

smooth. On century time scales meandering may occur (and has more frequently occurred in the

past); in such a case the discharge is averaged and the average flow is assumed to be straight and

unidirectional.

• The turbid water and the bedload sediment-water mixture are assumed homogeneous and taking
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place in layers, see Fig. 3, for the suspended particle laden fluid as a slurry of thickness h and for

the bedload as a dense granular water saturated fluid of thickness δ with particles moving under

saltation.

• The motion of this two-layer system is assumed to take place sufficiently smoothly and slowly

with no abrupt changes such that the currents in both layers adjust in a quasi-steady manner to the

‘slowly varying conditions’. This implies in particular that deposition of fines from the particle

laden layer into the moving bed is negligible. In other words, the interface between the moving

sediment layer and the particle laden fluid layer is material.

Analogously, it is also supposed that no particles of the moving sediment layer will settle, nor

particles from the immobile bed will entrain into the moving sediment layer. Thus, also the bed

surface is material.

• The inclination of the bed is small with negligible curvature; so, the river bed is locally straight

and the local Cartesian coordinates px, zq are, respectively, parallel and perpendicular to the bed.

• The flow depths of both layers and the river are small in comparison to significant longitudinal

extents of typical variations of the river depth. This is the typical shallowness assumption.

• The bedload material consists of water with density ρw (w for ‘water’) and gravel with density ρs
(s for ‘soil’ or ‘sediment’) and porosity n0. Both densities are constant because of the incompress-

ibility of water and gravel, but constant n0 is a simplifying assumption. It is further also assumed

that the soil of the immobile bed is the same as in the moving sediment bed, with the density given

by

ρ0 � n0ρw � p1� n0qρs. (1)

In view of the constant density ρ0 of the sediment layer, the mixture mass balance reduces to the

mixture volume balance, which implies (see Fig. 3b)

B ζ
B t �

B q
B x � σpx, tq, (2)

in which q is the variable volume flux and σpx, tq is a source term. In (2) x is measured tangential to the

river bed and ζpx, tq perpendicular to it. If X,Z � ζ̂pX, tq are horizontal and vertical, respectively, it is

easily seen that (see Fig. 1.3d)

�
X

ζ̂

�
�

�
cosβ sinβ

� sinβ cosβ

��
x

ζ

�
, (3)

or, since | β |! 1, �
X

ζ̂

�
�

�
1 β

�β 1

��
x

ζ

�
. (4)

Similarly, if q̂ � q cosβ � q is the horizontal volume flux, (2) may approximately be replaced by

B ζ̂
B t �

B q
BX � σ �Opβ2q. (5)

In steady state at constant velocity (no acceleration), the tangential normal force components of the
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gravity force in the column of Fig. 3c balance with the shear traction at the base, τb and the normal basal

pressure, pb as follows, see Fig. 3c,

τb � pρh� ρ0δq g sinβ, (6)

pb � pρh� ρ0δq g cosβ, (7)

The normal-to-bed component of the submerged weight of the bedload, on the other hand, is given by

σ1b � rpρ h� ρ0δq � ρph� δqsg cosβ � pρ0 � ρqδ g cosβ, (8)

and is known as ‘effective stress’.

The lower interface separating the moving sediment bed and the immobile ground is a sliding surface

at which the COULOMB yield criterion applies

τb � tanφσ1b, (9)

in which τb and σ1b are given as shown in (6) and (8) with φ as the angle of internal friction, in accordance

with TERZAGHI’s principle (FRACCAROLLO & CAPART 2002 [15]). If (6) and (8) are substituted into

(9), and the resulting relation is somewhat manipulated, the equation

δ

h� δ
� ρ tanβ

pρ0 � ρqptanφ� tanβq (10)

emerges, or since δ ! h and | β |! φ

δ � ρ h tanβ

pρ0 � ρq tanφ
. (11)

It transpires that the thickness of the sediment layer is given, if the densities ρ and ρ0 of the turbid layer

and the sediment layer and the slope, β, and angle of internal friction, φ, are known.

The next step towards determination of the sediment mixture-volume flux is the determination of

a velocity profile within the moving sediment layer. For this purpose application of the momentum

principle is out of reach; instead we conjecture a linear relation between the mean velocities of the

turbid, u, and the sediment, v, layers, viz.,

v � α1 u, (12)

where α1 ¤ 1 is a dimensionless parameter, chosen to be constant. For plug flow over the entire depth

α1 � 1 and for a linear profile in the sediment layer with value u at its upper boundary, α1 � 1
2 . With

(11) and (12) one may easily deduce

q̂ � q � δ v � α1ρ hu tanβ

p1� n0qpρs � ρq tanφ
(13)

for the derivation of which we have set ρ � ρw, i. e. the density ρ of the upper layer slurry is set equal

to the water density. We emphasize, this formula has been derived under the assumption that the flow is

quasi-steady, that particle sedimentation from the turbid layer and bed erosion into the moving sediment

9



layer are excluded (or negligible) and that the bed is flat. Under these conditions one also has

dρ
dx

� 0 and
d 9m

dx
� 0. (14)

These equations state that the density ρ and the turbid mass flow rate 9m do not change along their

trajectories, which are here formally given by lines parallel to the x-coordinate. In the words of LAI &

CAPART [33] ‘the values of ρ and 9m along the topset are purely controlled by their upstream boundary

values, i.e.,

ρpx, tq � ρupstream � ρ1 � constant and

9mpx, tq � 9mupstream � ρ hu � ρ1Q � constant,
(15)

where Q denotes the volumetric discharge of the turbid water supplied upstream of the delta’. Since

tanβ � � B ζ̂
BX , (16)

equations (13) and (5) imply

q � �D1
B ζ̂
B x, D1 � α1ρ1Q

p1� n0qpρs � ρ1q tanφ
(17)

B ζ̂
B t �

B
BX

�
D1

B ζ̂
BX

�
� σpX, tq. (18)

D1 is a (constant) diffusivity, which is proportional to the discharge Q and inversely proportional to

the tangent of the angle of internal friction, φ. Equation (18) is an inhomogeneous diffusion equation,

written here for variable diffusivity, even though D1 in (17) is constant. As already mentioned, there

are alternative derivations, [10], [52] for geological applications, of which PAOLA et al. [52] use the

MEYER-PETER MÜLLER [41] sediment transport formula instead of the COULOMB-TERZAGHI friction

law (9).

Equation (18) is a linear parabolic partial differential equation. As it is second order in the spatial

variable, two boundary conditions for its solution are required. In a so-called two-point boundary value

problem such a condition is prescribed at each of the two end points of the interval pX1, X2q, for which

the solution is constructed. For the situation in question, an upstream flux will be prescribed as well as

the vertical position of the sediment-turbid fluid interface,

q � �D1
B ζ̂
BX , at X � X1p� 0q,

ζ̂ � ζ̂0ptq, at X � sptq,
(19)

where ζ̂0ptq is a prescribed function monitoring the lake level fluctuation. These conditions do not

suffice, however, as a further condition at the shore must connect the solution with the processes of

the delta formation. The condition emerging from that analysis will determine the function sptq. This

additional condition depends on the type of delta that is formed.

10



3 Similarity solution for the homogeneous diffusion equation

It will now be assumed that σpXq � 0, i.e., we are looking for a solution of the homogeneous equation

(18). It turns out that the one-dimensional diffusion equation with constant diffusivity allows construction

of so-called similarity solutions, which are useful for the sediment transport problem at hand. Such

solutions have self-similar structures; through adequate variable transformations the partial differential

equation (PDE) transforms into an ordinary differential equation (ODE). For the diffusion equation the

appropriate transformation is (see HYDON 2000, [25] or any other book on partial differential equations2)

ζ̂pX, tq � fpΞqξptq, Ξ � X

ξptq , ξptq � 2
a
D1t, (20)

with differentiable functions fpΞq and ξptq. The function fpΞq expresses the shape of the profile of the

moving sediment layer as a function of the dimensionless argument Ξ. The factor ‘2’ in the definition of

ξptq is introduced for convenience. (20)1 is a product decomposition of ζ̂ into a function characterizing

the time, but having the dimension of length, and a dimensionless function f of dimensionless variable

Ξ.

It follows from (20) that

d ξ
d t

� 2D1

ξ
,

B ζ̂
B t �

2D1

ξ

�
fpΞq � X

ξ
f 1pΞq



,

B ζ̂
BX � f 1pΞq, B2ζ

BX2
� 1

ξ
f2pΞq,

in which primes on f denote differentiation, so that (18) takes the form

f2pΞq � 2
 
Ξ f 1pΞq � fpΞq( � 0. (21)

This is a linear, second order ODE for f as a function of Ξ. One solution is f1pΞq � �AΞ, where A is a

constant. As known from elementary calculus, a second solution can then be constructed by the product

decomposition

f2pΞq :� f1pΞq gpΞq � �Ξ gpΞq. (22)

Indeed, with (22) and (18) and with

hpΞq :� g1pΞq (23)

2Other books are e.g. SOKOLNIKOFF-REDHEFFER 1966 [61], ABRAMOWITZ and STEGUN 1964 [1], KREYSZIG 2006
[31].
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it is easy to show that hpξq must satisfy the differential equation

h1pΞq
hpΞq �

d
dΞ

plnphpΞqq � �2p1� Ξ2q
Ξ

ùñ ln rhpΞqs � �
» Ξ

1

2p1� x2q
x

dx� ln

�
1

B




� �2 lnpΞq � Ξ2 � ln

�
1

B




� � lnpΞ2q � Ξ2 � ln

�
1

B




ùñ ln

�
hpΞqΞ2

B



� �Ξ2,

or

hpΞq :� g1pΞq � B
expp�Ξ2q

Ξ2
. (24)

B is a constant of integration. A further integration of (24) now yields3

gpΞq � B

» A
Ξ

expp�x2q
x2

dx

� B
!expp�Ξ2q

Ξ
� 2

» Ξ

0
expp�x2qdxlooooooooomooooooooon
?
πerfpΞq

�C
)
. (25)

Here, erf is the error function,

erfpxq � 2?
π

» x
0

expp�y2qdy, (26)

and C is again a constant of integration. Once a choice for C has been made, the most general solution

of (18) is given by

fpΞq � �AΞ�B
 
expp�Ξ2q � ?

πΞ perfpΞq � Cq( (27)

with derivative

f 1pΞq � �A�B
?
πterfpΞq � Cu. (28)

3We compute this indefinite integral as follows:
» A

Ξ

1

x2
expp�x2qdx �

» A
Ξ

d
dx

�
� 1

x



expp�x2qdx

�
» A

Ξ

d
dx

��
� 1

x



expp�x2q

�
dx�

» A
Ξ

�
� 1

x



p�2xq expp�x2qdx

� � 1

x
expp�x2q|AΞ � 2

» A
Ξ

expp�x2qdx

� � 1

A
expp�A2q � 1

Ξ
expp�Ξ2q � 2

» Ξ

A

expp�x2qdxloooooooomoooooooon» 0

A

�
» Ξ

0

� expp�Ξ2

Ξ
q � 2

» Ξ

0

expp�x2qdxlooooooooomooooooooon
2
?
πerfpΞq

� expp�A2q
A

� 2

» A
0

expp�x2qdxlooooooooooooooooooomooooooooooooooooooon
C

� expp�Ξ2q
Ξ

� 2
?
πerfpΞq � C,

which agrees with (25).
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The construction of the solution (27) is standard. The above derivation, here given in details, follows

essentially [6].

CAPART et al. [6] emphasize that ‘the assumed similarity structure also imposes certain restrictions

on the boundary conditions of ODE (21) to be specified at given values of the ratio Ξ � X{ξptq; the

boundary positions X1 and X2 must be of the form

X1 � λ1ξptq, X2 � λ2ξptq, (29)

where the scaling constants λi, i � 1, 2, can either be given or are unknown (and must then be subject

to additional boundary conditions). Form (29) allows non-moving boundary conditions, but only at

locations Xi � 0 and Xi � �8.

Conversely, any λi different from zero or infinity yields a moving boundary. Restrictions on boundary

speeds then follow from
dXi

d t
� λi

d ξ
d t

� 2D1

ξ
λi � 2D1

Xi
λ2
i , (30)

which implies that products XipdXi{d tq must be invariants [constants]’. It is also easy to see that at

boundary points the quantities

ζ̂i
ξptq ,

ζ̂i
Xiptq ,

�
B ξ̂
BX

�
i

, i � 1, 2

must equally be constant. Explicit examples of self-similar evolution for alluvial channels of semi-

infinite length with moving boundaries are constructed by CAPART et al. 2007 [6]. Let us illustrate the

application of the similarity solution to a number of lake-related hydraulic research problems.

3.1 Bedrock-alluvial transition

A somewhat academic example which demonstrates a hydraulic application, is given in [6], see Fig. 4;

it is the sediment flow down a plane inclined bed, which suddenly changes its slope from �S1 to �S2.

Far upstream and far downstream the steady bed has these slopes, but to adjust to these slopes, the bed

will smoothly change from slope�S1 to slope�S2. We may interpret the far upstream bed as solid non-

erodible rock and the downstream bed as the alluvial infill. The transition between the exposed upstream

bedrock and the downstream alluvial channel is located at the evolving position sptq. At time t � 0,

it is assumed that s � 0 and that the alluvial cover has constant slope S2   S1. (Note that this is the

‘academic’ and not realistic condition guaranteeing that the similarity solution is applicable.) A steady

sediment flux Q is provided far upstream; for a flux Q   D1S1 no deposition occurs in the upper stretch

of the channel and the sediment simply is transported along the channel until it reaches the upstream

edge of the alluvial channel. Clear water conditions can also be examined by setting Q � 0. (In this case

it is assumed that the alluvial channel with slope �S1 already exists at Z � 0.
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Figure 4: Definition sketch for a bedrock alluvial transition problem. The bedrock is a rigid non-erodible solid with
bed-inclination angle arctanp�S1q and an initial alluvial infill with slope angle arctanp�S2q. It is assumed that for an
upstream sediment influx Q the sediment will either be deposited or eroded in the vicinity of the sudden change in slope
at X � 0. It is assumed that as X Ñ8, the alluvial infill will approach the slope �S2, from [6], c© J. Geophys. Res.

The mathematical problem just outlined is given by the following initial boundary value problem:

B ζ̂
B t �D1

B2 ζ̂

BX2
� 0, sptq   X   8,

ζ̂ � �S1X,
B ζ̂
BX � � Q

D1
, X � sptq,

B ζ̂
BX � �S2, X Ñ8,

ζ̂ � �S2X, X ¡ 0, t � 0.

(31)

Here, (31)1 governs the evolution of the alluvial channel profile and is complemented by two upstream

boundary conditions (31)2,3, one downstream asymptote (31)4 and an initial profile (31)5. (Note, we

have formulated three boundary conditions!) This initial boundary value problem is susceptible to a

similarity solution, if the transformations (20) are applied and

sptq � λ ξptq � 2λ
a
D1t (32)

is used with the yet undetermined constant λ. In the dimensionless variables, (31) takes the form

f2pΞq � 2tΞ f 1pΞq � fpΞqu � 0, λ   Ξ   8,
fpλq � �S1λ, f 1pλq � � Q

D1
,

f 1p8q � �S2.

(33)

The general solution of the first of (33) for f is given by (27), in which the constants A,B,C, and λ

must be determined from (33)2,4; however, these are not uniquely determined, unless a fourth condition

is provided. This condition is actually implicitly contained in (33)4 as it requires a constant slope of f as
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Ξ Ñ8. Now, since

lim
ΞÑ8

fpΞq � t�A�B
?
πp1� CquΞ, (34)

we may choose the level of the alluvial deposit for Ξ Ñ8 by correspondingly selecting the value for C.

For the choice C � �1

lim
ΞÑ8

fpΞq � �AΞ, (35)

agreeing with the far-downstream profile at t � 0. In other words, there is no deposition far downstream

in the bottomset. Now, it follows from (33)3,4 that

A � S2 B � S2 �Q{D1?
πperfpλq � 1q (36)

and from (33)2

λ� ω
expp�λ2q � ?

πλperfpλq � 1q?
πperfpλq � 1q � 0, ω :� Q{D1 � S2

S1 � S2
. (37)

This is a transcendental equation for λ when Q is prescribed.4

CAPART et al. [6] performed some computations. For Q � 0 ‘the resulting sediment profiles are

illustrated in Fig. 5a [. . . ]. The results shown are obtained for an alluvial slope set to half the bedrock

inclination, i.e. S2{S1 � 0.5, leading to a parameter value ω � �1. The corresponding value for

the root λ is λ � 0.4328. Profiles are given for equally spaced values of the similarity variable ξ �
2
?
D1t � 0, 1, . . . , 5, rather than for equally spaced times t, and are plotted in dimensionless form

using an arbitrary length scale L. Under zero upstream sediment supply, the clear water flow is erosive

as it reaches the alluvial cover. Consequently, the transition gradually moves downstream, exposing

new bedrock as time advances. The corresponding sediment elevation profiles are concave degrading an

ever greater extent of the downstream alluvial channel. Contrasting with this behavior, convex profiles

associated with overloading are illustrated in Fig. 5b. The parameters for this example are S2{S1 �
0.2, ω � 0.5, pQ � 0.6D1S1q, and λ � �0.3578, [6].

Equation (37) can also be interpreted as an equation of λ for ω,

ω � Λpλq �
?
πλperfpλq � 1q

expp�λ2q � ?
πλperfpλq � 1q . (38)

The inverse function λ � Λ�1pωq is plotted in Fig. 6a in the interval �1 ¤ ω   1. ‘For selected

values of ω, marked as hollow symbols on the curve in panel (a) the alluvial channel responses are

further documented in panel (b). Similarity profiles are shown, normalized with respect to the evolving

scaling variable ξptq [. . . ]. Values ω   0 correspond to underloading. In this case the sediment supply

Q is below the equilibrium transport capacity D1S2 of the downstream alluvial channel and degradation

results. The alluvial edge is gradually washed downstream. At value ω � 0, the upstream supply is

precisely equal to the equilibrium capacity of the alluvial channel, and there is no geomorphic change;

this scenario corresponds to the classical ‘graded river’ of MACKIN 1948 [40], see later. Values ω ¡ 0

then correspond to overloading. The sediment supply is above the equilibrium transport capacity of the
4Had we chosen C differently from �1, then (36)1 would read A � S2 �?

πp1 � Cq and the initial value for s at t � 0
would no longer be zero. Requesting that sp0q � 0 would in this case fix C to be again �1.
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Figure 5: Profile evolution for bedrock-alluvial transition. (a) under loading with zero upstream sediment flux (S2{S1 �
0.5, ω � �1); (b) overloading case (S2{S1 � 0.2, ω � 0.5). Dashed lines show the initial profile of the downstream
alluvial channel; continuous lines show successive snapshots of the alluvial channel profile for ξptq{L � 1, 2, . . . , 5
where ξptq � 2

?
D1t, from CAPART et al. [6], c© J. Sedimentary Res.
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Figure 6: (a) Bedrock-alluvial transition, plotting λ � Λ�1pωq, defined in (38), where ω � pQ{D1 � S2qpS1 � S2q.
Graphs for profiles are shown in panel (b) for the conditions4,l,©,∇. (b) Positions of the moving boundary for various
values of the supply parameter where the various symbols belong to: p4qω � �1; plqω � � 1

2
; p©qω � 0; p∇qω � 1

2
.

Continuous lines are the corresponding alluvial channel profiles, and the dashed line is the underlying bedrock. Values
ω   0 imply depletion and values ω ¡ 0 imply accretion upstream of the alluvial channel, from CAPART et al. [6], c© J.
Sedimentary Res.

downstream alluvial channel and deposition results at the transition. The alluvial edge moves upstream

gradually draping sediment over the bedrock flow when ω ¡ 1, the sediment supply starts to exceed the

equilibrium transport capacityD1S1 of the bedrock channel itself. Sediment is deposited before reaching

the transition covering the bedrock from upstream to downstream. Foreshadowing this complete change

of behavior, the speed, at which the bedrock-alluvial transition moves upstream, becomes infinite as the

value ω � �1 is approached from below’, [6].

3.2 Overtopping failure of a dam

A similar academic problem with a realistic touch is the overtopping failure of a sand dam. It turns

out to be mathematically identical to the bedrock-alluvial transition problem. Figure 7a illustrates the

situation. It is assumed that the dam consists of homogeneously packed sand. Given the experience with

the alluvial sediment transport problem, the sediment flow of Fig. 7a at time t for X ¡ sptq is given by
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Figure 7: (a) Definition sketch for the overtopping failure problem of a dam. The upstream face of the dam has ‘adverse’
slope (S1 ¡ 0, for the chosen coordinate system). The sand dam is assumed to be homogeneously packed and to
extend to X Ñ �8 with slopes �S2 and S1, respectively (b) Profile evolution for the overtopping dam failure problem.
The dashed lines show the erodible dam for t � 0. The solid lines show snapshots for the alluvial channel profile for
ξptq{L � 1, 2, . . . , 5, where ξptq � 2

?
D1t and ω � 1

4
, λ � �0.1562. The value of λpωq is shown as black diamond in

Fig. 6b; panel (b) from [6], c© J. Sedimentary Res.

the following initial value problem.

B ζ̂
B t �D1

B2 ζ̂

BX2
� 0, sptq   X   8,

ζ̂ � �S1X,
B ζ̂
BX � 0, X � sptq,

B ζ̂
BX � �S2, X Ñ8,

ζ̂ � �S2X, X ¡ 0, t � 0.

(39)

This is the same initial boundary value problem as (31). The only difference is that here Q � 0 and the

slope S1 has a different sign (see (39)2). It follows that sptq is also given by (32) and λ is related to ω by

equation (37) with ω now given by ω � S2{pS2 � S1q and restricted to the range 0 ¤ ω   1. CAPART

et al. [6] performed calculations for S2{S1 � �1
3 , corresponding to ω � 1

4 and λ � �0.1562. Figure 7b

displays the dam erosion ζ̂{pS2Lq plotted against X{L for ξptq{L � 1, 2, . . . , 5, where ξptq � 2
?
D1t.

Obviously, erosion of the dam crest leads to lake drainage.
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4 Hypopycnal (Gilbert-type) deltas

As explained earlier in connection with the diffusion equation (18), the two boundary conditions (19)

are not sufficient to solve the fluvio-deltaic sedimentation problem. An additional relation is required

to locate the shoreline position and thus close the initial-boundary-value problem. For the two cases of

the bedrock alluvial transition [see (31)] and the overtopping failure of a dam [see (39)], such a third

boundary condition was naturally prescribed: at X � sptq, the values for ζ̂ and B ζ̂{BX are given, as is

the flux condition far upstream and far downstream, respectively. The additional boundary condition was

in both cases a flux (or NEUMANN-type) condition at the shore discontinuity. Physically, the statement

emerges from applying the conservation law of sediment mass. Figure 8 is motivated by a figure in [63].

Accordingly, GILBERT-type deltas are characterized by straight forefronts of constant inclination (given

as the tangent of the angle of internal friction). Should this straight front be disturbed by external or

internal wave activity or by some local effect e.g. of cohesion, it is assumed that the sediment flux from

the topset will quickly smooth the surface by the avalanching processes.

To establish a formula for the sediment flux condition, consider Fig. 8 and the area shaded in dark.

It is bounded on the left by the coordinate line X � 0, from above by the top surface, Z � ζ̂pX, tq
of the moving sediment (in 0 ¤ X ¤ sptq) and the straight delta front (in sptq ¤ X ¤ uptq), and

from below by the basement Z � bpX, tq, whose motion on geological time scales is likely governed by

subduction processes, but is steady, Z � bpXq, on decadal deltaic variations. The lake surface is given

by Z � Z`ptq, for which annual variations may be of significance. Monitoring the lake level by a weir

at the outlet may be used to influence temporal development of delta formation.

Figure 8: Idealized hypopycnal delta formation. The region is bounded from above by the topset sediment bed ζ̂pX, tq
and the foreset lake surface Z`ptq and from below by the basement bpX, tq, subject to a prescribed subsidence rate
σpX, tq. The delta wedge has constant slope p� tan }φ}q from the plunge point sptq to the delta toe uptq. The far
upstream boundary is fixed but fed by a prescribed sediment supply q0, which feeds the delta front surface

The dark-shaded area in Fig. 8 is bounded such that a sediment flux enters it only at X � 0; it is
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given by q0. Global sediment conservation then yields5

q0 � d
d t

» s�ptq
0

�
ζ̂pX, tq � bpX, tq

	
dX�

d
d t

» uptq
s�ptq

�
pZ`ptq � bpX, tqq � tan φ pX � sptqq

	
dX.

(40)

The first integral on the right-hand side represents the shaded area in Fig. 8 betweenX � 0 andX � sptq.
The second integral represents the corresponding area (minus the light-shaded triangle of the lake). If the

differentiations of the integral terms on the right-hand side are performed (note the LEIBNIZ rule must

be applied in this differentiation), and the condition6

rζ̂pX, tq � bpX, tqs|X�uptq � 0 (41)

is used, then the following formula is obtained:

puptq � sptqq tanφ
d sptq

d t
� qpsptq, tq

�puptq � sptqqdZ`ptq
d t

�
» uptq
sptq

σpX, tqdX,
(42)

in which

qpsptqq � �D1
Bζ̂pXq
BX

���X�s�ptq
, (43)

σpX, tq � �B bpX, tqBX . (44)

PlungePlunge
PointPoint

ΦΦ

s(t)s(t)

ζζ(X,t)(X,t)

ZZ σσ(X)(X)

u(t)u(t)

XX

Z=b(X,t)Z=b(X,t)

BasementBasement

Delta toeDelta toe

Z=ZZ=Z (t)(t)
ll

Lake levelLake level

(X-s(t))tan(X-s(t))tanΦΦ

Figure 9: Close-up of the foreset regime of a GILBERT-type delta, explaining how the basement toe position uptq can be
determined from the geometric positions of sptq, Z`ptq, bpX, tq and the delta front at slope, � tan }φ}
5s�ptq � sptq � ε, ε ¡ 0, εÑ 0.
6An alternative derivation of formula (42) when σ � 0 is given in Appendix A
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Equation (42) can be viewed as a differential equation for the shore line position, sptq; however, to

this end upsq must be expressed in terms of sptq and Z`ptq. Figure 9 shows that the top surface of the

wedge-type delta is given by the equation7

ζ̂pX, tq � ζ̂psptqq � tanφ pX � sptqq

� Z`ptq � tanφpX � sptqq.
(45)

For X � uptq (and ζ̂puptq, tq � bpuptq, tqq this equation can be written as

tbpuptq, tq � tan φuptqu � Z` � tan φ sptq. (46)

For prescribed lake level Z`ptq, plunge point sptq, basement elevation bpX, tq and angle of internal

friction, φ, (46) can be viewed as a nonlinear equation for uptq. Therefore, (46) must accompany (42)

as an additional algebraic equation to determine uptq. Thus, u is obtained in general form a functional

equation of the form

u � ursptq, Z`ptq, bpuptq, tq, tanφs.

If the basement is immobile, b � bpXq, (46) can be replaced by

uptq � sptq � 1

tan φ

�
Z`ptq � bpXq|X�uptq

�
.

Thus,

9uptq � 9sptq � 1

tan φ

"
9Z`ptq � d b

dX |X�uptq
9uptq

*

ùñ
"

1� 1

tan φ

d b
dX |X�uptq

*
9uptq � 9sptq � 1

tan φ
9Z`ptq

or

9uptq �
"

1� 1

tanφ

d b
dX |X�uptq

*�1 "
9sptq � 1

tan φ
9Z`ptq

*
.

This formula shows that 9uptq � 9sptq provided b � const. and Z` � const. Lake level rises, 9Z` ¡ 0,

enhance 9uptq over 9sptq, but pdb{dXq|uptq ¡ 0 decrease 9uptq. All these behaviors are geometrically

obvious.

Let us consider the simplest case of steady lake level, 9Z` � 0, vanishing subsidence, σ � 0, and

uniform water depth H . In this case the field equations (18), boundary conditions (19), (42) and initial
7From now on φ is counted as positive
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condition sp0q � 0 reduce to

B ζ̂
B t � D1

B2ζ̂

BX2
, 0 ¤ X ¤ sptq,

B ζ̂
BX p0, tq � � q0

D1
,

ζ̂psptq, tq � 0,

�H 9sptq � qpsptq, tq � �D1
B ζ̂
BX psptq, tq,

sp0q � s0 p� 0q initial condition,

(47)

where we have set the origin of the coordinates at the intersection point of the lake surface with the

basement. H � puptq � sptqq tanφ is the uniform water depth. Note that because of the constancy of b,

equation (46) is linear in u, can be solved for uptq and then substituted into (42). The emerging equation

is then (47)4 and constitutes an ODE for sptq.
The above equations (47) are not in a form susceptible to similarity solutions; however, they consti-

tute a so-called single phase STEFAN problem, see [8], [9], which, for instance, arises in solidification-

melting problems of a heat conducting body reaching the melting temperature. It is, perhaps helpful to

quickly look at this problem.

4.1 The classical Stefan problem

Figure 10: Layer of ice floating on a lake in winter. This is the simplest version of the thermal description of the ice front
sptq. At the atmosphere/ice interface, the surface temperature �Tsurf or the surface heat flux qsurf is prescribed

We commence by demonstrating that freezing of a lake and sediment transport into a quiescent

ambient fluid are mathematically analogous problems. Consider a lake in winter with an ice cover of

a certain thickness, Fig. 10. Assume either that the surface temperature, �Tsurf (below freezing), or

the heat flux into the atmosphere, qsurf is prescribed. [Both conditions are thinkable as upper boundary

conditions, but neither one is strictly correct in a practical application.] Assume, moreover, that the

water layer is at the melting temperature (0�C) and that CLAUSIUS-CLAPEYRON effects (the melting

temperature depends on the pressure) and the non-monotonicity of the thermal equation of state are

ignored. The initial boundary value problem describing the temperature in the ice is then given by the
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following equations

B T
B t � Dice

B2T

BX2
, 0 ¤ X ¤ sptq,

T p0, tq � �Tsurf , or
B T
BX p0, tq � �qsurf

Dice
,

T psptqq � 0,

�ρL 9sptq � qpsptq, tq � �κice B TBX psptq, tq,

sp0q � 0, initial condition.

(48)

In these equations Dice � κice{pρcpqice is the thermal diffusivity of ice, cp its specific heat at constant

pressure, κice its thermal conductivity, ρ its density and L the latent heat of melting/freezing. The input

quantity is either the surface temperature Tsurf or the heat flow loss, qsurf . Equation (48)1 is the heat

conduction equation in the ice layer. The two equations in the second line are the driving elements of

the problem, leading eventually to two different initial boundary value problems. The equation in the

third line is the statement that the temperature at the ice-water interface equals the freezing temperature.

The statement in the fourth line of (48) says that the energy, which is withdrawn from the interface and

transported through the ice by the heat flow, q, equals the amount of mass of water which freezes per

unit time multiplied with the latent heat, L. This latter statement is the STEFAN condition. By simple

comparison of (47) and (48), it is seen that the different physical problems of sediment transport into a

quiescent ambient fluid and progression of an ice front in a freezing lake are analogous.

Let us demonstrate the solution of the classical STEFAN problem (48) for the case that the surface

temperature Tsurf is prescribed. Construction of this solution is facilitated by introducing the transfor-

mation

θ :� T � Tsurf . (49)

The initial boundary value problem (48) then transforms into

B θ
B t � Dice

B2θ

BX2
, 0 ¤ X ¤ sptq,

θp0, tq � 0,

θpsptq, tq � Tsurf ,

� L

cice
9sptq � q̂psptq, tq � �Dice

B θ
BX psptq, tq,

sp0q � 0,

(50)

in which q̂psptq, tq � qpsptq, tq{pρciceq is the diffusive heat flux per specific heat. A solution to (50)1 is

sought in terms of the similarity variable

Y � X?
2Dicet

(51)

and can be written as (see e. g. KREYSZIG [31], CRANK [9])

θ � A�Berf
�

X

2
?
Dicet



, erfpyq � 2?

π

» y
0

exp�ξ
2

dξ, (52)
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in which A and B are constants of integration. (50)2,3 imply A � 0 and

Tsurf � Berf
�

sptq
2
?
Dicet



. (53)

Because Tsurf and B are constants, so must be the argument of erfp�q, which we now set equal to λ,

λ � sptq
2
?
Dicet

� const. ÝÑ sptq � 2λ
a
Dicet. (54)

This representation, first, satisfies the initial condition (50)5 and, second, shows that the thickness growth

of the ice cover follows a
?
t-law. Obviously, an analogous law also holds for the forward motion of the

plunge point of a GILBERT-type delta. To determine the constant λ the remaining STEFAN condition

(50)4 is used. With

B θ
BX � 2B?

π
exp

�
�
�

X

2
?
Dice


2
�

1

2
?
Dicet

,

9sptq � λ
?
Dice?
t

,

(55)

the definition of λ and with (52), equation (50)4 can be written as

λ exppλ2qerfpλq � Tsurf?
πpL{ciceq , (56)

which is a transcendental equation for λ. As an approximation, we assume λ to be small, λ ! 1; then

exppλ2q � 1, erfpλq � 2?
π
λ

and (56) becomes

λ2 � Tsurf
2pL{ciceq , (57)

with the aid of which

sptq �
d

2DiceTsurf
pL{ciceq t. (58)

If we translate this result into the prograding process of the plunge point of a hypopycnal delta, it reads

sptq �
d

2D1ζ̂in
H

t, (59)

in which ζ̂in is the far upstream thickness of the moving sediment layer and H is the constant bottomset

depth.
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4.2 Prograding deltas

It will be shown now that the analogous problem for the sediment transport differs from the thermal

problem only by the ‘STEFAN-condition’. An advancing GILBERT-type delta grows into the bottomset

region of a lake with a frontal slope of the angle of internal friction φ. With reference to Fig. 9 it is clear

that

ζ̂toe � ζ̂s � tanφ puptq � sptqq (60)

gives the Z-coordinate of the toe of the delta-wedge, irrespective of the exact form of the geometry of

the basement. However, if the basement is given as an inclined plane, then

ζ̂toe � �uptq tanα1 � ζ̂0
b � �uptq tanα1, (61)

where α1 is the joint slope angle of the basement in the topset and foreset and ζ̂0
b � 0 applies, if the

origin of the coordinates is shown as indicated in Fig. 36 (see Appendix A). Combining (60) and (61)

yields

�uptq tanα1 � ζ̂s � tanφ puptq � sptqq

or uptqrtanφ� tanα1s � ζ̂s � tanφ sptq,

ùñ uptq � ζ̂s � tanφ sptq
tanφ� tanα1

. (62)

If this expression is now substituted into (42), in which σ � 0 and 9Z` � 0, the sediment flux at the

plunge point takes the form

qpsptq, tq �
#
ζ̂s � tanφ sptq
tanφ� tanα1

� sptq
+

tanφ
d s
d t
. (63)

Thus, the topset diffusion of a sediment flow on an inclined basement is governed by (47)1,2,3,5 with

qspsptq, tq given by (63), viz.,

B ζ̂
B t � D1

B2ζ̂

BX2
, 0 ¤ X ¤ sptq,

B ζ̂
BX � � q0

D1
, X � 0, t ¥ 0,

ζ̂ � 0, X � sptq, t ¡ 0,#
ζ̂psptq, tq � tanφ sptq

tanφ� tanα1
� sptq

+
tanφ

dsptq
d t

� qpsptq, tq � �D1
Bζ̂
BX psptq,tq

.

(64)
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The general solution of (64)1 has the form ζ̂ � A�BerfpX{p2?D1tq. If we write sptq � λ
?
D1t with

constant λ, the constants of integration, A and B, can be determined with the aid of (64)2,3, so that

ζ̂ �
?
π

2

q0

D1

"
erf

�
λ

2



� erf

�
X

2
?
D1t


*
. (65)

Now, since sptq 9sptq � D1λ
2{2 and ζ̂psptq, tq � 0, the flux boundary condition (64)4 becomes an

equation for λ:
λ2

2
exp

�
�λ

2

2



� q0

D1

tanφ� tanα1

tanα1 tanφ

� q0

D1

1

tanα1
, if |α1| ! φ.

(66)

It is not difficult to become convinced that this analytical solution could only be constructed, because

ζ̂psptq, tq � 0 was imposed as one of the boundary conditions at the plunge point.

4.3 Fluvial ‘grade’ in river-lake systems

Significant for the fluid mechanical understanding of the formation of GILBERT-type alluvial deltas in

a river-lake system are conditions for which neither net deposition nor net erosion arise. A segment of

a river where this arises is called graded. This terminology was introduced by GILBERT (1877) [18].

According to MUTO & SWENSON (2005) [48], [49] the ‘concept of fluvial grade is typically presented

as the long-term, equilibrium8 state of a river system subject to steady allogenic forcing’. They state,

quoting SCHUMM (1977) [59], that ‘the mechanisms for attaining grade are thought to include adjust-

ments in slope, channel geometry, sinusoidity, bed roughness and grain size.’ We add as an important

influential factor temporal variations of the free surface of the lake.

Most stretches of alluvial rivers entering a lake are not, or at most approximately ‘in a graded state

as their long term behavior depends fundamentally on the behavior of its upstream and downstream

neighboring environments. Because of this coupling the alluvial river generally cannot attain a graded

state with steady boundaries’ [49]. This is illustrated in the two panels of Fig. 11, which are motivated by

two figures in [48] and PARKER (1977) [53]. Panel (a) shows an idealized fluvio-deltaic GILBERT-type

system [19], prograding into a flat-bottomed basin with steady eustatic lake level and constant supply of

sediment and water to its upstream boundary. In this case the vertical position of the alluvial-basement

transition (the plunge point) is fixed. However, even if the river stretch at time t � 0 were in a graded

state, the subaqueous avalanching steady sediment flux at the delta front will make the plunge point

move lakeward. Consequently, the constant slope delta front will equally move lakeward and therefore

lengthen the river stretch and thus decrease its slope thereby forcing aggradation (sediment deposition).

The river stretch will thus have its graded state to which it will never return unless an appropriate external

control mechanism enforces such conditions. Lake level variations are among such possibilities.

The situation illustrated in panel (b) of Fig. 11, due to PARKER (1977) [53], shows sediment flow into

an artificial reservoir bounded by a weir. ‘The supplied sediment that progrades and aggrades until the

position and elevation of the shoreline coincide with the top of the weir. From this time onward, sediment

reaching the shoreline (qout) cannot accumulate on the vertical weir face [. . . ]. The alluvial river system

continues to expand landward through a combination of aggradation and onlap at the alluvial-basement
8I regard the denotation ‘equilibrium’ as introduced by geologists as a misnomer, since the graded state is not a thermody-

namic equilibrium
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Figure 11: (a) Idealized fluvio-deltaic GILBERT-type system prograding into a standing boby of water with uniform and
steady depth. Sediment and water supply are steady. Even when the initial state is graded, progression of the wedge delta
moves the system away from this graded state into aggravation of sediment, from MUTO & SWENSON [48], [49]. (b)
sediment flow on an alluvial basement of constant inclination. A weir fixes the free surface of the reservoir. A graded state
is attained when aggradation and onlap at the alluvial-basement transition generate a linear profile that allows complete
sediment bypass, from PARKER [53]

transition. Eventually, the slope of the alluvial river system becomes constant along its entire length

and all sediment is bypassed (qin � qout). This graded state, which is characterized by a linear channel

profile, will be sustained as long as the fluxes of sediment and water remain unchanged’ [48].

Figure 12: (a) Idealized fluvio-deltaic system along a basement of constant inclination (�α1) with a GILBERT-type delta
of slope φ. Three points are significant: the alluvial-baseement transition, X � rptq; the shoreline or plunge point,
X � sptq, and the delta toe, X � uptq, all moving. Courtesy MUTO & SWENSON [48] c© J. Geophys. Res.

MUTO & SWENSON [48] consider the situation sketched in Fig. 12, where a GILBERT-type delta is

formed. This fluvio-deltaic system is prograded across a linear shelf (‘basement’ bpX, tq) in response to

a sediment supply qs0. The shelf has a slope �α1 and is subsiding at a spatially uniform rate σptq. The

origin of the coordinate system is taken as the intersection of eustatic lake level with the shelf surface

at t � 0. Let ˆζpX, tq, bpX, tq and Z`ptq be the elevations of the sediment surface, the shelf and eustatic
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lake level, respectively. The position of the alluvial-basement transition, shore line (plunge point) and

delta toe are rptq, sptq and uptq, respectively. The initial [. . . ] wedge is vanishingly small [. . . ] such that

at t � 0, r � s � u � 0 [48].

The diffusion equation in the subaerial regime and boundary conditions at a topset cross-section far

upstream, X � X1 and at the plunge point are

B ζ̂
B t �D1

B2ζ̂

BX2
� �σ, X1   X   sptq,

B ζ̂
BX � �ptan |α1|qrptq,

D1
B ζ̂
BX � �qs0,

,//.
//- X � rptq,

ζ̂ � Z`ptq, X � sptq.

(67)

Here, σ � const. is the spatially and temporally constant subsidence of the inclined basement. Equation

(67)2 expresses that the sediment approaches the up-slope of the basement smoothly, whilst (67)3 pre-

scribes the temporally constant upstream sediment flow. (67)4 sets the level of the sediment surface at

the plunge point equal to the level of the lake surface. These conditions must be complemented by a flux

jump condition at the plunge point. This is obtained by geometric reasoning. Before turning to that, it is

advantageous to introduce the transformed bed elevation

ζ̃ :� ζ̂ �
» t

0
σpτqdτ. (68)

Since σ has by assumption no X-dependence, (68) transforms (67) into

B ζ̃
B t � D1

B2ζ̃

BX2
, 0   X   sptq,

B ζ̃
BX � � tan |α1|rptq,

D1
B ζ̃
BX � �qs0,

,//.
//- X � rptq,

ζ̃ � Z`ptq �
» t

0
σpτqdτ � R`ptq, X � sptq.

(69)

The remaining missing boundary condition is the zero jump of sediment flux as the shoreline is crossed:

rr qspsptq, tqss � 0 and will be given here for conditions of non-vanishing subsidence, σptq � 0, and

non-trivial lake level movements 9Z` � 0. A first relation is obtained by evaluating the water depth at the

delta toe by two different geometric expressions, see Fig. 12,

Z`ptq �
» t

0
σpτqdτ � uptq tan |α1| � puptq � sptqq tan |φ|,

from which we deduce

uptq � tan |φ|sptq �R`ptq
tan |φ| � tan |α1| , (70)
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where R` is defined in (69)4. Next, the sediment flux is given by

qspsptq, tq � d
d t

» u
s

�
ζ̂pX, tq � bpX, tq

�
dX

� puptq � sptqq
�

dZ`ptq
d t

� tan |φ|d sptq
d t

� σptq



� puptq � sptqq
�

dR`ptq
d t

� tan |φ|d sptq
d t




p70q� tan |α1|sptq �R`ptq
tan |φ| � tan |α1|

�
dR`ptq

d t
� tan |φ|d sptq

d t




� �D1
B ζ̃psptq, tq

BX . (71)

For prescribed σptq and Z`ptq this formula allows computation of the slope B ζ̃psptq, tq{BX at X � sptq
in terms of the basement slope |α1| and the angle of repose |φ|. We rather wish here to use (71) to

determine the temporal evolution of the lake levelR`ptq, which is necessary to generate graded conditions

in the topset. Such conditions prevail, if the slope B ζ̃{BX is constant throughout the topset river stretch;

it implies (see Fig. 12)
B ζ̃
BX |s

� � qs
D1 |XPrrptq,sptqs

� �qs0
D1

� const.,

B ζ̃
BX |s

� 0.

(72)

With the obvious relation

d ζ̃
d t |s

� dR`ptq
d t

� B ζ̃
BX |sloomoon
�qs0{D1

d sptq
d t

� B ζ̃
B t |sloomoon
�0

, (73)

leading to
dR`ptq

d t |graded
� �qs0

D1

d sptq
d t

, R`ptq|graded
� �qs0

D1
sptq. (74)

Here, the second expression has been obtained by an integration with respect to time. Now, substituting

into (74)1 the expression for qs0 stated in (71)4, it can be shown that

d
d t

�
R2
`

� � R2

�
α1, φ,

D1

qs0



qs0 (75)

with

R2 :� 2ptan |φ| � tan |α1|q
"

1� tan |α1|D1

qs0

*�1

�
"

1� tan |φ|D1

qs0

*�1

. (76)

Therefore, by integration

R` � �R
d» t

0
qs0pτqdτ � �R?qs0

?
t, (77)

in which the expression on the far right holds for qs0 � const. Alternatively, in view of the definition of
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R`ptq in (69)4

Z` � �R?qs0
?
t� σ t, for σ � const. (78)

The positive root in (77) would correspond to a lake level rise for which no graded flow exists.

Relation (77) can be made dimensionless by using the reference length rLs and reference time rT s
via

rLs :� qs0|dR`d t
|c, rT s � rL2s

D1
(79)

and by scaling R` and t by

R�
` �

R`
φrLs , t� � t

D1rLs . (80)

With these, (77)2 takes the form

R�
` � R�?t�,

R� � �
d

2

�
1� |α1|

|φ|

�

qs0
|φ|D1


3 �
1� qs0

|φ|D1


�1 �
1� qs0

|φ|D1

|α1|
|φ|


�1 (81)

in which all quantities are dimensionless.

Figure 13: Conceptual partitioning of the R` � t space into regions of global alluvial aggradation (shaded) and degrada-
tion. Trajectory 2 is that required for grade. For details of the dynamics of trajectories 1 – 4 see the main text. Courtesy
MUTO & SWENSON [48] c© J. Geophys. Res.

MUTO & SWENSON [48] present model predictions of fluvio-deltaic response to the four patterns of

R` – fall, shown conceptually in Fig. 13. Common to all model scenarios are the dimensionless numbers

qs0{pD1|α1|q � 0.5, |α1|{|φ| � 0.2, and the dimensionless duration of progradation (0   t�   3). They

consider first the response to a linear R` history (Fig. 13, dashed trajectory, labeled 1) , which cannot

support sustained grade.

Figure 14 shows the evolution of the positions X � trptq, sptq, uptqu, and the corresponding strati-

graphic evolution of the fluvio-deltaic system. ‘At small times, the constant rate of fall in R` is less

than that required for grade, thereby placing the system in the aggradational regime of R` � t space.

During this time interval the position X � rptq migrates lakeward, and the fluvial system is everywhere

aggradational. At t � Tg the linear R` trajectory intersects the graded trajectory, and the fluvial system

attains a state of grade (in an instantaneous sense). The system cannot maintain in this graded state,

however [. . . ], for t ¡ Tg fluvial incision continuously cannibalizes previously deposited sediments and,
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Figure 14: Progradation of a GILBERT-type delta in response to a steady rate of fall in relative lake level. (a) Trajectories
of the alluvial-basement transitionX � rptq; shoreline,X � sptq; delta toe,X � uptq; (b) time-lines of the free surface.
All quantities are dimensionless. Courtesy MUTO & SWENSON [48] c© J. Geophys. Res.

correspondingly, the transition point X � rptq migrates lakeward (offlap)’ [49].

Figure 15 shows the graded (top), sub-graded (middle) and super-graded (bottom) states. In panels

(a) (left) the evolutions of the alluvial-basement transition, shoreline, and delta toe for the fluvio-deltaic

response to a relative lake level curve are shown; panels (b) show the corresponding time lines of the

stratal architecture for the indicated dimensionless times. In the top panel the lake level time curve is

given by equation (81). ‘The alluvial basement transition remains stationary throughout the prograding

process. The shoreline and delta toe advance lakeward at a monotonically decreasing rate that reflects

the linearly increasing water depth, [48]. Panel (b) is showing the time lines. The alluvial system has

a linear profile and shows neither net aggradation nor net erosion. Throughout progradation, the entire

sediment supply bypasses the alluvial regime to drive progradation via deposition on the delta’ [48].
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Figure 15: Top: Fluvio-deltaic progradation in a state of grade. Dimensionless relative lake level trajectory, given by
equation (81). (a) Trajectories of alluvial-basement transition, X � rptq; shoreline X � sptq; delta toe X � uptq; (b)
resultant stratal architecture (time lines). Middle: Same as in the top panel in response toR�` 9�?

t�, but with a leading
coefficient, which is half that of the graded value. Note the persistent landward displacement of X � rptq. Bottom:
Same as in the top and middle panels in response to R�` 9 � ?

t�, but with a leading coefficient, which is twice that of
the graded value. Note the persistent lakeward displacement of all these points X � trptq, sptq, uptqu. Courtesy MUTO

& SWENSON [48] c© J. Geophys. Res.
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4.4 Experimental verification

MUTO & SWENSON [48] present laboratory experiments performed at Nagasaki University, which cor-

roborate the correctness of the theoretical model for fluvio-deltaic formations with the outlined specific

patterns of relative lake level fall.

A stainless steel tank (4.5 m long � 1.0 m wide � 1.3m deep) with a frontal glass wall for photo-

graphic recording of the moving sediment mass was filled with water, whose free surface was computer

monitored via an electromagnetic flow meter with high accuracy. Inside the tank, a narrow 4.3 m long

flume with uniform width (1.0 cm) and longitudinal inclination (|α1|) is placed to mimic the sloping

basement. The downslope end of the flume is open. A slurry of 0.2 mm quartz sand and water was fed

into the flume from a point above the initial water level, which produced from zero inceptions the desired

alluvial deltaic depositions with the typical slope discontinuity at the moving shore line. The sediment

flow depth is approximately 1.0 mm thick, and avalanching was the dominant transport mechanism on

the subaqueous delta. Among the four experiments in this set-up the significant difference was in dou-

bling and halving of the upstream water supply qw0, which controls diffusivity D1 and characteristic

slope of the fluvial surface qs0{D1. The dependence of D1 on qw0 was determined by separate flume

experiments. Note also that the initial rate of fall in relative lake level according to (77) or (81) has a

square root singularity at t � 0, which cannot be reproduced in the experiments. Instead, linear initial

fall of lake level was used, which intersects the ideal �?t lake level fall curve at t � Tg, say, beyond

which lake level monitoring followed the �?t curve, for details see MUTO & SWENSON [48]. In the

following we report some of their results, see Table 1.

‘Figures 16 and 17 document the evolution of the fluvio-deltaic system generated in experimental

Run 1, in which the rate of fall in relative lake level was constant. Figure 16 shows the trajectories

X � trptq, sptq, uptqu in X � t space; Figure 17 is a set of sequential photographs of the experiment.

With a constant sediment supply in this experiment, the spatial extent of both the alluvial river and the

delta foreset increased with time (Fig. 16). Shore line and delta toe migrated basinward throughout the

experiment, whereas the alluvial-basement transition migrated first landward (0   t   450 s) and then

basinward (450   t   3736 s). This transition from net alluvial aggradation to net degradation [. . . ] is

clear in Fig. 17. During the degradational phase, material deposited in the previous aggradational state

is re-deposited in the formation of the advancing delta front’ [48].

In the complementing three experiments the lake levelR` was monitored in the piecewise continuous

manner explained previously with data as given in Table 1. Figures 18 and 19 show the moving boundary

trajectories and stratigraphic evolution of the fluvio-deltaic system generated in experimental Run 2A (of

MUTO & SWENSON [48]), which approximately mimics graded conditions. During the initial steady fall

in relative lake level (0   t   Tg � 570 s) the alluvial basement transition migrates landward (Fig. 18),

accompanied with sediment deposition in response to the non-graded initial linear lake level drop. This

phase was followed by the graded history R` and re-adjustment into a graded state by degradation and

slight lakeward advance of the alluvial-basement transition, X � rptq. This phase terminated at t � 720

s beyond which the fluvio-deltaic system was graded. This is clearly seen in Fig. 19, in which the

alluvial-basement transition point (∇ in the figure) does not move through time. The small shift between

the critical position of this point (Ò in the figure) and its position through time (∇) is due to the early time

linear lake-level fall (to avoid the �?t singularity as tÑ 0) and further experimental imperfections (see

MUTO & SWENSON [48]). Except for these the maintenance of the graded behavior is well kept in this
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Table 1: Experimental parameters for two of the 4 experiments. Courtesy MUTO & SWENSON [48], c© J. Geophys. Res.

Run 1 Run 2A
Run time, s 3736 7214
Total R` fall, cm -38.9 -16.2
Mode of R` fall steady initially steady,

then decelerating
Steady component

Duration Tg, s 3736 570
Fall rate dR`{dt cm/s -1.04�10�2 -7.78�10�3

Decelerating component
Duration, s – 6644
Coefficient in (77) cm s�1{2 – 0.197
Coefficient in (81) – 0.0986

Shelf slope | tanα1| 0.204 0.196
Foreset slope tan |φ| 0.739 0.654
Alluvial slopea 0.141 0.107
Water discharge qw0

b, cm2/s 4.88 3.91
Sediment discharge qs0b, cm2/s 0.351 0.181
Fluvial diffusivity D1, cm2/s 2.49 1.69
Length scale, rLs, cm 33.7 80.9
Elevation scale, H cm 6.88 15.9
Time scale rT s, s 455 3860
Dimensionless numbers
Alluvial/shelf slope qs0{pD1|α1|q 0.688 0.545
Shelf/foreset slope | tanα1|{ tan |φ| 0.277 0.300

a Length-averaged quantity
b Width-averaged quantity

experiment.

5 Hyper-pycnal deltas

As already mentioned in the introductory section, hyper-pycnal flows in still ambient waters occur when

the inflowing discharge is denser than that of the receiving ambient. This commonly occurs when flood

waters, laden with fine sediments enter freshwater lakes. In such cases the denser, particle laden, inflow

will plunge down the lake shore in form of a density or turbidity undercurrent as sketched in Fig. 1b.

According to ELLISON and TURNER (1959) [12] such flows maintain their identity for long distances

because, owing to their relatively large density, mixing with the ambient fluid at their upper boundary is

hampered. Their slow secession is primarily due to a gradual settling out of their finer fractions of the

suspended sediments (BELL, (1942) [4]) and because of the dying turbulent intensity due to turbulent

dissipation.

The boundary layer structure of hyper-pycnal flows down the lake bottom from its shore input to

the bottomset far-field generally exerts a significantly different geomorphological influence than do their

homo- and hypo-pycnal counterparts. The foresets of hyper-pycnal deltas have much smaller inclinations

and, unlike the avalanching processes in GILBERT-type delta fronts, their sediment transport is akin

to subaerial bedload transport in the topset river stretches. Such views are supported by studies and
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Figure 16: Trajectories of the alluvial-basement transition, X � rptq; shore line, X � sptq; and delta toe, X � uptq; in
experimental Run 1, in which R` falls steadily. Note, rptq first migrates landward (onlap) until t � 450 s, before moving
basinward (offlap) for the remainder of the experiment. By contrast, sptq and uptq migrate persistently lakeward. The
finite slope of all curves is manifestation of the initial linear lake level fall. Courtesy MUTO & SWENSON [48], c© J.
Geophys. Res.

observations in the Alpine Rhine river at Lake Constance (MÜLLER and FÖRSTNER, (1966) [44]; ROTH

et al. (2001) [58]), where maximum slopes in the foreset regime are of the order of 5�-10� (ADAMS et

al. (2001) [2], 6�) and have further found corroboration e. g. in the Colorado River delta in Lake Mead

(GROVER and HOWARD, (1937) [22]; SMITH et al. (1960) [60]) and the Noeik River delta in a fjord of

the British Columbia Coast (BORNHOLD and PRIOR, (1990) [5]). Moreover, WRITE et al. (1988) [68]

have studied the marine dispersal and deposition of Yellow River silts by gravity driven underflows and

FAN and MORRIS (1992) [13] employ such density current concepts to study reservoir sedimentation,

all as mentioned by LAI and Capart (2007) [33]. Corresponding laboratory experiments have been

conducted, among others, by YU et al. (2000) [69]; KOSTIC and PARKER, (2003) [30]; TONIOLI and

SCHULTZ (2005) [64] and LAI, (2006) [32].

In this connection an influential paper by KENYON and TURCOTTE, (1985) [27] should be men-

tioned. LAI and CAPART emphasize that these authors have foreseen such kind of foreset morphology

and its time evolution via a diffusion process. They, ‘however, identified bulk transport (creep and land-

slides) as the geomorphologic agent responsible for the subaqueous diffusion. [. . . ] they did not consider

the possibility that turbidity undercurrents could be responsible instead.’ This under water density cur-

rent is LAI and CAPART’s (2007) [33] suggested mechanism, which is responsible for the formation of

hyper-pycnal deltas.

In the ensuing analysis we shall rely upon the diffusive transport model for the topset regime as

developed in Sections 2 and 3. This diffusion model will be connected at the plunge point to a similar

diffusion model, which will be valid in the foreset regime. This latter model is by itself a simplified de-

scription of the realistic sedimenting processes as they occur in hyper-pycnal delta regions. Indeed, ‘the

turbulent [under]current carries fine sediments which gradually settle out of suspension, and simultane-

ously they can drive a basal transport of coarser grains. This dual role played by the currents complicates
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Figure 17: Sequence of photo images of the fluvio-deltaic system in experimental Run 1. Experimental run time (in
seconds) is shown in each panel on the left; position of the initial alluvial-basement transition (agreeing with the corre-
sponding theoretical transition position under graded conditions for all time) is shown as Ò. The evolving experimental
alluvial-basement transition point is shown as ∇ and indicates its landward early movement for t   450 s, followed by
persistent basinward motion afterwards. Courtesy MUTO & SWENSON [48], c© J. Geophys. Res.
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Figure 18: Trajectories of the alluvial-basement transition, X � rptq; shore line, X � sptq; delta toe, X � uptq; in
experimental Run 2A. During the early linear lake level fall (0   t   Tg � 570 s) the alluvial-basement transition point
retreated somewhat; after t � 720 s this transition point remains stationary up to t � 7200 s. This experiment mimics
graded conditions nearly perfectly as the experimental curve X � rptq remains practically constant for t ¡ 720 s. Note,
X � sptq and X � uptq show linear initial stretches merging into �?t curves with a slight kink at t � 720 s. Courtesy
MUTO & SWENSON [48], c© J. Geophys. Res.

both theoretical developments and experimental interpretations. For this reason, [we will] ignore the first

process, and focus only on the second. It will be assumed that the fines fraction of the turbidity current

(responsible for the density contrast with the ambient water) settles out of suspension at a very slow

rate. As a result, we will not consider the long range delivery or long term settling of these fines, nor

consider the resulting formation of bottom set beds. Instead, we will focus exclusively on the upstream

geomorphic influence exerted by the turbid underflows on the coarser-grained foresets. This simplified

picture is illustrated in Fig. 1b, where it is contrasted with the GILBERT-type delta, Fig. 1a, described

earlier’, [33].

5.1 Foreset diffusion model

The ensuing derivation follows and complements an analysis by LAI and CAPART (2007) [33]. Accord-

ingly, even though limited entrainment of ambient water into the submerged gravity current gives rise to

a growth of mass flow, steady plumes are observed, which corresponds to no growth of mass flow. They

correspond to effectively normal subaqueous flow states for which the basal shear stress (TURNER 1973

[65]) is given by

τb � rpρ� ρ8qgh� pρ0 � ρqgδs sinβ � pρ� ρ8qgh sinβ, (82)

where the approximation holds since δ ! h. ρ is the density of the turbid water in the density current,

and the shear stress τb has been reduced due to the ambient buoyancy. Analogously,

σ1b � rpρ8h� ρ0δq � pρ8h� ρδqsg cosβ � pρ0 � ρqδg cosβ. (83)

Assuming the COULOMB-TERZAGHI relation (9), viz.,

τb � tanφσ1b (84)
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Figure 19: Run 2A, subjected to nearly graded conditions. Sequence of photo images of the fluvio-deltaic system in
experimental Run 2A, subjected to nearly graded conditions. Ò indicates the initial position of the alluvial-basement
transition points. ∇’s show these transition points at the indicated times (on the left in each panel); this position remains
unchanged after t � 720 s and is, together with the plane free surface of the alluvial deposit, reminiscent of graded
conditions. Courtesy MUTO & SWENSON [48], c© J. Geophys. Res.
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and substituting (82) and (83) into (84) yields

δ � pρ� ρ8q tanβ

pρ0 � ρq tanφ
h � pρ� ρ8q tanβ

rp1� n0qρs � ρs tanφ
h, (85)

where n0 is the ponosity. This is the subaqueous analogue to the subaerial representation (11). Note, this

result is at variance with that stated in [33]. Next we write

v � α2u, (86)

in which u is the depth averaged downslope velocity of the density current and v is the corresponding

average speed of the moving sediment layer. The dimensionless parameter α2 plays the same role as α1

in (12) with likely different value, because the velocity profiles in the subaerial flows are not similar to

those of subaqueous flows. Now, with q � δ v we obtain

q � δ v � α2hu
pρ� ρ8q tanβ

rp1� n0qρs � ρs tanφ
. (87)

With tanβ � �B ζ̂{BX , the definition

9m1 :� pρ� ρ8qhu (88)

and the diffusion property

q � �D2
B ζ̂
BX

we may alternatively write for the diffusivity

D2 � α2 9m1

rp1� n0qρs � ρs tanφ
. (89)

Even though the thickness, density and velocity of the current can evolve along the trajectory of the

density current, it can be shown that the buoyancy flux (88) remains constant along the trajectory

d 9m1

dX
� 0.

This is the vanishing entrainment assumption above. In summary, with the conservation of sediment

mass equation (5) we obtain the diffusion equation

B ζ̂
B t �

B
BX

�
D2

B ζ̂
BX

�
(90)

as evolution equation for the position of the upper surface of the sediment layer of hyper-pycnal deltaic

formations.

With D1 and D2 given by (17) and (89), respectively, we may deduce

D2

D1
� α2

α1

pρ� ρ8qp1� n0qpρs � ρ1q
rp1� n0qρs � ρsρ . (91)
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Replacing as an approximation in the braces of the denominator the density ρ by p1 � n0qρ1, where ρ1

is the upstream density, the above formula becomes

D2

D1
� α2

α1

ρ� ρ8
ρ

� α2

α1

ρ1 � ρ8
ρ1

. (92)

This formula may serve as an approximation for estimations of the ratio of the foreset and topset dif-

fusivities. With α2 ¤ α1 and ρ1 � ρ, it is seen that the subaqueous diffusion coefficient is smaller or

very much smaller than its subaerial counterpart.9 This reflects a reduction in transport capacity when

the flow transits from subaerial stream flow to subaqueous density current flow.

5.2 Combined topset-foreset diffusion process for hyper-pycnal deltas

According to the above simple formulation of the formation of hyper-pycnal deltas, their evolution is

described by the foreset diffusion equation (18), which is solved subject to an upstream boundary condi-

tion (either prescription of the moving sediment flux or the Z-coordinate of the moving sediment layer).

This topset diffusion problem must be connected to an analogous foreset diffusion problem (90), subject

to the far downstream boundary condition that the layer thickness of the density current tends to zero

as X Ñ 8. At the plunge point the two models must be patched together such that the sediment layer

thickness at X � sptq is continuous as is the sediment mass flux across the plunge point. LAI and

CAPART [33] write these conditions as

qpX, tq �

$'&
'%

�D1
B ζ̂
BX , ζ̂pX, tq ¥ Z`ptq,

�D2
B ζ̂
BX , ζ̂pX, tq ¤ Z`ptq,

ζ̂pX, tq � Z`ptq � 0,

(93)

where Z` is the lake level elevation. Equations (18) and (90), combined with upstream and downstream

boundary conditions and transition conditions (93) define a so-called double-diffusion problem, which

prior to LAI and CAPART [33] was already given by JORDAN and FLEMING (1990) [14] [based on pre-

cursory results by BEGIN et al. (1981) [3], KENYON and TURCOTTE (1985) [27], but these authors did

not interpret the foreset diffusion problem as emerging from a turbulent density under-current].

a) Topset and bottomset with equal basement slope As a simple but nevertheless mathematically

not easy example, consider an infinitely long inclined plane defining the topset-bottomset lower bound-

ary basement with slope �S � � tanβ, see Fig. 20a. Assume, moreover, a constant lake surface and

choose a Cartesian coordinate system as shown in the figure with origin at the intersection of Z � Z` and

Z � �SX . Let a sediment transport process be started with this configuration at time t � 0, and assume

a hyper-pycnal delta is being formed for t ¡ 0, of which Fig. 20b shows a snapshot. Its plunge point is

at X � sptq, Z � Z`p� 0 here). The sediment transports in the topset and foreset are then described by

the following initial boundary value problems.
9With α1 � α2 and ρ1 � 2100 kg m�3 and ρ8 � 1100 kg m�3 one obtains D2{D1 � 0.48 (foreset conditions).

Alternatively, with ρ1 � 1200 kgm�3, ρ8 � 1100 kgm�3, we get D2{D1 � 0.083.
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Figure 20: Formation of a hyper-pycnal alluvial delta in a lake with a bottom profile of constant slope �S in the topset
and foreset alike. (a) Geometry and selection of the coordinates pX,Zq (situation at t � 0). (b) Delta architecture at
t ¡ 0

B ζ̂1

B t �D1
B2ζ̂1

BX2
� 0, �8   X   sptq, t ¡ 0,

B ζ̂1

BX � �S, X Ñ �8, t ¥ 0,

ζ̂1 � 0, X � sptq, t ¥ 0,

ζ̂1 � 0, �8   X   sptq, t � 0,

(94)

as well as

B ζ̂2

B t �D2
B2ζ̂2

BX2
� 0, sptq   X   8, t ¡ 0,

B ζ̂2

BX � �S, X Ñ8, t ¥ 0,

ζ̂2 � 0, X � sptq, t ¥ 0,

ζ̂2 � 0, sptq   X   8, t � 0,

(95)

and these equations must be ‘connected’ by the transition condition

q1psptq, tq � q2psptq, tq � �d,

rrqpsptq, tqss � d.
(96)

Problem (94) describes the sediment transport in the topset as a diffusion process, with vanishing layer

thickness at ζ̂1pX, 0q, ζ̂1psptq, tq and approaching a prescribed slope far upstream. Analogously, the sed-

iment transport in the foreset is also diffusive, starting from a vanishing delta front thickness ζ̂2pX, 0q �
0, ζ̂2psptq, tq � 0 and approaching the same bottomset slope for X Ñ 8 as in the topset for X Ñ �8.

These two solutions are matched at the plunge point by requesting that the moving sediment flux may

suffer a jump of size d as given in (96). Its physical significance will be discussed below.

A solution to this problem has been constructed by LAI and CAPART (2007) [33]. The general

solution of the diffusion equation has been derived in Section 2, see (20) and is based on the definitions
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and assignments

ζ̂1 � f1pΞ1qξ1ptq, Ξ1 :� X

ξ1ptq ,

ξ1ptq :� 2
?
D1t, s1ptq :� λ

?
D1t.

(97)

(the index p�q1 stands for ‘topset’). It reads [see (27)]

f1pΞ1q � �A1Ξ1 �B1

 
expp�Ξ2

1q �
?
πΞ1 perfpΞ1q � C1q

(
, (98)

in which A1, B1, C1 are constants of integration. As Ξ1 Ñ �8 we wish to have limΞ1Ñ�8 f1pΞ1q �
�SΞ1 which implies A1 � S and C1 � 1 (else the second term in braces would violate this condition).

Moreover, from (94)3 we deduce

B1 � Sλ

2 expp�λ2{4q � λ
?
πperfpλ{2q � 1q . (99)

This solution is still incomplete, because the parameter λ is not yet determined. It must await construction

of the solution in the foreset.

To find the general solution for (95)1 the procedure is analogous. We write (and use the index p�q2
for the foreset variables)

ζ̂2 � f2pΞ2qξ2ptq, Ξ2 :� X

ξ2ptq ,

ξ2ptq :� 2
?
D2t, s2ptq :� λ

?
D1t

(100)

and thus obtain for the function f2

f2pΞ2q � �A2Ξ2 �B2

 
expp�Ξ2

2q �
?
πΞ2 perfpΞ2q � C2q

(
, (101)

again with constants of integrationA2, B2, C2. As Ξ2 Ñ8, we wish to have limΞ2Ñ8 f2pΞ2q � �SΞ2,

which now implies C2 � �1 and A2 � S. Moreover, from (95)3, since

pΞ2qplungepoint
|X�sptq � s2ptq

2
?
D2t

� λ

2

c
D1

D2
, (102)

we obtain

B2 �
Sλ

c
D1

D2

2 exp

��λ2

4

c
D1

D2



� λ

?
π

c
D1

D2

"
erf

�
λ

2

c
D1

D2



� 1

* . (103)

This solution is incomplete as is the solution for f1, but an equation for λ follows from the flux jump

condition (96), which shall now be derived.

The straightforward approach would be to request in (96) that d � 0 and, consequently q1 � q2 at

X � sptq, or

�D2
B ζ̂2

BX |X�sptq
�D1

B ζ̂1

BX |X�sptq
� 0. (104)

41



In view of (28) [and the formulae immediately before (21): Bζ̂{BX � f 1pΞq] (104) is equivalent to

�D2f
1
2pΞ2q|bD1

D2

λ
2

�D1f
1
1pΞ1q|λ

2

� 0,

f 11pΞ1q|λ
2

� �S �B1
?
π terfpΞ1q � 1u|Ξ1�λ

2

,

f 12pΞ2q|bD1
D2

λ
2

� �S �B2
?
π terfpΞ2q � 1u|Ξ2�

b
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λ
2

,

(105)

in which B1 and B2 are functions of λ as given in (99) and (103).10 It is now clear that (105) is a

transcendental equation for λ.

According to LAI and CAPART (2007) [33] ‘the above equations generate profiles which are rela-

tively close in character to the profiles of hyper-pycnal deltas [. . . ]. Qualitative comparisons with small

scale experiments [. . . ], however, are rather poor’. They state that substantial improvements of the fit

could be obtained at relatively little costs by including the effects of the inclination thresholds. Following

MITCHELL (2006) [42], they propose

q1,2pX, tq �

$''''&
''''%

max

#
�D1

�
B ζ̂1

BX � Smin
1

�
, 0

+
, ζ̂1pX, tq ¥ Z`,

max

#
�D2

�
B ζ̂2

BX � Smin
2

�
, 0

+
, ζ̂2pX, tq ¤ Z`,

(106)

where Smin
1,2 are inclination thresholds below which no bedload transport takes place, applicable to the

topset and foreset, respectively. Application of (106) at the plunge point to the statement rrqss � 0 yields

q2psptq, tq � q1psptq, tq � �D1

�
B ζ̂1

BX � Smin
1

�
�D2

�
B ζ̂2

BX � Smin
2

�
� 0 (107)
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(108)

If q1 � 0 and q2 � 0 at X � sptq, then obviously d � 0.

It is worth interpreting these formulae more closely. Formula (106) defines the sediment-mass flux in

(93), but still demands continuity of it through the plunge point. This is also the interpretation in (107).

However, the differential equations (94)1 and (95)1 are based on flux relations which do not conform

with (106) (unless, of course, Smin
1 � Smin

2 � 0). A different interpretation is that the mass flow is

uniformly defined by the Fickian relation (93). In this case, the flux of sediment mass suffers a jump

as expressed in (96) with d given on the right-hand side of (96). The quantity d can be interpreted as a

point production or annihilation rate of sediment mass at the plunge point. It says that the abrupt change

of slope from the topset to the foreset regime is achieved by a local pointwise deposition or erosion of

sediment. This may correspond to a concentrated action of a process which in reality is a smooth but
10Note that the primes in these functions designate differentiations with respect to different variables.
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rapid adjustment of the delta slope from the topset to the foreset regime.

It is a fortunate coincidence that the jump condition (108) can be satisfied for

d �
$&
%

constant,

grps2q
 λs, sptq � λ
?
Dt, psptq2q
 � λ2D,

(109)

where D is a diffusivity, e.g. D1 or D2 and gr�s is a differentiable function of rs2ptqs
 and λ. The jump

condition (108) then takes the form
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and

d �
$&
%

D2 S
min
2 �D1 S

min
1 ,

grps2q
, λs � grλ2D,λs.
(111)

While (111)1 has univariate variability, (111)2 is very flexible.

Formula (110) provides an additional flexibility to adjust theoretical-computational results to cor-

responding experimental findings. (111)1 shows that the flexibility is only through the combination

rrDSminss � d. Variation of this parameter therefore only generates a one-parameter family of solutions.

Separate selection of S1,2 or D1,2 does not yield improved matching of experimental results with the

theory.11 Formula (111)2, however, exhibits a broader flexibility through the dependence of g on λ.

b) Sediment intake into a constant depth canal Next, let us consider the flow of sediment with initial

level ζ̂0 at a distance far in the topset (atX � 0) into an ambient of constant water depthH0 (see Fig. 21a,

illustrating the situation at t � 0). At the initial time the fluid basin, a semi-infinite canal, bounded by

a vertical wall at X � 0, is free of sediments. The continuous discharge of sediment from this point

will diffusively fill the basin and form the alluvial deposit as sketched in Fig. 21b. Hydraulically, this

problem is somewhat artificial as the position pX,Zq � p0, ζ̂0q is kept fixed, which ‘forces’ the slope of

the topset sediment flow to adjust as the delta formation proceeds. The initial boundary value problem

in the topset regime is described by the equations (for the chosen Cartesian coordinates, see Fig. 21; the

indices p�q1,2 stand again for the ‘topset’ and ‘foreset’ regimes, respectively.)

B ζ̂1

B t � D1
B2ζ̂1

BX2
, 0   X   sptq,

ζ̂1 � ζ̂0 � const. � 0, X � 0, t ¥ 0,

ζ̂1 � 0, X � sptq, t ¥ 0.

(112)

11LAI and CAPART [33] choose d � rrDssSmin, assuming that Smin
1 � Smin

2 . They say that this choice may be too restrictive,
but it is clear from above that they did not restrict the flexibility of the model by this choice.
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Figure 21: Alluvial deposition into a quiescent ambient channel of constant depth H0 from a far upstream position
pX,Zq � p0, ζ̂q. (a) Situation at time t � 0 with vertical sediment motion down a vertical end wall (b) Snapshot of
the situation at t ¡ 0 with the alluvial architecture at the actual time (dark solid lines) and at a selection of previous
times (dashed lines). The early time behavior is hydraulically not realistic. Panel (b) courtesy LAI & CAPART, [33], c© J.
Geophys. Res.-Earth Surface

with the sediment flux q1 � �D1B ζ̂1{BX , in 0   X   sptq. Analogously, the foreset problem is

described by

B ζ̂2

B t � D2
B2ζ̂2

BX2
, sptq   X   8,

ζ̂2 � 0, X � sptq, t ¥ 0,

ζ̂2 � �H0 � const. � 0, X Ñ8, t ¥ 0,

ζ̂2 � �H0 � const. � 0, 0   X   8, t � 0 pinitial conditionq.

(113)

The two initial-boundary value problems are to be connected by the flux jump condition (107)

rr qpsptq, tq ss � d � rrDSmin ss, or�
�D2

B ζ̂2

BX �D1
B ζ̂1

BX

�
X�sptq

� D2S
min �D1S

min.
(114)

The problem, described by (112) – (114) is mathematically nearly identical to the STEFAN problem

of the formation of an ice cover at the top of a lake. (The problem to be described is the more exact

description of the freezing of still water in a lake of which an approximation was described in Sect.4.1).

The situation is sketched in Fig. 22, in which it is assumed that the temperature at the ice-atmosphere

interface is T � �Tsurf , at the ice-water interface it is the freezing temperature T � Tf � 0�C, and at

depth, identified with X � 8 it is T � T8p� 4�C). The heat diffusion problems in the regimes (1) and

(2) of Fig. 22 are given by

B T1

B t � D1
B2 T1

BX2
, 0   X   sptq,

T1 � �Tsurf � const. � 0, X � 0, t ¥ 0,

T1 � 0p�Cq, X � sptq, t ¥ 0,

(115)
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Figure 22: Layer of ice floating on still lake water. The surface temperature Tsurf   Tf , the freezing temperature
Tf � 0�C and the bottom temperature T8 are assumed constant and prescribed. In the regions (1) and (2) the heat
conduction describes the temperature distributions. The inset shows the heat flows in and out of the layer of freezing
water per unit time and thickness 9sptq

and
B T2

B t � D2
B2 T2

BX2
, sptq   X   8,

T2 � 0p�Cq, X � sptq, t ¥ 0,

T2 � T8p� 4�Cq, X Ñ8, t ¥ 0,

T2 � T8 0   X   8, t � 0 pinitial conditionq,

(116)

in which D1,2 � κ1,2{pc1,2ρ1,2q, where κ1,2, c1,2 and ρ1,2 are heat conductivities, specific heats and

densities of ice and water, respectively. Variations of D1,2 with X (or T ) are ignored. Moreover, q1,2 �
�κ1,2B T1,2{BX are the heat flows in the ice and water, respectively.

To derive the STEFAN condition at the ice-water interface, consider the thin layer of thickness 9sptq,
which freezes onto the ice-water interface per unit time. The heat that flows out from, and into, this layer

is q2 � q1.This heat must equal the latent heat that is released by the water mass ρ2 9sptq, which freezes in

unit time: L2ρ2 9sptq. Therefore,

rr qpsptq, tq sssptq � ρ2L2 9sptq, 9s ¡ 0, (117)

where L2 is the latent heat of freezing water. With the FOURIER heat law, (117) takes the form

�
κ1
B T1

BX � κ2
B T2

BX


X�sptq

� ρ2L2 9sptq (118)

or when introducing the thermal diffusivities of ice and water, respectively,

�
D1

B T1

BX �D2
c2ρ2

c1ρ1

B T2

BX


X�sptq

� ρ2L2

c1ρ1
9sptq. (119)

Inspection of (112) – (119) shows that the deltaic formation of sediment deposition from a fixed

upstream position into a quiescent water channel of constant depth and the freezing of an ice cover on a

lake agree mathematically with one another except for the STEFAN conditions (114) and (119). Complete

agreement could only be achieved if c2ρ2 � c1ρ1 and if d in (114) would be parameterized as L 9sptq,
where L is a constant. This has so far not been suggested, but it is a requirement, if the above solution
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involving the similarity variables (123) satisfy the STEFAN condition, as we shall indicate below.

To solve equations (112) – (114), it is advantageous to use the transformations

ϑ1,2 � ζ̂1,2 � ζ̂0, (120)

where ζ̂0 is the constant elevation at X � 0. Relations (112) and (113) then reduce to

B ϑ1

B t � D1
B2ϑ1

BX2
, 0   X   sptq,

ϑ1 � 0, X � 0, t ¥ 0,

ϑ1 � �ζ̂0, X � sptq, t ¥ 0

(121)

and
B ϑ2

B t � D2
B2ϑ2

BX2
, sptq   X   8,

ϑ2 � �ζ̂0, X � sptq, t ¥ 0,

ϑ2 � �pH0 � ζ̂0q, X Ñ8, t ¥ 0.

(122)

Introducing the similarity variables

Ξ1,2 � X

2
a
D1,2t

, (123)

it is straightforward to see, [8], that the general solutions of (121)1 and (122)1 are given by

ϑ1 � A�Berf
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(124)

The boundary conditions stated in (121) and (122) imply that A � C � 0 and

Berf
�

sptq
2
?
D1t



� �ζ̂0

� �pH0 � ζ̂0q � Eerfc
�

sptq
2
?
D2t



.

(125)

The first line of this equation implies, sinceB and ζ̂0 are constants, that the argument of the error function

must also be a constant, which we choose to be

sptq
2
?
D1t

� λp� const.q. (126)

Similarly, from the second line of (125),

sptq
2
?
D2t

� λ

c
D1

D2
. (127)
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Therefore, again from (125),

B � � ζ̂0

erfpλq , E � H0

erfc
�
λ
b

D1
D2

	 . (128)

The constant λ is still not determined; this is accomplished by satisfying (114), or

�
�D2

B ϑ2

BX �D1
B ϑ1

BX


X�sptq

� d, (129)

� L 9sptq, (130)

demonstrating two different parameterizations for the jump rr q ss. With the representations

ϑ1 � � ζ̂0

erfpλqerf
�

X

2
?
D1t



,

ϑ2 � �pH0 � ζ̂0q � H0

erfc
�
λ
b

D1
D2

	erfc
�

X

2
?
D2t



,

(131)

a somewhat lengthy but straightforward computation shows that the jump condition (129) with constant

d � 0 does not allow determination of λ; the constructed functions (131) are no solution of that dou-

ble alluvial diffusion problem. If, on the other hand, (130) is chosen with L � const., the following

transcendental equation for λ is obtained:

expp�λ2q
erfpλq � D2

D1

c
D1

D2

exp
�
�λ2

b
D1
D2

	
erfc

�
λ
b

D1
D2

	 H0

ζ̂0

� �λL
?
π

ζ̂0

. (132)

For L � 0, corresponding also to d � 0, the sediment flux through the plunge point is continuous. Time

slices of the solution in that case are displayed in panel b of Fig. 21.

The above solution corresponds to the classical STEFAN problem, the freezing of water in a lake

from its surface. The governing equations are (115), (116). If we write

ϑ1,2 � T1,2 � Ts

and make the identifications Tsurf Ø p�ζ̂0q and T8 Ø p�H0q, then the solutions (131) remain valid,

but the STEFAN condition (119) implies

expp�λ2q
erfpλq � κ2

κ1

c
D1

D2

exp
�
�λ2D1

D2

	
erfc

�
λ
b

D1
D2

	 T8
Tsurf

� λL
?
π

ciceTsurf
, (133)

in which cice is the heat capacity of ice. Note, the analogy between (132) and (133) is only complete, if

ciceρice � cwaterρwater. If we ignore in (133) the second term on the left-hand side (e.g. by assuming

that T8 � 0�C, then (133) reduces to (56) with (58) as
?
t-relation for sptq. The corresponding relation

(59) is less realistic, since it is not obvious that the second term on the left-hand side of (132) may be

negligible.

Finally, if the parameterization of the jump of the sediment flux d in (129) does not possess the form
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Table 2: Reported research on laboratory experiments for hypo- and hyper-pycnal delta formations

Hypo-pycnal Hyper-pycnal
KOSTIC & PARKER (2003) [29] [30] LAI (2006) [32]

MUTO (2001) [45] LAI & CAPART (2007) [33]

MUTO & STEEL(1992) [46] CAPART et al. (2007) [6]

MUTO & SWENSON (2005) [48] LORENZO-TRUEBA et al. (2009) [39]

(130), the construction of the solution with functions involving similarity variables (as in this section)

breaks down. In such situations one must use numerical techniques to find solutions.

6 Laboratory Experiments

The theory presented in the previous sections has been tested for both GILBERT-type and hyper-pycnal

formations of alluvial deltas under the restrictions of two-dimensional motion in a vertical plane, for

which the model has so far been developed. Experiments by MUTO & SWENSON (2005) [48] on

GILBERT-type delta formations have been reported in Section 4.4. Laboratory experiments on prograda-

tion from the topset to the foreset regime on both types of deltas have been conducted by several research

teams and are listed (as far as I know) in Table 2. Here, we shall present a brief description of laboratory

experiments on hyper-pycnal delta formation and compare results from them with results obtained from

the double-diffusive theory. Results are due to LAI and CAPART [32] – [34].

6.1 Progradation of hyper-pycnal deltas

In what follows we shall report on a subset of results, which have been described in greater detail by

LAI (2006) [32] and LAI & CAPART (2007) [33]. The experiments were conducted at the Hydro Tech

Research Institute of the National Taiwan University. The apparatus, which they constructed was es-

sentially a small scale copy of an experimental set-up by Garcia (1993) [17] for the study of turbidity

currents (see Fig. 23 and the description in the figure caption). The flow is photographed with a CCD

digital camera from the side perpendicular to the observation window. The bed elevation profile, position

of the plunge point and the lake level height are extracted from each digitized photo (note the scale bar

on the observation window). Details of this careful analysis of the experiments are available from LAI

(2006) [32] and LAI & CAPART (2007) [33].

LAI & CAPART [32] – [35] present results on two experiments, called ‘run 1’ and ‘run 2’ which

differ by the amount of brine influx

Q1 � 154mm2 s�1, Q2 � 229mm2 s�1.
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Figure 23: Experimental set-up by LAI & CAPART [32], [33], used for the small scale experiments on prograding hyper-
pycnal deltas.
The narrow flume is separately fed by steady streams of salt water at the top left and dry sand from a silo somewhat distant
down flow. For material properties of brine and sand and other experimental parameters, see Table 2. This brine-sediment
mingling moves down the prefabricated sand-bed with 10�-slope. Initially, subaerial steady flow is established without
fresh-water in the basin. Then, freshwater is rapidly added to establish a fresh-water basin with constant water level, kept
by a weir. This establishes conditions for delta formation and subaqueous progradation. By adding fluorescent dye to the
brine, the subaqueous density current is easily visible. To make the temporal formation of the hyper-pycnal deltas visible,
black coal grains are intermittently added to the dripping sand, of which each event leaves imprinted stripes in the deltas,
and thus illustrates their architecture. Courtesy LAI & CAPART, [33], c© J. Geophys. Res.-Earth Surface
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Figure 24: Series of photographs from a laboratory experiment depicting the progradation of a hyper-pycnal delta in a
lake of constant water level, starting from a bed of constant inclination. Flow is from left to right (indicated by the arrow).
For details, see main text. Photographs courtesy LAI & CAPART [33] c© J. Geophys. Res.-Earth Surface

50



A sequence of consecutive snapshots is displayed in Fig. 24, which shows side views of the delta

build-up in run 1 with sediment flow from left to right. ‘The current is subaerial upstream, plunges

into the ambient basin at the shoreline break, and then continues as a subaqeous density current. The

delta progrades lakeward by simultaneously building topset and foreset deposits on the two sides of

the shoreline. The repeated dark stripes are coal-dust traces bedded into the topset deposit at times

corresponding to their intermittent release. As for the observed morphology ‘topset and foreset profiles

are concave upwards, and everywhere gently curved except for the sharp cusp at the shoreline break,

with the topset curvature milder than the foreset curvature. The maximum inclination of the foreset

is 24�, well below the measured angle of repose of 37� (see Table 3). At its toe the foreset connects

smoothly with the original bed’ [33]. Delta profiles at different times are similar to each other; this is

shown in Fig. 25, where in panel a) measured delta profiles from four time slices (t � 20, 45, 80, 125s)

are plotted: ζ̂1,2 against X . If, instead the same profiles are plotted as ζ̂1,2{
?
Qt against X{?Qt, then

the graph in panel b) is generated. All curves collapse to a single profile, which beautifully demonstrates

the self-similarity property. A stronger test of the theory emerges when this same transformation is also

performed for (t � 20, 45, 80, 125s) for experimental Run 2 with Q2. This is demonstrated in Fig. 26b,

where 
 and � are taken from the respective photographs of Run 1 and Run 2. The two experimental

profiles in the scaled plot ‘define’ a single curve through the foreset and most of the topset. Panel a)

shows the profiles for the four time slices (t � 20, 45, 80, 125s) for the second run. The measured

profiles in panels a) of Figs. 25 and 26 show as solid curves also the computed profiles of the analytical

solutions, derived in Sect. 5.2.

Finally, Fig. 27 displays in physical dimensions the time evolution of the shoreline position for

Run 1 and Run 2 (open and full circles) together with the theoretical
?
t-curves (solid lines) based on

sptq � λ
?
D2 with λ as given in Table 3. These values for λ achieve the more rapid shoreline advance

for run 2 than for Run 1.

6.2 Reservoir infill by hypo- and hyperpycnal deltas over bedrock

LAI & CAPART (2009) [34] also performed computations along the above lines and extended these

by comparing results under homo- and hyperpycnal conditions and sediment loads at different rates.

For hyperpycnal conditions the approach of the mathematical solution for the delta formation follows

Section 5, and delta configurations are as shown in Figs. 24–27. For homopycnal conditions the foreset

diffusivity vanishes (see formulae (89), (88), when ρ � ρ8) and the diffusion solution is replaced by

a frontal deltaic slope equal to the angle of repose of the sand in water. The topset diffusion equation

then still holds with prescribed sediment flux at the bedrock-alluvial transition and a general STEFAN

condition as illustrated in App. A, Fig. 36.

The experimental stand used by LAI & CAPART [34] is similar as that shown in Fig. 23. The flume is

1 [m] long and 1 [cm] wide and side-glass walls allow visual inspection. Downstream, the flume is fitted

with weirs to control the lake water level and the subaqueous interface. Upstream, a head tank supplies

the constant river discharge, and a conveyor belt supplies the bedload sediment. For the river discharge,

either freshwater (ρ � 1000 [kg m�1]) or brine (ρ � 1200[kg m�1]) are used to generate homo- and

hyperpycnal inflows into the freshwater lake. The sand characteristics for the bedload sediment are:

median diameter d50 � 0.17 [mm], coefficient of uniformity d60{d10 � 2.3, angle of repose φ � 3�

(see Table 3). Green fluorescent dye is added to the brine to visualize underflows, and black ash is
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Figure 25: Results for hyper-pycnal delta progradation for Run 1 withQ � 154mm2 s�1. Panel (a) shows four snapshots
at times (t � 20, 45, 80, 125s), ζ̂ plotted against X . Points represent topset and foreset profiles as read from photographs
at the above times, solid lines depict the computed profiles of the double diffusive model as explained in the main text.
Panel (b) shows the same experimental data now rescaled by the inverse square root: ζ̂{?Qt versus X{?Qt. Courtesy
LAI & CAPART [33], c© J. Geophys. Res.-Earth Surface
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Figure 26: (a) Hyper-pycnal delta progradation for Run 2 with Q � 229mm2 s�1. Measured data (circles) are compared
with results from analytical solutions (solid lines) of the double diffusion model. Panel (b) combines the data of both
Runs 1 and 2 in rescaled fashion: ζ̂{?Qt plotted against X{?Qt for (t � 20, 45, 80, 125s) and Qp1q � 154mm2s�1

(full circles), Qp2q � 229mm2s�1 (open circles). Courtesy LAI & CAPART [33], c© J. Geophys. Res.-Earth Surface
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Figure 27: Comparison of experimental and analytical results for the time varying shoreline position of hyper-pycnal
deltas. Full circles show results for the sediment flux Q1 � 154mm2s�1, open circles for Q2 � 229mm2s�1. Solid lines
represent the theoretical results. Courtesy LAI & CAPART, [33], c© J. Geophys. Res.-Earth Surface

sprinkled at repeated intervals to visualize the stratigraphy of the deposits. Photography is taken as in

earlier reported experiments. ‘Figures 28a,b,c,d show deltaic morphologies resulting from homo- and

hyperpycnal river inflows, respectively, over bedrock forms of moderate inclination (θ � 10�)’. The

experiment A (Fig. 28a) shows typical GILBERT-type behaviour. ‘To examine the effect of inclination,

experiment C is conducted under the same hyperpycnal conditions as experiment B with the steepness

of the bedrock floor increased twofold to θ � 20�. Experiment D shows what happens under the same

conditions when the bedload supply is decreased by a factor of approximately 5.5, and the hyperpycnal

current ponds into a subaqueous pool at the downstream end of the flume [. . . ]. All tests are performed

under the same river discharge, held steady at a volumetric flow rate per unit width, q � 80.6 [mm2 s�1]’,

[34].

‘The experiment photographed in panel A and performed under homopycnal conditions and θ � 10�

bedrock slope leads to a GILBERT delta with a topset of mild inclination, a steep foreset, inclined at the

angle of repose and sharp slope breaks at the shore line and at the delta toe. This behaviour is contrasted

in experiment of panel B, which was performed under hyperpycnal conditions; it has again a topset of

mild inclination and slope break at the shoreline, but smaller now, well below the angle of repose. The

concave foreset profile changes smoothly, is therefore longer than for GILBERT-type deltas and reaches

the base theoretically at an infinite distance from the shoreline. Qualitatively, whereas the foresets in

panels A and B are different, the topset geometries are qualitatively very similar. This is quite different

in the experiments of panels C and D, of which both have a basal bedrock inclined by 20� and are

subjected to hyperpycnal conditions. In panel C the upstream sediment flux is the same as in panels A

and B, but owing to the increased bedrock slope, this flow drives a greater proportion of the sediment

load into the lake. The delta foreset is highly elongated, nearly straight but still concave-curved, with a

small topset forming the subaerial delta. The fluorescent trace indicates the sediment flow very clearly.

The experiment in panel D, in which the water flow and bedrock slope are the same as in panel C, but the

upstream sediment inflow q0 is reduced by a factor of 5.5. The entire river sediment load is now driven
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Table 3: Properties of the sand material and brine solution used in the experiments and values of parameters for the double
diffusion problem, which fit the illustrated experiment (after [33], [34])

Property Value
Median sand diameter d50 [mm] 0.17

Sand uniformity coefficient Cu � d60{d10 2.3

Sand density ρsrkg m�3s 2670

Porosity of uncompacted sand bed n0 � Vvoid{V [ – ] 0.507

Angle of repose φ [deg] 37�

Upstream brine density rkg m�3s 1200

Water density in receiving ambient rkg m�3s 1000

Qp1q. Discharge in experimental Run 1:rmm2 s�1s 0.59

Qp2q. Discharge in experimental Run 2 rmm2 s�1s 0.30

α1 Velocity ratio (topset) [ - ] 0.59

α2 Velocity ratio (foreset) [ - ] 0.30

D
p1q
1 Diffusivity (topset) rmm2 s�1s 199

D
p1q
2 Diffusivity (foreset) rmm2 s�1s 16.9

D
p2q
1 Diffusivity (topset) rmm2 s�1s 295

D
p2q
2 Diffusivity (foreset) rmm2 s�1s 25.1

λp1q, λp2q 0.468

into the lake without formation of a subaerial delta but building a subaqueous delta, prograding into the

turbid pool. Evidently, the subaqueous delta of experiment A and the subaerial delta of experiment D are

quite similar in their morphology. Both exhibit short, straight foresets, inclined at the angle of repose,

and long topsets with small curvature. Their difference is in the topset inclination. Panels C and D on

the other hand, demonstrate that it is possible for lake deposits to exhibit very different patterns, even at

the same bedrock slopes’ [34]. The theoretical profiles, corresponding to the four different experiments

displayed in Fig. 28 possess similarity structure (as one would expect). So, if in each experiment ζ̂{?q0t

is plotted against X{?q0t the results in all experiments should fall onto one curve. LAI and CAPART

[34] have done this and present Fig. 29, in which the panels A to D correspond to the panels A to D

of the experiments shown in Fig. 28. Figure 29 shows as solid heavy lines the computed similarity

solutions, and as coloured symbols the digitized experimental profiles from photographs taken at four

different times. The shapes of the sediment bed and the elevations are well predicted with only slight

errors in phase for the positions of the delta fronts. Most important, the theory is able to reproduce the

wide range of the experimental deltas. This range includes the production of straight and curved foresets

(A versus B), contrasted ratios of foreset to topset lengths (B versus C), and the formation of topset -

foreset deposits of opposite extents (C versus D). The theory may obviously help explaining depositional
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Figure 28: Experimental deltas over bedrock: (a) homopycnal delta (bedload influx q0 � 5.7[mm2 s�1], bedrock in-
clination θ � 10�); (b) hyperpycnal delta (q0 � 5.2[mm2 s�1], θ � 10�); (c) hyperpycnal delta over steeper bedrock
slope (q0 � 5.2[mm2 s�1], θ � 20�);(d) hyperpycnal delta with smaller rate of sediment influx (q0 � 0.94[mm2 s�1],
θ � 20�), from LAI & CAPART, [34], c© Geophys. Res. Letters

patterns that have been documented in mountain reservoirs, [34].

LAI & CAPART [34] list a number of field sites, where the situations displayed in Fig. 28 have been

observed. A GILBERT-type delta similar to panel A of Fig. 28 has led to the recent infill of the small

Ronghua reservoir, upstream of the large Shihmen reservoir (CAPART et al., 2007 [6]) in Taiwan. In this

reservoir, the river inflow is highly turbid during floods (LEE et al. [38]) yet, homopycnal conditions

prevail because this small reservoir rapidly becomes turbid itself, blurring the density contrast between

inflow and lake waters. The Shihmen reservoir, on the other hand, shows deposits similar to case D.

Well known hyperpycnal deltas having morphologies matching cases B and C are the deltas of the Upper

Rhine at Lake Constance (HINDERER, 2001 [23]) and the Colorado river at Lake Mead (GRAF 1971

[21]). A first step into this direction has been taken by CAPART et al. (2011) in a study of the formation

and decay of a tributary-dammed Lake in the Laonong River [7].

At the research forefront the next urgent steps should now be the application of the illustrated theo-
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Figure 29: Comparison of measured (symbols) and theoretical (solid lines) profiles for the experimental deltas of Fig. 28.
Data points coloured red, green, blue and orange denote delta profiles measured at evenly spaced time t1 to t4. Normalized
coordinates are used to demonstrate self-similarity, from LAI & CAPART, [34], c© Geophys. Res. Letters

retical concepts to the sediment infill of artificial lakes in mountainous areas during floods and the release

of deposited sediments through the bottom or side outlet of the reservoir barrage.

7 Formation and Evolution of Tributary Dammed Lakes

7.1 Introduction

In this section a dynamical description of ‘onset and growth of tributary dammed lakes’ due to HSU

and CAPART (2008) [24] is presented. In mountainous regions many natural lakes have been formed by

glacial retreats at the termination of the last Ice Age. Apart from this glaciogenic formation natural lakes

have also been created by river obstruction due to landslides, which may occur during heavy rainfall

events. Sudden sediment deposits at a localized restricted region of a valley from a side tributary may

block the continuous flow of sediments down the valley, whilst the water flow, after a short interruption
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Figure 30: Tributary-dammed Lake Pepin, formed across the Mississippi River because of sediment influx from the
Chippewa River: (a) Map showing the local relief (digital elevation data from the Upper Mississippi Basin Stackholder
Network, St. Mary’s University of Minnesota) and watercourse (bathymetry from the USGS Upper Midwest Environ-
mental Sciences Centre) and (b) elevation plot showing the influence of the Chippewa and Wisconsin rivers on the long
profile of the Upper Mississippi (source of the data, USGS). The marker at river mile 765 has latitude 44�24’49”N and
longitude 92�06’54”W, from HSU & CAPART (2008) [24] c© Water Resources Research, American Geophysical Union

may continue, once the lake level has reached the crown of the dam of the sediment deposit. Early de-

scriptions of such tributary dammed lakes are by DAVIS (1933) [11] and LANE (1955) [37] and examples

are reported by GALAY et al. (1983) [16]. HSU & CAPART report that the ‘Upper Mississippi River,

where postglacial outwash deposits supplied by the tributary Chippewa River caused the formation of

Lake Pepin (ZUMBERGE, (1952) [71]; WRIGHT et al. (1998) [67])’, Fig. 30. Two different regimes of

river morphology may ensue from such tributary sediment depositions. ‘When this influx is moderate,

the main river can deposit sediment upstream of the aggrading tributary junction to maintain a down-

valley bed inclination. The result is a cuspate profile [Fig. 31a]. When the influx from the side is large,

by contrast, the deposition rate in the main river cannot keep pace with [the] confluence aggradation be-

cause of insufficient sediment load. This causes the formation of a natural lake upstream of the tributary

mouth, as in the case of Lake Pepin upstream of the Chippewa confluence’, HSU & CAPART (2008)

[24].12

In the ensuing analysis a simplified situation will be considered, in which the sediment flow in the

principal valley is one-dimensional and defined by the classical diffusion equation. Moreover, the sedi-

ment influx from a tributary is represented by a steady13 point source, and the origin of the horizontal-
12Similar, somewhat reminiscent alterations of sediment regimes have frequently occurred in the Alps during the Middle

Ages when ice avalanches, formed from hanging glaciers, dammed riverine valleys, ROETHLIBERGER (1978) [57]. As long as
the ice deposit existed, an ice-dammed lake formed and changed the upslope and downslope sediment flows. More significantly,
floods due to sudden dam break caused devastating debris flows. Other, related processes are artificially formed when barrages
are built for valley reservoirs. They change the upstream sediment regimes and slowly fill the reservoir, thereby reducing the
power-generating capacity. Through a base opening in the barrage or side channel and judicious flushing operations, in which
the discharge and the lake level are monitored, the sediment deposit is partly removed, a process which affects the sediment
regimes in the lake and its topset as well as the sediment flow in the river stretch below the barrage.

13Unsteady situations can also be analysed, but may need pure numerical solution techniques.
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Figure 31: Self-similar alluvial responses to sediment supply from a tributary: (a) tributary-induced cuspate aggradation
and (b) tributary-dammed lake, forming when the tributary supply exceeds twice the original sediment transport rate in
the river (I ¡ 2q0), from [24] c© Water Resources Research, American Geophysical Union

vertical coordinate system pX,Zq is chosen to be the location of the point source. With the notation of

Section 1, the sediment diffusion equation takes the form

B ζ̂s
B t �

B q
BX � σ � IδpXq, (134)

in which ζ̂s is the vertical coordinate of the upper surface of the sediment layer, q is the sediment flux in

the main river and I is the (here) steady point sediment source from the tributary river (a change of the

amount of water in the river stretch below the source point is ignored). δpXq is the HEAVISIDE function.

We further assume that the longitudinal sediment motion is driven by a steady uniform water dis-

charge (per unit width), qw, flowing down valley (qw ¡ 0). Variations in the evolution of the sediment

profile are assumed to be sufficiently slow as the water surface reacts quasi-statically. This implies that

Z � ζ̂s and Z � ζ̂w are varying ‘in parallel’, so that with sufficient accuracy

B ζ̂w
B t � B ζ̂s

B t ,
B ζ̂w
BX � B ζ̂s

BX . (135)

Finally, ζ̂w and ζ̂s are subject to the following inequalities:

ζ̂w ¥ ζ̂s � h0, �B ζ̂wBX ¥ 0,
�
ζ̂w � ζ̂s � h0

	 B ζ̂w
BX � 0. (136)

Theses inequalities subdivide the river course into stretches of running water and sediments for which

B ζ̂w
BX � B ζ̂s

BX ¡ 0, ζ̂w � ζ̂s � h0, (137)
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where steady (normal) flow is assumed, and segments with standing water for which

B ζ̂w
BX � B ζ̂s

BX � 0, ζ̂w ¡ ζ̂s � h0. (138)

In other words, these regions are the lake-pools, where the water surface is horizontal and larger than

Z � ζ̂s � h0, and where the sediment flux vanishes.

We also follow HSU & CAPART (2008) [24] and postulate the sediment flux in the form

q � Dmax

#
�B ζ̂wBX � Smin, 0

+
, (139)

in which D is the alluvial diffusivity, defined in Section 1, formula (17), and Smin is the minimum slope

required for sediment transport. Note that (135) contains B ζ̂w{BX , but it can be replaced by B ζ̂s{BX , if

(135) is satisfied. For segments where �B ζ̂w{BX ¡ Smin and with Smin � constant and D = constant,

we have B q{BX � �DBζ̂w{BX � �DBζ̂s{BX; in this restricted case (134) takes the form

B ζ̂s
B t �D

B2 ζ̂s
BX2

� IδpXq. (140)

There remains to establish the initial and boundary conditions, for which (140) is to be solved.

HSU & CAPART (2008) [24] assume that the process starts from initial conditions ζ̂spX, 0q � �S0X ,

representing a linear profile of constant inclination S0 exceeding the transport threshold (S0 ¡ Smin).

The background sediment transport rate is then

Q0 � DpS0 � Sminq. (141)

7.2 Theory

The solution for the partial differential equation (140) is determined by constructing it intuitively from

independent functions which satisfy the boundary conditions atX � 0 andX � �8. We shall construct

solutions in �8   X ¤ 0 and in 0 ¤ X   8, independently and then will match the two solutions

at X � 0. Linearity is a crucial element of this approach. For mathematical properties of the involved

functions, see Appendix B.

• The linear function

ζ̂p1qs � �S0X (142)

satisfies (140) with I � 0 trivially and matches the asymptotic requirement that the full solution

approaches �S0X as X Ñ �8.

It follows that any further solution which is added to (142) must satisfy the asymptotic limit

ζ̂
p2q
s pX, tq Ñ 0 as X Ñ8 and ζ̂p3qs pX, tq Ñ 0 as X Ñ �8.

• The function

ζ̂p2qs � A

D

?
Dt ierfc

�
X

2
?
Dt



, X ¡ 0 (143)

is equally a solution of the homogeneous equation (140) (with I � 0) inX ¡ 0 with the properties
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that
ζ̂
p2q
s Ñ 0 as X Ñ8,

B ζ̂p2qs

BX
���
X�0�

� � A

2D
.

(144)

• The function

ζ̂p3qs � A

D

?
Dt ierfc

� |X|
2
?
Dt



, X   0 (145)

is also a solution of the homogeneous diffusion equation (140) (with I � 0) and with the properties

that
ζ̂
p3q
s Ñ 0 as X Ñ �8,

B ζ̂p3qs

BX
���
X�0�

� A

2D
.

(146)

These properties, claimed for ζ̂p2qs and ζ̂p3qs are collected in Appendix B and can be verified by ele-

mentary computation. The complete solution of the inhomogeneous partial differential equation (140)

may now be written as

ζ̂s �

$''&
''%

�S0X � A

D

?
Dt ierfc

�
X

2
?
Dt



, 0 ¤ X   8,

�S0X � A

D

?
Dt ierfc

� |X|
2
?
Dt



, �8   X ¤ 0.

(147)

The free constant A follows by patching the two solutions (147) at X � 0. A first condition is that

ζ̂sp0�, tq � ζ̂sp0�, tq, which is already satisfied. A follows by integration of (140) from X � �ε to

X � �ε for arbitrarily small ε ¡ 0. Indeed,

» �ε

�ε

B ζ̂s
B t dXloooooomoooooon
Ñ0

�
» �ε

�ε
D
B2 ζ̂s
BX2looooomooooon

rrD B ζ̂s
BX ss

� I

» �ε

�ε
δpXqdXlooooooomooooooon
I

,

in which rrf ss � fp0�q � fp0�q is the jump of f across the discontinuity. Therefore, using the results of

items 2 and 3 above, we obtain �rrDBζ̂s{BXss|X�0
� I or

�
S0D � A

2



�
�
S0D � A

2



� A � I. (148)

Consequently, a compact form of the solution of (147) is

ζ̂s � �S0X � I

D

?
Dt ierfc

� |X|
2
?
Dt



, �8   X   8, (149)

which is the form reported by HSU & CAPART [24]. This solution represents conditions of aggradation

during which the sediment bed maintains its cuspate shape of Fig. 31a. The self-similarity of the profile

becomes evident, if (149) is written as

zs � �S0ξ � I

D
ierfcp|ξ|q, ξ � X

2
?
Dt

, z � ζ̂s

2
?
Dt

, (150)
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which demonstrates that for fixed S0, I the similarity variables in the horizontal and vertical directions

are subjected to the same scaling.

The solution (149) is, however, not valid for unrestricted values of the flux I from the side tributary.

Its limitation for the validity of (149) follows from the slope of the river channel immediately upstream

of the tributary junction

S0� � S0 � I

2D
(151)

(see Appendix B and (148)). In order that sediment flux qs ¡ 0 occurs at X � 0�, we must have

S0 ¡ Smin, implying with (151)

I ¤ 2DpS0 � Sminq � 2q0, (152)

where q0 is the sediment flux far upstream at X Ñ �8. If the inequality (152) is violated, i.e. if

I ¡ 2q0, the sediment flow at X � 0� ceases and all upstream sediments are deposited. In HSU &

CAPART’s [24] words ‘the sediment infill upstream of the junction cannot keep up with the aggrading

confluence, and a tributary channel lake forms, Fig. 31b. The point of minimum inclination S � Smin at

the downstream end of the upstream alluvial reach is forced to retreat up-valley, producing a migrating

slope break at [the] evolving position X � �Lptq. The resulting gap �Lptq   X   0 is filled by a pool

of standing water, across which sediment transport is suppressed’, [24].

Under these conditions two separate mathematical problems of sediment transport must now be

solved,

(i) the sediment transport for the downstream part of the river, which is fed atX � 0� with a sediment

flux of the side tributary only, whose upper Z-coordinate at X � 0� is given by the moving lake

level, and

(ii) the upstream sediment flow with vanishing flux (and thus slope) at the lake end X � �Lptq and

flux q0 far upstream at X � �8.

Sediment flow below the lake: 0�   X   8. With a constant sediment flux at X � 0� and a basal

slope of magnitude�S0 asX Ñ8, it is easy to see on the basis of the previous analysis that the function

ζ̂spX, tq � �S0X � A

D

?
Dt ierfcpξq, ξ :� X

2
?
Dt

(153)

solves the diffusion equation for which

q0� � �D
�
B ζ̂s
BX � Smin

�
� DpS0 � Sminq � A

D
rerfpξq � 1s (154)

describes the flux. At X � 0�, we have

q0�
p154q� DpS0 � Sminq � A

2
� I

ùñ A � 2rI �DpS0 � Sminqlooooooomooooooon
q0

s � 2pI � q0q. (155)
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Consequently, the sediment flow below the lake is described by the equation

ζ̂spX, tq � �S0X � 2pI � q0q
D

?
Dt ierfc

�
X

2
?
Dt



, 0   X   8. (156)

At X � 0� this becomes

ζ̂sp0�, tq � 2pI � q0q
D
?
π

?
Dt, (157)

which is positive, since I ¡ 2q0 according to (152) and the text following it. On the other hand, if no

lake is formed, (149) applies and ζ̂sp0�, tq takes the form

ζ̂sp0�, tq � I

D
?
π

?
Dt. (158)

The thickness of the sediment deposit at the tributary mouth is thus given by

H :� ζ̂sp0, tq � 1?
π

max

"
2pI � q0q

D
,
I

D

*?
Dt. (159)

With (157) the lake level at X � 0� then follows as14

ζ̂wp0�, tq � ζ̂sp0�, tq � h0. (160)

Because of (159) ‘the dependence of the deposit thickness on the tributary influx I is nonlinear. A

break of trend occurs at the onset of lake formation (I � 2q0), beyond which aggradation is enhanced at

the tributary junction. When the influx exceeds this threshold, a lake of rising level and increasing length

develops (Fig. 31b) [. . . ]. Water continues to flow past the dam and only sediment transit is interrupted

across the lake. The up-valley transgression of the lake leaves a characteristic bathymetric signature

with a lake bed that acquires a downstream facing slope of constant inclination. Unlike avalanching

[GILBERT-type] delta foresets, for which the slope is determined by the angle of repose, here the lake

bed inclination is set by the rate of aggradation of the tributary dam. A faster aggradation [by an increased

value of I] yields more rapid lake transgression, hence a lake of milder downstream-facing slope [. . . ]’,

[24]. Analogous shoreline transgressions for deltas responding to sea level rise are due to MUTO &

STEEL (1992) [46] and PARKER & MUTO (2003) [54].

Sediment flow above the lake: �8   X   �Lptq. Under standing water conditions, B ζ̂w{BX �
0, the upstream edge of the lake rises in lockstep with the aggrading ‘dam crest’, defined by (157)

(Fig. 31b). The initial boundary value problem again possesses the solution

ζ̂spX, tq � �S0X � A

D

?
Dt ierfc

�
� X

2
?
Dt



. (161)

Indeed, this function satisfies the homogeneous diffusion equation (with constant diffusivity) and the

asymptotic boundary condition that q0 � S0D. Additional conditions must be satisfied at the upper edge
14h0 is the water depth on the assumption that the water flux leaving the lake is the same as the in-flux.
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of the lake. First, we have with Lptq � λ
?
Dt

ζ̂sp�Lptq, tq !� ζ̂sp0�, tq p161q� 2pI � q0q
D
?
π

?
Dt

p161q� S0λ
?
Dt� A

D

?
Dt ierfc

�
λ
?
Dt

2
?
Dt

�
,

from which one may deduce

λ

2
� A ierfcpλ{2q

2q0
� I � q0?

πq0
� 0, q0 :� S0D. (162)

Once A is determined, this is an algebraic equation for λ. Second, at X � �Lptq, the sediment flux is

given by Smin, which together with (161) yields

S0 � A

2D

�
erf

�
�λ

2



� 1

�
� Smin, (163)

from which one obtains

A � 2DpS0 � Sminq
erfcpλ{2q � 2q0

erfcpλ{2q . (164)

Finally, substitution of (164) into (161) and (162) yields

ζ̂spX, tq � �S0X � 2q0

D

?
Dt

erfcpλ{2q ierfc

� �X
2
?
Dt



, �8   X   �Lptq,

λ

2
� q0 ierfcpλ{2q
DS0erfcpλ{2q �

I � q0?
πDS0

� 0

(165)

as the sediment transport equation and lake length Lptq � λ
?
Dt.

7.3 Experiments

As a test the above model approach, HSU & CAPART (2008) [24] performed laboratory experiments.

The experimental set-up is sketched in Fig. 32. It consists of a 250 [cm] long, 1 [cm] wide channel of

adjustable inclination angle. The water flow, qw far upstream enters the flume from a constant back tank

and the sand is dropped onto the steady upstream water flow from two feeders whose fluxes, q0 and I ,

are adjustable. A sink tank at the lower end collects the sediment and water outflow. The most important

data are collected in Table 4.

Calibration runs with the tributary influx I turned off and the bed brought to equilibrium grade under

steady upstream inflows of water and sand were first performed to characterize the relation q0pqw, Sq
between upstream water discharge qw, inclination S � �Bζ̂s{BX and sediment flux q0. The resulting

data (Fig. 33) are well approximated by the power law

q0 � kqαwS
β,

k � 1.03rmm2s�1s1�α, α � 1.39, β � 2.28
(166)

(and root-mean-square residual � 4 [mm2s�1] for sediment fluxes in the range 0   q   130 [mm2s�1]).
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Figure 32: Sketch of the laboratory experiment to check the theoretical model, performed by HSU & CAPART (2008)
[24], c© Water Resources Research, American Geophysical Union

Table 4: Key properties of the laboratory experimental stand and the physical parameters of the sand used

Channel length 250 [cm]

Channel width 1 [cm]

Flume inclination angle adjustable

Submerged angle of repose 36 [ �]

Sand median diameter d50 0.32 [cm]

Sand coefficient of uniformity d60{d10 1.84 [ - ]

‘Tributary experiments were conducted for different values of water discharge and tributary sediment

influx. All experiments were started from the same initial grade S0 � 0.11, obtained by adjusting the

upstream sand supply q0 to the corresponding water discharge. At t � 0, the tributary sand supply

is turned on at prescribed rate of influx I . The ensuing response of the sand bed is observed through

the transparent side wall using time-lapse photography’, [24]. HSU & CAPART performed a total of 27

runs with water discharges qw � t280, 470, 730u [mm2s�1] subject to various tributary influxes I such

that 1   I{q0   5. For comparison with the theory, which is not built on a functional relation (166),

the power law (166) must first be approximated by the simplified form of equation (139). This was

done by cross calibrating the coefficients D and Smin against k, α and β (using least squares over range

0 ¤ S{Smin ¤ 2, yielding D{q0 � 30 and Smin{S � 0.7, and the precise relation represented by the

bold line in Fig. 33.) Once the two coefficients have been determined, all other results can be calculated

from the theory, and thus present testable predictions.

Comparison of theory and experimental results. Figures 34a,b show in dimensionless representa-

tion the lake length LS0{H and sediment deposition thickness H{?S0q0t against I{q0. The solid curve

in Fig. 34a represents the results of the theory, symbols those of the experiments. As shown theoreti-

cally, a lake is formed only when I ¡ 2q0, which explains the onset of non-vanishing values for L at

I{q0   2. The curve in this latter range of I{q0 follows from solutions of (165) for λ and (159) and grows

sharply for I{q0 slightly larger than 2, but quickly tapers with a decelerating growth. The experimental
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Figure 33: Calibrated sediment transport relation (thin curve power law; thick curve, approximate diffusion flux). Sym-
bols represent experimental data for water discharges q1 � 283 [mm2s�1] (squares), q2 � 467 [mm2s�1] (diamonds),
and q3 � 733 [mm2s�1] (circles), from HSU & CAPART (2008) [24], c©Water Resources Research, American Geophys-
ical Union
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Figure 34: (a) Normalized lake length versus ratio of tributary sediment supply I to undisturbed sediment transport q0
,with lake formation predicted to occur when I ¡ 2q0. (b) Dependence of the normalized sediment deposit thickness at
the tributary on the ratio I{q0. The thick curves in the two panels are the theoretical predictions, and symbols represent
experimental data for water discharges q1 � 283 [mm2s�1] (squares), q2 � 467 [mm2s�1] (diamonds), and q3 � 733
[mm2s�1] (circles), from HSU & CAPART (2008) [24], c© Water Resources Research, American Geophysical Union

lake length Lptq is represented for each run with a data point and error bar for q0 � t283, 467, 733u
[mm2s�1], represented by tsquares, diamonds, circlesu, respectively. Evidently, even though the ob-

served onset of the lake formation is slightly delayed, and the measured data fall slightly below the

theoretical curve, the experimental data and the theory follow the same trend. Results for the theoret-

ical dimensionless sediment deposit thickness H{?S0q0t follow two linear pI{q0q-dependences, given

mathematically by (159), Fig. 34. The experimental points follow the same trend, but a kink at I{q0 � 2

is not clearly identifiable.

Longitudinal profiles for two experimental runs below (I{q0 � 1.6, Fig. 35a) and above (I{q0 � 4.4,

Fig. 35b) the lake-formation threshold are presented in Fig. 35. As profiles ζ̂spX, tq are geometrically

self-similar, they collapse together when plotted in the normalized coordinates of Fig. 35. Below the

threshold I{q0 � 2, a cuspate aggradation is observed. ‘The deposit thickness [then] exhibits mirror

symmetry about the tributary mouth, and the bed profile maintains an elevation that monotonically de-
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Figure 35: Self-similar river and lake bed profiles produced by steady sediment influx from a tributary: (a) cuspate
aggradation (I{q0 � 1.6) and (b) tributary-dammed lake (I{q0 � 4.4). Lines are the theoretical predictions, and rotated
triangles represent measured profiles approximately 1, 2, 3, 4 minutes after the start of the tributary influx. Both experi-
mental runs correspond to water discharge q2 � 467 [mm2s�1], from HSU & CAPART (2008) [24], c© Water Resources
Research, American Geophysical Union

creases down valley [Fig. 35a]. Above the threshold [. . . ], the alluvial profile is no longer monotonically

decreasing, and a lake forms upstream of a tributary dam [. . . ]. The downstream deposit accumulates

more sediment (received from the strong tributary influx) than the upstream deposit (which traps the

weaker background sediment flux). Overall the theoretical and experimental profiles match well, [ex-

cept] for a slightly underestimated cuspate deposit thickness in Fig. 35a, and for the upstream dam face

in Fig. 35b, assumed vertical in the theory (no up-valley sediment motion is allowed), but which re-

laxes to the angle of repose in the experiments [. . . ]. The other features of the tributary-dammed lake of

Fig. 35 show good agreement between theory and experiment. This includes the predicted retreat of the

upstream lake edge along a line of constant inclination (well below the angle of repose), the shallow de-

posit upstream of the lake, and the half-cusp profile of the river bed downstream of the tributary mouth’,

[24]. Qualitatively this is reminiscent of the recorded profile of the Upper Mississippi River (Fig. 30b)

with the convex segments upstream and downstream of the Wisconsin junction, and the existence of Lake

Pepin with its triangular bathymetry.
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8 Discussion and Conclusions

A review has been given in this article on sediment transport from an alluvial river stretch into a quies-

cent ambient. Depending upon whether the river-water density is lighter than, the same or heavier than

that of the water of the lake, two kinds of delta formations could be distinguished: for ρriver ¤ ρlake

(hypo-pycnal delta formations) the coarser sediments tend to separate from the suspended fines and form

deltas with constant frontal slopes generated by the angle of repose. For ρriver ¡ ρlake (hyper-pycnal

delta formation) the subaerial river current plunges down into the still ambient water and forms a turbu-

lent subaqueous density current with moving coarse sediment load. For hypo-pycnal deltas, the alluvial

river transport can be described by a sediment diffusion equation, generally subject to upstream flux and

downstream lake level prescriptions. The positions of the shore line as a function of time is obtained from

a generalized STEFAN condition relating the sediment flux to the basement geometry and basement de-

formation processes. For hyper-pycnal deltas the subaerial and subaqueous sediment transports are both

governed by diffusion equations with different diffusivities (Dsubaerial � Dsubaqueous). Far upstream and

far downstream boundary conditions in the topset and foreset and lake level prescription at the temporally

varying shore line complete the problem formulation except for the determination of the shore line posi-

tion via a generalized STEFAN condition. This condition is formulated as a jump condition of sediment

flux across the shore line position, in which the jump of sediment flux is given as a phenomenological

statement for the turbulent mixing processes induced in the transition region of the abrupt flow changes.

Numerous analytical solutions for both delta types have been presented and some have been compared

with results from laboratory experiments. Moreover, the close mathematical connection is demonstrated

of the single and double sediment diffusion problems with freezing of lake water in winter when being

subject to constant freezing atmospheric temperature.

The presented model is limited because several simplifying assumptions both in the physical and

mathematical descriptions have been imposed. Among such assumptions are the following restrictions.

• The subaerial and subaqueous sediment flows are restricted to motions taking place in a vertical

plane. This is particularly restrictive as soon as the river water enters the lake environment. A

generalization to a three-dimensional set-up of the concept is likely possible if one is satisfied with

increased phenomenology in place of physics. A step towards this end has been undertaken by

VOLLER et al. [66].

• The suspended matter in the turbid water has been ignored as have been the particle size separation

and the segregational depositions in the bottomset. Memoirs, which include these processes in a

two-dimensionally restricted setting are given by KOSTIC et al. [28], [29], [30].

• All applications, which have been presented, have so been chosen that mathematical solutions

could be constructed analytically. More generally, (generalized) STEFAN problems are moving

boundary value problems and therefore require care, when numerical integrations have to be per-

formed. If sedimentary processes are strictly prograding or strictly transgrading, the time t can be

replaced as an independent variable by sptq, the shore line position, and a fixed-domain formula-

tion without moving boundaries be constructed.

For GILBERT-type deltas numerical solutions have been constructed by VOLLER et al. (2006)

[66], and for hyper-pycnal deltas by LAI & CAPART (2011) [35].
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• The focus in the present paper has been sediment transport and deployment in a quiescent ambient

on decadal and centennial time scales, but it must have become clear that the formulation is equally

applicable to geological time scales of millennia and multi millennia through the Holocene. In this

connection the term ‘graded’ river stretch was introduced (see Section 4 and [48]), and it became

clear that graded sediment flow was the exception rather than the rule. The concept is important in

long term sedimentary processes as a special response to lake level fall, which generates alluvial

aggradations, whereas lake level rise leads to shore line transgression. Such hydro-geological

processes are studied in detail by MUTO et al. [49], [50], [55].

• Applications to river-reservoir hydraulics have been given by LAI & CAPART (2009) [34], and

CAPART et al. (2010) [7] and LAI & CAPART [35].
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Appendix A: Derivation of the sediment flux boundary condition at the plunge point of a Gilbert-
type delta

In this appendix an explicit derivation of the flux boundary condition (42) at the plunge point of a hy-

popycnal delta will be given. The derivation follows KOSTIC & PARKER [29] but in the notation of this

article.

Consider Fig. 36. With reference to this figure the front surface of the foreset delta can be described

as

ζ̂pX, tq � ζ̂s � tanφ puptq � sptqq , where ζ̂s � ζpsptq, tq. (167)

If this is evaluated at the toe of the alluvial deposit,

ζ̂b � ζ̂s � tanφ puptq � sptqq (168)

is obtained.

If conservation of mass is formulated for a sediment element as shown in the inset of Fig. 36, then

one may deduce

ns
B ζ̂
B t dX � q̄spXq � q̄spX � dXq

� q̄spXq � q̄spXq � B q̄s
BX dX � �B q̄sBX dX,
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or, since the solid volume fraction is assumed to be constant,

B ζ̂
B t � �Bpq̄s{nsqBX � �B qsBX . (169)

In the above, q̄s is the sediment flux at a certain volume fraction, whereas qs is the corresponding effective

flux.

Figure 36: Definition sketch for a GILBERT-type deltaic deposition on a non-erodible basement of slope angle α1.
The origin of the pX,Zq-coordinates is at the intersection of the basement, Z � bpXq and the lake surface at time
t � 0, Z � Z`p0q, the plunge point is at rX � sptq, Z � ζ̂sptqs and the front of the wedge is at rX � uptq, Z � ζ̂toeptqs.
The sediment flow through the plunge point from the topset is qspsptq, tq and the conservation of mass of the sediment,
expressed in formula (169) is explained in the inset. The river water depth at the plunge point is hsptq and the level of the
lake may vary with time, Z � Z`ptq

An explicit expression for qs is obtained, if equation (169) is integrated from X � s� to X � uptq.
This integration is composed of an ‘integration’ fromX � s�ptq toX � s�ptq plus the integration from

X � s�ptq to X � uptq. Thus,

qs|s
�ptq
s�ptq � qsps�ptqq � qsps�ptqq � �

» s�ptq
s�ptq

B ζ̂
B t dX � 0.

Here, the integral on the far right vanishes because of continuity requirements for ζ̂p�q. It follows that the

flux qs is continuous across the plunge point. Therefore, we may write

» uptq
s�ptq

B qs
BX dX � qs|uptqloomoon

�0

�qs�|sptq �
» uptq
s�ptq

Bζ̂
B tdX

� �qs|s�ptq � �
» uptq
s�ptq

B ζ̂
B t dX,

(170)

in which integration can now be restricted to X ¡ sptq. Moreover, it was assumed that the sediment flux

at the toe of the frontal surface of the delta vanishes, which is realistic. With ζ̂ as given in (167) one may
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write

B ζ̂
B t � d

d t
ζ̂
�
s�ptq, t�� B

B t ptanφpX � sptqqq

� d
d t
ζ̂
�
s�ptq, t�� tanφ

ds
d t

� ptanφq
pX � sptqq
(171)

in which

d
d t

�
ζ̂ps�ptq, tq

	
� B ζ̂

Bt |sptq
� B ζ̂
BX 9sptq

� B ζ̂
Bt |sptq

� tanα1|s�ptq 9sptq.
(172)

Here, tanα1 is the slope of the sediment bed in the topset of the plunge point. Substituting (172) into

(171) and the resulting expression for B ζ̂{B t into (170) yields

qs|s�ptq �
» uptq
sptq

#
B ζ̂
B t |sptq

� ptanα1 � tanφq 9sptq � ptanφq�pX � sptqq
+

dX

�
#
B ζ̂
B t |sptq

� ptanφ� tanα1qds
d t

+
puptq � sptqq � 1

2ptanφq�puptq � sptqq2.
(173)

The surface point ζ̂|sptq is given by the level of the lake surface and the water depth above the sediment

as follows: ζ̂|sptq � Z`ptq � h|sptq. Consequently,

Bζ̂
B t |sptq

� B
B t pZ` � hq|sptq �

9Z`ptq � B h
B t |sptq

. (174)

Substituting this into (173) yields a first variant of the final formulae for qs:

qs|sptq �
#��

9Z` � B h
B t |sptq

�
�ptanφ� tanα1q ds

d t

�
puptq � sptqq

�1
2ptanφq
 puptq � sptqq2

+
.

(175)

Sometimes it is more convenient to additionally use the trigonometric relation

puptq � sptqq � ζ̂ � ζ̂toe
tanφ

. (176)

We then obtain

qs| sptq �

$'''&
'''%

�
����
�
����

9Z`ptq � B h
B t |sptq

tanφ

�
���
 �

�
1� tanα1

tanφ



ds
d t

��
ζ̂s � ζ̂toe

	

�1
2ptanα1q�

�
ζ̂s � ζ̂toe

	2

ptanφq2

,/.
/- .

(177)
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Even though tanα1   p q tanφ, it is not justified in general, to ignore

tanα1{ tanφ in the above formulae. However, it is justified to ignore the term associated with ptanφq
.

Ignoring also pB h{B tq|sptq and 9Z`ptq yields

qs|sptq �
�
ζ̂s � ζ̂toe

	 d sptq
d t

. (178)

Formula (42) with σ � 0 is obtained from (175), if the river water depth is ignored, pB h{B tq|sptq � 0

and tanα1 is ignored in comparison to tanφ.

Appendix B: Characteristics of error functions

In this Appendix we collect a number of properties of mathematical expressions which are connected

to the error function. These have been collected and/or derived in CARLSLAW & JAEGER (1959) [8]


 Definition of the error function and complementary error function

erfpxq � 2?
π

» x
0

expp�ξ2qdξ, (179)

erfcpxq � 1� erfpxq � 2?
π

» 8

x
expp�ξ2qdξ, (180)


 The above definitions imply

erfp0q � 0, erfp8q � 1, erfp�xq � �erfpxq,

erfcp0q � 1, erfcp8q � 0, erfcp�xq � 2� erfcpxq.
(181)


 Both,

erf

�
x

2
?
Dt



and erfc

�
x

2
?
Dt




satisfy the diffusion equation
B f
B t �D

B2f

B x2
� 0.


 The n-th integral complementary error functions are defined as

inerfcpxq �
» 8

x
in�1erfc ξdξ, n � 2, 3, 4, . . .

i0erfcpxq � erfcpxq, (182)

ierfcpxq �
» 8

x
erf ξ dξ

integr. by parts� ξerfcpξq|8x �
1?
π

» 8

x
p�2ξq expp�ξ2qloooooooomoooooooon

d
dξ
pexpp�ξ2qq

dξ (183)

� �x erfcpxq � expp�x2q?
π

. (184)
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 The function erfcpxq exhibits the following properties:

(1)

ζ̂p2qs px, tq � A

D

?
Dt ierfc

�
x

2
?
Dt



, x ¥ 0,

� lim
xÑ8 ζ̂

p2q
s px, tq Ñ 0,

� B ζ̂p2qs

B x � A

2D

�
erf

�
x

2
?
Dt



� 1



(185)

� ζ2
s px, tq satisfies the diffusion equation

B ζ̂p2qs px, tq
B t �D

B2 ζ̂
p2q
s px, tq
B x2

� 0,

(2)

ζ̂p3qs px, tq � A

D

?
Dt ierfc

� |x|
2
?
Dt



, x ¤ 0,

� lim
xÑ�8 ζ̂

p3q
s px, tq Ñ 0,

� B ζ̂p3qs px, tq
B x � A

2D

�
�erf

� |x|
2
?
Dt



� 1



(186)

� ζ̂p3qs px, tq satisfies the diffusion equation

B ζ̂p3qs px, tq
B t �D

B2 ζ̂
p3q
s px, tq
B x2

� 0.

Appendix C: Notation

Roman Symbols

A Constant of integration in the construction of similarity solutions of the diffusion equation

B Constant of integration in the construction of similarity solutions of the diffusion equation

b(X,t) Basement function, defining the solid bed below the lake and alluvial deposits, see e.g. Fig. 8

C Constant of integration in the construction of similarity solutions of the diffusion equation

cp, cice Specific heat of ice at constant pressure or constant volume

D1 Topset diffusivity of the subaerial moving bed load

D2 Topset diffusivity for hyper-pycnal sediment processes

Dice � κice

ρ cp ice
Diffusivity of ice

d Point production/annihilation rate of sediment mass at the plunge point
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E Constant of integration in the construction of similarity solutions of the diffusion equation

f(Ξq, f1,2pΞq Similarity functions for the detritus surface

g Gravity constant (g � 9.81ms�2)

H Constant thickness/depth of a channel of still water

h Thickness of the moving slurry-layer of water above the detritus layer at the basement

I Sediment source to the main bed load from a side tributary

L Latent heat of freezing/melting of water/ice

= ρ1Q Downslope (horizontal) subaerial total sediment mass flow

1 � pρ� ρ8qhu Downslope (horizontal) subaqueous total mass flow

n0 Porosity in the moving subaerial bed load

pb Normal pressure at the sediment bed.

Q Volumetric discharge = specific volume flux

q Specific downslope sediment flux

q0 Specific down-slope sediment flux at far upstream position - constant value of q at graded conditions

qsurf Heat flow through the free surface of a lake

R`ptq Relative lake level
�
R`ptq � Z`ptq �

³t
0
σt1dt1 at X � sptq

	

R`ptq,R�` Dimensionless relative lake level

r(t) Alluvial-basement transition (X � rptq)
S1,2 Far up-stream and far-down-stream bed slopes

Smin1,2 Inclination thresholds below which no bed load transport is possible

s(t) X-position of the shore point (plunge point) as a function of time

T Temperature

Tsurf Temperature (of the water) at the free surface of a lake

T8 Temperature of the lake water at the deep bottom

t Time

u Mean downslope velocity in the turbid layer water (possibly with suspended sediments)

u(t) Position of the toe of a hypo-pycnal delta

v Mean down-slope detritus velocity in the sediment layer

X Horizontal Cartesian coordinates

X/
?
Qt Similarity variable

x Downslope Cartesian coordinate in the topset tangential to the basement

Y =
?

2Dicet Similarity variable [see (51)]

Z Vertical Cartesian coordinate

Z = Z`ptq Position of the lake level as a function of time
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z Cartesian coordinate perpendicular to the inclined sediment bed

Greek symbols

α1 �
� v
u

	
1

Ratio of the subaqueous down-slope sediment velocity to the down-slope density current velocity,
1
2   α1   1

α2 �
� v
u

	
2

Ratio of the subaerial down-slope sediment velocity to the down-slope slurry velocity

β Inclination (slope) angle of the subaerial sediment layer

δ Thickness of the moving sediment layer - DIRAC Delta-function

ε Small parameter p0   ε    1q
Vertical position of the upper surface of the moving sediment

ζ � ζpx, tq as a function of px, tq measured perpendicular to the basement

= (X, t) as a function of pX, tq , measured vertically

= (t) or = Z`ptq Z-coordinate of the lake level

s � ζ̂psptqq Upper surface of the moving sediment layer at the plunge point

toe � ζ̂puptqq Detritus level at the delta fore front

/
?
Qt Similarity variable

θ � T � Tsurf Temperature variable

ϑ1,2 � ζ̂1,2 � ζ̂0 [see (120)]

κ, κice Heat conductivity of ice

Λpλq � ω [see (38)]

λ Separation constant, introduced in the generalized STEFAN conditions arising as sptq � λξptq
ξ,Ξ{ξptq Similarity variable for the sediment position [see (20)]

π = 3.14159

ρ Mass density of water or slurry (due to wash load)

ρ0 Mass density of the moving sediment layer

ρw, ρs True density of water, – of sediment

ρ1 Buoyancy corrected detritus density in the top set

ρ8 Density of the particle laden lake water at the upper edge of the subaqueous turbidity current

σ Supply rate of moving sediment mass

σb1 Effective stress (pressure) at the top of the moving sediment layer

τb Shear traction at the upper surface of the bed load layer

φ Angle of internal friction (angle of repose measured under water)

ω Ratio of slopes, defining the parameter λ in the generalized STEFAN condition [see e.g. (38)]

75



Miscellaneous Symbols

d/d t Total time derivative operator

B{B t Partial time derivative operator

∇ Nabla (gradient operator)

erf Error function

erfc Complementary error function

ierf Integrated error function [see (183) and (184)]
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Abstract

Sediment transport arises in alluvial lake-river systems in two different forms: (i) as bed load,
comprising the moving detritus of the river bed and of the shallow, often only near-shore regions,
and (ii) the suspended sediment load of the finer fractions. In river hydraulics the latter are often
neglected; so, the bed load transport is treated without back-coupling with the wash-load. This is
justified on decadal time scales. In the deeper parts of lakes wind-induced shearing in the benthic
boundary layer hardly mobilizes the bed material, which stays immobile for most time and may be
set in motion only interruptedly. However, the particle laden fluid transports the suspended material,
which is advected and may on longer time scales settle in deposition-prone regions. In general, the
deposition to and erosion from the basal surface occur concurrently. This environmental interplay is
studied in this article.

The slurry - a mixture of the bearer fluid and particles of various sizes – is treated as a mixture
of class I, in which mass, momentum and energy balances for the mixture as a whole are formu-
lated to describe the geophysical fluid mechanical setting, whilst the suspended solid particles move
through the bearer medium by diffusion. The governing equations of this problem are formulated,
at first for a compressible, better non-density preserving, mixture. They thus embrace barotropic
and baroclinic processes. These equations, generally known as NAVIER-STOKES-FOURIER-FICK

(NSFF) fluids1, are subjected to turbulent filter operations and complemented by zeroth and first
order closure schemes. Moreover, simplified versions, e.g. the (generalized) BOUSSINESQ, shal-
low water and hydrostatic pressure assumptions are systematically derived and the corresponding
equations presented in both conservative and non-conservative forms. Beyond the usual constitutive
postulates of NSFF–fluids and turbulent closure schemes the non-buoyant suspended particles give
rise to settling velocities; these depend on the particle size, expressed by a nominal particle diameter.
A review of the recent hydraulic literature of terminal settling velocities is given. It shows that the
settling velocity depends on the particle diameter and on the particle Reynolds number.

A separate section is devoted to the kinematic and dynamic boundary conditions on material
and non-material singular surfaces as preparation for the mathematical-physical description of the
sediment transport model, which follows from an analysis of jump transition conditions at the bed.

The simplest description of detritus transport does not use the concept of the motion of a thin
layer of sediments. It treats it as a singular surface, which is equipped with surface grains of various
grain size diameters. Such a simplified theoretical level is also used in this article; it implies that
solid mass exchange, as erosion and deposition of different particle size fractions, is the only phys-
ical quantity relevant in the description of the sediment transport. It entails formulation of surface
mass balances of an infinitely thin detritus layer for the sediment and surface momentum balance of

1Stress tensor, heat flux vector and mass flux vectors are given as proposed by Navier&Stokes, Fourier and Fick, respectively.
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the mixture. The deposition rate of the various grain fractions, expressed as grain classes, follows
from a parameterization of the free fall velocity of isolated particles in still water, but is in general
coupled with the local flow and then follows from the solution of the hydrodynamic equations and
the processes at the basal surface. The erosion rate is governed by two statements, (a) a fracture crite-
rion determining the threshold value of a stress tensor invariant at the basal surface, which separates
existence and absence regimes of erosion, and (b) determination of the amount of erosion beyond the
threshold value of the mentioned stress invariant.
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1 Description of the sediment transport model

The spatially one-dimensional model for the formation of deltas due to alluvial sediment progradation

from straight rivers provides enlightening insight into the physical behaviour of the interacting processes

which are exhibited by the sedimentary erosion and deposition in river-lake systems. Laboratory experi-

ments demonstrated excellent agreement between the theoretical predictions of the two limiting forms of

the evolving deltas - GILBERT-type ‘triangular subaqeous slopes’ under hypo- and homo-pycnal condi-

tions and smoothly evolving weakly curved foreset depositions so generated by turbulent density-under

currents. The laboratory experiments reflect realistic flow states, but the theory was shown to equally

reproduce realistic conditions, when in a linear valley an elongated lake is formed by steady sediment

deposits from a side tributary and when, under special conditions, it may relatively quickly again disinte-

grate. Practically of significance is also the development of the sediment regime in an elongated reservoir

after its construction; large sediment input through the decades after dam erection may fill the reservoir

and make flushing scenarios necessary through a bottom outlet or a side-pass tunnel. Qualitatively, these

scenarios can also be described by the model.

It is, however, clear that multi-dimensionality of the sedimentary processes generally prevails in a

river mouth and its vicinity, especially in mountainous lakes of complex geometry, see Figs. 1, 2. More-

over, the sediment loads generally occur in two different forms, as (i) bed load, comprising the moving

grains of the alluvial river bed or the frontal part of the delta, formed and evolved by the coarser sediment

fractions of the prograding processes, and (ii) the suspended sediment load of the finer fractions (usually

clay and silt). Both participate in the formation of the bottom boundary and its evolution in time and

space, on the one hand by deposition or settling processes of the suspended, non-buoyant fines according

to the local water current, which they are exposed to, and, on the other hand, by motion cessation, re-

suspension of the sliding, rolling and saltation particles of the bed load and their consequential transports

in suspension.

It transpires that the settling and re-suspension of particles depend upon (i) the state of the water flow

above the sediment bed and the wind induced barotropic or baroclinic current in the wider vicinity of

the river mouth, and (ii) the grain size distribution of the alluvial sediments. In deposition processes of

the suspension load, often also called wash load, the coarser grains will settle out first, followed by the

smaller ones. So, the slurry-like upper water layer will be subject to persistent particle size segregation

and consequential alteration and steepening of the grain size curve. It is evident that an adequate model

for the suspended sediment load must be formulated as a mixture of a pure fluid with a number of solid

constituents, each representative of a specific grain size range, and expressed as a balance of mass of its

size-range with FICKian parameterization of its flux and vanishing production rate.2

In much the same way the moving sediment bed is equally composed of grains of different sizes,

generally coarser than those of the suspended load. The material in this moving layer may again be

interpreted as a mixture of a number of particles in very narrow size ranges plus an interstitial fluid.

Except for eruptive intermittent bursts over which an averaging of the particle motions and the fluid

might be justified on time scales relevant for sediment transport, all these components have nearly the

same velocity, but it turns out that nevertheless balance laws of mass and momenta for the constituents

need to be formulated. Because of its small thickness the moving sediment layer may then be viewed as

a singular surface equipped with mass and momentum for which two-dimensional mass and momentum
2It is assumed that no fragmentation of particles into sizes other than those in the own size-range occurs.
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Figure 1: Channelized entrance of the river Rhine (Alpen-Rhein) into Lake Constance at Fussach, near Bregenz, showing
alternating sandbanks within the artificial channel and a large patch of suspended sediments in front of the river mouth.
The island on the right frame is Lindau. Copyright: ‘Tino Dietsche - airpics4you.ch’

balances are to be formulated. Its mass density changes by deposition of fines from the wash load and

re-suspension of the eroded components from the moving bed.

The likely computational procedures for the moving sediment bed can be either a continuum ap-

proach as stipulated above, or application of molecular dynamics of the particles interacting with each

other and with the fluid, better and more adequately known as Discrete Element Method (DEM). This ap-

proach has been carefully studied in a Ph.-D. thesis by VETSCH (2011) [49], but the method is presently

not sufficiently advanced to warrant a detailed presentation here. Consequently, the text below will be

based on the continuum approach, but, of course, with implementation of additional simplifying assump-

tions. One is the complexity of the mixture formulation. The most detailed situation prevails when each

component is equipped with its own density, velocity and temperature. For each of them balances of

mass, momenta and energy must then be accounted for. HUTTER & JÖHNK (2004) [17], p. 255, call

this a mixture of class III. When heat exchange between the constituents is rapid, all constituents possess

(nearly) the same temperature; then it suffices to only consider the energy balance of the mixture as a

whole, involving a single temperature field, while balances of mass and momentum of all the constituents

are kept. This defines a mixture of class II. Still a further simplification is possible, if for some reason all

constituents except one arise in small concentrations and have nearly the same velocity as the dominant

bearer fluid. Such conditions prevail for the salts defining the mineralisation or salinity of lake or ocean

water. In this case it may suffice to formulate also momentum balance for the mixture as a whole and

to account for the variation of the concentrations of the constituent masses by their mass balances. This

defines a mixture of class I. This is the principal conceptual formulation of the sediment transport as

wash and bed loads for which the balances of momentum and energy are formulated for the mixture as a

whole, but balances of mass for each tracer individually and for the mixture as a whole.
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Figure 2: Close-up to the mouth of the river Rhine (Alpen-Rhein) at Fussach, near Bregenz, showing the right river dam
and the suspended sediments (wash-load) with the strong spatial variation of its concentration. Copyright: ‘Tino Dietsche
- airpics4you.ch’

Which mixture class ought to be applied depends on the sort and scale of application in focus. For

hydraulic and possibly also geologic applications bed-load is likely restricted to near shore zones and

the vicinity of river mouths. [Exceptions are, of course, large, very shallow lakes of, say, less than

5 m maximum depth (Neusiedler See, Austria/Hungary; Lake Taihu China; Northern part of Caspian

Sea).] On the other hand, the suspended particle phase can be ignored in most interior parts of less

shallow lakes for shorter, hydraulically relevant, e.g. decadal time scales, but ought to be considered for

variations over geologically relevant time scales over centuries and millennia. In near shore zones and

close to river mouths, particle laden mixtures will likely govern the wash and bed load transports.

The above description indicates that for certain questions, bed load movement or relatively rapid de-

positing or erosive detritus rates are localized to sub-regions of, but not subject to, the entire lake. In such

cases application of sub-structuring or nesting is suggested, of which the use is as follows: Global, e.g.

wind induced processes of the entire homogeneous or stratified lake are investigated with a judiciously

simplified model (e.g. in which bed load movement is ignored) and a discretisation allowing determina-

tion of the current, (temperature and particle concentration3) fields within the entire lake, however, with

values of the field variables only at the grid points of the relatively large meshes of the lake-scale global

problem. A sub-region of the lake in the vicinity of the river mouth and the lowest part of the river is

subsequently selected and the governing equations describing the dynamics of the upper-layer and the

bed load are then discretized with a much finer net than the equations of the global, whole lake analysis.

At the open, lake-ward boundaries the flux conditions must then be properly transferred as boundary

values for the boundary value problem, valid in the sub-region within which the evaluation of the bottom

topography in the river mouth region is determined.
3Often these fields may even be dropped and simply assumed to be frozen to the fluid particles.
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Figure 3: Lake domain divided into the large particle laden fluid part, I, and the moving detritus layer, II, with indicated
boundaries: free surface, interface between I & II, and the lower boundary of the detritus layer where no grains move.

Atmosphere

Lake domain

Rigid bed

Sb

Ss

Figure 4: Lake domain bounded by the free surface Ss and the basal surface Sb. The surface Sb incorporates also domain
II.

In the subsequent analysis the lake domain will at least be subdivided into two layers, see Fig. 3. In

the upper layer the lake water will be treated as a particle laden, possibly turbulent BOUSSINESQ fluid

subject to the shallow water approximation.4 This layer may, at a later stage be further sub-divided into

sub-layers for computational reasons or in order to model stratification. The second layer is the domain

of the sliding, rolling and saltating sediment, saturated by fluid. Its upper boundary will, in general, move

or deform, and it defines the bathymetric profile of the lake bottom as a function of time and space. Its

lower boundary marks the upper boundary of the rigid immobile solid bed. In comparison to the upper

layer, this second layer is very thin, and it may well be thought to be describable by an infinitely thin

sheet of which the physical properties must account for its finite thickness.5 We will conceive layer II as

a singular surface Sb separating the rigid bed and layer I (lake domain), see Fig. 4, being equipped with

its own material properties and balance laws.

Layer I is interacting at its upper surface with the atmosphere; wind-shear transfers momentum to

it, and solar irradiation may give rise to changes in the stratification. The interface between the two

layers is non-material in general unless neither suspended material from layer I is deposited nor certain

fractions of the bed-load in layer II are (re)-suspended into layer I. This fact makes adequate definition of

the interface between the two layers difficult. Experience with laboratory experiments, however, shows

that under given dynamical conditions immediately above the interface, grains above the corresponding

minimum grain diameter do not erode, i.e. are not lifted into layer I (for a substantial amount of time),

but stay within the detritus layer. This implies that an erosion inception condition which depends on the
4The focus is not on strong internal baroclinic motion but rather on the reproduction of the current near the basal surface

(e.g. the benthic boundary layer).
5In the theory of interfaces such sheets are called diffuse interfaces.
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. . . . . .

d ∈ [d0, d1) d ∈ [dα−1, dα) d ∈ [dN−1, dN)

class 1 class α class N

d0≡ dmin < d1 < . . . < dα−1 < dα < . . . < dN−1 < dN ≡ dmax

Figure 5: Partition of the interval rdmin, dmaxq, in which the nominal particle diameters range, into N disjoint subsets,
each of them defining a particle class; d is the nominal particle diameter.

particle diameter must be established.

2 Governing equations in lake domain

The field equations in lake domain are formulated at this general level as those for turbulent motion of a

BOUSSINESQ fluid of a mixture of class I. We briefly explain the derivation of these equations.

2.1 NSFF flow

The solid particles surrounded by the bearer fluid possess nominal diameters in the interval rdmin, dmaxq,
dmin   dmax. This interval is partitioned into N subintervals, and so particles in rdα�1, dαq define

the α-th particle class, see Fig. 5.6 Such a class is modelled as a continuous body with its own motion

and rheology. Thus, at the level of fine resolution (at which methods of direct numerical simulation are

applicable) the slurry is modelled as a continuous mixture consisting of a fluid and N solid constituents

(classes). Moreover, since the solid particles are dragged on by the fluid with nearly the same velocity

as that of the fluid, a mixture of class I is an appropriate concept to be applied for the description of the

slurry flow. The equations describing this flow take then the forms

• Balance of mass for the mixture
d ρ
d t

� ρ div v � 0 ; (1)

• Balance of momentum for the mixture

ρ

"
dv
dt

� 2Ω� v
*
� �grad p� divσE � ρg ; (2)

• Balance of mixture energy

ρ
dε
d t

� �div q � pdiv v � tr pσEDq , 7 or8

ρ
dh
d t

� d p
d t

� �div q � tr pσEDq ,
(3)

6This is motivated by sieve experiments: one has a whole column of sieves, numbered 0, . . . , α, . . . , N �1, with the largest
mesh size on top and the smallest at the bottom; class α (α � 1, . . . , N ) consists of those particles which are collected by
sieve α� 1. It is tacitly understood that the sieve with number ‘0’ is impermeable for all particles of sizes larger than a chosen
minimum (say for clay and silt fractions which cannot pass very small holes simply because of cohesion coalescence).
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in which h is the mixture enthalpy,

h � ε� p

ρ
; (4)

• Balance of tracer mass of constituent α

ρ
d cα
d t

� �div tjα�ρ cαws
αu � φpcαq, α � 1, . . . , N . (5)

In these equations ρ is the mixture density, v is the barycentric velocity, p, σE, ε, q, are the pressure, the

extra stress tensor, the internal energy and the heat flux vector, respectively, all referring to the mixture as

a whole, g is the gravity vector, and Ω (|Ω| � 7.272� 10�5 [s�1]) is the angular velocity of the rotation

of the Earth. (As customary in Geophysical Fluid Dynamics, the EULER acceleration is ignored and the

centripetal acceleration is thought to be incorporated in the gravity term.) Moreover, we use the notation

d p�q
d t

� B p�q
B t � pgrad p�qqv , D � sym pgradvq � 1

2pL�LT q with L � gradv , (6)

as the substantive derivative following the barycentric motion, and the strain rate or rate of strain or

stretching tensor D of the barycentric velocity, respectively. Finally, the balance law of tracer mass

of constituent α, (5), requires special justification. It is easy to show that the mass balance law of

constituent α, Bρα{B t � div pραvαq � φpcαq, where ρα, vα and φpcαq are the density, the velocity and

the mass production rate density of constituent α, can be written as

ρ
d cα
d t

� �divJα � φpcαq , (7)

in which cα,Jα are the mass fraction or concentration and the diffusive-advective mass flux of constituent

α, respectively:

cα � ρα
ρ
, Jα � ρcαpvα � vq . (8)

We recall that the constituent α is composed of particles of various diameters ranging in rdα�1, dαq.
Thus, one may think of class α as a continuous mixture of a finite number of constituents. A possibility

to account for this fact is to introduce the decomposition

Jα � ρcαpvα � vsαqlooooooomooooooon
� jα

� ρ cαpvsα � vqloooooomoooooon
� �ρ cαws

α

, (9)

7tr is the trace operator: trA � Aii, whereA is a second order tensor.
8Consider the term pdiv v on the right-hand side of (3)1. With the aid of (1) this takes the form

�p div v �
p

ρ

d ρ
d t

� �ρ
d

d t

�
p

ρ



�

d p
d t

.

Therefore, the balance of mixture energy may also be written as

ρ
d

d t

�
ε�

p

ρ



�

d p
d t

� � div q � tr pσEDq ,

suggesting the definition of the mixture enthalpy (4). In almost density preserving materials the term p div v in (3)1 and the
term d p{d t in (3)2 are generally ignored, which implies dε{d t � dh{d t, which is the reason why one can often see in the
literature both formulations using ε or h.
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where vsα is the velocity of a representative granular constituent (perhaps that one with greatest concen-

tration or that with the mean diameter) of the mixture class α. Thus, jα is now the diffusive flux of the

constituent α with respect to the representative particle in the class α. For this flux term a gradient type

constitutive relation will be postulated in the spirit of FICK’s law. The second term expresses the advected

flux of the representative particle relative to the barycentric motion. For this advected flux a constitutive

relation is postulated. In sediment transport work a rather restricted but courageous statement is made:

ws
α � wsαez ðñ ρcαpvsα � vq � �ρcαwsαez , (10)

where wsα ¡ 0 is the terminal free falling velocity of the selected representative particle in still water, and

ez is the unit vector against the gravity vector.9 This is how wsαez would enter formula (5). Of course,

in reality this is not correct; perhaps as an approximation, non-vanishing horizontal components of ws
α

are expected. A likely better choice may be

ws
α � wsα

"
tan θ

vH
‖vH‖

� ez
*
, (11)

where

vH � tv � pv � ezqezuSb (12)

is the horizontal velocity at the basal surface Sb, see Fig. 3, and θ is a tilt angle (approx. 0� or somewhat

larger) to be determined. More generally, determination of the motion of a solid particle immersed in a

moving fluid is a difficult specialized topic of interaction dynamics.

The above balance equations can also easily be transformed to conservative form by judiciously

combining them with the balance equation of mass (1). Often these forms are better suited to numerical

implementation. This yields10

• Balance of mass for the mixture

B ρ
B t � div pρvq � 0 ; (13)

• Balance of momentum for the mixture

Bpρvq
B t � div pρv b vq � 2ρΩ� v � div p�pI � σEq � ρg ; (14)

• Balance of mixture energy
9For a non-buoyant particle α falling in still water we have ws

α � �pvsα � vq � wsαez; here vsα is the velocity of the
solid particle, and v � 0 is the velocity of the surrounding fluid at rest. When the grain stops to decelerate it has attained the
so-called terminal settling velocity or free fall velocity.

10(a) Using p1q yields for the left-hand side of (2)

ρ
dv
d t

�
d ρv
d t

�
d ρ
d t
v
p1q
�

d ρv
d t

� pρ div vqv �
B ρv

B t
� div pρv b vq,

whilst the right-hand side remains unchanged.
(b) Using p1q, for a scalar function f we obtain

ρ
df
d t

�
d ρf
d t

�
d ρ
d t

f
p1q
�

d ρf
d t

� pρ div vqf �
B ρf

B t
� div pρfvq,

which turns (3) and (5) into (15) and (16), respectively.
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Bpρεq
B t � div pρεvq � �div q � p div v � tr pσEDq or

Bpρhq
B t � div pρhvq �

"B p
B t � grad p � v

*
� �div q � tr pσEDq ;

(15)

• Balance of tracer mass α

Bpρ cαq
B t � div pρ cαvq � �div pjα�ρ cαws

αq � φpcαq , α � 1, . . . , N. (16)

In (16), ρ cαws
α could be incorporated into the div-term on the left-hand side, but will not be done here.

2.2 Turbulent motion

For the turbulent motion it is common usage to average equations (13)–(16) by applying adequate filter

operations to the balance laws. If the filter operation is denoted by x�y, any field variable f can be

composed of its average x f y and fluctuation f 1 according to

f � x f y � f 1 , f 1 � f � x f y . (17)

If this decomposition is applied to all field variables and a statistical filter with the property xx�yy � x�y
is chosen, the filter operation is called REYNOLDS averaging. For example, the averaged balance law of

mass (13) takes the form
Bx ρ y
B t � div px ρ yxvyq � �div px ρ1v1yq . (18)

Evidently, the correlation x ρ1v1 y only arises because of density variations due to turbulence. The turbu-

lent mass flux on the right-hand side of (18) is the only place of all averaged balance laws, where such a

term arises. It is small for nearly density preserving fluids and will then be ignored.11

Rather than referring to the general balance laws (13)–(16) we consider the balance laws (i) corre-

sponding to a generalized BOUSSINESQ fluid and (ii) those obtained with the assumption that the density

fluctuations are negligibly small.

2.2.1 Model 1: Generalized BOUSSINESQ fluid

A BOUSSINESQ fluid is defined as a fluid for which density variations are ignored except in the gravity

term of the momentum equation. Balance of mass then reduces to div v � 0, agreeing with the continu-

ity equation of density preserving continua. A somewhat more general assumption is as follows, see e.g.
11If for the velocity the so-called FAVRE averaging operator is employed,

tvu �
xρvy

xρy
, (19)

then the averaged mass balance takes the form

Bxρy

B t
� div px ρytvuq � 0 . (20)

So, Favre averaging would preserve the conservative form of the balance of mass under filtering. However, this would also
imply consequences in the remaining balance laws. A complete derivation using FAVRE averaging is e.g. given in LUCA et al.
(2004) [26]. We prefer to stay with (18).
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Hutter et al. [18]:

(i) ρ � ρ0pzq � ρdpx, tq,
(ii) ρdpx, tq is everywhere ignored except in the gravity term.

(21)

We call this the generalized BOUSSINESQ assumption. In (21), ρ0pzq is a static density field, which in a

lake usually represents the stable stratification induced by radiation. For ρ0pzq � constant, (21) reduces

to the classical BOUSSINESQ assumption. Owing to (21)(i), with

p � pd � pst, pst � g

» z
0
ρ0pξqdξ , (22)

where g is the gravity constant, we introduce the dynamic, pd, and the ‘quasi-static’, pst, pressures, which

implies

�grad p � �grad pd � ρ0pzq g . (23)

With (21)–(23), the physical balance laws (1)–(3), (5) subjected to the generalized BOUSSINESQ as-

sumption take the forms

• Balance of mass for the mixture

div ρ0v � 0 ; (24)

• Balance of momentum for the mixture

ρ0

"
dv
d t

� 2Ω� v
*
� �grad pd � divσE � pρ� ρ0qg ; (25)

• Balance of mixture energy

ρ0
d ε
d t

� �div q � p div v � tr pσEDq or ρ0
dh
d t

� d p
d t

� �div q � tr pσEDq ; (26)

• Balance of tracer mass of constituent α

ρ0
d cα
d t

� �div tjα � ρ0 cαw
s
αu � φpcαq, α � 1, . . . , N , (27)

or in the alternative, conservative forms, see (13)–(16),

• Balance of mass for the mixture

div ρ0v � 0 ; (28)

• Balance of momentum for the mixture

B pρ0vq
B t � div pρ0v b vq � 2ρ0Ω� v � div p�pdI � σEq � pρ� ρ0qg ; (29)
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• Balance of mixture energy

B pρ0εq
B t � div pρ0εvq � �div q � p div v � tr pσEDq or

B pρ0hq
B t � div pρ0hvq �

"B p
Bt � grad p � v

*
� �div q � tr pσEDq ;

(30)

• Balance of tracer mass of constituent α

Bpρ0 cαq
B t � div pρ0 cαvq � �div pjα � ρ0cαw

s
αq � φpcαq, α � 1, . . . , N . (31)

We mention that for relatively shallow basins the term involving d p{d t in (26)2 and (30)2 is ignored in

the enthalpy formulations.

The turbulent analogues to the balance laws (24)–(31) are obtained if these laws are subjected to the

filter operation x�y. In this process, ρ0, g,Ω do not possess fluctuations, so that xρ0y � ρ0, xgy � g,

xΩy � Ω. When omitting the angular brackets, the REYNOLDS averaged equations then take the forms

• Balance of mass for the mixture

div ρ0v � 0 ; (32)

• Balance of momentum of the mixture

ρ0
dv
d t

� 2ρ0Ω� v
�
� B pρ0vq

B t � div pρ0v b vq � 2ρ0Ω� v


�

�grad pd � divR� pρ� ρ0qg ;

(33)

• Balance of mixture energy

ρ0
dε
d t

�
� Bpρ0εq

B t � div pρ0εvq


� �p div v � divQε � φpT q,

ρ0
dh
d t

� d p
d t

�
� Bpρ0hq

B t � div pρ0hvq � d p
d t



� �divQh � φpT q � divP ;

(34)

• Balance of tracer mass of constituent α

ρ0
d cα
d t

�
� Bpρ0cαq

B t � div pρ0cαvq


� �div tJα � ρ0cαw

s
αu � φpcαq. (35)

In these equations df{d t is the substantive derivative of f following the averaged turbulent velocity.

Furthermore, the non-conservative and conservative forms have been written together to save space. The

quantities12

R � xσEy � ρ0 xv1 b v1y , Qε � xqy � ρ0 xε1v1y , Qh � xqy � ρ0 xh1v1y ,

φpT q � tr pxσEyxDyq � tr xσ1ED1y � xp1div v1y , P � xp1v1y ,

Jα � xjαy � ρ0 xc1αv1y � ρ0 xc1αws1
α y ,

(36)

12For these formulae we employ the symbol x�y of filter operation to emphasize the role of the averaged laminar quantities
and averages of turbulent correlation quantities.
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represent

(i) the total stress R (modulo the pressure) as a combination of the averaged extra stress tensor xσEy
and the REYNOLDS stress tensor �ρ0 xv1 b v1y due to turbulence;

(ii) the total heat fluxQε,Qh as the sum of the averaged ‘laminar’ heat flux x q y and the energy flux

due to turbulence in the internal energy, ρ0xε1v1y, and the enthalpy, ρ0xh1v1y formulation, respectively;

(iii) the averaged internal energy/enthalpy production rate density φpT q due to the power of working

tr xσEyxDy of the mean motion and the correlations tr xσ1ED1y , xp1div v1y;
(iv) the average pressure work P (note that it only arises in the enthalpy formulation of the energy

equation and that it can in principle be combined with the heat flux termQh);

(v) the total mass flux of constituent α comprising the averaged laminar mass flux xjαy, turbulent

mass flux ρ0 xc1αv1y and turbulent mass flux due to non-buoyant particle flow ρ0 xc1αws1
α y.

It is the goal of turbulence theory to propose closure relations for the quantities (36). We refrain to do

this here and pass to the presentation of another model, for which, however, we give closure relations.

2.2.2 Model 2: Small density fluctuation assumption

One can find in the literature yet another set of averaged field equations which are stated as such but

without any or little motivation. It can be motivated by considering the density fluctuation ρ1 in the

decomposition ρ � xρy � ρ1 so small, that it is everywhere ignored. Of course, this strictly requires that

|ρ1| ! xρy and that any correlation |xρ1a1y| is smaller than |xa1b1y| pb1 � ρ1q. We therefore propose the

following

Small density-fluctuation-turbulence assumption: Consider a non-density preserving fluid sub-

jected to turbulent motions for which turbulent density fluctuations ρ1 are negligibly small,

��ρ1�� ! xρy , ��xρ1a1y�� ! ��xa1b1y�� pb1 � ρ1q (37)

can be dropped from the equations.

With this assumption the density function ρpx, tq can be everywhere approximated by

ρpx, tq � xρpx, tqy . (38)

Omitting the angular brackets x�y , with this approximation applied to the mixture mass density, the

averaged balance laws as deduced from (13)–(16) can be written as

• Balance of mass for the mixture B ρ
B t � div pρvq � 0 ; (39)

• Balance of momentum for the mixture

Bpρvq
B t � div pρv b vq � 2ρΩ� v � �grad p� divR� ρg ; (40)
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• Balance of mixture energy

Bpρεq
B t � div pρεvq � �p div v � divQε � φpT q or

Bpρ hq
B t � div pρ hvq � d p

d t
� �divQh � divP� φpT q ;

(41)

• Balance of tracer mass of constituent α

Bpρ cαq
B t � div ρ cαv � �div pJα � ρ cαw

s
αq � φpcαq , (42)

with the definitions

R � xσEy � ρ xv1 b v1y , Qε � xqy � ρ x ε1v1y , Qh � xqy � ρ xh1v1y ,

φpT q � tr pxσEyxDyq � tr xσ1ED1y � xp1div v1y , P � xp1v1y ,

Jα � xjαy � ρ xc1αv1y � ρ xc1αws1
α y .

(43)

In the subsequent analysis we will use equations (39)–(42), for which we assume the following closure

relations:

(i) As in physical limnology, we take

ε � cvpT � T0q � ε0 , h � cppT � T0q � h0 ,

cv � specific heat at constant volume , cp � specific heat at constant pressure ,
(44)

where T is the absolute temperature, as expressions for the internal energy and enthalpy in the respective

formulations; the specific heats cv, cp are assumed constant. For a thermodynamic justification of (44)

or its generalization, see Appendix A.

(ii) The density ρ is taken as

ρ �
�

1�
Ņ

α�1

να

�
ρwpT, sq �

�
Ņ

α�1

να

�
ρs , (45)

in which να is the volume fraction of sediment α, ρwpT, sq is the water density at temperature T and

constant salinity s, and ρs � 2100 kg m�3 is the buoyancy corrected density of the suspended sediment.

Explicit formulae are e.g. given in (I, 10, p. 344ff)13. If the contribution of the mineralization is

negligibly small, then

ρw � ρwpT q � ρ�
�
1� α̃pT � T �q2� ,

ρ� � 1000 kg m�3 , T � � 277� K , α̃ � 6.493� 106 K�2 ,
(46)

is a useful quadratic approximation; ρ� is the reference density of water at 4�C.

It was already mentioned that in very deep lakes of depth larger than approximately 500 m (Lake

Baikal, Lake Tanganijka, Caspian Sea) the pressure dependence in the thermal equation of state should
13We shall refer to specific pages of [18] as (I, . . . ).
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not be ignored. This implies that (45) is replaced by

ρ �
�

1�
Ņ

α�1

να

�
ρwpT, s, pq �

�
Ņ

α�1

να

�
ρs , (47)

in which the contribution of the pressure to ρw requires that the energy equation is used in the enthalpy

formulation.

(iii) The specific energy production φpT q, also called dissipation rate density, is deduced by assuming

the Newtonian law for the dissipative stresses σE. Thus, with σE � 2ρν`D, where ν` is the ‘laminar’

kinematic viscosity, (43)4 yields

φpT q � 4ρν` IIxDyloooomoooon
dissipation rate due

to the mean velocity

� 4ρν` xIID1ylooooomooooon
turbulent dissipation

rate ρε

�xp1div v1y �

� ρ p4ν`IIxDy � εq � xp1div v1y ,

(48)

in which IIA � 1
2pA�Aq is the second invariant ofA. Moreover, for xp1div v1y we assume

xp1div v1y � ζpxpy div xvy , ζp � 0 , (49)

while the turbulent dissipation rate ε will be later discussed, see (vii) below in this section.

(iv) For suspended particles of size range α we ignore fragmentation into other size ranges, so that

we assume φpcαq � 0.

(v) The second order tensor R, and vectors Qε, Qh, Jα pα � 1, . . . , Nq are combinations of

the averaged laminar and the turbulent fluxes of momentum, energy and species masses, given by the

following gradient type parameterizations:14

1

ρ
R � 2ν`D � xv1 b v1y � �2

3kI � 2 pν` � νtqD,
1

ρ�rcvs Qε � �χpT q` gradT � ρ cv
ρ�rcvsxT

1v1 y � �
�
χ
pT q
` � νt

σT



gradT,

1

ρ�rcps Qh � �χpT q` grad T � ρ cp
ρ�rcps xT

1v1y � �
�
χ
pT q
` � νt

σT



grad T ,

1

ρ�
Jα � �χpcαq` grad cα � ρ

ρ�
x c1αv1 y �

ρ

ρ�
x c1αws1

α y �

�
�
χ
pcαq
` � νt

σcα



grad cα � ρ

ρ�
x c1αws1

α y , α � 1, . . . , N .

(50)

14Parameterization (50)4 does not account for cross dependences of the form

�
Ņ

β�1

λαβ

�
χ
pcβq

` �
νt
σcβ



grad cβ , α � 1, . . . , N ,

with λαβ   1. Our selection in (50)4 is λαβ � δαβ . In principle the more general case is possible.
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In (50)1, k is the turbulent kinetic energy per unit mass15 and νt is the turbulent kinematic viscosity; they

will be parameterized below in this section. The quantities rcvs and rcps arising in (50)2,3 are typical

values of the specific heats cv, cp. Then, in (50)2�4 the FOURIER law for the heat flux q and the FICK

law for the diffusive flux jα are understood, which explains the ‘laminar’ difussivities χpT q` , χ
pcαq
` .

Moreover, σT and σcα are turbulent PRANDTL and SCHMIDT numbers; they are always assumed to

be constant, which expresses a certain similarity between the diffusive processes of momentum, heat

and species masses, which is generally not borne out experimentally. The coefficient of grad T in

the representations (50)2,3 is supposed to be the same; this choice is exact if rcvs � rcps is selected.

Additionally, to differentiate the viscosities from the diffusivities in (50)2,3,4 one often makes use of the

replacements �
χ
pT q
` � νt

σT



ÝÑ DpT q

�
χ
pcαq
` � νt

σcα



ÝÑ Dpcαq

(51)

and calls DpT q the thermal diffusivity and Dpcαq the species diffusivities. We shall follow this custom.

We will also use the interpretation

ν` � νt ÝÑ νt

in (50)1 and call the new νt – the kinematic turbulent viscosity. Finally, in the parameterization (50)4 of

Jα we may assume

xc1αws1

α y � ζxcαyxws
αy , ζ � 0 ,

as is the custom in the literature. Summarizing, for R, Qε, Qh, Jα we have the following closure

relations:
R � �2

3ρkI � 2ρνtD ,

Qε � �ρ�rcvsDpT qgradT , Qh � �ρ�rcpsDpT qgrad T ,

Jα � �ρ�Dpcαqgrad cα � ζρ xcαyxws
αy , ζ � 0 , α � 1, . . . , N .

(52)

(vi) For ws
α we assume (10), where expressions of the particle settling velocity wsα are discussed

below in (vii).

(vii) Now, given numerical values for the laminar viscosity ν`, specific heats cv, cp, and diffusivities

DpT q, Dpcαq, the above model equations (39) - (52) must still be complemented by closure relations for

νt, k, ε, wsα. The way of approach how this is done depends on the sophistication which is applied to

the turbulent parameterization. When applying classical zeroth order closure schemes, algebraic param-

eterization for νt, k and ε are given; for higher order closure relations one or two equation models or full

REYNOLDS models are suggested. Next we refer to such closure relations for νt, k and ε and then we

review parameterizations for the particle settling velocity wsα.

Zeroth order, algebraic parameterization for νt, k and ε In (I, 6.2.6, p. 201ff), PRANDTL’s eddy

viscosity formula [34] was generalized and a proposal for the turbulent kinetic energy was given. More-

over, since dimensionally rεs � rk3{2s{r`s, where ` is a mixing length introduced by PRANDTL, the

15For a solenoidal velocity field it is often customary to incorporate the contribution of the turbulent kinetic energy k in
relation (50)1 into the pressure term, or to ignore it.
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following propositions may be meaningful:

(I, 6.55) νt � 2`2
?
IID,

(I, 6.56) k � ck4`
2IID,

(I, 6.57) ε � cε8`
2II

3{2
D ,

(53)

where the third expression follows from ε � const � k3{2{`. PRANDTL added a balance equation of the

form (54), below, but this would correspond to a first order closure scheme. At zeroth order closure, ` is

an adjustable constant scalar coefficient.

First order parameterization – the (k � ε)-model The most popular first order turbulence model is

the so-called (k � ε) model. Its full derivation is e.g. given by HUTTER & JÖHNK [17], Chap. 11, and a

summary is given in I, 6. Here we give a short presentation of this model.

The most simple first order turbulent closure model is based on a differential equation for ` and was

proposed by PRANDTL [34] as

B `
B t � div `v � 2`

?
2� � � � � 0 , (54)

including the unspecified ‘� � � ’, but was not pursued any further by him. We shall neither elaborate on

this and will directly pass on to the standard turbulent two-equation model, which is the (k�ε) model. It

uses evolution equations for the specific turbulent kinetic energy k and the specific turbulent dissipation

rate ε, and is based on the fact that νt, k and ε fulfil the dimensional identity rνts � rk2s{rεs, suggesting

the parameterization

νt � cµ
k2

ε
, (55)

in which cµ is a dimensionless scalar, determined by inverse methods from experiments, but interpreted

as a ‘universal’ constant. For k and ε balance laws are established,

B k
B t � div pkvq � �divφk � πk ,

B ε
B t � div pεvq � �divφε � πε ,

in which the flux, φk, φε, and production, πk, πε, quantities must be parameterized. For a BOUSSINESQ

fluid, these are proposed and adequately justified e.g. by HUTTER & JÖHNK [17] and also listed in I, 6,

equations (I, 6.63)–(I, 6.65), to which the reader is referred. The fluxes have gradient closure form

φk � � νt
σk

grad k, φε � � νt
σε

grad ε , (56)

and the production terms are given by

πk � div pν` grad kq � 4νtIID � ε� ραT
ρ�

νt
σT
g �gradT ,

πε � div pν` grad εq � 4c1kIID � c2
ε2

k
� c3

ραT
ρ�

cµ
σT

k g �gradT ,

(57)

in which αT is the coefficient of thermal expansion of water and c3 is small but not well constrained.

Numerical values for the various closure constants are given in Table 1.
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Table 1: Numerical values for the closure constants of the (k � ε) model

cµ � 0.09 c1 � 0.126 c2 � 1.92 c3 � 0 σk � 1.4 σε � 1.3

Historically, the (k � ε) model has originally been developed in the 1970s by HANJALIC & LAUN-

DER [14], JONES & LAUNDER [21] and LAUNDER & SPALDING [24]. RODI [35],[36] describes its

applicability in geophysics and hydraulic engineering. Apart from the (k� ε) model, other two-equation

models have also been proposed. The (k � `) and (k � ω) models use, besides the turbulent kinetic

energy, a length – the PRANDTL mixing length, or the turbulent vorticity, ω, with dimension rk{`2s.
Expositions on these latter models are given by ROTTA [37] and WILCOX [51], [52]. For REYNOLDS

stress parameterization by Large Eddy Simulation (LES), see Appendix B.

Particle settling velocity The fall velocity wsα is the remaining quantity of the above model, which

has not been specified so far. It is an exhaustively treated subject of hydraulic research and still a topic

of active on-going work. Its introduction in (42) and earlier equations, e.g. (10), is the fall velocity of

particles in a specified size range under dynamic conditions of laminar or turbulent flow. Studies on the

settling velocity are generally restricted to spherical particles in still water; but it is well known that the

fall velocity of a non-buoyant particle in a fluid depends on both the particle shape and the flow state in

the ambient fluid. This complex non-linear interaction is out of reach and physically too difficult for our

purposes. Consequently, authors on this subject identify wsα with the terminal velocity of a free falling

particle in still water, generally restricted to spheres or (unspecified) natural sediment particles. Here, we

adopt this restricted view as well.

The ensuing description is based on the study by SONG et al. (2008) [42], who summarize earlier

work and replace the different formulae by their own one. For an isolated spherical particle in a fluid at

rest the settling velocity can be estimated by balancing the net gravitational force and the drag resistance,

∆ρg
π

6
d3
α �

1

2
ρCdα

π

4
d2
αpwsαq2, ∆ � ρs

ρ
� 1, (58)

where ρs, ρ, g, dα, Cdα are the densities of the particle and the fluid, the acceleration due to gravity, the

(nominal) diameter of a representative element in the sediment class α16, and Cdα is the drag coefficient;

(58) can be written as

Cdα �
4

3

∆ g dα
pwsαq2

, (59)

which is used to deduce the settling velocity wsα once the drag coefficient Cdα is given as function of wsα.

Thus, it is well known that, depending on the particle REYNOLDS number

Reα � wsαdα
ν

, (60)

there are two asymptotic limits for the settling velocity: Cdα � A{Reα when Reα   1 (STOKES flow),

and Cdα � B when 105   Reα   2� 105 (turbulent flow), where A and B are constants, see any book

16Such a representative element in class α has already been used when defining the advected mass flux ρcαws
α. To simplify

the notation, we use dα for the diameter of this grain particle; note that dα P rdα�1, dαq, so that dα should not be confused
with dα.
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on fluid dynamics of viscous flow. Substituting these expressions into (59) implies

wsα �
4

3A

∆ g d2
α

ν
for STOKES flow ,

wsα �
c

4

3B
∆ g dα for turbulent flow .

(61)

According to SONG et al. [42] most of the existing quasi-theoretical or semi-empirical formulae are

based on the asymptotic solutions (61).17 A smooth connection between the two asymptotic representa-

tions for Cdα is e.g. reached by

Cdα �
#�

A

Reα


1{n

�B1{n

+n
(62)

(CHENG (1997) [8]). Indeed, as Reα Ñ 0, relation (62) implies Cdα � A{Reα; similarly, for Reα Ñ
8, Cdα � B. Introducing the dimensionless particle diameter

d�α �
�

∆ g

ν2


1{3

dα (63)

into (59) and using the definition (60) for Reα yields

Cdα �
4

3

pd�αq3
pReαq2 . (64)

Equating (62) to (64) leads to a quadratic equation for pReαq1{n, which can be solved; subsequently an

explicit formula for wsα can be found via the definition of the REYNOLDS number. This is done by SONG

et al [42]. Their formula reads

wsα �
ν

dα

$&
%
d

1

4

�
A

B


2{n

�
�

4

3

pd�αq3
B


1{n

� 1

2

�
A

B


1{n
,.
-
n

. (65)

Various values for A,B and n that have been used by different authors for spherical particles and nat-

ural sediments are given. However, comparison of results with experiments is not satisfactory, and the

disparate values for A,B and n, obtained by different authors make application of (65) cumbersome.

As an alternative, SONG et al. [42] restrict consideration to STOKES flow and choose (61)1 to evaluate

Reα � wsαdα
ν

� 4

3A
pd�αq3 . (66)

Somewhat surprisingly18, they substitute this into (62), obtain

Cdα �
#� ?

3A

2pd�αq3{2

2{n

�B1{n

+n
, (67)

17MCGAUHEY [27], ZANKE [56], CONCHA and ALMENDRA [9], TURTON & CLARK [45], ZHANG [58], JULIEN [22],
SOULSBY [43], CHENG [8], AHRENS [1], GUO [13], JIMENEZ and MADSEN [20], BROWN & LAWLER [6], SHE et al. [38],
CAMENEN [7].

18Formula (62) was proposed by CHENG [8] to match both asymptotic limits for STOKES and turbulent flows.
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and using (64) deduce the settling velocity

wsα �
ν

dα
d�α

#�
3A

4


2{n

�
�

3B

4
pd�αq3


1{n
+�n{2

. (68)

SONG et al. [42] take experimental data by EGLUND and HANSEN [10] and CHENG [8] and determine

A, B and n by least square error minimization; they found

A � 32.2 , B � 1.17 , n � 1.75 ,

and then, on substituting these into (68), obtained the following formula for wsα,

wsα �
ν

dα
pd�αq3

!
38.1� 0.93 pd�αq12{7

)�7{8
, (69)

and listed alternative formulae of settling velocities by other scholars, viz.,

• ZHU & CHENG (1993) [59]

wsα �
ν

dα
pd�αq3

$&
% 1b

144 cos6 β � �4.5 cos3 β � 0.9 sin2 β
� pd�αq3 � 12 cos3 β

,.
- ,

β �
$&
%

0 , d�α ¤ 1 ,

πt2� 2.5plog d�αq�3u�1 , d�α ¡ 1 .

(70)

• CHENG (1997) [8]

wsα �
ν

dα

�a
25� 1.2pd�αq2 � 5

	3{2
. (71)

• AHRENS (2000) [1]

wsα �
ν

dα
pd�αq3{2

�
C1pd�αq3{2 � C2

	
,

C1 � 0.055 tanh
�
12pd�αq�1.77 exp

��0.0004pd�αq3
��
,

C2 � 1.06 tanh
�
0.01pd�αq1.5 exp

��120{pd�αq3
��
.

(72)

• GUO (2002) [13]

wsα �
ν

dα
pd�αq3

�
24�

?
3

2
pd�αq3{2

��1

. (73)

• SHE et al. (2005) [38]

wsα � 1.05
ν

dαpd�αq3{2
�
1� exp

��0.315pd�αq0.765
��2.2

. (74)

Table 2 presents a comparison of calculated settling velocities using formulae (69)–(74) with the

experimental data of ENGLUND & HANSEN (1972) [10] and CHENG (1997) [8]. The average value of
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the relative error E and the standard deviation σ, defined as19

E � 1

N

Ņ

i�1

����pwsαqcomp

pwsαqexp
� 1

����� 100% , σ �
gffe 1

N

Ņ

i�1

����pwsαqcomp

pwsαqexp
� 1

����2 � 100% ,

are listed in columns 2 and 3 of Table 2. It corroborates the best performance for (69). Even more

convincing results are shown in the graphs of [42]. We therefore recommend to use (69).

Table 2: Fit accuracy of formulae (69)–(74) against experimental data by EGLUND & HANSEN [10], CHENG
[8].

Equation Nr Error Ep%q Standard deviation σp%q

(69) 6.36 9.10

(70) 7.02 11.30

(71) 6.96 10.96

(72) 16.93 16.84

(73) 6.87 10.56

(74) 16.34 16.49

All these parameterizations enjoy the property that wsα does not depend on the flow dynamics of the

slurry. It is, however, intuitively clear that the turbulent intensity may inhibit the free fall velocity. A

bold account of this property may be the following choice

wsα � exp

�
�
�
k

σk


2
�
ν

d�α
pd�αq3

!
38.1� 0.93pd�αq12{7

)�7{8
, (75)

in which k is the turbulent kinetic energy and σk a standard deviation, chosen to be sufficiently small.

This reduces the value of wsα whenever k is large, which is the case close to the free surface, in the

metalimnion and immediately above the moving detritus. A dependence on the RICHARDSON number

would be a competing alternative.

2.3 BOUSSINESQ and shallow water approximations in Model 2

In this section we simplify the equations characterizing Model 2 by using the Boussinesq assumption

or/and the shallow water assumption. Thus, when written with respect to a Cartesian coordinate system

with horizontal px, yq-axes and vertical z-axis, the REYNOLDS averaged equations (39)–(42), are as

follows:

• Balance of mass B ρ
B t �

B ρ u
B x � B ρ v

B y � B ρw
B z � 0 ; (76)

19N is the number of experimental points where values for pwsαqexp have been measured.
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• Balance of momentum

ρ

�B u
B t � u

B u
B x � v

B u
B y � w

B u
B z � f̃w � fv



� �B pB x �

BRxx
B x � BRxy

B y � BRxz
B z ;

ρ

�B v
B t � u

B v
B x � v

B v
B y � w

B v
B z � fu



� �B pB y �

BRyx
B x � BRyy

B y � BRyz
B z ;

ρ

�Bw
B t � u

Bw
B x � v

Bw
B y � w

Bw
B z � f̃u



� �B pB z �

BRzx
B x � BRzy

B y � BRzz
B z � ρ g ;

(77)

• Balance of energy

ρcv

�B T
B t � u

B T
B x � v

B T
B y � w

B T
B z


� �p

�B u
B x �

B v
B y �

Bw
B z



�
�BQεx
B x � BQεy

B y � BQεz
B z



� φpT q ;

(78)

ρcp

�B T
B t � u

B T
B x � v

B T
B y � w

B T
B z


� d p

d t

� �
�
BQhx
B x � BQhy

B y � BQhz
B z

�
�
�B Px
B x � B Py

B y � B Pz
B z



� φpT q ;

(79)

• Balance of species mass20

ρ

�B cα
B t � u

B cα
B x � v

B cα
B y � w

B cα
B z



� � B Jαx

B x � B Jαy
B y � B Jαz

B z �

B
B z pρ cαw

s
αq � φpcαq , α � 1, . . . , N .

(80)

In these equations u, v, w are the Cartesian velocity components in the x, y, z directions,Qε,hx , Qε,hy , Qε,hz

are the Cartesian components of the heat flux vectors in the internal energy and enthalpy formulations,

respectively; moreover, Jαx, Jαy, Jαz are the Cartesian components of Jα, and f , f̃ are the first and

second CORIOLIS parameters,

f � 2Ω sinϕ, f̃ � 2Ω cosϕ, (81)

in which Ω � ‖Ω‖ is the angular velocity of the Earth pΩ � 7.272 � 10�5 [s�1]) and ϕ is the latitude

angle. Writing (76)–(80) one has made use of the closure assumptions (10), (44).

It is now assumed that the typical processes have large horizontal but small vertical scales. For in-

stance, typical horizontal scales of water disturbances are often many kilometers, while the correspond-

ing depth variations are generally tens of meters and less; similarly, horizontal velocity components are

generally large, while corresponding vertical velocity components are a factor of 10�3 smaller. This
20This equation holds withws

α � wsαez . Ifws
α is parameterized as in equation (11), then

B

B x
pρ cαw

s
α tan θ cos ξq �

B

B y
pρ cαw

s
α tan θ sin ξq

must be added to the right-hand side of equation (80). Here, ξ is the angle between the x-axis and vH .
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suggests to introduce the aspect ratios 21

AL � typical vertical length scale
typical horizontal length scale

� rHs
rLs ,

AV � typical vertical velocity scale
typical horizontal velocity scale

� rW s
rV s ,

to substitute these into the governing field equations, to suppose that

0   AL � AV � A ! 1,

and to look at the governing equations in the limit as AÑ 0.

To compare the various terms arising in the governing equations, each quantity, say Ψ, is written in

the form Ψ � rΨsΨ, where rΨs is the scale for Ψ (and has the physical units of Ψ) and Ψ is dimensionless

and of the order of unity if the value for rΨs is correctly selected. The procedure is well known and is

e.g. demonstrated in [18], p. 150–154. We shall select the scales according to

px, y, zq � prLsx, rLs y, rHs z̄q , pt, f, f̃q �
�

1

rf s t , rf sf, rf sf̃


,

pu, v, w,wsαq �
�
rV s ū, rV s v, rHsrLs rV sw,

rHs
rLs rV sw

s
α



,

ρ � ρ� p1� rσsσ q , p � �ρ�gz � ρ�rf srV srLs p ,

T � T0 � r∆T sT , cα � rcαs cα , cv � rcvs cv , cp � rcps cp ,

φpT q � rφpT qsφpT q , φpcαq � rφpcαqsφpcαq , P � ρ�rcpsrf srHsr∆T sP .

(82)

Moreover, we introduce the kinematic turbulent viscosity, N, heat diffusivity, DpT q, and species mass

diffusivity, Dpcαq, by

νt � rf srH2sN , DpT q � rf srH2sDpT q , Dpcαq � rf srH2sDpcαq . (83)

After some lengthy but straightforward calculations and with the assumption R � 2ρ νtD for the

turbulent REYNOLDS stress22, the field equations (76)–(80) take the following forms (the overbars char-

acterizing dimensionless quantities are omitted):

• Balance of mass rσs
Ro

B σ
B t � div v � rσsdiv pσvq � 0 ; (84)

21The symbol rf s denotes an order of magnitude for the quantity f within the range of values which f may assume (in the
physical dimensions in which it is expressed) in the processes under consideration.

22We neglect the contribution of the turbulent kinetic energy in (52)1.

104



Table 3: Physical parameters and typical orders of magnitude for the scales in (82)

Parameter Order of magnitude Nomenclature

ρ� 103 kg m�3 Reference density at 4�C

rσs � 10�3 Density anomaly

rLs � 104 � 106 m Horizontal length scale

rHs � 101 � 103 m Vertical length scale

rV s � 10�2 � 101 m s�1 Horizontal velocity scale

rf s � 10�4 s�1 CORIOLIS parameter

T0 � 10� C Reference temperature

r∆T s � 10� C Temperature range

rcvs � 4200 m2 s�2 K�1 Specific heat at constant volume

rcps � 4200 m2 s�2 K�1 Specific heat at constant pressure

rcαs � 10�3 � 10�1 Scale for mass fraction of tracer α

rφpT qs Scale for energy production

rφpcαqs Scale for production of tracer α

• Balance of momentum

p1� rσsσq
"B u
B t � Ro pgrad uq � v �Af̃w � fv

*
� �B pB x�

A2

"
2
B
B x

�
p1� rσsσqNB uB x

�
� B
B y

�
p1� rσsσqN

�B u
B y �

B v
B x

�*

�

B
B z

�
p1� rσsσqN

�B u
B z �A2 Bw

B x

�

,

(85)

p1� rσsσq
"B v
B t � Ro pgrad vq � v � fu

*
� �B pB y�

A2

" B
B x

�
p1� rσsσqN

�B u
B y �

B v
B x

�

�2
B
B y

�
p1� rσsσqNB vB y

�*
�

B
B z

�
p1� rσsσqN

�B v
B z �A2 Bw

B y

�

,

(86)

p1� rσsσq
"
A2

�Bw
B t � Ro pgrad wq � v

�
�Af̃u

*
� �B pB z�

A2 B
B x

�
p1� rσsσqN

�B u
B z �A2 Bw

B x

�

�

A2 B
B y

�
p1� rσsσqN

�B v
B z �A2 Bw

B y

�

� 2A2 B
B z

�
p1� rσsσqNBwB z

�
�Bσ ;

(87)
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• Balance of energy

cvp1� rσsσq
"B T
B t � Ro pgradT q � v

*
� �F

�
� B

rσs z � p



div v�

A2

� B
B x

�
DpT q B T

B x


� B
B y

�
DpT q B T

B y

�

� B
B z

�
DpT q B T

B z


� PpT q

ε φpT q ,

(88)

cpp1� rσsσq
"B T
B t � Ropgrad T q � v

*
�Π

"B p
B t � Ropgrad pq � v � Gw

*

� A2

� B
B x

�
DpT q B T

B x


� B
B y

�
DpT q B T

B y

�

� B
B z

�
DpT q B T

B z



�A
�B Px
B x � B Py

B y
�
� B Pz

B z � P
pT q
h φpT q ;

(89)

• Balance of tracer mass

p1� rσsσq
"B cα
B t � Ro pgrad cαq�v

*
� A2

� B
B x

�
Dpcαq B cα

B x


� B
B y

�
Dpcαq B cα

B y

�

� B
B z

�
Dpcαq B cα

B z


� Ro

B
Bz tp1� rσsσq cαw

s
αu � Ppcαqφpcαq .

(90)

In these equations all variables, including the operators, are dimensionless. The dimensionless pa-

rameters arising in equations (84)–(90) are listed in Table 4 together with their nomenclature and (some)

together with their orders of magnitude as obtained with the scales of Table 3. Note that the buoyancy

parameter may also be written as

B � Arσsg
rf srV s ,

and thus depends linearly on the aspect ratio A, but it is not thought to take the limit value 0 as AÑ 0. It

is rather assumed that B assumes a finite value as A becomes vanishingly small. This is indeed the only

correct limit as long as gravity is acting as one of the driving mechanism. This is also the reason why A

has not been put in evidence in the expression of B in Table 4. Special attention should also be devoted

to certain combinations of the dimensionless quantities of Table 3 as they occur in the energy equations

(88) and (89). One of these is

BF

rσs �
gArV s

rf srcvsr∆T s � 0.25� p103 � 105q . (91)

Note that, while B arises together with rσs, the combination BF{rσs is free of rσs. On the other hand, F

by itself is much smaller than (91). This shows (see the term multiplied with div v on the right-hand side

of (88)) that the power of working due to the dynamic pressure is much smaller than the corresponding

power due to the hydrostatic pressure. An analogous inference also follows from the corresponding term

in (89). Here, it can be shown that Π � Op10�7 � 10�2q, while GΠ � Op10�7 � 10�1q is generally

somewhat larger, but it is not so clear whether the dynamic or the static pressure or both or none ought

to be kept in the equation.

In the present context, our interest is in orders of magnitude of numerical values for the parameters

rσs and A. This information suggests derivation of approximate models:
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Table 4: Dimensionless parameters

Parameter Order of magnitude Name

A � rHs
rLs 10�5 � 10�2 Aspect ratio

B � grσsrHs
rf srLsrV s 10�2 � 102 Buoyancy parameter

DpT q � DpT q

rf srH2s 10�4 � 100 Heat diffusivity

Dpcαq � Dpcαq

rf srH2s 10�4 � 100 Species mass diffusivity

F � rV 2s
rcvsr∆T s 10�7 � 10�1 Pressure work parameter

G � grHs
rf2srL2s 100 � 103 Squared velocity ratio

N � νt
rf srH2s 10�6 � 101 Dimensionless kinematic turbulent viscosity

Π � rf srLsrV s
rcpsr∆T s 10�7 � 10�2 Pressure work parameter

PpT q
ε � rφpT qs

ρ�rf srcvsr∆T s Power working parameter

P
pT q
h � rφpT qs

ρ�rf srcpsr∆T s Power working parameter

Ppcαq � rφpcαqs
ρ�rf srcαs Constituent mass production parameter

Ro � rV s
rf srLs 10�4 � 100 ROSSBY number
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BOUSSINESQ approximation The BOUSSINESQ approximation obtains if the limiting equations

are used for which rσs Ñ 0. Inspection of (84)–(90) shows that in this case the variable density is

set equal to a constant except in the gravity term. The only term of concern is the combination (91)

which shows that the limit rσs Ñ 0 does not affect the values for BF{rσs. Nevertheless the value for

(91) is generally large, a fact which explicitly indicates that the power of working due to the hydrostatic

pressure may not be negligible at large depths, whereas the corresponding dynamic contribution may be

negligible. In any case, these terms can only contribute when the velocity field is not solenoidal, i. e.,

when

lim
rσsÑ0

rσs
Ro

� Op1q ,

for which the first term of (84) survives. Except for these cases the mass balance equation reduces to

div v � 0, which agrees with the continuity equation of a density preserving fluid even though density

variations are accounted for.

Shallow water approximation The shallow water approximation is obtained if equations (84)–

(90) are applied in the limit as AÑ 0. Inspection of (84)–(90) then implies the following inferences:

• The second CORIOLIS parameter drops out of the equations. It enters the equations only when

OpAq-terms are kept.

• The vertical momentum balance reduces to a force balance between the vertical pressure gradient

and the gravity force (in dimensionless formulation):

B p
B z �Bσ � 0 , (92)

or, in dimensional coordinates,
B p
B z � ρ g � 0 , (93)

equivalent to the hydrostatic pressure assumption. This equation is violated provided OpAq or

higher order terms are accounted for.

• In the balance equations of momentum, energy and species masses, only the vertical gradients of

the flux terms survive. This means:

B
B z

�
p1� rσsσqN B u

B z
�

ÐÑ BRxz
B z ,

B
B z

�
p1� rσsσqN B v

B z
�

ÐÑ BRyz
B z ,

B
B z

�
DpT q B T

B z



ÐÑ BQεz
B z

B
B z

�
Dpcαq B cα

B z


� Ro

B
Bz tp1� rσsσq cαw

s
αu ÐÑ B

B z p�Jαz � ρcαw
s
αq ,

are the only flux terms which contribute in the shallow water approximation to the field equations.

This is a well-established result in Geophysical Fluid Mechanics.
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BOUSSINESQ and shallow water approximation The governing equations in both the BOUSSI-

NESQ assumption, rσs Ñ 0, and the shallow water assumption, A Ñ 0, are obtained from (84) – (90)

and have the following forms in dimensional notation:

• Balance of mass (continuity equation)

div v � 0 ; (94)

• Balance of momentum

B u
B t � pgraduq�v � fv � � 1

ρ�
B p
B x �

B
B z

�
νt
B u
B z


,

B v
B t � pgrad vq�v � fu � � 1

ρ�
B p
B y �

B
B z

�
νt
B v
B z


,

0 � 1

ρ�
B p
B z � g ;

(95)

• Balance of energy (heat conduction equation)

ρ�cv

"B T
B t � pgrad T q � v

*
� ρ�rcvs BB z

�
DpT q B T

B z


� φpT q , (96)

ρ�cp

"B T
B t � pgrad T q � v

*
� �

"Bp
Bt � grad p � v

*
�

ρ�rcps BB z
�
DpT q B T

B z


� BPz

Bz � φpT q ;

(97)

• Balance of tracer mass

ρ�
"B cα
B t � pgrad cαq � v

*
� ρ�

B
B z

�
Dpcαq B cα

B z


� ρ�

B
B z pcαw

s
αq � φpcαq ,

α � 1, . . . , N .

(98)

In the above equations, νt stands for the sum of the laminar plus turbulent viscosities, the former can in

general be ignored in comparison to the latter, but is better included when the turbulent viscosity should

become small; cv is the heat capacity of water at constant volume and cp is the heat capacity of water

at constant pressure, while Dpcαq is the mass diffusivity of the suspended particles of the size range α.

Moreover, φpT q is the dissipative work power and φpcαq the mass production rate of the particles of size

range α. Both are generally ignored in sedimentation processes in lakes.23

2.4 BOUSSINESQ and hydrostatic pressure assumption in Model 2

In a comparison with (84)–(90) equations (94)–(98) show that in the shallow water approximation the

horizontal diffusive flux terms are all dropped in a zeroth order shallowness approximation (A Ñ 0).

Inspection of (84)–(90) further shows that these terms are OpA2q. Resurrection of the horizontal flux

terms in the balance laws of momentum, energy and constituent masses therefore strictly means that the

23φpcαq could consist of fragmentation and abrasion of suspended particles, which, however, are unlikely processes.
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full equations (84)–(90) must be kept and only be reduced by the BOUSSINESQ approximation rσs Ñ 0.

However, as shown by (87), the hydrostatic pressure assumption can not be maintained if the OpA2q-
terms are kept in the remaining field equations. Moreover, since the Coriolis terms in (85)–(87) are of

OpAq, these terms should also be kept (the f̃ term in (85) and (87)!). Nevertheless, in the literature

equations are used in which the BOUSSINESQ approximation is combined with the hydrostatic pressure

assumption. A derivation from a systematic scaling analysis is not known to us, but the following sup-

positions lead to the very popular system of field equations in the BOUSSINESQ and hydrostatic pressure

approximations:

Hydrostatic pressure assumption: Ignore in the vertical momentum equation (87) all acceleration

and diffusive terms and keep only those of zeroth order in A.

This hypothesis reduces (87) to (92) or, in dimensional form, to equation (93). Writing the latter as

Bp
Bz � �ρ��g � gpρ�� � ρq � �ρ��g � ρ��gσpx, y, z, tq , σpx, y, z, tq � ρpx, y, z, tq

ρ��
� 1 , (99)

after integration we obtain

ppx, y, z, tq � ρ��g pζpx, y, tq � zq � patmpx, y, tqlooooooooooooooooooooomooooooooooooooooooooon
p ext

� ρ��g
» ζpx,y,tq
z

σp�, z̄q dz̄looooooooooooomooooooooooooon
p int

. (100)

Here, ρ�� is a constant density (smaller than any density in the lake, e.g., ρ�� � ρp30�Cq, so that

σ ¡ 0), z � ζpx, y, tq defines the deformed free surface, and patm is the atmospheric pressure. In lake

applications one usually assumes that patm is spatially constant. The derivatives of (100),

Bp
Bx � ρ��g

Bζ
Bx �

Bpatm

Bx � ρ��g
B
Bx
» ζpx,y,tq
z

σpx, y, z̄, tq dz̄ ,

Bp
By � ρ��g

Bζ
By �

Bpatm

By � ρ��g
B
By
» ζpx,y,tq
z

σpx, y, z̄, tq dz̄ ,
(101)

may then be substituted into (85), (86) to eliminate the pressure formally as a variable from the horizontal

momentum equations.

In oceanography the hydrostatic pressure assumption is often combined with other ad hoc assump-

tions, which can not be motivated by the shallow water assumption. These assumptions are the following:

• Assume the horizontal diffusivities in the horizontal momentum equations to be large of OpA�2q
and constant, and the vertical diffusivities to be variable and of Op1q:

– horizontal momentum diffusivities: NÑ Nhor{A2 and constant;

– vertical momentum diffusivities: NÑ Nvertpx, y, z, tq .

• Assume in the energy and constituent mass balances the horizontal diffusivities to be large of

OpA�2q:

– horizontal energy diffusivities: DpT q Ñ D
pT q
hor {A2 ;
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– vertical energy diffusivities: DpT q Ñ D
pT q
vert ;

– horizontal constituent mass diffusivities: Dpcαq Ñ D
pcαq
hor {A2 ;

– vertical constituent mass diffusivities: Dpcαq Ñ D
pcαq
vert .

If these assumptions are substituted into (84)–(90) and the limits A Ñ 0 and rσs Ñ 0 are taken, the

following system of equations (in physical dimensions) emerges:

• Balance of mass:

div v � 0 ; (102)

• Balance of momentum:

Bu
B t � pgraduq � v � fu � � 1

ρ�

Bp
Bx �

νhor

�
�� B2u

B x2
� B2u

B y2



� B
B x

�B u
B x �

B u
B y



looooooooomooooooooon
�
�� B

B z
�
νvert

Bu
B z


,

(103)

Bv
B t � pgrad vq � v � fv � � 1

ρ�

Bp
By �

νhor

�
�� B2v

B x2
� B2v

B y2



� B
B y

�B v
B x �

B v
B y



looooooooomooooooooon
�
�� B

B z
�
νvert

Bv
B z



;

(104)

• Balance of energy:

ρ�cv

�BT
B t � pgradT q � v



�

ρ�rcvsDpT q
hor

�B2T

B x2
� B2T

B y2



� ρ�rcvs BB z

�
D
pT q
vert

BT
B z


� φpT q ,

(105)

ρ�cp

�BT
B t � pgradT q � v



� �

�Bp
Bt � pgrad pq � v



�

ρ�rcpsDpT q
hor

�B2T

B x2
� B2T

B y2



� ρ�rcps BB z

�
D
pT q
vert

BT
B z


� φpT q ;

(106)

• Balance of tracer mass:

ρ�
�Bcα
B t � pgrad cαq � v



� ρ�D

pcαq
hor

�B2cα
B x2

� B2cα
B y2



�

ρ�
B
Bz
�
D
pcαq
vert

Bcα
B z



� ρ�

B
B z pcαw � αsq � φpcαq .

(107)

These equations are to be complemented by the pressure equation (100). We further remark, that physical

values for νhor are 1 m2s�1, while those for νvert are 10�4 � 10�2 m2s�1. Similar order of magnitude

differences also exist for the horizontal and vertical diffusivities DpT q
hor , DpT q

vert , D
pcαq
hor , and Dpcαq

vert .

However, the underbraced terms are omitted in the oceanographic and limnological literature. In

that reduced form the momentum equations were first presented by MUNK in 1950 [31]. We also note
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that there is no rational justification of the above laws which would be based on continuum mechanical

principles of an anisotropic viscous stress-stretching relation. Wang (1996) [50], however, presents in

his dissertation a derivation based on such principles and delimits the conditions under which equations

(102)–(107) hold true. This derivation is also given in Hutter et al. (2011) [18].

3 A primer on boundary and transition conditions

The free surface, the transition surface between regions I and II (Fig. 3) and the lower boundary sepa-

rating the detritus region from the immobile rigid bed are singular surfaces; these are so called, since

physical quantities may suffer a jump discontinuity from values on one side to the other side when the

surface is crossed. For instance, from region I in Fig. 3, to the atmosphere, the density changes by a

factor of 10�3; likewise the velocity changes from that of the lake water to that of the air. Depending

on specific conditions such surfaces may be occupied by the same material particles for all times, or

may be simply discontinuity surfaces for some fields; they are then called material and non-material

surfaces, respectively. Two kinds of mathematical statements can be derived for such surfaces: (i) those

of geometric-kinematic nature and (ii) those of dynamic meaning. They are used to formulate boundary

conditions for the equations in the bulk adjacent bodies. Our derivation will be brief and partly incom-

plete. The reader is directed to the specialized literature e.g. MÜLLER (1985) [30], HUTTER (1992)

[15], SLATTERY et al. (2007) [40]. In order to present these conditions we need some basics from the

geometry and kinematics of a moving surface.

First, we consider geometric properties of a (stagnant) surface S, given parametrically in a Cartesian

reference system Ox1x2x3 by

r � xpξ1, ξ2q � xkpξ1, ξ2q ek , pξ1, ξ2q P ∆0 , (108)

where te1, e2, e3u is the Cartesian basis. It is supposed that the function r is such that the vectors

τ a � Br
Bξa �

Bxk
Bξa ek , a � 1, 2 , (109)

satisfy the condition

τ 1 � τ 2 � 0 , @ pξ1, ξ2q P ∆0 ,

implying, in particular, that τ 1, τ 2 are not zero. At rpξ1, ξ2q the vectors τ 1 and τ 2 are tangent vectors

(generally not perpendicular to one another and neither necessarily of unit length) to the coordinate lines

ξ2 � constant and ξ1 � constant, respectively. Their span defines the tangent space to S at rpξ1, ξ2q, and

n � τ 1 � τ 2

‖τ 1 � τ 2‖
(110)

is a unit vector normal to this tangent space. This way one obtains a basis, tτ 1, τ 2,nu, for the space of

three-dimensional vectors, and hence we may write24

Bτ a

Bξb � Γc
ab τ c � babn ,

24We employ the summation convention from 1 to 2 over doubly repeated coefficients of contra and covariant tensor compo-
nents: Ac

abvc or Aab
c v

c, etc.
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which is the representation of Bτ a{Bξb with respect to this basis. The coefficients Γc
ab are called CHRISTOF-

FEL symbols and are proved to be given by

Γc
ab � 1

2g
cd

�Bgda
Bξb �

Bgdb
Bξa �

Bgab
Bξd



, (111)

where gab are the coefficients of the first fundamental form of S,

gab � τ a � τ b ,

and gab are defined as

gab � τ a � τ b ,

with tτ 1, τ 2u the reciprocal basis of the natural basis tτ 1, τ 2u of the tangent space, i.e.,

τ a � τ b � δab ,

where δab is the KRONECKER delta; the matrix pgabq is the matrix inverse of pgabq: pgabq � pgabq�1. On

the other hand, bab are the so-called coefficients of the second fundamental form of S, and they can be

calculated as

bab � Bτ a

Bξb � n � �τ a � BnBξb � bba , (112)

once the functions xkpξ1, ξ2q, k � 1, 2, 3 (see (108)) are known. Since

Bn
Bξb � �bab τ a , b � 1, 2 ,

it is clear that the scalars bab give an insight on how much the surface is ‘curved’. An intrinsic (i.e.,

independent of the parameterization (108) for S) quantity measuring the curvature of S is the mean

curvature

K � 1
2 g

ab bab . (113)

Now, we refer to the kinematic properties of a moving surface S. Thus, now S denotes a one-

parameter family tStutPI , with I � R an open (time) interval, of surfaces St given by

x � rpξ1, ξ2, tq � xkpξ1, ξ2, tq ek , pξ1, ξ2q P ∆0 , t P I . (114)

The vector

w � Br
Bt (115)

is the velocity of the surface point pξ1, ξ2q at the moment t. With respect to the basis tτ 1, τ 2,nu it has

the representation

w � wa τ a � Un . (116)

The normal component U of w is independent of the choice of the parametric representation (114), and

is called the speed of displacement of that point on St for which the position vector is rpξ1, ξ2, tq, or

simply, the speed of displacement of S.

113



−

+

n

Sur
face

S : F (x
, t) =

0

Figure 6: A surface S, given by the equation F � 0, separates the three-dimensional space into the semi-spaces on the
(+)- and (–)-sides of S. The (+)-side is on that side into which the unit normal vector points.

3.1 Kinematic surface condition

The moving surface S may be given implicitly, that is, by an equation of the form

F px, tq � 0 . (117)

Choosing a local parameterization for S, say in the form (114), we have

F prpξ1, ξ2, tq, tq � 0

for all pξ1, ξ2q P ∆0 and for all t P I . Differentiating this relation with respect to t and recalling

definition (115) of w, we obtain
BF
Bt � gradF �w � 0 , (118)

which is called the kinematic condition for F . Now, if the surface parameters are conveniently ordered,

the unit normal vector (110) is n � gradF {‖gradF‖, and so with (116) we rewrite (118) in the form

B F {B t
‖gradF‖ �

gradF

‖gradF‖loooomoooon
�n

� w

looooooomooooooon
�U

� 0 ðñ U � � BF {Bt
‖gradF‖ , (119)

which serves to calculate the speed of displacement U if the function F is known, or stands as a partial

differential equation for F if the normal velocity U is known. It is customary to denote the semi-space to

which n is directed the positive side of the surface and the other semi-space the negative side of it, see

Fig. 6. Altering the orientation from (+) to (–) is possible by replacing F with �F .

It may happen that the surface S is a material surface, that is, it is always occupied by the same

bodily particles identified with their position vectors X in a reference configuration and having their

own motion on S. Thus, if

x � χpX, tq

represents the motion of the particleX , since for all times t the particle lies on S, we have

F pχpX, tq, tq � 0 .
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Differentiating this relation with respect to t and defining the velocity vS of the surface particleX as

vS � Bχ
Bt , (120)

we obtain the kinematic condition for the material surface S:

BF
Bt � gradF � vS � 0 . (121)

This gives

vS � n � �BFBt {‖gradF‖ ,

which, when comparing with (119), shows that for material surfaces equality vS � n � U holds (for

details see Fig. 9). If S consists of particles of a three-dimensional continuum body B, then vS � v,

where v is the velocity field corresponding to B, and (121) takes the form

BF
Bt � gradF � v � 0 . (122)

3.2 Dynamic surface jump conditions

Consider a bodily region, in which the physical fields are continuously differentiable (smooth), except

for singular surface(s) S across which some fields may suffer jump discontinuities; S is supposed to not

have its own physical properties. Figure 7 and its caption explain the situation. Applying the balance law

d

dt

»
B�B�YB�

f dv � �
»
BB�BB�YBB�

φf � n da�
»
B�YB�

psf � πf q dv (123)

to the pillbox volume B (Fig. 7 b) and performing the limit εÑ 0 in the emerging statement such that S

stays between lid and bottom, leads to the expression

rrf pv �wq � nss � rrφf � nss � 0 . (124)

In the above equations, f, φf , sf and πf denote the physical quantity inside B � B�YB�, its flux

across the outer surface BB � BB�YBB�, the supply and the production rates within B � B�YB�,

respectively. Moreover, with ψ� the values of a quantity ψ immediately on the (+)- and (–)-side of S,

respectively, rrψ ss � ψ� � ψ� is the jump of ψ across S. The derivation of (124) from (123) is given in

books on continuum mechanics, e.g. HUTTER and JÖHNK (2004) [17].

In the balance statement (123) it is assumed that the integral
³
B
psf � πf q dv vanishes as ε Ñ 0, so

that sf and πf do not arise in (124). Similarly, it is also assumed that
³
B
f dv vanishes as ε Ñ 0. The

relevant quantities f and φf are collectively summarized in Table 5 for the physical laws (76)–(80).

For instance, when referred to the physical laws (76)–(80), to which the entries of Table 5 correspond,

the jump condition (124) takes the forms
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Lid
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Mantl
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S
S
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+

B−

B+

∂B−

∂B+

(a) (b)

Figure 7: (a) Body B � B� YB� whose physical fields may suffer jump discontinuities across S, but are smooth in the
vicinity of S. (b) Pillbox, zoomed from panel (a). Its total surface consists of the lid on the (+)-side of S and the bottom
on the (–)-side; its mantle surface has thickness ε. Balance laws (124) for this bodily surface will be formulated in the
limit as ε Ñ 0. The unit normal vector to S points into B� and w is the velocity of surface coordinates on S, but only
U � w � n is kinematically relevant for S.

Table 5: Expressions for the quantity f and its flux φf in the physical
balance lawsa

Quantity f f φf

Mixture mass balance ρ 0

Constituent mass balance ρcα Jα � ρcαw
α
s

Mixture momentum balance ρv pI �R

Mixture energy balance ρpε� 1
2v � vq Qε � ppI �Rqv

Mixture energy balance ρph� 1
2v � vq Qh � ppI �Rqv

a ρ is the mixture density, cα – the mass fraction of tracer α, Jα – the
constituent laminar and turbulent mass flux vector, wα

s – the settling
velocity of constituent α, v – the barycentric velocity, p – the mixture
pressure,R – the turbulent REYNOLDS stress tensor, ε – the internal
energy, h – the enthalpy,Qε,Qh – turbulent heat flux vectors.
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rrρpv �wq � nss � 0 ,

rrρ cαpv �wq � nss � rrJα � ρcαw
α
s ss � n � 0 , α � 1, . . . , N ,

rrρppv �wq�nqvss � rr�pI �Rssn � 0 ,

rrρpε� 1
2v � vqpv �wq�nss � rrQε � ppI �Rqvss � n � 0 ,

rrρph� 1
2v � vqpv �wq�nss � rrQh � ppI �Rqvss � n � 0 .

(125)

These describe the jump conditions of the mass of the mixture as a whole and of the tracer masses, of

the mixture momentum and mixture energy balances. All are written by using the mass fraction cα and

the barycentric velocity as basic fields. In the BOUSSINESQ approximation ρ may be replaced by ρ�.

Of special interest is the situation when w � n � v � n. In this case only the second terms on the left-

hand sides of (125) survive. Even though this does not exactly define the physical jump conditions for a

material surface, it is customary to call such surfaces material. The better denotation is to say that such

surfaces follow the barycentric motion.

Note that, due to the jump condition (125)1, explicitly

ρ�pv� �wq � nloooooooomoooooooon
�M�

� ρ�pv� �wq � nloooooooomoooooooon
�M�

, (126)

in fluid mechanical applications the kinematic surface relation (118) is often written as

BF {Bt
‖gradF‖ � v

� � n � M

ρ�
, (127)

where M �M� �M�. We emphasize that (118) is a pure kinematic statement, while (127) is a mixed

kinematic-dynamic statement.

3.3 Surface balance laws

The above jump conditions are obtained on the assumption that the singular surface S does not possess

its own physical properties. We shall now relax this assumption and request that S contributes to the

balance law of the pillbox with a surface density fS, having a production πfS and a supply sfS per unit

area of S, and a flux φfS per unit length and tangential to S through the boundary C of S (see Fig. 8):

d

dt

"»
B�B�YB�

f dv �
»
S

fS da

*
� �

»
BB�BB�YBB�

φf � n da�
»
C�BS

φfS � h ds�
»
B�YB�

pπf � sf q dv �
»
S

pπfS � sfSq da .
(128)

Here, ds is the line element along the closed loop C (without double point), generated by the intersection

of S with the mantle surface of the pillbox; h is the unit tangent vector to S, exterior to the pillbox mantle

and normal to C (thus, h together with the positive direction of C and the orientation of the unit normal
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ds

h

n

C

S

(a)

n

w

S

B−

B+

∂B−

∂B+

(b)

h φfS

hφfS

C

(φf+f(v−w))−

(φf+f(v−w))+

Figure 8: (a) Surface S spanned over a simple double-point free closed loop C; n is the unit normal vector on S at a point
on C; ds is the incremental tangent vector to the curve C ; h is the unit vector normal to C and tangential to S; h, ds, and
n form a right-handed orthogonal triad. (b) Two-dimensional sketch of the singular surface S with unit normal vector n
and spanned by the closed loop C. The panel shows positive (B�) and negative (B�) regions separated by S, the surface
flux φfS into S along C, the vector h (compare panel (a)) and the conductive and convective fluxes from the bulk region.

vector n of S form a counterclockwise skrew, Fig. 8 a).

The derivation from the global balance law (128) of the local balance law valid on S can be found,

e.g., in the book by SLATTERY et al. [40] (2007). Here we sketch the proof. Thus, letting the thickness

of the pillbox approaching zero (εÑ 0 as in Fig. 7b) turns (128) into

d

dt

»
S

fS da �

�
»
C

φfS � h dslooooooomooooooon
p1q

�
»
S

�
πfS � sfS

	
daloooooooooomoooooooooon

p2q

�
»
S

rrφf � fpv �wqss � n daloooooooooooooooomoooooooooooooooon
p3q

.
(129)

The three underlined terms represent
(1) the flux of fS out of S and tangential to S along the loop C,

(2) the production and supply of fS on S,

(3) the conductive plus convective flow of the bulk quantity f through S.
The term on the left-hand side of (129) will be transformed with the aid of the transport theorem for a

material surface (see Fig. 9),

d

d t

»
Σt

fSpx, tq da �
»

Σt

"BfS
Bt �

BfS
Bξa

9ξa � fS
�
vaS;a � 2UK

�*
da �

»
Σt

"BfS
Bt �DivpfSvSq � BfS

Bξa w
a

*
da .

(130)

Here 9ξa is explained in Fig. 9, vS is the velocity of a surface material point (see (120)), wa and U are the

components of the surface velocity, see (116), ψa
; b denotes the covariant derivative of a tangent surface

vector field ψ � ψaτ a,

ψa
; b �

Bψa

Bξb � Γa
cb ψ

c

(see (111) for the definition of CHRISTOFFEL symbols Γa
cb), K is the mean curvature, and BfS{Bt and
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Figure 9: S � tStu is a moving (‘geometric’) surface; it is given parameterically by x � rpξ1, ξ2, tq, pξ1, ξ2q P ∆̃ and
moves with the velocity w � Brpξ1, ξ2, tq{Bt. Σ � tΣtu is a moving material surface: Σt � χpΣ0, tq, where Σ0 is
the material surface in a reference configuration. The velocity vS of X P Σ0 is vS � BχpX, tq{Bt. Σ is so moving that
Σt � St at each instant t. Therefore, Σt � rp∆̃t, tq, for a some ∆̃t � ∆̃, and for x P Σt, x � χpX, tq � rpξ1, ξ2, tq,
which can be written as x � χpχκpu

1, u2q, tq � rpξ1pu1, u2, tq, ξ2pu1, u2, tq, tq. Differentiation of this relation with
respect to t yields vS � 9ξaτ a �w, where 9ξa � Bξapu1, u2, tq{Bt, showing, in particular, that vS � n � w � n � U.

the surface divergence operator Div are defined by

BfS
Bt � B

Bt fSpξ
1, ξ2, tq , Div pfSvSq � BfSvS

Bξa τ a . (131)

For the term (1) on the right-hand side of (129) the GAUSS’ law will be used. This process yields the

local, point form of the surface balance law as

BfS
Bt �DivpfSvS � φfSq � BfS

Bξa w
a � �rrφf � fpv �wqss � n� pπfS � sfSq . (132)

Apparently, due to the tangential components wa of the surface velocityw, relation (132) would depend

on the parameterization of S. However, this is not so, since the combination BfS{B t � waBfS{B ξa,

representing the delta-time derivative (THOMAS [44] (1961)), is independent of the parameterization

of S. Relation (132) is the extension of the classical jump condition (124) if smooth surface fields fS,

φfS , πfS , sfS are occupying the singular surface S; (132) reduces to (124) if all surface fields vanish.

If fS is a scalar field, the balance law (132) reads

BfS
B t �

�
fSvS � φfS

	a
;a
� BfS
B ξa w

a � 2fSUK � �rrφf � fpv �wqss � n� pπfS � sfSq . (133)

Let us discuss special cases:

(a) No curvature effects. The curvature effects are contained explicitly in K, the mean curvature, in

the last term on the left-hand side of (133). When such effects are negligible and the coordinate cover is

Cartesian, we have
Bτ a

B ξb � 0 ùñ Γc
ab � 0 , K � 0 , p�q; � p�q, ,

so that the balance law (133) takes the form
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BfS
B t �

�
fSvS � φfS

	a
,a
� BfS
B ξa w

a � �rrφf � fpv �wqss � n� pπfS � sfSq . (134)

Still further simplified versions of surface jump conditions are possible by ignoring some of the surface

terms fS, φfS , πfS , sfS .

(b) Surface following the bulk motion. If w � n � v � n, the jump term in (133) reduces to the jump

in volume flux, rrφf ss �n. For mass balance this term is absent and only surface mass fields interact with

one another in this case.

(c) Reduced surface balance law. Some of the surface fields in (133) may be small in comparison to

others. When fS � 0, (133) reduces to

pφfSqa; a � �rrφf � fpv �wqss � n� pπfS � sfSq . (135)

This variant (usually with sfS � 0) accounts for surface tension effects if (135) is a reduced momentum

balance.

4 Boundary conditions; a simple model of detritus layer

The simplest model for the detritus transport (thin layer II in Fig. 3) is obtained if the layer concept for the

detritus transport is collapsed to zero thickness, see Fig. 4. Thus, the field equations presented in Sect. 2

must be complemented by boundary conditions at the free surface Ss and at the basal surface Sb. At this

level two procedures are principally possible: (i) One may assume the basal surface Sb to be equipped

with surface masses and surface momenta for all constituents α, but treat these as a mixture of class I.

This then means that mass balance laws must be formulated for the solid constituents and the mixture

as a whole and momentum balance is only formulated for the mixture as a whole. (ii) A full mixture

formulation of class II is formulated for all constituent mass and momentum balances. In this process the

interaction of the bulk fields with the surface fields from the p�q- and p�q-sides of the singular surface

must be accounted for. We adopt the simpler case (i). Moreover, the time evolution of the basal surface

is governed by the kinematic equation (119) and the erosion and sedimentation rates are incorporated in

the surface mass balances for the N sediment classes.

4.1 Boundary conditions at the free surface

We shall treat the free surface as a surface following the barycentric motion, with

F px, tq � z � spx, y, tq � 0 , (136)

where spx, y, tq describes its z-position. With u, v, w the mixture ‘material’ velocity components in the

x, y and z directions of the Cartesian coordinate system, the kinematic surface condition (122) takes the

form25

B s
B t �

B s
B x u�

B s
B y v � w � 0 , at z � spx, y, tq . (137)

Now we refer to the dynamic jump conditions (125), in which v � n � w � n:
25If barotropic surface waves are ignored, i.e., the rigid lid approximation is imposed, then (137) is replaced by z � 0, where

the origin of the coordinate system is at the undeformed free surface and the x and y axes are horizontal.
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(i) Condition (125)1 is identically satisfied.

(ii) The stress boundary condition (125)3 emerges as rr�pI �Rssn � 0, or, explicitly,

p�pI �Rqns � σatmns at z � spx, y, tq .

Projections of this equation perpendicular and tangential to Ss reveal the following statements at z �
spx, y, tq:

normal to Ss : �p� ns �Rns � �p atm ,

tangential to Ss : Rns � pns �Rnsqns � τwind ,

(138)

where

p atm � �σatmns � ns , τwind � σatmns � p atmns .

In the shallow water approximation formulae (138) can easily be shown to reduce to

normal to Ss : p � p atm ,

tangential to Ss : Rxz � τwind
x , Ryz � τwind

y ,

(139)

at z � spx, y, tq. The atmospheric input of the surface tractions p atm, τwind
H � pτwind

x , τwind
y q is generally

implemented by the parameterizations26

p atm � constant (often = 0) ,

τwind
H � ρatmCwind

d ‖vwind
H px, y, tq‖vwind

H px, y, tq ,
(140)

with dimensionless drag coefficient Cwind
d � 2 � 10�3, and vwind

H � pvwind
x , vwind

y q; vwind
x , vwind

y are the

Cartesian components in the x, y directions of the wind velocity vwind at the free surface Ss.

(iii) If also temperature evolutions are in focus, the heat flow from the atmosphere into the lake must

be prescribed. Relation (125)4 together with the stress traction continuity and the closure law (52)2 then

states that

ρ�rcvsDpT q pgrad T q � ns �pp�pI �Rqnsq � rrvssloooooooooooomoooooooooooon
power of working of the

surface tractions

� Qatm
K . (141)

Here, Qatm
K is the energy input from the atmosphere into the water: Qatm

K � �Qatm � ns, with Qatm

the heat flux in the atmosphere. The power of working of the surface tractions is often ignored or

computed by assuming that rrvss � vwind � vwater � vwind. With this last assumption in the shallow

26The right-hand side of (140)2 should involve the difference pvwind
H �vwater

H qS, but the water velocity is very much smaller
than the wind velocity, which justifies the approximation.
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water approximation, (141) reduces to

ρ�rcvsDpT q B T
B z � τ

wind
H � vwind

H � Qatm
K . (142)

The contributions to the energy input Qatm
K are written as Qatm

K � Qatm
ir �Qwater

ir �Q` �Qs, with

Qatm
ir � (black body) radiation of air,

Qwater
ir � (black body) radiation of water,

Q` � latent heat flow between water and air,

Qs � sensible heat flow between water and air.

Parameterizations of the latent and sensible heats are given by HUTTER & JÖHNK (2004) [17].

(iv) The free surface is not only assumed to follow the barycentric motion, it is here simultaneously

supposed to be impermeable to the suspended sediments of all fractions. This implies that (125)2 reduces

to

pJα � ρcαw
s
αq � ns � 0 at z � spx, y, tq , α � 1, . . . , N , (143)

expressing vanishing mass flow of tracer α through the free surface. With gradient-type closures (see

(52), (51)), (143) takes the form

ρ�Dpcαq B cα
Bns � ρ cαw

s
α � ns � 0 at z � spx, y, tq , α � 1, . . . , N , (144)

or, in the shallow water and BOUSSINESQ approximations,

Dpcαq B cα
B z � cαw

s
α � 0, α � 1, . . . , N , at z � spx, y, tq . (145)

With this the discussion of the dynamic jump conditions (125) is completed.

Remark The parameterization of wsα in (144) and (145) with the final free fall velocity (69) seems

rather inappropriate at the free surface, where the turbulent intensity is generally large and falling dis-

tances for particles are restricted. When k is parameterized by (53)2 or the (k � ε) model is employed,

(75) ought to be used instead.

If the (k � ε) model for turbulent closure is employed, physically acceptable postulations for the

boundary conditions of the turbulent kinetic energy and its dissipation are

B k
Bns � 0,

B ε
Bns � 0 , at z � spx, y, tq , (146)

or in the shallow water approximation,

B k
B z � 0,

B ε
B z � 0 , at z � spx, y, tq . (147)

In this case, the rigid lid assumption, spx, y, tq � 0, is often justified.
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4.2 Boundary conditions at the rigid bed

The simplest description of detritus transport does not use the concept of the motion of a thin layer

of sediments. The existence of this layer is negated and the lower boundary of the lake domain is

directly the singular surface between the slurry layer and the rigid bed of alluvial detritus. We treat this

surface as having its own physical properties in the context of a mixture of class I, and so the surface

balance law (132) will be now used. Moreover, the surface moves and deforms with time owing to the

removal of grains from the bed, their incorporation in the particle laden water, and the deposition of

some components of the washload from the slurry above the bottom surface. Therefore, in these simple

models essentially only two physically significant statements are made:

• A criterion, or more generally, some criteria are established, which define the onset of erosion

of sediments of grain class α. It is expected that a characteristic variable will act as a threshold

measure. Below a certain value of this variable only sediments of classes αwill be lifted, for which

the grain size is smaller than for class αthres
27.

• For those components α which are eroded and incorporated in the slurry, the amount of eroded

material per unit time for each grain class, i.e., the mass flow for each component from the rigid

bed to the ambient water must be quantified.

For the ensuing developments it is perhaps advantageous, if the classical approach to sediment transport

is briefly illustrated. Thus, the next two sections are devoted to this issue.

4.2.1 Erosion inception

In the words of KRAFT et al. (2011) [23], ‘the erosion of sediment begins when the shear stress on the

bed surface, τw, exceeds the critical wall shear stress of the corresponding sediment material, τc’. A

widely used procedure for the determination of the beginning of entrainment of cohesionless particles is

represented by the SHIELDS curve (1936) [39]; see also VAN RIJN (1984) [47], which is based on the

results of numerous laboratory measurements with different grain sizes, densities and wall shear stresses.

A critical SHIELDS parameter (the dimensionless critical shear stress) is defined by

τ�c p� θcq � τc
∆ρ g d

, ∆ � ρs
ρ
� 1 , (148)

where d is the mean particle diameter for class α of particles with a range of particle diameters in the

interval rdα�1, dαq; we suggest to take this mean value to be d � 1
2pdα�1�dαq. Moreover, ρs is the true

density of the sediment and ρ is the mixture density.

A large number of laboratory experiments has been conducted (for a review, see VETSCH (2012)

[49]) and identified the critical dimensionless shear stress τ�c or θc for a grain size d as a function of the

critical particle REYNOLDS number

Re�c �
u�d

ν
, where u� �

�g ν
∆

	1{3
. (149)

27If dα and dαthres are the nominal grain diameters of the grain size classes α and αthres, respectively, then all grains with
dα   dαthres are mobilized, whilst those with dα ¡ dαthres are still at rest.
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Thus,

τ�c � fpRe�c q . (150)

Re�c is sometimes also called ‘dimensionless particle diameter’ and is then identified with

d� � d
� g

ν2∆

	1{3
p� Re�c q , (151)

see KRAFT et al. [23]. This formula can be motivated by dimensional analysis, see Appendix C. A great

number of representations of fpRe�c q � fpd�q have been proposed, see again VETSCH for a review; he

lists, among many others, expressions by VAN RIJN (1984, 2007) [47], [48], viz.,

τ�c �

$''''''''''''''''&
''''''''''''''''%

0.115pd�q�0.5, for 1   d�   4 ,

0.14pd�q�0.64, for 4 ¤ d�   10 ,

0.04pd�q�0.1, for 10 ¤ d�   20 ,

0.013pd�q0.29, for 20 ¤ d�   150 ,

0.055, for 150 ¤ d� .

(152)

This automatically suggests a possible division of the grain size distribution into five regimes. Again

according to VETSCH, YALIN and DA SILVA (2001) [55] approximate the VAN RIJN data by a continuous

functional relation

τ�c � 0.13pd�q�0.392 expp�0.015pd�q2q � 0.045
�
1� exp p�0.068pd�q2q� . (153)

There are also a number of other formulae for the critical shear stress τ�c . For instance, KRAFT et al.

(2011) [23] list a formula due to ZANKE (2001) [57],

τ�c � ψZ tanpϕq � θ1w , (154)

in which ϕ is the angle of internal friction of the sediment and θ1w is the root mean square turbulent

fluctuation of the wall shear stress. For natural sediments the coefficient ψZ takes the value ψZ � 0.7.

This is about the appropriate place where a clarifying remark about the critical shear stress should be

made. Formulae (148) to (154) are expressed in terms of a shear stress τc, since the stress distribution in

river flow is close to simple shearing plus a hydrostatic pressure,

σ �

�
������

0 0 τc

0 0 0

τc 0 0

�
�����
� p

�
������

1 0 0

0 1 0

0 0 1

�
�����
ùñ σE �

�
������

0 0 τc

0 0 0

τc 0 0

�
�����
, (155)

in which σE is the stress deviator of σ. In a more general flow, the actual basal criterion describing the
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onset of sediment motion cannot so simply be described. A likely adequate definition of the onset of the

sediment movement, which subsequently will systematically be used, is to identify τc in (148) as

τc � pIIσEq1{2crit , (156)

where IIσE � 1
2 tr
�pσEq2

�
is the second invariant of the stress deviator σE evaluated just below the

sediment bed. For simple shearing this is just the shear stress. Thus, a stress state invariant definition of

θc or τ�c is28

θc �
pIIσEq1{2crit
∆ρ g d

. (157)

4.2.2 Erosion amount

The second statement, which is needed, is the parameterization of the entrainment amount. The literature

again knows a large number of formulations for determining the erosion rate. KRAFT et al. (2011) [23]

quote three formulae which here are briefly outlined as well:

• VAN RIJN (1984) [46] conducted laboratory experiments to determine the sediment erosion rate

for various particle sizes and flow velocities and proposed for the pick-up rate per unit mass, area

and time the function

φp � E

ρs p∆gdq0.5
� 0.0003pd�q0.3T̃ 1.5, T̃ � H

��
uτw
uτc


2

�1

���
uτw
uτc


2

�1

�
, (158)

whereH is the Heaviside function and

uτc �
c
τc
ρ

and uτw �
c
τw
ρ

(159)

denote the critical and actual wall shear velocities, defined as suggested in (156).

• The approach of EINSTEIN (1950) [11] is stochastic. A statistically averaged wall shear stress

is not considered here, it is rather assumed that turbulent fluctuations will push the particles in

motion. The pick-up rate is expressed as

E � ψE ρs p∆gdq0.5 P , (160)

in which ψE is a universal constant, and P is the fraction of time during which a sediment particle

is suspended by the flow. Note that this relation contains no critical shear stress. While for small

wall shear stress P is negligibly small, for sufficiently large wall shear stress P will rapidly reach
28More generally, a criterion marking the onset of erosion is an equation of the form

fpIσ, IIσE , IIIσEq � 0 p�q

between the first stress invariant and the second and third stress deviator invariants at the basal surface. A dependence on Iσ
describes a possible influence of the (mean) pressure; that on IIσE accounts for the significance of shearing, but the role of
IIIσE is presently not clear. In the form p�q the erosion inception is very much reminiscent of the onset criterion of yield in the
theories of plasticity.
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its saturation value. In the present application we consider P simply a constant (for a given grain

size range α) and the erosion will occur just as the shear stress exceeds its critical value.

• YALIN [53] determined the erosion rate from statistically averaged flow parameters. If the critical

shear stress is exceeded, particles are entrained. The number of eroded particles rises linearly with

the wall shear velocity. The erosion rate is computed by

E � ψY ρsuτw . (161)

The constant ψY should be determined by experiment.

It is evident from the above formulae that VAN RJIN’s and EINSTEIN’s erosion rates depend on the

particle size, and for this reason can and should be restricted for a given grain size distribution curve

to a single α-class of grain sizes. This makes YALIN’s formula inapplicable to mathematical erosion

processes which differentiate α-classes by grain size. KRAFT et al. [23] also remark that ‘YALIN and

VAN RJIN assumed in their formula that the number of eroded particles increases with increasing wall

shear velocity’. ALAN and KENNEDY (see e.g. YALIN (1985) [54]) in their experiments demonstrated

that the flow near the sediment bed is fully saturated when a certain wall shear velocity is reached, and the

erosion rate converges to a certain value and does not rise further. With this in mind, only the approach

of EINSTEIN does justice to these observations.

The above formulae have formally been written for a single particle diameter. Here, we interpret

them as being applicable to the narrow range of particle diameters of class α. Let us summarize the

salient formulae with this identification:

• Dimensionless α-particle diameter (see (151))

d�α � dα

� g

ν2∆

	1{3
; (162)

• Dimensionless critical shear stress according to YALIN and DA SILVA [55] for class α and inter-

preted in the spirit of formula (156),

pτ�c qα � Y �
α � 0.13pd�αq�0.392 expp�0.015pd�αq2q � 0.045

�
1� expp�0.068pd�αq2q

�
; (163)

• The pick-up rate for class α is given, according to VAN RIJN [46], by

Eα � 0.0003pd�αq0.3T̃ 1.5
α ρs p∆ gdαq0.5 , (164)

where, from (158) and (159),

T̃α � H
��

uτw
uτc


2

� 1

���
uτw
uτc


2

� 1

�

� H
�
τw
τc
� 1


�
τw
τc
� 1



� H

�
τw

τ�c ∆ρgdα
� 1


�
τw

τ�c ∆ρgdα
� 1



;

(165)
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• According to EINSTEIN [11],

Eα � ψEρs p∆ gdαq0.5 Pα , Pα � constant . (166)

Subsequently we shall employ (162)–(165).

4.2.3 Detritus layer as a singular material surface

The basal surface, separating the particle laden fluid and the rigid bed from which sediment can be eroded

and to which washload is deposited, will be conceived as a surface with its own material properties

intended to model the thin detritus layer. As for the bulk material in layer I, the surface detritus will

be treated as a mixture of class I. Thus, as dynamic boundary conditions in Model 2 we formulate the

averaged balance laws of mass for the sediments of classes α and the detritus-mixture as a whole, as well

as the momentum balance law for the mixture as a whole, the master equation being (132).

The surface is defined by

F � �bpx, y, tq � z � 0 , (167)

or, parametrically with ξ1 � x, ξ2 � y,

x � xe1 � ye2 � bpx, y, tqe3 � rpx, y, tq , pe3 � ezq . (168)

With definition (167) of F , nb � gradF {‖gradF‖ points into the fluid domain and satisfies (109) with

τ 1 � Br
Bx � e1 � Bb

Bx e3 , τ 2 � Br
By � e2 � Bb

By e3 .

We have

nb � c

�
�BbBx e1 � Bb

By e2 � e3



, c �

�
1�

� B b
B x

2

�
� B b
B y

2
��1{2

.

Corresponding to (168), the surface velocity w is given by, see (115),

w � Bb
Bt e3 ,

so that, with respect to the basis tτ 1, τ 2,nbu, w has the representation29

w � c
Bb
Bx Ub τ 1 � c

Bb
By Ub τ 2 � Ubnb , Ub � c

B b
B t . (169)

29To prove this, we write

w � ατ 1 � βτ 2 � Ubnb �
B b

B t
e3 .

If the above expressions for τ 1 and τ 2 are substituted this yields

w �

�
α� cUb

B b

B x



e1 �

�
β � cUb

B b

B y



e2 �

�
α
B b

B x
� β

B b

B y
� cUb



e3 �

B b

B t
e3 ,

implying

α � cUb
B b

B x
, β � cUb

B b

B y
.
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Table 6: Elements for the averaged surface balance relation (132) when referring to the detri-
tus mixture and Model 2 (x�y are omitted)

fS φfS πfS sfS f φf

µα 0 0 0 ρα � ρ cα φρα � Jα � ρ cαw
s
α

µ � °α µα � µf 0 0 0 ρ φρ � 0

µvS �
°
α µαvSα � µfvSf �RS 0 µg ρv φρv � pI �R

The displacement speed Ub is interpreted as erosion/deposition rate or entrainment rate and for it we

will give a law according to the discussion in Sec. 4.2.2. So, we may keep in mind that Ub is a known

quantity. In particular, we note that (169)2 stands for the determination of the basal elevation function b

once Ub is known.

With the identification of the fields fS, φfS , πfS , sfS , φf and f in equation (133) as stated in Table

6, it can be shown (see Appendix C) that the surface mass balance law takes the forms:

• For the sediment classes α, α � 1, . . . , N ,

Bµα
B t � pµαvSαqa;a �

Bµα
Bξa w

a � 2µαUbK �

p�φρα � nbq� � pρ cα v � nbq� � pρbed
α � �ρcαq��Ub ;

(170)

• For the mixture

Bµ
B t � pµvSq

a
;a �

Bµ
Bξa w

a � 2µUbK � �pρv � nbq� � pρbed � ρ�qUb . (171)

Here the (+)-sign indicates the water side of Sb and µα, µ, as well as the other quantities in (170), (171)

are functions of pξ1 � x, ξ2 � y, tq. Moreover, the components w1, w2 of the surface velocity w are

given by

w1 � c
Bb
Bx Ub , w2 � c

Bb
By Ub ,

see (169). In deducing (170), (171) it is assumed that the motion of the basal surface is not subject to

turbulent fluctuations, implying that xnby � nb, xK y � K, xwy � w and xUby � Ub.

The balance laws of mass, (170) and (171), contain unknown velocity components tangential to the

surface S of the constituent classes α and the mixture. These velocities need be determined and for this

determination essentially two procedures are at our disposal, namely

• We complement these laws with momentum equations for the surface flows of µα (α � 1, ..., Nq
and µ. These laws then allow determination of the momenta µαvSα and µvS (or µfvSf ). This

defines a surface mixture of class II.

• We are less ambitious and introduce instead diffusion mass fluxes of the α-class sediments,

jSα � µα pvSα � vSq , (172)

128



for which closure relations are postulated, while the barycentric velocity is determined from the

surface momentum balance law for the mixture as a whole. This defines a mixture of class I.

As already mentioned, we follow this second route. Note that, since vSα � nb � vS � nb p� Ubq, the

diffusive surface mass flux is parallel to Sb:

jSα � jSα‖ ùñ µαvSα‖ � jSα � µαvS‖ .

So, with definition (172) of jSα we rewrite equation (170) as

Bµα
B t � pµαvS

qa;a �
Bµα
Bξa w

a � 2µαUbK �

�pjSαqa;a � p�φρα � nbq� � pρ cα v � nbq� � pρbed
α � �ρcαq��Ub .

(173)

Now, the (averaged) surface momentum balance equation for the detritus mixture follows from (132)

with the choices stated in Table 6, where RS is the surface Reynolds stress tensor, see (240) in App. D,

which can be represented as

RS � Sabτ a b τ blooooomooooon
in-plane surface stress

� Sapτ a b nb � nb b τ aqlooooooooooooomooooooooooooon
surface shear K to S

� Snb b nbloooomoooon
normal surface pressure

. (174)

Splitting this surface momentum balance law into a tangential component and a normal component to

Sb, we obtain the following results (see the derivation in Appendix D):

• Tangential surface momentum balance for the detritus mixture (a, b � 1, 2),

BµvaS
Bt �

�
µvaSv

b
S � Sab

	
;b
� µvbS

Bwa

Bξb � µwb BvaS
Bξb � µUbg

ab BUb
Bξb � vaSw

b Bµ
Bξb��

2µUbv
b
S � Sb

	
bbcg

ca � 2K pµUbvaS � Saq �

�p�pI �Rq�nb � τ a � �pρvq� � τ a
� pv� � nb � Ubq�

p�pI �Rq�nb � τ a � µg � τ a ;

(175)

• Normal surface momentum balance for the detritus mixture,

BµUb
Bt � pµUbvaS � Saq;a � µpvaS � waqBUbBξa � waUb

Bµ
Bξa � 2K

�
µU2

b � S
� �

�p�pI �Rq�nb � nb �
�pρvq� � nb� pv� � nb � Ubq�

p�pI �Rq�nb � nb � µg � nb .

(176)

Note that (176) describes the evolution of the speed of displacement Ub. However, we have chosen to

prescribe Ub by giving an erosion/deposition law, so that (176) will be next omitted.30 Equations (171),
30Developing a model with the consideration of (176) requires further assumptions on S, p � pI �Rq�nb � nb, p�pI �

Rq�nb � nb. We prefer to give an erosion/deposition law and so omit (176).
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(173) and (175) stand for the determination of the surface fields µ, µα and vS‖. However, there are

quantities therein which must be prescribed, and this is dealt with in the next subsection.

4.2.4 Boundary conditions at the bed

Equations (171), (173) and (175) must be complemented by closure relations for the diffusive fluxes jSα,

the stresses Sab, Sa, and for the bulk quantities c�α , ρ�, v�, pφραq� �nb, p�pI �Rq�nb � τ a. Thus, we

make the following assumptions:

• For jSα we assume the FICK law

jSα � �Dα∇Sµα ðñ pjSαqa � �Dα g
ab B µα
Bξb ,

where Dα [m2 s�1] are the surface mass diffusivities. This parameterization ignores cross depen-

dencies analogous to those in (50)4.

• The shear stresses Sa are assumed to be negligibly small, because they represent physically thick-

ness integrated shear forces perpendicular to S and the thickness is infinitely small. For the surface

parallel stresses Sab we assume

Sab � Sab
elastic � Sab

viscous , (177)

where

Sab
elastic � �ppµq gab ,

Sab
viscous � ζS trpDSq gab � 2νS

�
Dab

S � 1
2 tr pDSq gab

�
.

(178)

p is an elastic pressure depending on the surface mass density (and also on the temperature in non-

isothermal processes), ζS is an aerial viscosity analogous to the bulk viscosity in three dimensions,

νS is a surface shear viscosity which operates on the surface deviator ofDS, andDS is the surface

rate of deformation tensor,

DS � 1
2

�
P p∇SvSq � p∇SvSqT P

	
� Dab

S τ a b τ b . (179)

In (179),∇S is the surface gradient and P is the projection operator onto the tangent plane to S:

∇Su � Bu
Bξa b τ

a , P � τ a b τ a ,

where u is a vector field defined on S. With u � uaτ a � un, we deduce

P∇Su � ua;bτ a b τ b ,

so that definition ofDS implies the following expression for the components Dab
S :

Dab
S � 1

2

�
ua;c g

cb � ub;c g
ca
	
.
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Figure 10: Pressure p as a function of µ for the 3 choices in (182)

Note that trpDSq � Dab
S gab � pDSqaa. If one assumes ζS � 0 the correspondingly reduced

equation (178)2, viz.,

�
Sab

viscous

	
Stokes

� 2νS

�
Dab

S � 1
2 trpDSq gab

�
, (180)

corresponds to the STOKES approximation of (178)2. Note, since no ‘areal preserving’ is imple-

mented, the tensor on the right-hand side of (178)2 is (still) the deviator of the surface stretching.

A closure relation for ppµq is still needed. The intuitive understanding is that surface pressure can

only build under areal compaction but not dilatation. Moreover, with increasing density µ, com-

paction will be more and more inhibited, or the corresponding pressure more and more increased.

So,

ppµq � H p�trpDSqqPpµq. (181)

Three choices for P are

Ppµq � p1 tan

�
π

2

µ

µ0



, µ ¡ 0 ,

Ppµq �

$'''&
'''%

2p1
µ

µ0
µ   µ0 ,

P r2p1,8q µ � µ0 ,

Ppµq � p11µ�
p12
n
µn �

�
p11 �

p12
n
µn�1



µ ,

(182)

where p1, p
1
1,2 ¡ 0 and n ¡ 1. For (182)1,2, ppµ0q � 8, so preventing µ from going beyond

µ0. Such a limit is not built into (182)3, but selecting n large, produces physically effectively

the same (for the graphs of (182)1,2,3 see Fig. 10). These proposals account for the fact that with

µ ¡ 0 also p ¡ 0; furthermore, the larger µ is, the larger will be the pressure. Relations (182)1,2

incorporate a densest packing condition, (182)3 does not, which is more realistic since grains can

escape perpendicular to S. This completes the postulation of the stress parameterization for Sab.
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• The sliding laws

p�pI �Rq�nb �
�p�pI �Rq�nb � nb� nb � ρ�C1‖v�‖ � vS‖‖

�
v�‖ � vS‖

	
, (183)

p�pI �Rq�nb �
�p�pI �Rq�nb � nb� nb � ρbedC2‖vS‖‖vS‖ , (184)

with the (dimensionless) drag coefficients C1, C2 ¡ 0, will determine p�pI�Rq�nb �τ a in (175).

In the BOUSSINESQ approximation ρ� may be replaced by ρ� � ρp4�Cq; and in the shallow water

approximation, v|| reduces to the horizontal component of v, vH , so that (183) reads

pτxz, τyzq � ρ�C1

a
pu� � uSq2 � pv� � vSq2 ppu� � uSq, pv� � vSqq.

• For pφραq� � nb we simply evaluate φρα on Sb:

pφραq� � nb � φρα |z�bpx,y,tq � nb .

• Now we refer to v�, ρ�, c�α .

First, for the velocity v� it is natural to request a kinematic condition of sliding or no-slip. When

expressed in terms of the linear velocity profile across the thickness of the diffusive interface, see

Fig. 11, this request implies

v� � Ξvasτ a � Ubn , Ξ P r1, 2s . (185)

Now, the velocity tangential to Sb at the ‘upper’ interface of this thin layer is twice the barycentric

tangential surface velocity vS‖. If a plug flow profile is assumed, then the sliding velocity is

‖v�‖ � vS‖‖. So, Ξ P r1, 2s, but Ξ � 2 is the likelier value. These considerations lead to the above

representation (185).

Second, since

ρ� � °α ν�α ρsloomoon
ρ�α

� �1�°αν
�
α

�
ρwloooooooomoooooooon

ρ̃�f

, ρ�α � ρ�c�α ÝÑ ν�α � ρ�

ρs
c�α , (186)

where να is the solid volume fraction of α constituent and ρw is the true density of the fluid, we

find

ρ� � ρw

1�°α c
�
α

�
1� ρw

ρs

	 . (187)

So, according to (186)1, (187), ρ� is known, once
°
α ν

�
α or

°
α c

�
α is known. We postulate closure

conditions for cα or να (α � 1, . . . , N ).

Third, to postulate a phenomenological relation for c�α or ν�α is the hardest, because it is physically

not obvious. In such a situation it is probably easiest to formulate a surface balance law for c�α as

stated in (133), viz.,

B c�α
B t �

�
c�αv

�
‖ � φc

�
α

	a
; a
� B c�α
B ξa w

a � 2c�αUbK � πc
�
α . (188)
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In this equation the jump terms of the bulk quantities are absent as is the supply term. For none of

them the introduction would be justified. Moreover, φc
�
α is the flux of c�α (parallel to Sb),

�
φc

�
α

	a
� �dc�α

�
c�α
�

; b
gab , (189)

in which dc�α are diffusivities, and cross dependences on the concentrations c�β (β �� α) have been

ignored. If one considers the evolution of c�α to be non-diffusive, thenφc
�
α � 0, and (188) becomes

a pure evolution equation for c�α . The production rate density is assumed to depend on quantities

in the slurry at Sb and of the moving interface,

πc
�
α � π̂c

�
α pdα, c�α , Re�α , µα, ‖v�‖ � vS‖‖, . . .q , (190)

such that πc
�
α |equil � 0. Equilibrium conditions are characterized by uniform and time independent

c�α and Ub � 0, so that the left-hand side of (189) vanishes. It transpires that appropriate selection

of π̂c
�
α is crucial.

We now incorporate into (171), (173) the entrainment-erosion and deposition rates for which spe-

cialists in sediment transport substitute parameterizations. The mass flow from below into the basal bed

is identified as entrainment, erosion or pick-up rate, and from the moving bed to the base as deposition

rate. With

ρbed �
Ņ

α�1

ρbed
α � ρbed

f ,

they are, obviously, given by

Mα
b � �Ub ρbed

α , M
f
b � �Ub ρbed

f , Mb � �Ub ρbed , (191)

from which we easily deduce

Mα
b �

ρbed
α

ρbed Mb, M
f
b �

ρbed
f

ρbed Mb . (192)

Positive (negative) Ub [negative (positive) Mb] corresponds to deposition (erosion). The result (192)

implies that we are not free to select closure relations for Mα,f
b independently and evaluate Mb from

these via

Mb �
ņ

α�1

Mα
b �M

f
b .

On the contrary, we must postulate a closure relation for Mb and evaluate M
α,f
b from (192)1,2 via the

known grain size distribution and the corresponding densities ρbed
α,f just below Sb. Erosion and deposition

occur below the detritus layer. It is convenient to write

Mb �Meros
b �M

dep
b , (193)

and to independently postulate representations for erosion and deposition. On the basis of the concepts

of ‘erosion inception’ and ‘erosion amount’ we now postulate
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Meros
b �

N�¸
α�1

pcαqbedpEαqeros perosionq ,

M
dep
b � �ρ�

¸
α

c�α
�
ws�α ez � nb � Ub

� pdepositionq ,
(194)

where N� follows from the evaluation of the critical shear stress according to formula (153):

N� � max
α�1,...,N

#
α

����� pτ�c qα   pIIσE q1{2
∆ρgdα

+
Sb

. (195)

Here IIσE is the second stress deviator invariant in the basal material evaluated at the basal surface. The

parameterization for Mdep
b makes use of the terminal velocity of a particle in an ambient fluid field,ws�

α ,

see (9) and (10). For particle class α this yields the mass flow �ρ�αws�
α � nb towards the basal surface.

However, this surface itself moves with the displacement speed Ub in the direction of nb. Thus, the mass

flow of class-α particles is �ρ�α pws�
α � nb � Ubq. Summation over all α-classes now yields the total

depositing mass flow

M
dep
b � �

¸
α

ρ�α
�
ws�
α � nb � Ub

� wsα�wsαez� �ρ�
¸
α

c�α
�
ws�α ez � nb � Ub

�
,

which is (194)2, and where expression (69) is to be substituted for wsα. When the shallowness approxi-

mation is justified then ez � nb � 1.

With (191) and (192) the mass balance relations (173) and (171) can respectively be written as

Bµα
B t � pµαvS

qa;a �
Bµα
Bξa w

a � 2µαUbK �

�pjSαqa;a � p�φρα � nbq� � ρ�α

�
v� � nb � Ubloooooomoooooon



� ρbed

α

ρbedMb ,

(196)

Bµ
B t � pµvSq

a
;a �

Bµ
Bξa w

a � 2µUbK � �ρ�
�
v� � nb � Ubloooooomoooooon



�Mb , (197)

for α � 1, . . . , N . In these relations the underbraced term vanishes when the normal component of the

barycentric velocity follows the displacement speed Ub of Sb. If Mb is known as a function of space and

time on Sb, (196) and (197) are field equations for µα and µ. Of course, also Ub must be known; it is

determined by (191)3, (193), (194).

Equation (197) states that the time rate of change of the specific surface mass µ grows by the mass

flow from the slurry, rpv� � nb � Ubq   0s and by the erosion rate (Mb ¡ 0) from below. (Note, Mb

contains both erosion and deposition, but Mb ¡ 0 is a net erosion.) For µ � 0 the two contributions on

the right-hand sides of (196), (197) must balance. Equation (196) allows an analogous inference, but for

constituent α a diffusive flow normal to Sb is added to this balance.

For the boundary condition of heat we proceed as for the traction boundary condition. In fact, we

impose either a DIRICHLET or NEUMANN condition on the slurry side of Sb. The simplest procedure is

to impose

T px, y, z, tq|z�bpx,y,tq � Θpx, y, tq ,
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where Θpx, y, tq is the temperature profile at the deepest position of the lake domain which is subject to

the study. As an alternative the NEUMANN condition

κ
B T
Bnb � QKpx, y, z, tq|z�bpx,y,tq ,

where QK is the geothermal heat, can also be used.

There remains the formulation of boundary conditions along the lake shore and at the corresponding

boundary lines on the surface S.

For the domain of the particle laden fluid It is convenient to think that the lake domain is divided

into a number of layers which are bounded by fixed horizontal surfaces. Identify the layers by the

subscript k and let hk be their thicknesses. In each layer we think the corresponding portion of basal

surface to be replaced by a vertical wall. For k � 1 this wall defines the mathematical shore line. Along

the vertical walls fields of unit vectors Nk can be introduced which lie in horizontal planes parallel to

the px, yq-plane. If no detritus moves, then vkS � 0 and µkS � 0, and boundary conditions are given by

phkρkvkq �Nk �

$'&
'%

0 , for impermeable wall,

Mk , for discharge into ground;

phkJαk q �Nk �

$'&
'%

0 , for impermeable wall,

Mα
k , for discharge of α- mass into ground;

phkQε,h
k q �Nk �

$'&
'%

0 , for no heat loss,

Q
geoth
k , for prescribed heat flow,

or Tk � T
geoth
k .

The usual boundary conditions are those describing the ground as impermeable surface; else Mk and

Mα
k must be prescribed, which requires a model for the ground.

For the boundaries of the sediment ‘layer’ For the detritus layer the boundary value problem is

that on a curved surface, which is bounded by a closed loop, most of which can be identified with the

mathematical shore line. Because of the Fick-type diffusive constitutive relations for the constituent

mass fluxes jSα and the NAVIER-STOKES-type stress parameterizations for Sab closure conditions are

analogous to those of the three-dimensional case. However no boundary condition must be formulated

for the surface heat flow in our case, because energy considerations have been left unspecified. So, let

C be a loop along the mathematical shore line (including a segment of the river bank and across the

tributary). Define by h the unit vector field along C which is tangent to S and perpendicular to C. With

vS, the barycentric surface velocity vector, and jSα the surface mass flux, we may now write

jSα � h �

$'&
'%

0 , along C where vS � 0,

�mα
S , along C, where wash-load enters the lake from the tributary ;
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pµvSq � h �

$'&
'%

0 , at the shore segments where vS is tangential to the shore,

� �°αm
α
S �mf

�
, at the river cross section.

5 Transformation of the surface mass distribution into a detritus layer
thickness

From a practical point of view the surface mass densities of the sediment classes µα pα � 1, . . . , Nq are

not very useful variables. Better is the determination of the thickness h of the detritus layer; so, let us

assume

µ � ρsνmean h , νmean �
¸
α

ναmean ,

where ρs is the true density of the sand, and ναmean are mean values of the solid volume fractions of the

sediment classes α � 1, . . . , N in the detritus layer. Note that νmean � p1 � nq, where n is the average

porosity within the detritus layer. Subsequently, the thickness of the detritus layer follows from

h � µ

ρsνmean
, (198)

and our aim is to provide a model for νmean
31.

First, we consider that the detritus layer has linear volume fraction and velocity distributions across

its thickness. The expectations are that the linear volume fraction through the layer has a maximum at

the bottom and a minimum at the top. Similarly, the layer velocity vanishes at the bottom and reaches a

maximum at the top surface, umax, see Fig. 11. So, their distributions are given by

ν � νmin � νmax

h
z � νmax, u � umax

h
z . (199)

As the figure shows, the layer may become instable if it is sufficiently sheared from above. A RICHARD-

SON number dependence of the mean volume fraction in an arbitrary detritus layer (i.e., not necessarily

as in Fig. 11) is then suggested.

So, still referring to Fig. 11, we define

Ri �
� 1

ρmean

d ρ
dz

g�
du
dz


2 �
� 1

νmean

d ν
dz
g�

du
dz


2 �
"

2pνmax � νminq
νmax � νmin

*
gh

u2
max

, (200)

where νmean � pνmax�νminq{2 has been used. For particular values of νmin, νmax, umax, the RICHARDSON

number Ri is a function of the thickness h: Ri � Riphq. Now, our assumption for the mean volume

31If we assume µα � ρsν
α
meanh, then the mean volume fractions ναmean are known once the height h is known: ναmean �

µα{pρshq; or, equivalently, if νmean is known, see (198): ναmean � pµα{µqνmean. For the detritus layer the mean volume
fractions ναmean are practically better quantities than the surface densities µα.
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Figure 11: Detritus layer with thickness h. Distribution of the volume fraction ν and detritus velocity u as
functions of z.

fraction in an arbitrary detritus layer is

νmean � νmeanpRiphqq .

When inserted into (198), this yields an equation for the determination of h:

µ

ρsh
� νmeanpRiphqq . (201)

Moreover, with an obvious reminiscence to the KELVIN-HELMHOLTZ instability of two stratified vis-

cous fluids with different constant densities under simple shear, MILES [28] (1967), we suppose a Ri-

dependence as shown in Fig. 12. This function can qualitatively and quantitatively be given as

νmean � 1
2pνtop � νbottomq � a tanh

�
bpRi�Ricritq� ,

a � 1
2pνtop � νbottomq , b � 1

ε atanh

"
2s νtop � pνtop � νbottomq

νtop � νbottom

*
.

(202)

Here, 0   ε   1, 0 ! s   1, and a, b are so adjusted that

RiÑ8 ÝÑ νmean � νtop ,

RiÑ �8 ÝÑ νmean � νbottom ,

Ri � Ricrit ÝÑ νmean � νcrit � 1
2pνtop � νbottomq ,

Ri � Ricrit � ε ÝÑ νmean � s νtop .

The modeler can pick values for νtop, νbottom,Ricrit, ε and s. Suggestions are given in Table 7. Obviously,

for a Newtonian fluid Ricrit is the value of the RICHARDSON number below which instability sets in.

With the parameterization (202), relation (201) becomes a nonlinear equation for h, which is easily

seen to possess a unique solution. An iterative solution h is best found as

hpm�1q � µ

ρsνmeanpRiphpmqqq , hp0q � 2µ

ρspνtop � νbottomq ,
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Figure 12: Qualitative behaviour of the mean volume fraction νmean of the mixture.

Table 7: Suggested values for the parameters in equation (202).

νtop � 0.8 Ricrit � 0.25 νbottom � 0.02 ε � 0.02 s � 0.98

and computations are interrupted when

���hpm�1q � hpmq
��� ! 1 .

This computation must be performed for all x, y and each time step t.

6 Discussion and Conclusion

In this article transport of sediments in suspension and in the detritus layer of an alluvial river-lake (or

ocean) system was analyzed from a perspective of global processes, taking place in the lake or ocean

basin, on the one hand, and in the moving or stagnant detritus layer at the bottom of the water body,

on the other hand. These two regimes interact at their common boundary via erosion of sediments

from the basal surface or as deposition of wash-load to the rigid bed. The suspended sediment fractions

are transported by the wind-induced barotropic or baroclinic circulation of the homogeneous or density

stratified lake or ocean water. These sediment fractions are carried into the lake as wash loads from river

inlets. The bed-load detritus, on the other hand, is carried into the estuarine environment of the lake and

contributes thereby its deposition to deltaic formations. In the vicinity of the river mouth both sediment

formations are subjected to a new flow regime, which is governed by large scale circulation dynamics, in

which the current speeds are generally smaller. This leads to an enhanced sedimentation of the coarser

grain fractions and associated aggradation with progressing delta formations.

Whereas on decadal time scales the important regions of such land aggradation in oceans is restricted

to estuarine zones, these zones may in lakes extend over substantial portions of the basins or the entire

lake. This is particularly so for artificial reservoirs and mountainous terrain. Rigorous models on this

complex detritus-particle-laden fluid interaction are still missing. It was our intention to present in this

memoir the foundation for a class of such models as a basis for later use in attempts of software devel-

opments for sediment transport of this sort.

To this end, the lake domain was divided into two regions, the actual water domain with suspended
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(non)-buoyant particles, called also slurry, and the detritus layer with moving sediments, also a solid-

fluid mixture, but very thin. Because of its thinness, this layer was collapsed into an infinitely thin

moving and deforming surface, covered by a mixture of the N sediment classes α p� 1, . . . , Nq and a

fluid. This mixture moves along the surface, with each constituent having its own tangential velocity,

and thus intermixing with the others by surface parallel diffusion. However, further mass exchanges

with the slurry above and the ground below takes also place as erosion and deposition processes. The

mathematical description of this local interaction problem turned out to be rather subtle, even in the

simplest possible form as dealt with here.

In the slurry domain (domain I in Fig. 3), the governing field equations for the lake as a particle

laden fluid are handled as a continuous mixture of class I, i.e., the balance laws of mass are formulated

for the sediment classes α p� 1, . . . , Nq and the mixture as a whole, but balances of linear momentum

and energy are only formulated for the mixture as a whole. This is done for a nearly density preserving

fluid, whose density changes due to variations of the temperature, mineralization and pressure but also

the distribution of the wash-load. The formulation is also complicated by the presence of turbulence.

As a consequence, a considerable number of approximate models exists, all of which are claimed to be

relevant to describe the three-dimensional circulation dynamics, including dispersion of the suspended

wash-load. They differ in certain terms but the differences are seldom explained in the context of their

physical implications. We have tried to close this gap.

Two model families were presented. In model family 1, referenced as generalized BOUSSINESQ

models, two subfamilies were distinguished:

• In the classical BOUSSINESQ assumption variations of the density are ignored, except in the grav-

ity term. This implies that the velocity field is solenoidal. This property is preserved also when

turbulence averaging is performed and averaged equations are looked at.

• A generalized BOUSSINESQ fluid is defined by a mixture-density composition, ρ � ρ0pzq �
ρdpx, tq, in which ρdpx, tq is ignored everywhere except in the gravity term. In this case the mass

flux or momentum density ρ0vpx, tq is solenoidal. This property is also preserved in the turbulent-

averaged equations.

Model family 2 is based on the assumption of small turbulent density variations; it was coined by us

• Small density fluctuation assumption. It is based on the assumption that approximations are only

introduced after the turbulent averaging operations have been performed with the compressible

governing equations. Then, with ρ � x ρ y � ρ1, every correlation term x ρ1ay is ignored. This

assumption implies that the averaged mass balance of the mixture is preserved, see (39). So,

acoustic waves can be studied in a turbulent fluid as can the influence of the pressure dependence

of the equation of state, both effects which may be significant in very deep lakes.

A further popular approximation is the Shallow Water Approximation (SWA), in which the ratio of

typical depth to length scales is used as a perturbation parameter A and the lowest order approximation

to the reduced equations in the limit A Ñ 0 is constructed. This implies that the vertical momentum

balance reduces to a force balance between the gravity force and the vertical pressure gradient. This

approximation is known as the hydrostatic pressure assumption. Moreover, the divergence of the stress
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deviator, and the divergences of the heat flux and the species mass fluxes reduce to

B τxz
B z ,

B τyz
B z ,

BQε,hz
B z ,

B Jαz
B z ,

whilst all other terms drop out. Both assumptions are today regarded as critical. An in-between compro-

mise, which is sometimes used, still employs the hydrostatic pressure assumption but accounts for the

horizontal stress, heat flux and species mass flux gradients. The modern trend, however, abandons the

SWA altogether. These formulations are known as non-hydrostatic models. They are certainly needed

in the aftermaths of incessant heavy rain fall with strong detritus and wash-load discharge from a river

into the river-mouth region, when strong up- and down-welling are likely to occur, see Fig. 13. In such

systems it may be advantageous to employ nesting, where a simpler model is used for the circulation

dynamics of the entire lake, and the river-inlet environs are analyzed with a more complex model subject

to the current, pressure, temperature, etc., input along the open boundary. A word of caution or alertness

Figure 13: Sediment laden water in the forefront of the estuary mouth of the river Rhine (Alpen-Rhein) at
Fussach near Bregenz, Austria. The picture demonstrates that up-welling and down-welling processes must
be active, indicating that the Shallow Water Approximation in computational software should not be applied.
A full non-hydrostatic three dimensional model is required. Copyright: ‘Tino Dietsche - airpics4you.ch’

concerns the formulation of the heat equation (first law of thermodynamics), which has consistently been

given in two different forms, one in which the caloric potential is the HELMHOLTZ free energy (and the

energy equation is written in terms of this free energy), and a second one, where the potential is the free

enthalpy. As explained in the appendix, if ρ and T are the independent thermodynamic variables, then

the heat equation is based on the free energy formulation, and, strictly in this case, the thermal equation

of state has the form p � ppρ, T q. Alternatively, if p and T are the independent thermodynamic variables,

then ρ � ρpp, T q is the appropriate thermal equation of state and the energy is expressed in terms of the

free enthalpy. In applications confusion may arise, since for most situations the thermal equation of state

is given as ρ � ρpT q without a pressure dependence. In these cases it is irrelevant which energy equation
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is employed, the enthalpy formulation would be logical. Luckily it does not matter, since numerical

values for the specific heats cv and cp are nearly the same.

Closure relations of the flux terms in the slurry have consistently been proposed as being of gradient

type. A critical point in this formulation concerns only the constituent mass fluxes Jα, defined in (8).

These mass fluxes are written as compositions of two contributions, (i) a diffusive flux due to the dif-

ference of the velocity of particles of the same class relative to a representative particle velocity within

this same sediment class plus a slip velocity of this representative particle of class α to the barycentric

velocity of the mixture at the same position, which is fundamentally related to the free fall velocity of

the representative particle in still water. Even though this latter choice is questionable in its own right,32

this kind of parameterization tries to explicitly account for the convective motion of the non-buoyant

particles and the diffusive nature of the analogous process due to particle size differences in the same

sediment class.

Domain II is in reality a very thin layer of a granular fluid mixture with N sediment classes and an

interstitial fluid at saturation. This system has been collapsed in our theoretical formulation into a moving

singular surface with surface particles being equipped with surface masses, momenta, etc. This procedure

is tantamount to replacing a mixture layer and its top and bottom boundary by a sharp interface, which is

equipped with surface mass and evolves under the influence of the sedimentation and erosion processes.

As a first approach, we have assumed this interface to be a material surface, being aware that in reality it

is nourished from above and below by settling and eroding particles. Essential in this approach was the

surface balance law (132), which is based on the transport theorem (130), valid for material surfaces.

The complications with the above described boundary conditions are connected with the fact that N

surface sediment classes are introduced, which each may have its own motion tangential to the deforming

surface, whose motion is defined by the kinematic equation of motion. If on either side of the deforming

surface simple constituent continua are present, the possible surface material is also a simple constituent

continuum. Then, the subtle issue is that the geometric motion of the surface from its reference state to

its present state and given by the kinematic equation of the surface moving with the velocity w, is not

the same as the motion of a material body, geometrically-kinematically constrained to the surface, but

free to move and deform tangentially to the surface with the material velocity vS. The two are related by

(see Fig. 10)

vS � 9ξaτ a �w ÝÑ vS � n � w � n ,

were pξ1, ξ2q P ∆̃ is the coordinate cover of the moving surface S and τ a are the base vectors τ a �
Br{B ξa, with x � rpξ1, ξ2, tq. With these prerequisites the derivation of the local surface balance law for

a physical quantity (132) from the corresponding global form (129) due to SLATTERY et al. (2007) [40] is

more general than corresponding equations of earlier surface models for which vS � w was assumed, see

e.g. MÜLLER (1985) [30], or for whichw � Un is assumed, see e.g. ALTS and HUTTER (1988) [2]–[5]

and references therein. The more general equation has then served as master equation for the derivation

of the physical balance laws for the surface-detritus-water mixture involving among others, the surface

mass densities µα, µ and velocities vSα, vS (α � 1, . . . , N ), such that vSα � nb � vS � nb � Ub. These

equations also contain the surface jump quantities from the bulk fields which represent, for mass balance
32The determination of the velocity of a particle in a moving and perhaps accelerating fluid field relative to the velocity of

the fluid at the same position before the latter was inserted in the fluid, is a complex topic of fluid dynamics which does not, in
general, agree with the free fall velocity.
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physically the deposition and erosion rates and, for momentum balance laws the traction and impulse

jump quantities. Parameterization of erosion consisted of two statements, (i) a criterion defining the

onset of erosion of sediments of grain class α and (ii) a statement of the amount of eroded material.

Reviews for both have been provided.

A conceptually decisive decision in connection with the detritus motion is whether a surface mixture

theory of class II ought to be pursued or a less complicated mixture model of class I should be employed.

The latter makes only use of the balance law of momentum for the mixture as a whole, but mass balances

of all constituents, and it is technically simpler. The constituent surface velocities have been eliminated

by introducing the diffusive surface-mass flux

jSα � µαpvSα � vSq � µαpvSα � vSq‖

as a new variable of the sediment class α and writing a FICK-type constitutive relation for it. If the class

α-velocity needs to be computed, this can a posteriori be done by

vSα‖ �
1

µα
jSα � vS‖ .

The surface mixture momentum balance law entailed the parameterization of the surface parallel stress

components Sab, which were postulated as a two-dimensional linear viscous fluid with areal compress-

ibility (but vanishing resistance to expansion). This avoids build-up of cohesion.

Further closure relations were needed in the form of detritus interface sliding laws from above and

below and values of the particle concentrations c�α (α � 1, . . . , N ) immediately above the detritus

interface. These are N statements, which were postulated in terms of surface balance laws (188), each

involving a FICKian gradient postulate for its flux quantity and N production terms. These balance

relations for the boundary value of c�α are likely the most esoteric feature of the model and call for the

application and the use of the entropy principle and experiments to constraining the coefficients. A last

set of relations completing the theory are explicit relations for the erosion and deposition rates, (194).

To treat the dynamics of the detritus layer by concepts of sharp interfaces is a simplification. In

reality the detritus region is a thin layer of finite thickness, which is sheared by the bottom near flow of

the wind induced motion of the lake water. By mimicking the thin detritus region as a sheared layer with

linear volume fraction and velocity distributions across the layer and assuming the mean volume fraction

in this layer to depend on the RICHARDSON number with stable and unstable regimes, the detritus layer

thickness can be evaluated, see (198), and its transition from stable (and thin) to unstable (and thick)

regimes be estimated.

To summarize, this theory of sediment transport in alluvial systems is fairly substantial but the mod-

eler has some freedom to adjust its complexity somewhat by selecting the number of sediment classes

when approximating the grain size distribution curve. There is also some flexibility in selecting the model

equations for the lake circulation flow as a slurry and in the application of sub-structuring techniques by

dividing the lake domain in subdomains with and without detritus transport. However, apart from these

simplifications and some variation in the constitutive postulates the presented equations likely constitute

the minimum complexity accounting for the essential physics. Further extensions are possible and have

transpired in the derivation of the model. For instance, in (176) the momentum equation perpendicular

to the moving detritus interface was presented, but it was ignored. Paired with additional closure state-
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ments involving jumps of bulk fields across S, this equation is interpreted as an evolution equation for

the displacement speed Ub. When used, it would make postulation of deposition and entrainment rates

obsolete. This fact would give sediment transport theories a completely different structure from what it

has been so far. Moreover, the entire concept could also be pursued with a mixture of class II with all

of its consequences. Presently the most urgent activities would be validation of the model by parameter

identification, development of software for its use and application to realistic cases, such as that shown

in Figs. 1, 2, 13.
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Appendix

A Implications from the Second Law of Thermodynamics

This appendix gives a justification for the approximation (44). The results which are presented can be

taken from any book on thermodynamics, e.g. Hutter (2003) [16]. The basis of the considerations is the

so-called GIBBS relation of a heat conducting fluid,

dη � 1

T

�
dε� p

ρ2
dρ


, (203)

in which η is the entropy, T the KELVIN temperature, ε the internal energy, p the pressure and ρ the fluid

density; (203) is a consequence of the second law of thermodynamics. Solving (203) for dε,

dε � Tdη � p

ρ2
dρ , (204)

identifies ε as a function of η and ρ, so that, alternatively and with ε � ε̂pη, ρq,

dε � B ε̂
B η dη � B ε̂

B ρ dρ . (205)

Comparison of (204) and (205) implies

T � B ε̂
B η , p � ρ2 Bε̂

B ρ . (206)

The internal energy, interpreted as a function of entropy η and density ρ, is a thermodynamic potential

for the absolute temperature and the pressure.
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With the functions

ψ � ε� Tη HELMHOLTZ free energy,

h � ε� p

ρ
enthalpy,

g � h� Tη GIBBS free energy,

(207)

(these are LEGENDRE transformations) the GIBBS relation (204) takes the alternative forms

dψ � �ηdT � p

ρ2
dρ ÝÑ ψ � ψ̂pT, ρq ,

dh � �Tdη � 1

ρ
dp ÝÑ h � ĥpη, pq ,

dg � �ηdT � 1

ρ
dp ÝÑ g � ĝpT, pq .

(208)

With the indicated different dependencies and the obvious potential properties, analogous to (206), we

have

η � �B ψ̂B T , p � ρ2 B ψ̂
B ρ ,

T � �B ĥB η ,
1

ρ
� B ĥ
B p ,

η � � B ĝB T ,
1

ρ
� Bĝ
B p ,

(209)

and the integrability conditions

�B ηB ρ �
B
B T

�
p

ρ2



for ψ̂pT, ρq ,

�B TB p � B
B T

�
1

ρ



for ĥpT, pq ,

�B ηB p �
B
B T

�
1

ρ



for ĝpT, pq .

(210)

Internal energy formulation

If we regard T and ρ as the independent thermodynamic variables, then according to (207)1 we have

ε � ψ � T
B ψ
B T � �T 2 B

B T
�
ψ

T



, (211)
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and therefore,

ρ
dε
d t

� ρ cv
dT
d t

� ρ cTρ
dρ
d t

,

cv :� � B
B T

�
T 2 B
B T

�
ψ̂

T

��
� B ε̂
B T ,

cTρ :� �T 2 B
B T

�
B ψ̂{B ρ
T

�
� B ε̂
B ρ .

(212)

With the separation assumption

ψ � ψ̂T pT q � ψ̂ρpρq , (213)

cv � ĉvpT q and cTρ � ĉTρpρq � dψ̂ρ{d ρ. Therefore, (212)1 can be written as

ρ
dε
d t

� ρ ĉvpT qdT
d t

� ρ
dψ̂ρ
d ρ

d ρ
d tlooomooon

nearly 0

� ρĉvpT qdT
d t

. (214)

The second term on the right-hand side of (214) can be ignored since density veriations in a nearly

incompressible fluid are minute.

Enthalpy formulation If we regard T and p as the independent thermodynamic variables, the GIBBS

free energy is the thermodynamic potential and the enthalpy the adequate internal energy function. In

view of (208) we now have

h � g � T
B g
B T � �T 2 B

B T
� g
T

	
, (215)

and therefore,

ρ
dh
d t

� ρ cp
dT
d t

� ρ cTp
dp
d t

,

cp :� � B
B T

�
T 2 B
B T

�
ĝ

T




� B ĥ
B T ,

cTp :� �T 2 B
B T

�
1

T

B g
B p


� B ĥ
B p .

(216)

With the separation assumption

h � ĝT pT q � ĝpppq , (217)

we have cp � ĉppT q and cTp � ĉTpppq � dĝp{d p. Therefore, (203)1 can be written as

ρ
dh
d t

� ρ ĉppT qdT
d t

� ρ
dĝp
d p

d p
d tlooomooon

nearly 0

� ρĉppT qdT
d t

. (218)

Here the second term on the right-hand side can be ignored, since dĝp{dp must be very small, the growth

of the enthalpy due to a pressure rise cannot be large as its working is due to dilatational deformations,

which are small.

Parameterizations Because the temperature range of lake or ocean water is small, 0�C¤ T ¤ 50�C,

the coefficients cv and cp exhibit a constrained variability and may well be assumed to be constant or
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linear functions of T . This then suggests to use

• for constant specific heats,

ε �
» T
T0

cvpT̄ q dT̄ � c0
vpT � T0q � ε0 , h �

» T
T0

cppT̄ q dT̄ � c0
ppT � T0q � h0 , (219)

• for specific heats as linear functions of T:

ε �
» T
T0

rc0
v � c1vpT̄ � T0qs dT̄ � c0

vpT � T0q � 1

2
c1vpT � T0q2 � ε0 ,

h �
» T
T0

rc0
p � c1ppT̄ � T0qs dT̄ � c0

ppT � T0q � 1

2
c1ppT � T0q2 � h0 .

(220)

The expressions (214), (218) (219), (220) provide a thermodynamic justification of relations (44).

B Turbulent closure by Large Eddy Simulation

Large Eddy Simulation (LES) is another popular approach for simulating turbulent flows. In this tech-

nique the large, geometry-dependent eddies are explicitly accounted for by using a subgrid-scale (SGS)

model. Equations (76)–(80) are now interpreted as resolved field equations obtained by applying a non-

statistical filter to the NAVIER-STOKES equations.33

The effect of the small eddies on the resolved filtered field is included in the SGS-parameterization

of the stressR, as shown in (52) but now given by

R � 2ρνSGSD, trD � 0 , (221)

where νSGS is the SGS-turbulent viscosity,

νSGS � pCs∆q2
�
tr p2D2q�1{2

. (222)

This parameterization is due to SMAGORINSKY (1963) [41]. Cs is a dimensionless coefficient, called

SMAGORINSKY constant, and ∆ is a length scale, equal to the local grid spacing. Thus, (221) with

(222) is the classical viscous power law relating stress and stretching. According to KRAFT et al. [23],

the above ‘model is found to give acceptable results in LES of homogeneous and isotropic turbulence.

With Cs � 0.17 according to LILLY (1967) [25], it is too dissipative [. . .] in the near wall region

because of the excessive eddy-viscosity arising from the mean shear (MOIN & KIM (1982) [29]). The

eddy viscosity predicted by SMAGORINSKY is nonzero in laminar flow regions; the model introduces

spurious dissipation which damps the growth of small perturbations and thus restrains the transition to

turbulence (PIOMELLI & ZANG (1991) [33]).

The limitations of the SMAGORINSKY model have led to the formulation of more general SGS mod-

els. The best known of these newer models may be the dynamic SGS (DSGS) model of GERMANO et al.

(1991) [12]. In this model Cs is not a fixed constant but is calculated as a function of position and time,

Cspx, tq, which vanishes near the boundary with the correct behaviour (PIOMELLI (1993) [32], [23]).
33Such a filter need not to fulfil the condition xx�yy � x�y, where x�y is the filter operation.
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The parameterisations for the energy flux,Qε and constituent mass fluxes, Jα, are the same as stated

in (52)2,3, however, with νSGS evaluated as given in (222). It is also evident from this presentation that

the pk � εq - equations are not needed.

C Justification for (150)

In this appendix we provide a derivation of formula (150) for erosion inception on the basis of dimen-

sional analysis. We consider sediment transport at a lake basal surface. It is rather intuitive that the

erosion inception will likely depend on a stress (the shear stress) on the lake side of the basal surface,

τc, the true densities, ρs, ρf , of the sediment grains and the fluid, the solid concentration, cs, gravity

acceleration, g, mixture kinematic viscosity, ν, and the nominal diameter, d, of the sediment corn, all

evaluated at the base. So, inception of sediment transport can likely be described by an equation of the

form

fpτc, ρs, ρf , g, d, ν, csq � 0 . (223)

The dimensional matrix of the above 7 variables has rank 3; so, there are 4 independent dimensionless

π-products, which we choose as follows:

π1 � τc
∆ρ g d

, π2 � ρs
ρf
, π3 � cs , π4 �

� g

∆ν2

	1{3
d , (224)

where ρ is the mixture density and ∆ � pρs{ρ � 1q. Here, τc has been scaled with the ‘submerged’

density pρs � ρq. Furthermore, it is not difficult to see that for small cs the mixture density in (224) may

approximately be replaced by ρf . We may thus write

fpπ1, π2, π3, π4q � 0 or
τc

∆ ρ gd
� f̃pπ2, π3, π4q . (225)

The number of variables is now reduced from 7 to 4, a dramatic reduction! However, even further

reduction is possible. For sediment transport in the geophysical environment π2 is very nearly a constant

on the entire Globe, and π3 is very small (¤ 10�2); so, the π3-dependence may be dropped (i.e. expressed

in a Taylor series expansion of π3 and restricted to the term f̃pπ2, 0, π4qq. Thus, we may assume

θc � τc
∆ ρ gd

� f̃pRe�c q � f̃pd�q , π4 � Re�c � d� �
� g

∆ ν2

	1{3
d . (226)

This derivation assumes that only a single sediment fraction is present. It is important to note that the

viscosity ν of the mixture is present in the variables describing the erosion inception. If it is dropped,

then f̃ in (226) reduces to a constant and

τc � const.�∆ ρ gd� ,

which is not supported by experiments. Omitting g as a governing parameter is disastrous, because π1

and π4 are then missing as π-products. In this case f̃pπ2, π3q � 0 is simply meaningless.
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D Justification for (170), (171) and (175), (176)

Justification for (170), (171): For the constituent masses, noting that

ραpvα �wq � ραpvα � vqlooooomooooon
�Jα, see eq. (8)

�ραpv �wq ,

the non-averaged balance (133), in which fS � µα, φfS � 0, f � ρα, v � vα, φf � 0, can be written as

Bµα
B t � pµαvSαqa;a �

Bµα
Bξa w

a � 2µαUbK � �rrJα � ραpv �wqss � nb . (227)

Analogously, for the fluid we deduce

Bµf
B t �

�
µfvSf

�a
;a
� Bµf
Bξa w

a � 2µf UbK � �rrJf � ρ̃f pv �wqss � nb , (228)

where Jf � ρ̃f pvf � vq, with ρ̃f and vf the mass density and velocity of the fluid (ρ̃f � ρ �°α ρα).

Now we sum equations (227) and (228) over all constituents. Using relation

¸
α

Jα � Jf � 0 , (229)

and definitions

µ �
¸
α

µα � µf , µvS �
¸
α

µαvSα � µfvSf (230)

for the mixture surface density µ and mixture velocity vS, we obtain the mass balance for the mixture by

summation of (227) and (228):

Bµ
B t � pµvSq

a
;a �

Bµ
Bξa w

a � 2µUbK � �rrρpv �wqss � nb . (231)

We now average equations (227) and (228). In so doing we assume that the interface does not perform

any fluctuations, whence necessarily xnb y � nb, xK y � K, xw y � w and xUby � Ub. Thus, for the

averaged equations we get

Bxµαy
B t � pxµαy xvSα yqa;a �

�xµ1α pvSαq1 y�a;a � B xµαy
Bξa wa � 2xµαyUbK

� �rrxJαy � x ρ1αv1 y � x ρα ypxv y �wqss � nb ,
(232)

Bxµf y
B t � �xµf y xvSf y�a;a �

�
xµ1f

�
vSf

�1 y	a
;a
� B xµf y

Bξa wa � 2xµf yUbK

� �rrxJf y � x ρ̃1fv1 y � x ρ̃f ypxv y �wqss � nb .
(233)
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If we sum (232) and (233), because of (229), (230) we obtain

Bxµy
B t � pxµy xvS yqa;a �

�xµ1 pvSq1 y�a;a � B xµy
Bξa wa � 2xµyUbK

� �rr x ρ1v1 yloomoon
� φρ in Table 6

�x ρ ypxv y �wqss � nb . (234)

Of course, (234) is the average of (231), and only two of (232)–(234) are independent. For computations

of initial boundary value problems we recommend to use (232) and (234) and to infer xµf y a posteriori

from xµf y � xµy �°αxµαy.
It follows: with REYNOLDS averaging we have a non-vanishing mass flux in the mass balance (234).

A FAVRE-type averaging would have to be performed. However, if ρ1 is small on both sides of the basal

surface we can drop x ρ1v1 y in (234). Moreover, with ρ1 � 0, ρα � ρcα, decomposition (9) and definition

of Jα (see (43)), for the constituent class α the mass flux xJαy � x ρ1αv1 y takes the form

xJαy � x ρ1αv1 y � Jα � ρ x cαyxws
αy ,

which explains Table 6 for Model 2. The main text, formulae (170), (171) (as deduced from (232), (234))

and Table 6 show the averaged fields without the averaging operator x�y and with negligible correlations

xµ1α pvSαq1 y , xµ1 pvSq1 y .

Justification for (175) and (176): Now we consider (132), in which fS � µαvSα, φfS � �σSα,

πfS � 0, sfS � µαg, f � ραvα, v � vα, φf � �σα, for each α � 1, . . . , N :

B
Bt pµαvSαq � Div pµαvSα b vSα � σSαq � B

Bξa pµαvSαqw
a �

�rrραvα b pvα �wq � σαssnb � µαg .

(235)

A similar equation holds for the interstitial fluid:

B
Bt
�
µfvSf

�� Div
�
µfvSf b vSf � σSf

�� B
Bξa pµfvSf qw

a �

�rrρ̃fvf b pvf �wq � σf ssnb � µfg .

(236)

Summing (235), (236) and using definition (230) we obtain

B
Bt pµvSq � Div pµvS b vS � σSq � B

Bξa pµvSqw
a � �rrρv b pv �wq � σssnb � µg , (237)

where the bulk, σ, and surface, σS, mixture stress tensors are defined by

ρv b v � σ �
¸
α

pραvα b vα � σαq � ρ̃fvf b vSf � σf , (238)
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µvS b vS � σS �
¸
α

pµαvSα b vSα � σSαq � µfvSf b vSf � σSf . (239)

Averaging (237) under the assumptions µ1 � 0, ρ1 � 0, recalling definition (43)1 of the Reynolds stress

tensorR and introducing the laminar and turbulent surface mixture stress tensorRS according to

RS � xσSy � µ xv1S b v1Sy , (240)

we deduce (we omit the angular brackets)

B
Bt pµvSq � Div pµvS b vS �RSq � B

Bξa pµvSqw
a �

�rrρv b pv �wq � pI �Rssnb � µg ,

(241)

which explains the last line in Table 6.

Next we want to write (241) using the components of vectors and tensors with respect to the local

basis tτ 1, τ 2,nbu, which will give (175) and (176). To this end we use the formulae (for simplicity in

this derivation we omit the lower index b in Ub and nb referring to the basal surface)

Bτ a

Bξb � Γc
abτ c � babn ,

Bn
Bξa � �babτ b ,

Bn
B t � �gab

" BU
Bξa � bcbw

c

*
τ b ,

Bτ a

B t � Bw
Bξa �

"Bwb

Bξa � wcΓb
ca � Ubacg

cb

*
τ b �

" BU
Bξa � wbbba

*
n ,

(242)

and for a scalar function f , vector fields u, v and a second order tensor field T defined on the surface S,

the rules of differentiation34

Div pfvq � fDiv v �Grad f � v , Div pfT q � fDivT � TGrad f ,

Div pub vq � va
Bu
Bξa � pDiv vqu , Divn � �2K , Div pnb nq � �2Kn ,

Div pnb τ aq � �babτ b � Γb
abn , Div pτ a b nq � �2Kτ a ,

(243)

where

Grad f � B f
B ξa τ

a , Div v � B v
B ξa � τ

a , DivT � B T
B ξa τ

a .

Thus, using the decomposition

vS � vS‖ � Un � vaτ a � Un ,

we obtain

B
B tpµvSq�

Bµva
B t τ a � µvb

"Bwa

Bξb � wcΓa
cb � Ubbcg

ca

*
τ a�

µUgab
" BU
Bξb � bbcw

c

*
τ a �

"BµU
B t � µva

BU
Bξa � µbbav

awb

*
n .

(244)

34(243) can be easily deduced with the aid of (242).
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Then,

Div pµvS b vSq �

Div pµvS‖ b vS‖q �Div pµUvS‖ b nq �Div pµUnb vS‖q �Div pµU2nb nq �

Div pµvS‖ b vS‖q � µU vb bbc g
ca τ a �Div pµUvS‖qn� 2µKUvS ,

(245)

and with the notations (174) for the components ofRS,

DivRS � Div pSabτ a b τ bq �
!
Scbcbg

ba � 2KSa
)
τ a � tDiv pSaτ aq � 2SKun . (246)

Finally, we have

B
Bξb pµvSqw

b � wb

"Bµva
Bξb � µvc Γa

cb � µU bbcg
ca

*
τ a � wb

"
µvc bcb � BµU

Bξb
*
n . (247)

Now, substituting (244)–(247) into (241) and separating the tangential and normal parts of the emerging

relation yields (175) and (176).

151



E List of symbols

Roman Symbols

a Parameter in the representation (202) of the volume fraction ν

A Parameter arising in formula (61) for the particle drag coefficient Cdα

A Unspecified symmetric second rank tensor

AL � rHs{rLs Aspect ratio for lengths

AV � rW s{rV s Aspect ratio for velocities

A � AL � AV Aspect ratio for lengths and velocities

b Parameter in the representation (202) of the volume fraction ν

bpx, y, tq z-coordinate of the basal surface: z � bpx, y, tq

bab Coefficients of the second fundamental form of a surface

B Parameter arising in formula (61) for the particle drag coefficient Cdα

B� Material body parts on the � sides of a singular surface

B � grσsrHs{rf srLsrV s � 10�2 � 102 Buoyancy parameter; material body

c Function arising in the formula for the unit normal, nb, at the basal surface

cα Mass concentration (fraction) of sediment class α

rcαs � 10�3 � 10�1 Scale for mass concentration of sediment class α

ck Coefficient in the zeroth order parameterization of the turbulent kinetic

energy k

cv, cp Specific heats at constant volume and constant pressure, respectively

c0
v, c

0
p Constant specific heats

c1v, c
1
p Parameters in the linear representations (220) for specific heats

cTρ Specific heat at constant temperature in the energy formulation

cTp Specific heat at constant temperature in the enthalpy formulation

rcvs, rcps � 4200 m2 s�2 K�1 Typical values of the specific heats cv and cp$'&
'%
c1, c2, c3

ck, cµ, cε

‘Universal’ coefficients in the zeroth and first order parameterizations

for k � ε

Cs SMAGORINSKY coefficient
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C Closed double point free curve bounding a surface

C1, C2 Drag coefficients of basal sliding laws (183), (184)

Cwind
d � 2� 10�3 Wind drag coefficient

Cdα Drag coefficient for sediment class α with the mean diameter dα

rdmin, dmaxq Range of particle diameters of sediment classes α, α � 1, . . . , N

rdα�1, dαq Range of nominal particle diameters of sediment class α

d, dα Nominal mean diameter of sediment grains and in class α:

d, dα P rdα�1, dαq

d�, d�α � p∆ g{ν2q1{3 dpdαq Dimensionless mean particle diameter of class α

Dα Surface mass diffusivities

DpT q � χ
pT q
` � νt

σT
Laminar + turbulent thermal mass flux diffusivity

Dpcαq � χ
pcαq
` � νt

σcα
Laminar + turbulent species mass flux diffusivity

DpT q � DpT q{rf srH2s � 10�4 � 100 Dimensionless thermal diffusivity

Dpcαq � Dpcαq{rf srH2s � 10�4 � 100 Dimensionless species mass diffusivity

D Rate of strain-rate (strain rate, stretching) tensor of the mixture

DS Surface rate of strain-rate tensor of the detritus surface mixture

e1, e2, e3 Unit vectors in the x, y, z-directions

ez � e3 Unit vector in the z-direction

E Relative error for settling velocities of different authors

E, Eα Erosion (entrainment) rate of sediments α from the base

f � 2Ω sinϕ First CORIOLIS parameter;

specific density of an unspecified physical bulk quantity

f̃ � 2Ω cosϕ Second CORIOLIS parameter

fS Specific density of an unspecified physical surface quantity

F Function identifying a singular surface by F px, tq � 0

F � rV 2s{rcvsr∆T s � 10�7 � 10�1 Pressure work parameter

rf s � 10�4 s�1 CORIOLIS parameter
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1{rf s Time scale

g Gravity constant; GIBBS free energy (� h� Tη)

g Gravity vector

gab Coefficients of the first fundamental form of a surface

gab Components of the inverse matrix of pgabq

G � grHs{rf2srL2s � 100 � 103 Squared velocity ratio

h Specific enthalpy (� ε� p{ρ); thickness of the detritus layer

h0 Reference specific enthalpy

h Unit vector tangent to a surface S and normal to the closed curve C bounding S

H Heaviside function

rHs � 101 � 103 m Vertical length scale

jα � ρcαpvα � vsαq

Diffusive flux of sediment class α vs. a representative particle in the class α

Jα � ρcαpvα � vq

Diffusive flux of sediment class α with respect to the barycentric motion

Jf � ρ̃f pvf � vq

Diffusive flux of the bearer fluid with respect to the barycentric motion

Jα Laminar + turbulent specific species mass flux of sediment class α:

� xjαy � ρ0 xc1αv1y � ρ0 xc1αws1
α y in BOUSSINESQ model,

� xjαy � ρ xc1αv1y � ρ xc1αws1
α y in Model 2

k Specific turbulent kinetic energy

K � 1
2g

abbab Mean curvature of a surface

L � gradv Spatial velocity gradient

LT Transpose of L

rLs � 104 � 106 m Horizontal length scale

M,M� Mass flow through a singular surface (in (126))

M
eros/dep
b Erosion and deposition mass flow through the basal surface

Mb,M
α{f
b Mass flow through the basal surface (in (191))
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n Average porosity within the detritus layer

n Unit normal vector to a surface

nb The unit normal vector to the basal surface pointing into the flowing material

ns The unit normal vector to the free surface pointing into atmosphere

N Number of constituents α

N� Limit index for α determining dN� such that α classes for which d�α   dN�

are erosive sediment classes

N � νt{rf srH2s � 10�6 � 101 Dimensionless kinematic turbulent viscosity

p Mixture pressure

patm Atmospheric pressure

pd Dynamic mixture pressure (see (22))

pst (Quasi)-static pressure (see (22))

P , Pα Fraction of time during which a sediment particle is suspended by the flow;

P - surface pressure function (in (181), (182))

Px, Py, Pz Cartesian components of the average pressure work P

PpT q
ε � rφpT qs{ρ�rf srcvsr∆T s Power working parameter

P
pT q
h � rφpT qs{ρ�rf srcpsr∆T s Power working parameter

Ppcαq � rφpcαqs{ρ�rf srcαs Dimensionless constituent mass production parameter

P � xp1v1y Pressure velocity correlation

Px, Py, Pz Cartesian components of the pressure velocity correlation P

q Heat flux vector

Qε,hx,y,z Cartesian components of the heat flux vectorsQε,Qh

Qatm
K � Qatm

K � ns Atmospheric heat flux through the water surface

Qatm
ir Radiative atmospheric heat flow at the water surface

Qwater
ir Radiative water heat flow at the water surface

Q` Latent heat flow between water and air

Qs Sensible heat flow between water and air

QK Geothermal heat from the rigid bed
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Qε Laminar +turbulent heat flux:

� x q y � ρ0 x ε1v1y in generalized BOUSSINESQ model,

� x q y � ρ x ε1v1y in Model 2

Qh Laminar +turbulent heat flux:

� x q y � ρ0 xh1v1y in generalized BOUSSINESQ model,

� x q y � ρ xh1v1y in Model 2

Qatm
K Atmospheric heat flux vector through the water surface

r Position vector of a point on a surface

Re � pwsαdαq{ν Particle REYNOLDS number of sediment class α

Re�c � pu�dq{ν Critical particle REYNOLDS number

Ri RICHARDSON number

Ricrit Critical RICHARDSON number

Ro � rV s{rf srLs � 10�4 � 100 ROSSBY number

Rxx, . . . Components ofR with respect to a Cartesian coordinate system

R Laminar + turbulent mixture stress tensor:

� xσEy � ρ0 xv1 b v1y in generalized BOUSSINESQ model,

� xσEy � ρ xv1 b v1y in Model 2

RS � xσSy � µ xv1S b v1Sy Laminar + turbulent surface mixture stress tensor

s Constant salinity; parameter in the representation (202) of νmean

spx, y, tq z-coordinate of the free surface: z � spx, y, tq

sf Supply rate density of the physical bulk quantity f

sfS Supply rate density of the physical surface quantity fS

S Surface

Sb Basal surface

Ss Free surface

t Time

T Temperature measured in KELVIN or Celsius scales

T0 Reference temperature in energy/enthalpy constitutive relation (44)
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T � � 4�C Reference temperature in the law (46) of the water density ρw

T̃ , T̃α Function of shear velocities (in (158), (165))

u Mixture velocity component in the x-direction

u� � pgν{∆q1{3 Critical shear velocity

umax Maximum value of the velocity u within the detritus layer in the linear

representation (199)

uτc �
a
τc{ρ Critical wall shear velocity

uτw �
a
τw{ρ Actual wall shear velocity

U � w � n Displacement speed of an unspecified singular surface

Ub Displacement speed of the basal surface

v Mixture velocity component in the y-direction

v Barycentric velocity vector

vα Velocity vector of sediment class α

vf Fluid velocity

vsα Velocity vector of a representative particle in sediment class α

vH Horizontal component of the barycentric velocity at the basal surface Sb

vwind Wind velocity at the water surface

vwind
H Horizontal component of the wind velocity at the water surface

vS Velocity of a material point moving on a surface

vS‖ Component of vS tangent to the surface

vSα Velocity of a sediment material point in class α which moves on the basal surface

pvSαq‖ Component of vSα tangent to the basal surface

rV s � 10�2 � 101 m s�1 Horizontal velocity scale

w Mixture velocity component in the z-direction

wsα Terminal fall velocity of a particle of sediment class α

w1, w2 Components of the surface velocity w with respect to τ 1, τ 2

w Surface velocity of a moving surface

ws
α � �pvsα � vq Negative of the relative velocity of a representative particle in

sediment class α vs. the barycentric motion
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rW s Vertical velocity scale

x x-coordinate of a Cartesian coordinate system

x Position vector in R3

X Position vector of a surface material point in a reference configuration

y y-coordinate of a Cartesian coordinate system

z z-coordinate of a Cartesian coordinate system

Greek Symbols

α Counting index for the sediment classes

α̃ � 6.493� 106 K�2 Thermal expansion coefficient of water

β Parameter arising in the formula for wsα in equation (70)

λpµ, kq Exponent coefficient in formula for Λ

Γc
ab CHRISTOFFEL symbols

∆ Ratio of submerged sediment density to water density (� ρs{ρ� 1);

local grid spacing scale in SMAGORINSKI viscosity (222)

r∆T s � 10� C Temperature scale

ε Specific internal energy

ε0 Reference specific internal energy

ε Turbulent specific energy dissipation (� 4ν` xIID1y);

parameter in the representation (202) of the volume fraction ν

ε0 Parameter in the boundary layer representation of ε

η Specific entropy

θ A tilt angle (see (11))

θc Critical SHIELDS parameter (also called τ�c )

θ1w Root mean square turbulent fluctuation of wall shear stress

Θpz, tq Temperature profile at the deepest position of the lake domain

κ Thermal conductivity

λαβ pN �Nq-matrix for species mass flux α due to sediment class β
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µ Dynamic viscosity of the bearer fluid;

surface mass density of the mixture moving on the basal surface

µα Surface mass density of sediments in class α moving on the basal surface

µf Surface fluid mass density

µ0, µ1 Constant coefficients in (182)

ν Kinematic viscosity of the bearer fluid � µ{ρ;

volume fraction within the detritus layer

νmean � °α ν
α
mean Mean averaged sediment volume fraction in the detritus layer

ναmean Mean averaged volume fraction of the sediments α in the detritus layer

νtop/bottom Parameters in the representation (202) of the volume fraction ν

νmin/max Minimum and maximum values of the volume fraction ν in the linear

representation (199)

νcrit Critical sediments volume fraction in the detritus layer

ν`, νt Laminar, turbulent kinematic viscosities of the mixture

νSGS SMAGORINSKI turbulent viscosity

ξ1, ξ2 Parameters on a surface

πf Specific production rate density of a physical bulk quantity f

πfS Specific production rate density of a physical surface quantity fS

πk Specific production rate density of turbulent kinetic energy

πε Specific production rate density of turbulent dissipation

Π � rf srLsrV s{rcpsr∆T s � 10�7 � 10�2 Pressure work parameter

ρα Mass density of constituent α

ρ̃f � nρf Mass density of the interstitial fluid (porosity� true density)

ρ � °α ρα � ρ̃f Mixture density

ρs � 2100 kg m�3 Buoyancy corrected density of the suspended sediment

ρf True mass density of the interstitial fluid

ρ� = 1000 kg m�3 Reference density of water at 4� C

ρbed Mass density in the rigid bed immediately below the basal surface
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ρbed
α Mass density of particles in class α in the rigid bed immediately below

the basal surface

ρbed
f Mass density of fluid in the rigid bed immediately below the basal surface

ρ0pzq Steady density function describing vertical ground stratification

ρdpx, tq � ρ� ρ0pzq The excess of mixture density over the steady density ρ0pz)

ρwpT, sq Natural water density as function of temperature and salinity

σ Standard deviation; dimensionless mixture density

rσs � 10�3 Scale for density variations of water; density anomaly

σT PRANDTL number of heat

σcα SCHMIDT number of species α

σk PRANDTL number of turbulent kinetic energy

σε PRANDTL number of turbulent dissipation rate

σ (CAUCHY) stress tensor

σE Extra (CAUCHY) stress tensor of the mixture ((CAUCHY) stress deviator)

σatm (CAUCHY) stress tensor at the water surface

τ 1, τ 2 Tangent vectors to a surface

τc Critical shear traction

τ�c , pτ�c qα � τc{∆ρ g d (dα) Critical shear traction (dimensionless)

τw Shear stress on the basal surface

τwind Wind shear traction at the water surface

τwind
H � pτwind

xz , τwind
yz q Horizontal shear traction components

ϕ Latitude angle; angle of internal friction (water submerged)

φp VAN RIJN’s erosion rate per unit mass, area and time

φpT q Laminar + turbulent internal energy/enthalpy production rate density

� tr xσEyxDy � tr xσ1ED1y � xp1div v1y

φpcαq Production mass density of sediment class α

rφpT qs Scale for energy/enthalpy production density rate

rφpcαqs Scale for production of mass density of tracer α
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φf Flux density of a physical bulk quantity f

φfS Flux density of a physical surface quantity fS

φk Flux of turbulent specific kinetic energy k

φε Flux of turbulent specific energy dissipation ε

χ
pT q
` , χ

pcαq
` Laminar kinematic heat/species mass diffusivities

χ Function describing the motion of a material point on a surface

ψ � ε� Tη HELMHOLTZ free energy

ψa
; b Covariant derivative of the surface vector field ψ

ψE Parameter in EINSTEIN’s erosion rate formula

ψY Parameter in YALIN’s erosion rate formula

ψZ Parameter in ZANKE’s critical shear stress

Ω, Ω Angular velocity of the Earth

Miscellaneous Symbols

x � y Turbulent averaging operator

xx � yy�x � y Statistical averaging property of the REYNOLDS filter

t�u x ρp�q y{xρy FAVRE filter (barycentric)

x f y Turbulent average of f

f 1 Turbulent fluctuation of f

rr f ss � f� � f� Jump of f across a singular surface

IA � trA First invariant ofA

IIA � 1
2

�
IA2 � pIAq2

�
Second invariant ofA

IIIA � detA Third invariant ofA

IIε,kσ1 Parameters in the boundary layer representation of ε and k

∇Sf, Grad f � B f
B ξa τ

a Surface gradient

Div Surface divergence: Divv � B v
B ξa � τ

a , DivT � B T
B ξa τ

a
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Abstract 

The assessment of sediment transport and involved processes is a major issue in hydraulic and river 

engineering. The common approaches for the determination of sediment transport rates are mostly based 

on empirical relations. Since these approaches are not able to describe the underlying physics in detail, 

they are not suitable to study the generally complex sediment transport processes. However, numerical 

models which are able to reproduce and to resolve the involved processes are not very common, since 

they would have to imply the rather complex fluid-sediment interaction. In the present work, a numerical 

model which is based on a Lagrangian approach with force-coupling, namely the combination of two 

meshfree particle methods, is presented. The fluid is modelled by a continuum approach which is 

discretised by the Smoothed Particle Hydrodynamics method. The sediment particles are represented 

by discrete elements, where the interactions between the discrete sediment grains are modelled by a 

force law, which is also able to account for various kinds of friction. A similar approach is applied to 

the interaction between the fluid and sediment particles. The definition of the interface and the exchange 

of forces between the fluid and sediment grains are inherent to the applied approaches. Thus, the 

application of special techniques to describe a movable or deformable interface as used for grid-based 

methods is not necessary. The satisfying simulation results demonstrate the potential of the presented 

model for the detailed investigation of sediment transport processes as well as for complex practical 

applications. 

1 Introduction 

Investigations of river morphology have mainly an experimental background. The processes involved 

in sediment transport, as the inception of motion, the transport itself and the deposition of sediment, are 

usually reduced to empirical relations and are combined in the form of a transport formula. Especially, 

the common concept of incipient motion, where the motion of sediment depends on a threshold 

condition, has to be questioned. Alternative approaches based on probability distributions used to 

describe the state of the sediment seem to be more reliable, since their concept corresponds to the natural 

continuous motion of sediment. Furthermore, the driving forces acting on the sediment, which actually 

cause the transport, are usually derived from averaged flow quantities. These approaches are useful and 

of great importance for engineering practice, but they only allow for the determination of a temporally 

and spatially averaged sediment transport. For river engineering problems, where the morphological 

development plays an important role, a variety of numerical tools exists. These are able to simulate 
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sediment transport from a local to a regional scale with satisfying accuracy as far as sufficient data for 

their calibration is available. By the application of modern numerical tools it is nowadays possible to 

resolve the flow field, i.e. the water phase, in detail. However, depending on the resolved scales, the 

gained advantage will be lost due to the rather approximate approach for sediment transport, i.e. the 

solid phase of the water-sediment mixture flow. In the last decades, many researchers tried to overcome 

the shortcomings of physics in the common approaches, however, with limited success. Despite 

investigations using state-of-the-art measuring techniques and providing an in-depth view of acting 

forces at the sediment bed, a reasonable approach, which does not need calibration but is still convenient 

for practical application, does not seem to be available in the near future. However, such kinds of 

investigations highlight the complexity of the involved processes and the sediment transport per se. 

Furthermore, the detailed experimental data may serve for the validation of advanced numerical models. 

Because of the availability of increasing computational resources, the application of numerical models 

for the investigation of the mechanics of sediment transport becomes more and more popular. Such 

numerical tools are rather sophisticated, since they have to be able to model the interaction between the 

fluid and the sediment grains as well as the interactions between the grains themselves. Such models 

also have to include friction to correctly reproduce the constitutional behaviour of the sediment and the 

different modes of bed load transport, as sliding, rolling and saltating. One of the main challenges in 

developing such approaches is the appropriate modelling of the movable interfaces between the fluid 

and the sediment grains and the exchange of forces. Although several different numerical techniques 

exist which are suitable for such problems, they often have deficits concerning efficiency or accuracy. 

Furthermore, many common numerical approaches for the simulation of fluid flow use computational 

grids for the spatial discretisation, which may reduce the flexibility for the modelling of arbitrary 

geometries and lead to quite complex schemes for movable boundaries. However, when it comes to 

three dimensional applications, the main handicap of these approaches is the computational expense 

necessary to obtain qualitatively good results, and the use of high performance computing seems to be 

inevitable. 

In this article a novel modelling approach is presented, which is able to simulate sediment transport and 

reproduce the involved processes in detail. To reduce the complexity of this challenging task, the 

primary focus of this work is on bed load transport. Since the involved physical processes rely on fluid 

and rigid body dynamics, numerical discretisation techniques are applied, which account for the distinct 

characteristics of these disciplines and which allow for flexible modelling of fluid-structure interaction. 

Thus, the combination of two meshfree particle methods, namely the Smoothed Particle Hydrodynamics 

method and the Discrete Element Method, is considered. These are able to model the different properties 

of the fluid and the sediment as well as their interaction without the need for a computational grid. 

Furthermore, this hybrid approach allows for the description of the processes of bed load and the 

corresponding transport modes by discrete forces. The successful application of the model to various 

problems shows the potential of this approach for the numerical simulation of bed load transport. The 

model is a suitable numerical research tool and may serve for future investigations, especially with 

regard to increasing computing power. 
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2 Basic Considerations 

2.1 Bed Load Transport  

The mechanism of bed load transport is described by processes occurring in the upper-most layer of the 

river bed. Sediment grains are moved in different forms due to stream forces or strikes of other grains 

in motion (Bagnold (1941)). The transport modes are comparable with Aeolian transport which can be 

observed at sand dunes in deserts; grains move in flow direction by saltating, or, which is less usual, by 

rolling or even by sliding along the bed (Fig. 2-1). The distinction between transport in the form of 

saltation or in suspension is not obvious. Bagnold (1973) defines transport of a solid in suspension as a 

state in which the excess weight of the solid is compensated by a random succession of upward impulses 

due to eddy currents of fluid turbulence moving upwards relative to the bed. Therefore, the solid may 

remain out of contact with the bed for an indefinite period depending on the random nature of turbulence. 

In contrast, saltation as well as bed load transport in general may be characterised as motion with 

successive contacts between the grains and the bed. 

 

 

Fig. 2-1: Modes of bed load transport 

Church (2006) gives an overview on the different sediment transport regimes, on the categorization of 

fluvial sediments as well as on the relation of bed load transport and morphology in alluvial rivers. A 

quantitative distinction between bed load and suspended load can be found in Murphy and Aguirre 

(1985). 

 

2.2 Incipient Motion 

The topic of incipient motion - the onset of transport of sediment - has been studied by many researchers 

in the last hundred years or so. In most cases, the goal was to define a threshold for sediment motion 

which is an essential premise for the estimation of sediment transport in alluvial rivers. The main 

motivation for the investigations was and still is the development of a transport relation to asses bed 

load discharge in rivers that serves as essential tool for river engineering works. The methodology to 

find a criterion for the threshold is usually based on theoretical investigations or visual observations as 

well as measured reference bed load transport rates, acquired in a laboratory flume or in a natural river. 

Consequently, in engineering practice the rate of sediment transport is calculated with empirically based 

transport equations which are usually defined as a function of a certain threshold. From a physical point 

of view it is obvious to express a threshold condition in terms of stream force. Thus, approaches based 

only on the mean flow velocity seem not to be reasonable because they do not account for flow depth 

and turbulence. Thus, the criterion for incipient motion is usually determined by threshold quantities 

saltating rolling sliding
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like the critical bed shear stress ct , the critical shear velocity *cu or the amount of the critical lift force 

c cL LF F=


. Dey and Papanicolaou (2008) provide a review on the different concepts. 

A very common approach for the definition of incipient motion was introduced by Shields (1936). Based 

on the consideration of equilibrium of moments and dimensional analysis, he proposed to express the 

dimensionless critical shear stress *
ct  as a function of the grain or particle Reynolds number. This 

finding may be formulated in terms of critical values (see e.g. Yalin (1977)) for a grain of size sd  as 

 * * * *(Re ) , Rec c s
c c c

s

u d
f

gd

t
t

r n
= = =


 , (2.1) 

where ( )s fr r r= -  is the density difference between sediment (subscript s) and fluid (subscript 

f), g  is the gravitational acceleration, *Rec  is the critical particle Reynolds number, n  is the kinematic 

viscosity. The dimensionless critical shear stress *ct  (also denoted as the critical Shields parameter cq ) 

and the critical shear velocity *cu  were determined by observations in a laboratory flume. However, 

the definition of the point of inception is not clear and varies considerably among the various studies. 

This means that in practical cases of turbulent flow there is no single criterion for the beginning of 

movement of sediment. Buffington and Montgomery (1997) give an extensive review on the issue.  

Due to the ambiguity in the determination of a value for the critical shear stress and to account for the 

random nature of turbulence and sediment movement, some researchers developed approaches which 

describe and quantify an observable state of motion, rather than a hypothetical state of zero movement. 

These kinds of approaches are termed probabilistic or stochastic. One of the first derivations of a 

stochastic concept for bed load transport was presented by Einstein (1937) within his doctoral thesis. 

Einstein (1950) defined the pickup probability for a particle as “the probability of the dynamic lift force 

on the particle being larger than its weight (under water)”. For the evaluation of the pickup probability 

ep , he derived theoretically the following formula: 
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= - ò  (2.2) 

where *
* 1Y = bt  is the flow intensity with dimensionless shear stress *bt , 0 0.5h =  is the standard 

deviation and t  is the only variable of integration. The constant * 1 7B =  was obtained for uniform 

sediment by using the data of Meyer-Peter et al. (1934) and others. The non-central probability density 

function (abbreviated as pdf) on the right hand side of equation (2.2), i.e. the definite integral of the 

Gaussian normalized by its total area p , can be interpreted as the probability for a particle being 

stationary for a given flow intensity *Y . A solution for the integral in closed form in terms of elementary 

functions does not exist but can be gained by approximation. Cheng and Chiew (1998) reviewed 

approximations of different authors and Wu and Lin (2002) provide improved approximations for the 

probability distribution with application of a log-normal pdf for the instantaneous velocity at the bed 

and appropriate values for the lift coefficient best fitting experimental data. Further enhancements for 

smooth turbulent flows were contributed by Wu and Chou (2003), who, apart from lifting also 

considered rolling probabilities and defined the mean total probability of entrainment as the sum of both. 

The results reveal that a distinct probability for the critical state of sediment entrainment cannot be 

found, i.e. a critical shear stress does not exist. This finding is also acknowledged by other researchers 
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(see review by McEwan and Heald (2001)). Further refinement of the approaches noted above can be 

found e.g. in Wu and Yang (2004) or Hofland and Battjes (2006). 

 

The fundamental different views of the two approaches described above for incipient motion - the 

conventional threshold criterion according to Shields and the stochastic or probabilistic approach - are 

depicted in Fig. 2-2. The first is most commonly applied in river engineering due to its simple use. 

However its correct application requires calibration and experience, especially because of the explicit 

form of the motion threshold. Besides Einstein’s or comparable subsequent work, the latter is still 

subject to current research driven by new measurement techniques allowing for a more and more 

detailed insight into the flow properties. For both, useful bed load transport formulas exist. 

 

Fig. 2-2: Comparison of the two different concepts for particle motion 

In addition, Fig. 2-2 shows a classification according to the state of the majority of the particles in 

direction of the flow intensity and the motion probability, respectively, which is valid for both models. 

In Bagnold’s sense (Bagnold (1936)), the expression ‘undisturbed’ describes a particle which has not 

been displaced, whereas a particle that is displaced and then is resting is called ‘disturbed’. Furthermore, 

the rather undefined state of permanent motion, where max=bt t  and 1ep = , can be interpreted as 

transition from bed load to suspended transport, ending up in hyperconcentrated or debris flow.  

 

2.3 Fluid and Rigid Bodies 

Two effects are crucial for a correct simulation of the different transport modes of rigid bodies in fluids 

(see Fig. 2-1). On the one hand, applied forces and torques on spheres occur due to their interaction. On 

the other hand, the applied forces and torques due to the presence of the fluid and its flow also play an 
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important role. By way of illustration, both effects are composed in Fig. 2-3. In this section the basic 

hydro-mechanical forces are introduced from an integral and partially empirical point of view. Notice 

that for the present work, rigid bodies are considered as spheres for the sake of simplification. The 

approaches for the modelling of the detailed particle interaction forces are introduced in section 4.2. 

 

 

Fig. 2-3: Acting forces at a river bed consisting of spheres. The depicted velocity distribution ( )u z  is based on 

the logarithmic law for wall-bounded turbulent flow. 

2.3.1 Hydrostatic Forces 

The effect of buoyancy, also known as Archimedes’ principle, occurs when a body has surfaces in 

contact with the fluid which have a normal with a non-zero component in downward direction. The 

buoyancy force bF


 is due to the pressure difference above and below the immersed body and is 

equivalent to the weight of the fluid displaced by the body. The use of an appropriate model allowing 

for fluid between the spheres of the channel bed (as illustrated in Fig. 2-3) and including buoyancy 

effects correctly may be crucial in order to obtain reliable simulations of bed load transport. This is also 

affirmed by the fact that the hydrostatic pressure distribution is implicit in the definition of the Shields 

parameter (see equation (2.1)). The effect of non-hydrostatic pressure distributions on bed load transport 

has been pointed out e.g. by Francalanci et al. (2008) and is discussed in the next section. 
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2.3.2 Hydrodynamic Forces 

The force drF


 acting in the direction of relative motion of a body immersed in a fluid is called drag or 

fluid resistance. In other words, drag is the force in the direction of relative motion that has to be applied 

to move a body through a stagnant fluid or to keep the same body at rest in case of fluid flow (the weight 

of the body is neglected). The drag is made up of two contributions, namely the pressure drag arising 

from the non-uniform pressure distribution on the body and the skin friction drag due to shear stresses 

on the body surface. Besides the drag force but with the same origin, the second component of the force 

exerted on an immersed body due to fluid flow is the lift force lF


 acting perpendicular to the direction 

of relative motion. 

For the flow over a channel bed made of spheres, as depicted in Fig. 2-3, the nature of the drag and lift 

forces is rather complex. Close to the rough boundary, the velocity is not uniform and the flow is 

turbulent. Since the acting pressure is a combination of hydrostatic and hydrodynamic pressure, the lift 

force may be reduced to a pressure difference that occurs due to the turbulent effects on the side of the 

sphere facing the flow; which has been measured by Einstein and Elsamni (1949) for hemispheres, by 

Dwivedi et al. (2010) for spheres, by Detert et al. (2010) for spherical as well as mixed sediments and 

by Smart and Habersack (2007) for natural gravel in a river, for example. Investigations into the drag 

force exerted on a sphere set on top of a bed of closely packed spheres have been carried out by Coleman 

(1972). He concludes that the drag coefficient function for this situation corresponds with the function 

for a sphere in free fall. Schmeeckle et al. (2007) studied the situation of a sphere surrounded by other 

spheres without contact and for different exposure of the sphere to the flow. For decreasing exposure 

the drag force also decreases due to sheltering by the other particles while the lift force increases. The 

residual drag which exerts forces on the sphere can cause angular momentum; this is not covered in the 

mentioned study, but may be of importance in the process of particle entrainment. 

For open channel flow, the most common engineering approach is to express the forces close to the bed 

by temporally and spatially averaged quantities, i.e. the bottom shear stress bt  or the shear velocity *u  

(cp. section 2.2). However, the quantities which entrain and move sediment are neither bed shear stress 

nor any other average characteristic of the flow, but instead the fluctuating forces, such as lift and drag, 

exerted directly by the flow on the particles, as stated by Schmeeckle et al. (2007). Thus, a force 

expressed in terms of bF At=  is a rough simplified model of reality. The hydrodynamic forces 

discussed herein certainly play an important role for the incipient motion or entrainment of sediment 

particles, but peak values of the forces may not be sufficient. The duration of the peak values is also a 

significant factor as pointed out by Valyrakis et al. (2010). Therefore, they conjectured that impulse, 

rather than just the magnitude of hydrodynamic forcing, is relevant to the description of the incipient 

motion phenomenon. 

 
  



 

174 

2.4 Modelling Approach 

The modelling approach applied in the present work comprises the representation of the gravel bed and 

the water flow by particles which interact with each other. Therefore, Lagrangian methods, also called 

meshfree or particle methods, are applied to both the hydrodynamics and the bed load transport, which 

allows for a homogeneous discretisation of the underlying equations of motion. In other words, for 

discretisation of the computational domain and the multi-phase system, basically the same kind of 

approach is used; however with respect to the distinct properties of each phase, different methods are 

applied. The single grains of the gravel bed are modelled by discrete elements in the form of rigid spheres 

and their motion and interactions are resolved by application of the Discrete Element Method (DEM). 

For the water flow, i.e. the hydrodynamic equations, a continuum approach, namely the Smoothed 

Particle Hydrodynamics (SPH) method, is applied. The modelling approach used is depicted in Fig. 2-4. 

 

Fig. 2-4: Representation of (a) water flow and gravel bed by (b) SPH and DEM particles, respectively. 

The primary advantage of this approach relies on the fact that any phase interface or fluid-structure 

coupling as well as interaction between solid objects is treated on a particle to particle basis. The basic 

difference between grid-based methods and meshfree methods is that no grid is necessary for the 

discretisation of the computational domain. For meshfree methods, a set of arbitrary distributed particles 

is used which represent the nodes required for the spatial discretisation. This permits to overcome many 

of the problems arising from the use of a computational mesh, especially the treatment of movable 

boundaries and the generation of grids. Furthermore, meshfree methods seem to be a promising approach 

for the simulation of fluid-structure interaction as discussed in this paper. An overview on some common 

meshfree methods is given by Huerta et al. (2004), Nguyen et al. (2008) and Koumoutsakos (2005) 

shows the potential of particle methods for multi-scale flow simulations. For the present work, the 

simulation software Pasimodo, which is a multi-purpose particle simulation tool developed by Fleissner 

(2010), is used (see also Lehnart (2008), Fleissner et al. (2010)). 
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3 Governing Equations 

3.1 Fluid Flow 

3.1.1 Euler equations 

For the present work, a simplification of the Navier-Stokes equations is applied, where the fluid is 

considered to be inviscid. The assumption of an inviscid fluid may be appropriate for convectively 

dominated flows with large Reynolds number (ratio of inertial force to viscous force) where laminar 

boundary layer effects do not have a significant influence. The corresponding equations are called Euler 

equations. Note that their general formulation is for a compressible fluid. They consist of the 

conservation of mass and the conservation of momentum, 

 ( ) 0f
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where fr  is the density of the fluid, u


 is the flow velocity, p  is the pressure and ef


 are applied external 

volume forces  per unit mass. 

3.1.2 Lagrangian Form of the Euler equations 

For the derivation of the conservation laws in the previous sections the time-dependent quantities, i.e. 

density, velocity and total energy, were considered as infinitesimal parts of a continuum. From the 

Eulerian viewpoint which is well-established in computational fluid dynamics, their time rate of change 

has to be evaluated at fixed points, e.g. at ( )i jx y  as depicted in Fig. 3-1. Hence, the history of a 

quantity is limited to these points and it is generally not possible to track the path of a fluid particle. 

 

 

Fig. 3-1: Eulerian (a) and Lagrangian (b) viewpoint. 

An alternative viewpoint is the Lagrangian description; it can be regarded as a natural extension of 

particle mechanics. The fluid is considered to consist of material particles that move with the flow. Each 

particle is identified by its initial position ,0ir


 and a quantity carried with the particle is given in 

Lagrangian variables by 
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 ( ),0,L ir tY = Y


 . (3.3) 

The position ir


 of a particle can be obtained by its path function or trajectory ir  (Fig. 3-1b), 

 ( ),0,i i ir r r t=
   . (3.4) 

 

Based on the path function, the velocity, i iu r t= ¶ ¶
   and acceleration, 2 2

i ia r t= ¶ ¶
   of a particle 

can be defined. With this approach, the history of a particle can easily be tracked. However, since the 

Lagrangian analysis of fluid flow is usually quite difficult it is rarely applied. Nevertheless, when the 

fluid is discretised by particles, the use of the Lagrangian approach is reasonable. Therefore, a time 

derivative for Eulerian variables is introduced that can be evaluated for a moving particle, called the 

substantive or material derivative, 
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By application of the substantial derivative, the Euler equations can be written in Lagrangian form as 
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The energy conservation equation has been omitted, since for the present work the fluid is considered 

to be isothermal water at 20° C. Thus, the fluid is a liquid that generally can be regarded as 

incompressible. Nevertheless, under specific circumstances it may be necessary to take the small 

variation of density with change of pressure into account. Therefore, Batchelor (2005) presented an 

equation of state for water. A similar relation is useful to obtain an approximate solution of the Euler 

equations as discussed in section 4.1.4. 

 

3.2 Motion of Rigid Bodies 

3.2.1 Equations of Motion 

For moving bodies Newton’s laws apply. The three laws describe the relation between the acting forces 

and the motion of the body. Newton’s first law states that a body with mass m  at rest will stay at rest 

or the same body with velocity v


 will not change its velocity, if no unbalanced force acts on the body. 

The state of a body in motion can be described by its linear momentum as 

 p mv=


 . (3.8) 

Accordingly, the time rate of change of linear momentum, if not zero, demands an acting, non-balanced 

force aF


. This fact is postulated by Newton’s second law which reads for constant mass 

 a
dp dv

m ma F
dt dt

= = =
 

 , (3.9) 

where 

a  is the acceleration of the body. Newton’s third law describes the interaction of two bodies in 

contact; it is also called the law of action and reaction. Based on this third law, Newton derived the 
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conservation of linear momentum that is elementary for the description of colliding bodies. In the 

absence of dissipative forces due to deformation, it states that the sum of linear momentum of the 

colliding bodies before and after collision is constant, i.e. linear momentum is conserved.  

Newton’s laws are said to deal with point masses; they describe the translational motion of an extended 

body only, while its rotation is not covered. Therefore, Euler introduced equations that describe the time 

rate of change of angular momentum; they are called Euler’s equations (not to be confused with the 

homonymous equations for fluid dynamics from the same author introduced in section 3.1.1). In analogy 

to equation (3.8) for linear momentum, angular momentum reads 

 L w= I
 

 , (3.10) 

where w


 is the angular velocity and T=I I  is the tensor of moment of inertia in the fixed principal 

frame of the body. Similar to Newton’s second law, the time rate of change of angular momentum is 

caused by the applied torque aM


. Accordingly, the dynamic Euler equations read in the general vector 

form 

 ( ) a
d

M
dt

w
w w⋅ + ´ ⋅ =I I
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 (3.11) 

Equations (3.9) and (3.11) are the equations of motion and actually the conservation laws for linear and 

angular momentum. They describe the time dependent motion of a body due to applied forces and 

torques and can be solved for their time dependent terms, i.e. the linear, dv dt


, and angular, d dtw


, 

accelerations (see e.g. Fleissner (2010)). 

3.2.2 Applied Forces and Torques 

For a modelling approach like the discrete element method, the forces ,


a iF  and contact torques ,


a iM  

applied on a particle i  are the sum of contact forces ,c ijF


 and torques ,


c ijM  due to interacting particles 

j  plus external forces ,


e iF  or torques ,


e iM , respectively, 
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The forces acting on a sphere surrounded by other spheres are depicted in Fig. 2-3. The contact forces 

are split into components normal and tangential to the contact surface and are treated differently 

depending on their orientation. The primary contact or interaction forces act normally to the contact 

surface (normal forces). If the body is a sphere, they will only apply as a concentric force and thus not 

cause a torque at the centre. Force laws used to model the interaction of rigid bodies in terms of spheres 

are discussed in section 4.2.2. The secondary contact forces act tangentially to the contact surface and 

are due to friction (tangential forces). In most cases they lead to a torque. Two kinds of friction are 

distinguished, namely static and kinetic friction. In a static system, tangential forces due to static friction 

may be of importance, e.g. for a block on an inclined ramp. This effect can also be observed at sand 

piles. Kinetic or slip friction occurs when bodies interact with relative lateral velocities. Kinetic friction 
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depends on the material properties of the interacting bodies and the normal force acting between them. 

Friction forces as used in this work are briefly discussed in section 4.2.3. 

Besides contact forces, also external forces have to be considered. The main external force is due to 

gravity. Assuming a constant acceleration of gravity of ( )0, 0,g g= -


 with 9.81g =  [m/s2], the 

weight of a rigid body is given by 

 = =
  
gF V g mgr  , (3.14) 

where m  is the mass of the body, V  is its volume and r  its density. 

4 Numerical Methods 

4.1 Smoothed Particle Hydrodynamics 

4.1.1 General 

Monaghan (2005b) describes the basic idea behind SPH as replacing the fluid by a set of points that 

follow the motion of the fluid and carry information about the properties of the fluid. These points can 

be seen either as interpolation points for the discretisation of the governing equations or as real material 

particles. Monaghan (1994) applied the method to free surface flows and demonstrated that SPH requires 

no explicit treatment of the free surface. In contrast, other methods like finite difference or finite volume 

schemes need special approaches that would require very fine meshes or adaptive grids for the modelling 

of complex flow with one or several convoluted free surfaces. Furthermore, the interaction with rigid 

bodies or boundaries can be handled as particle to particle interaction without the need of additional 

tracking or capturing of the movable interface. An example which illustrates these capabilities is 

depicted in Fig. 4-1. Overviews about SPH can be found in Monaghan (2005a), Monaghan (1992) or 

Liu and Liu (2003) for example. Compared to established numerical schemes like the Finite Difference 

Method, the SPH method is still under development. It has been improved by contributions of many 

researchers during the last two decades and the number of applications increases continuously. 

Nevertheless, one of the main and well-recognised drawbacks is the high computational cost when it 

comes to 3D applications, especially when a fine special resolution is desired (Gomez-Gesteira et al. 

(2010)). 

    

Fig. 4-1: Impacting of a sphere on a free surface simulated with the presented approach (Vetsch (2012)). Colour 

indicates the vertical velocity: lighter negative, darker positive with respect to the z-direction. 
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The standard SPH method (Monaghan (2005a)) used in this work is also termed “weakly compressible 

SPH” (WCSPH), because the computation of the pressure is based on an equation of state for water. 

This approach is suitable for flows where relative density variations range within 1% (see Monaghan 

(1992)). Some draw backs are for instance pressure fluctuations and long computation times. The latter 

are due to the used CFL condition that depends on the velocity of sound (or a propagation velocity 

specific to a problem) instead of the fluid velocity. The velocity of sound is usually many times larger 

than the maximum velocity of the fluid. To circumvent these problems, a different approach has been 

introduced by Cummins and Rudman (1999) for flows without free surfaces and has been extended by 

Shao and Lo (2003) to free surface flows. This alternative approach is often termed “truly 

incompressible SPH” (ISPH). Instead of an equation of state, a Poisson equation is used to predict the 

pressure. The approach to solve the Poisson equation is similar to grid-based Navier-Stokes solvers. The 

different approaches to treat the compressibility of the fluid are still an open topic in the SPH 

community. By comparison of the approaches, Hughes and Graham (2010) reach the conclusion that 

WCSPH performs as well as ISPH does and in some respects even better. Alternatively, Lee et al. (2010) 

show that ISPH is superior for some cases. 

4.1.2 Particle Approximation 

Since SPH is a Lagrangian method, each particle moves with the fluid flow and carries quantities such 

as the velocity iu


, the density ,f ir  and its mass im . In other words, these quantities are only known at 

the location of the particle itself. For numerical discretisation, any quantity or function ( )rA r


 at location 

r


 can be obtained by interpolation based on a kernel function ( , )abW r h , where ab a br r r= -
 

 is the 

distance between two particles and h  is the smoothing length. For the present work, the Gaussian kernel 

with a cut-off at distance of 2h  is preferred. The Gaussian kernel has proved to be a good choice with 

regard to accuracy and efficiency and has been successfully applied in many simulations. Considering 

particles (interpolation points) with mass m , density r  and position r


 identified by indices a  and b , 

where a  identifies the particle of interest and b  the neighbouring particles with masses according to a 

volume element of the fluid ( )b b b bm r drr=
 

 and ( )b r bA A r=


, the summation interpolant can be 

written as 

 ( ) ( , )b
a a b ab

b b

A
A r m W r h

r
= å

 . (4.1) 

For example, the density can be estimated by 

 ( ) ( , )a a b ab
b

r mW r hr = å
 . (4.2) 

By using a kernel function that is differentiable, the derivative of aA  can be obtained by ordinary 

differentiation as 

 ( ) b
a a b a ab

b b

A
A r m W

r
 = å
 

 . (4.3) 

For the sake of clarity, the notation a abW


 was introduced to denote the gradient ( , )abW r h


 taken 

with respect to the position of particle a . Since the derivative in form of equation (4.3) is not very 
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accurate even for a constant function, it should not be used for practical applications. According to 

Lehnart (2008), other forms of the derivative are used that are more accurate; they depend on the 

properties of the equation to be discretised. 

4.1.3 Discrete Form of Euler Equations 

Due to the Lagrangian approach, the original partial differential equations reduce to a set of ordinary 

differential equations which can be discretised for particles according to the concept introduced in the 

previous section. Hence the conservation of mass reads 

 ( )a b
a a b a ab
b b

d m
u u W

dt

r
r

r
= - ⋅å

 
 , (4.4) 

and the conservation of momentum in its discretised form reads 

 ( )
2 2

,a a b
a ab a ab e

b a b

du p p
m W f

dt
a b

r r

æ ö÷ç ÷ç= - + + P  +÷ç ÷÷çè ø
å

  
 , (4.5) 

where ( ),ab a bP  is the artificial viscosity term (see section 4.1.5). The particles are moved by 

 a
a

dr
u

dt
=




 . (4.6) 

The index a  denotes the actual particle and index b  its neighbours within the cut-off distance. The 

properties of particle a  are mass am , density ar , velocity au


, pressure ap  and position ar


 and similar 

for neighbouring particles with index b . Equations (4.4) and (4.5) are the Euler equations discretised 

by the SPH method according to Monaghan (1992). The equation system is closed by an appropriate 

equation of state for the pressure p . 

4.1.4 Equation of State 

For WCSPH, the motion of the fluid particles is simulated based on the compressible Euler equations, 

i.e. particles may be regarded as the molecules of a gas and their motion is driven by local density 

gradients. According to the laws of thermodynamics, the pressure can be related to the density by an 

equation of state for a compressible fluid to close the governing equations. Thus, a quasi-incompressible 

equation of state is used for the present approach, which reads 

 
2
0

0

1 , ,
p

a s
a

p

c
p B B

g
r r
r g

æ öæ ö ÷ç ÷ ÷çç ÷ ÷= - =çç ÷ ÷çç ÷ç ÷è øç ÷è ø
 (4.7) 

where 0r  is the reference density of the fluid, ar  is the particle density and usually 7pg = . The 

choice of B  determines the speed of sound sc . Since the time-step size of the simulation may depend 

on the speed of sound, a rather small value of sc  compared to its effective value of ~1500 m/s is 

preferred to gain a faster simulation progress. In order to limit density variations to a maximum of 1%, 

Monaghan (1994) argues that the sound velocity has been chosen so that the Mach number of the flow 

should be 0.1 or less; this yields 

 10s refc u=  . (4.8) 
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The reference velocity refu  depends on the problem, i.e. for a dam break problem with initial water 

depth 0H  the approximate upper bound to the velocity is 02refu gH=  whereas for shallow water 

flows, where the ratio of wavelength to water depth tends to zero, the reference velocity is equal to the 

wave propagation velocity ref fu gh= . In terms of a conservative estimate, the first expression has 

been used for this work. 

4.1.5 Enhancements 

Artificial Viscosity 

The introduction of some sort of damping similar to finite difference schemes may be necessary for the 

stability of the numerical scheme. Therefore an artificial viscosity in terms of an artificial pressure 

( ),ab a bP  is introduced in the momentum equation (see e.g. Monaghan (2005a)). Even though the 

parameters controlling the artificial viscosity, a  and b , are not critical, good results were obtained for 

free surface flows by a choice of 0.01a =  and 0b =  (compare Monaghan (1994)). 

Turbulence Models 

The standard formalism of SPH was successfully applied to complex flow types such as wave breaking, 

e.g. by Landrini et al. (2007). It was shown that detailed properties of vortices can be recovered. 

According to Cottet (1996), artificial viscosity models can be seen as eddy viscosity models but 

parameters have no explicit reference to any regularization of motion, i.e. the parameters have to be 

calibrated according to the problem at hand. However, in general the approach allows for taking into 

account turbulent effects in a similar way as algebraic turbulence models. For the present work, only 

artificial viscosity was considered. An overview on SPH and advanced turbulence modelling, e.g. the 

-k e  model or Large Eddy Simulation, is given by Violeau and Issa (2007). 

Correction for Free Surface Flows 

The XSPH correction is useful to obtain better results for free surface flows (see Monaghan (1994)) or 

for immiscible multiphase flows. A correction for the velocity is introduced that leads to an adaptation 

of the particle velocity to the mean velocity of the surrounding particles, which keeps the particles to 

move more orderly. The correction term, added to the right-hand side of equation (4.6) is 

 
( )b a

a X b ab
b ab

u u
u m We

r
-

= å
 

  , (4.9) 

where ( ) 2ab a br r r= + . The parameter 0 1Xe£ £  was introduced by Monaghan (1992) and is 

usually chosen as 0.5Xe = .  

4.1.6 Time Integration and Time-Step Size 

The fluid particles are advanced in time by solving equations (4.4) to (4.6) numerically. Since these 

equations are ordinary differential equations, theoretically any stable time-stepping scheme for ordinary 

differential equations can be used. However, for dissipative systems, Lehnart (2008) proposed a 

predictor-corrector method based on the leapfrog scheme (PC-leapfrog) as presented by Monaghan et 

al. (2003).  

For the SPH method applied here, three characteristic time scales exist. The first corresponds to the 

general stability condition for numerical problems where advection is dominant, i.e. the CFL-condition. 
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It means that in the time step t  a quantity must not advance further than a given length scale. For SPH, 

the relevant length scale is the smoothing length h  and the reference velocity refu  is the higher of the 

maximum flow velocity or the specified sound velocity sc , i.e. ( )max
max ,ref su u c=


. The second 

and the third characteristic time scales restrict the time step to the maximum of acting internal and 

external forces, i.e. the viscous forces and the applied forces in terms of the maximum particle 

acceleration maxa , whereas the former is only relevant for flows with low Reynolds numbers. According 

to these considerations, the size of a time step can be obtained by the assignment 

 
2

max

min , ,s
ref

h h h

u a
t

n
a

æ ö÷ç ÷ç= ÷ç ÷÷çè ø
  , (4.10) 

where sa  is a safety factor similar to the CFL number. According to the results reported by other 

researchers, sa  lies in the range of 0.125 and 0.5 (see e.g. Lee et al. (2008)). Values around 0.25 may 

be preferred for flows with strongly varying boundary forces like those in the present work. 

 

4.2 Discrete Element Method 

4.2.1 Basic Concepts 

For simulations of interacting rigid bodies, the focus is on their contact and the balancing of the 

occurring contact forces. Cundall and Hart (1992) distinguish between hard contacts where 

interpenetration of the bodies is regarded as non-physical and soft contacts that allow for interpenetration 

(see Fig. 4-2). For solids, the first seems to be reasonable from a physical point of view since a collision 

results in surface deformation. However, a simulation model for hard contacts at least has to exactly 

track the moment of contact (the deformation of the surface would be a further task, if required). This 

usually requires the application of an iterative scheme. Hence, corresponding applications are commonly 

restricted to a rather small number of interacting bodies. If soft contacts are considered, the 

interpenetration is regarded to be an equivalent for the surface deformation. The contact forces are 

related to the displacement or the amount of interpenetration d  in general. A well-known example for 

that is the Hertz contact theory (see section 4.2.2) which describes the contact between two deformable 

spheres. Furthermore, the approach of soft contacts is the basic concept of the discrete element method, 

since it allows for stable and accurate interaction modelling of rigid bodies and can be applied to an 

almost unlimited number of particles as far as computational resources are available. An overview of 

applications in mechanical engineering is presented by Fleissner et al. (2007). Lanru and Ove (2007) 

present the application of DEM to rock engineering, Tavarez and Plesha (2007) demonstrate the 

capabilities of the method for the modelling of solid materials and Teufelsbauer et al. (2011) investigated 

the interaction between granular flow and rigid obstacles by application of DEM – to mention some 

recent applications of the method.  

 



 

183 

 

Fig. 4-2: Modelling approaches of interacting rigid bodies: collisions with and without penetration of the 

colliding bodies. 

The procedure of a DEM simulation may be outlined as follows. In a first step it has to be detected for 

each particle whether collisions with neighbouring particles will take place or not, i.e. whether 

interpenetration occurs or not. If a collision occurs, a so-called penalty force depending on the amount 

of interpenetration will be applied. With regard to a pair of colliding particles, the penetration continues 

until the forces exerted by the particles are balanced by the penalty force, i.e. when maximum 

penetration is reached. 

4.2.2 Penalty Force Models 

A common approach to model penalty forces between two colliding rigid objects is the implementation 

of a spring-damper system (e.g. Cundall and Strack (1979)). Such a system of two colliding spheres iP  

and jP  is depicted in Fig. 4-3. The spring is responsible for putting back the spheres to the state of 

contact. It exerts a penalty force ( )( )nF k d


 depending on material properties and penetration depth d  

in the direction of relative motion along the spring-damper system axis 

sde , i.e. normal to the contact 

surface, 

 ( )( ) ( )= -
 
n sdF k k ed d  . (4.11) 

A simple approach for modelling dissipation is the application of a viscous damper. The exerted force 

of the damper depends on the collision velocity = -
 
i jv vd  in the direction of the spring-damper 

system axis, 

 = -
 
d sdF d ed  , (4.12) 

where d  is the viscous damping coefficient. By adding equations (4.11) and (4.12) the collision force 

cF


 results as 

 ( )( )c n dF F k Fd= +
  

 . (4.13) 

 

The penalty force ( )( )nF k d


 can be determined using different approaches, either linear or nonlinear 

depending on ( )k d . A common linear approach is to model the spring according to Hooke’s law, where 

the spring is assumed to be perfectly elastic. Thus, ( )k cd d=  for a spring with stiffness c  and 

displacement d . A more physically motivated approach for modelling the interaction of two perfectly 

elastic spheres with frictionless surfaces is based on the contact theory of Hertz (1882). For Hertzian 

contact ( ) nk Kd d= , where K  is the generalised stiffness constant. The exponent n  depends on the 

hard contact
without

penetration

soft contact
with

penetration

before
collision

δ
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distribution of the contact stresses and is set to 1.5, as in the original work by Hertz. For two colliding 

spheres the stiffness parameter depends on the radii and the material properties, i.e. the Poisson’s ratio 

and the Young’s modulus. An in-depth description of the Hertz contact theory is e.g. given by Popov 

(2010). To evaluate the fitness of the linear and the Hertz force law, test simulations have been carried 

out. The results show that the Hertz force law is the preferred choice with regard to accuracy and 

stability. Thus, the Hertz law is used to model the penalty force between rigid spheres. 

 

Fig. 4-3: Spring-damper system for the modelling of penalty forces due to overlapping including friction. 

4.2.3 Friction 

Although friction between solid bodies is a very complicated physical phenomenon, there exists a simple 

law for dry friction that is an appropriate approximation for engineering applications. Based on 

experimental investigations, Coulomb proposed the frictional force as a function of the normal force 

multiplied by a friction coefficient. He distinguished two kinds of friction: kinetic and static friction. 

One difficulty in numerical modelling of kinetic friction is the discontinuity of the friction force at zero 

velocity, where it changes its sign. Close to the discontinuity, in reality already for small tangential 

velocities tv , relatively large forces occur. This may lead to numerical instabilities. To overcome this 

problem, the discontinuity is approximated by a continuous sigmoidal function, e.g. the hyperbolic 

tangent. Thus, the kinetic friction force reads 

 { }( )tanhRk k n t tF F v em h= -
  

 , (4.14) 

where km  is the kinetic friction coefficient, te


 is the unit vector of the tangential component of the 

relative velocity perpendicular to the normal force nF


 and h  is the slope of the function at tv = 0. Static 

friction is more complicated to model than kinetic friction. Cundall and Strack (1979) proposed a penalty 

sticking friction model that inserts a tangential spring-damper system between the bodies in contact as 

depicted in Fig. 4-3. Thus, the bodies will actually not statically stick at the contact point but will move 

constrained by the spring-damper system. The elastic force of the tangential spring-damper system is 

 ,s t t t tF c ed= -
 

 , (4.15) 

c

d

dt

ct
μk

mi mj

ri rj

δ
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where tc  is the stiffness of the tangential spring and td  is the tangential displacement. The maximum 

retaining force of the spring-damper system is given by the static friction force according to Coulomb’s 

law 

 Rs s n tF F em= -
  

 , (4.16) 

where sm  is the static friction coefficient. The combination of static and kinetic friction is called stick-

slip friction. According to Popov (2010), this is the basic process at the contact zone when rolling occurs. 

4.2.4 Time Integration and Time-Step Size 

For DEM, the size of the time step actually depends on the desired accuracy, since a correct capturing 

of the impact process is important. This may not go hand in hand with little computational efforts and a 

fast simulation progress. Therefore, use of the largest possible time step that meets the accuracy 

requirements is desired. Fleissner (2010) presents some implicit, unconditionally stable schemes for 

time integration, which dynamically adjust the time step for a corresponding state of the system. 

However, with regard to the coupling of SPH and DEM, the same explicit PC-leapfrog scheme is used. 

Thus, the size of a time step can be obtained by similar conditions as for the SPH method. The relevant 

length scale is the radius of the smallest sphere minr  and the maximum occurring velocity is taken as 

the reference velocity, i.e. 
maxrefu u=


. Furthermore, viscous forces are not considered. Including a 

safety factor sa , this leads to the following conditions for the time-step size 

 min min

max

m ,in
ref

s

r r

u a
t a

æ ö÷ç ÷ç= ÷ç ÷÷çè ø
  . (4.17) 

4.3 Fluid-Structure Interaction 

The interaction between fluid and structures, such as spheres, can be modelled in a similar way as the 

interaction of two spheres. However, different laws for the interaction as well as the friction force are 

applied. 

4.3.1 Normal Force 

To model the interaction of fluid particles with a rigid body in the same manner as molecular interaction 

seems to be a reasonable approach. Therefore, the interaction force is obtained by a so-called Modified 

Lennart-Jones (MLJ) potential suggested by Muller et al. (2004). Other than the original Lennard-Jones 

potential that leads to an infinitely large force for a particle distance towards zero, they propose a force 

law with a finite value k  of the force at the boundary. For the investigation of wall bounded flows, an 

approach depending on the particle distance to the boundary wd , i.e. the surface of the sphere, is 

preferable. Furthermore, only repulsive forces are considered (notice that the original form also includes 

attractive forces). Thus, the according interaction force reads 

 4
0 04

0

( )
)

(
(

,) ij wn w w w w
w s

k
F e

r
d d d d d

d
-

+
= £


 . (4.18) 

where sr  is the radius of the sphere and 0wd  is the maximum influence distance of the potential from 

the boundary. Please refer to Vetsch (2012) for a detail discussion on interaction laws and their 

properties. 
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4.3.2 Tangential Force 

The friction between the fluid and the surface of a sphere or triangle can be modelled in a similar way 

as the friction between solid bodies as described in section 4.2.3. However, the exerted tangential force 

is actually a viscous shear force plus effects due to the character of the surface. Thus, the friction 

coefficient depends rather on the viscosity of the fluid and the surface roughness than on dry material-

to-material properties. 

4.3.3 Time Integration for Coupled Simulation 

For the combination of DEM and SPH, the use of different time integration algorithms can lead to an 

asynchronism, resulting in an unstable simulation. Hence, the same integration scheme with identical 

parameters is preferred. Therefore, the use of the PC-leapfrog integrator for both methods is suggested. 

The time-step size is determined by a combination of conditions (4.10) and (4.17). 

5 Model Validation 

The applied models are validated by comparing the results of the test cases with reference solutions 

obtained by physical or empirical relations from the literature. If necessary, the relevant model 

parameters will be varied in terms of a model calibration until the result of the numerical experiment is 

in reasonable agreement with reference data. The applications comprise a hydrostatic buoyancy 

experiment and the settling of a rigid body in a tank filled with water. For the experiments, the size of 

the fluid particles in terms of their initial particle spacing s  is chosen several times smaller than the 

diameter sd  of the corresponding DEM particle. In the present work, this modelling approach where 

fluid particles are smaller than the rigid body, say 3ss d£ , is termed High Resolution Force Model 

(HRFM). The spheres are uniform with diameter 0.03sd =  m. The initial particle spacing and other 

parameters vary according to the configuration. The size of the smoothing length is chosen to be 

1.5h s=  , which corresponds to 29 and 123 neighbouring particles in two and three dimensions, 

respectively. Since the accuracy of SPH depends on the relation between the number of neighbours and 

the smoothing of local quantities, this is a good choice but also has its computational cost. 

 

5.1 Buoyancy 

The numerical buoyancy experiments are carried out in a small tank filled with an initially quiescent 

fluid, i.e. particles are at rest. The dimensions of the water body are: length 0.2fl =  m and height 

0.1fh =  m for the two-dimensional (2-D) discretisation and 0.1f f fh l w= = =  m in the three 

dimensional (3-D) case. Three model configurations have to be distinguished: for case A the sphere is 

located in the middle of the tank at height 0.5s fz h= , for cases B and C the sphere sits on top of fixed 

spheres arranged in a close packing. For the given cases, experiments with different resolution of fluid 

particles in terms of the initial particle distance s , hereafter referred to as particle resolution, are 

carried out as listed in Tab. 5-1. In addition, the ratio of the number of fluid particles per sphere diameter 

is given (column 2); it can be seen as an alternative indicator for the level of discretisation. Furthermore, 

the average size of the computational time step t  is listed since it depends on the smoothing length. 

The initial particle discretisations for the studied cases and the different configurations are illustrated in 

Fig. 5-1 (notice that each configuration was studied with the three different particle resolutions). 
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The resultant submerged weight of the sphere is measured by a kind of load cell connected to the sphere. 

Actually, the load cell is modelled as a fixed special particle that interacts only with the sphere and not 

with fluid particles. This special particle overlaps with the sphere and its initial position corresponds to 

a penalty force that is equal to the submerged weight. For their interaction, the linear force law is applied. 

The interaction of the fluid particles with the sphere is modelled by a MLJ potential. The distance to the 

sphere surface where the penalty force is zero is set equal to the smoothing length, i.e. 0w hd = , which 

corresponds to an active penalty force as soon as interaction takes place. The stiffness of the potential is 

obtained by evaluating a slightly modified form of equation (4.18), namely  

 
( )

4

1 eq

h r
k F

h y

æ ö+ ÷ç ÷ç= ÷ç ÷ç ÷-è ø
, (5.1) 

where eq weq hy d=  and the amount F  of the force is equal to the median pressure acting on the 

sphere. Hence, the force law depends on the parameter eqy  which actually defines the equilibrium 

distance between the fluid particles and the sphere by weq eqhd y= . Thus, the parameter eqy  indirectly 

controls the amount of displaced fluid and, consequently, the buoyancy force. Furthermore, the mass of 

the fluid particles is set to ( )f s
s

r  , where the term ( )s s  with dimensionality of the problem s  
corresponds to a finite area or volume of fluid.  

 

Tab. 5-1: Initial particle spacing used for buoyancy experiments and resulting number of fluid particles 

including boundary particles. The second column indicates the number of fluid particles per sphere diameter. 

 
 
 

   

Fig. 5-1: Configurations of cases A, B and C (from left to right) with initially evenly spaced fluid particles in the 

vicinity of the sphere. The particle spacing is s =0.01, 0.005 and 0.0025 m from left to right. The colour 

indicates the hydrostatic pressure, where red corresponds to larger values than blue. 

s   1sd s +   number of particles  average  t  

[m]  [‐]  2‐D  3‐D  [s] 

0.01  4  266 2456 2.10E‐04 

0.005  7  920 13018 1.10E‐04 

0.0025  13  3376 82116 5.30E‐05 
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Fig. 5-2: Case A: final arrangement of the fluid particles in the vicinity of the sphere for the two dimensional 

experiments with s =0.005 m (left) and s = 0.0025 m (right). 

For the numerical experiments with a configuration according to case A, the parameter eqy  was varied 

until the difference of the exact submerged weight and the force measured by the load cell was within a 

few per cent. For the present case with 1.5h s=  , it could be expected that weqd  converges to 2s  

for decreasing values of s  and 1 3eqy  . This tendency was quite well reproduced by the 

experiments. By taking a closer look at the results, it can be seen that the fluid particles arrange in a 

corona like manner around the sphere as depicted in Fig. 5-2. This corresponds to the expected behaviour 

since the pressure acts in the normal direction of the curved surface. However, the resulting pressure 

distribution around the sphere, i.e. the pressure of the fluid particles in contact with the sphere, is not in 

agreement with the surrounding fluid particles and is incorrect. Although the final pressure distribution 

corresponds to an equilibrium state, there are large pressure gradients in the particle corona and fluid 

particles with relatively small pressure are squeezed. 

 

Fig. 5-3: Final arrangement of the fluid particles in the vicinity of the sphere for the two dimensional 

experiments of case B (left) and case C (right) with s = 0.0025 m. 
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For the configurations B and C the force law between the fluid particles and the sphere is configured in 

the same way as for case A. Since the situation is similar to the experiments of case A, the above 

determined parameters eqy are also used for the present cases. To allow for the measurement of the 

submerged weight, no interaction has been specified between the sphere and the fixed spheres at the 

bottom. Thus, in case B, the sphere sinks a little due to the smaller buoyancy force and the larger 

submerged weight, respectively. In case C, the sphere is raised a bit due to the fluid particles which 

squeeze into the gap between the spheres (see Fig. 5-3).  

According to the results of case A, the pressure distribution around the sphere is incorrect for the cases 

B and C; this also holds true for the pressure around the fixed boundary spheres. Furthermore, the sphere 

is initially not completely surrounded by fluid particles as depicted in Fig. 5-1. However, in reality the 

sphere would be covered by fluid except for the small areas at the contact points. Thus, it could be 

expected that the exact submerged weight of the sphere is the same as in case A. The simulation results 

show that for decreasing values of s  the measured submerged weight converges to the exact value. 

However, that rate of convergence strongly depends on the particle resolution, i.e. the number of fluid 

particles located in the spacing between the spheres. This fact confirms the importance of a correct 

simulation of the buoyancy force. 
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5.2 Settling Velocity 

For the settling velocity experiments, a tank filled with initially quiescent water is considered. The 

dimensions of the water body are length fl =  0.15 m and height fh =  0.3 m in the case of 2-D 

discretisation and in addition width fw =  0.15 m for 3-D. To study the influence of the spatial 

discretisation on the settling velocity, two and three dimensional experiments with different particle 

resolution are carried out as listed in Tab. 5-2.  

Tab. 5-2: Initial particle spacing used for settling velocity experiments and resulting number of fluid particles 

including boundary particles. 

 
Similar to the buoyancy experiments, the interaction of the fluid particles with the sphere is modelled 

by a MLJ potential. Thus, the stiffness of the potential is obtained by equation (5.1), where eqy  is chosen 

corresponding to the initial particle distance and the dimensionality according to the parameters obtained 

by the calibration of the buoyancy experiments. Since there will be no hydrostatic pressure distribution 

around the settling body, the reference pressure is not known a priori. Hence, the dynamic pressure is 

taken as reference and the amount of the reference force is obtained by 2 10.5 f sF w ssr -=  .  

The terminal settling velocity sw  of a rigid body in a fluid is reached when the drag force acting on the 

sphere is balanced by its submerged weight. Considering Newtonian flow, the terminal settling velocity 

of a sphere with the given properties is , 1.27s spherew »  m/s. This corresponds to the three dimensional 

case. If the situation is reduced to a two dimensional problem, the sphere is replaced by a cylinder with 

distinct properties. Hence, for a cylinder the terminal settling velocity is , 0.83s cylw »  m/s. To account 

for the effect of wall interference on the settling velocity of the body (see e.g. DiFelice (1996)), the 

unaffected terminal velocity sw  is reduced to ŝw , i.e. ,ŝ spherew =  1.16 m/s and ,ŝ cylw =0.76 m/s. For 

both cases, the cylinder and the sphere, the boundary layer around the body is mainly laminar and the 

dominant contribution to the drag force is the pressure drag (compare e.g. Douglas et al. (2001)). Thus, 

for the current experiments the influence of the friction drag is not considered. 

 

case  dim  s   number  average  t  

      [m]  of particles  [s] 

A  2  0.01  620 1.20E‐04 

AA  2  0.005  2135 6.20E‐05 

AAA  2  0.0025  7865 3.10E‐05 

AAAA  2  0.00125  45125 1.50E‐05 

A3D  3  0.01  12400 1.20E‐04 

AA3D  3  0.005  74725 6.20E‐05 
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Fig. 5-4: Case AA (left) and case AAA (right): contour plot of vertical velocity and velocity vectors, where the 

colour indicates magnitude. 

With increasing number of particles, i.e. smaller initial particle spacing, larger terminal settling 

velocities sw  are observed. The measured settling velocity for the coarsest two dimensional particle 

resolution (case A) is sw =  0.262 m/s which increases up to sw =  0.733 m/s for the finest resolution 

(case AAAA) studied in this work. Thus, the measured terminal velocity approaches the intended value 

of ,ŝ cylw =0.76 m/s, which indicates convergence of the applied methods. The finest particle resolution 

for the three dimensional case was limited to s =  0.005 m (case AA3D) due to the required computing 

time (19 days for this case). However, similar behaviour as for the 2-D case is rudimentary observed. 

Furthermore, the flow around the sphere can be reasonably reproduced already for the coarser 

resolutions; moreover, with smaller initial particle spacing the features of the flow become more 

detailed, as expected. This is shown by Fig. 5-4 for selected cases AA and AAA. Despite the reliable 

results of the flow field, spurious numerical oscillations in the pressure field are observed. This 

corresponds to results obtained by other researchers (e.g. Colagrossi et al. (2010)), since WCSPH is 

known to be noisy. 

For the sake of completeness it has to be mentioned that besides the particle resolution also the role of 

the artificial viscosity and influence of the force law has been investigated. However, for physically 

correct configurations, i.e. where the fluid particles and the rigid sphere cannot interpenetrate, no 

reasonable improvement is observed. 
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5.3 Discussion 

The chosen experiments have proven to be a reliable concept to evaluate the numerical methods which 

are used to model the fluid-structure interaction. Besides the parameters defining the interaction between 

SPH and DEM particles, the particle resolution plays a major role, especially when it comes to dynamic 

problems. The expected convergence of the SPH method is demonstrated and approved by the results 

of the experiments. Nevertheless, some drawbacks of the applied methods have to be pointed out. The 

computational cost is already quite high for two-dimensional simulations with a moderate number of 

particles. This limits the scope of parameter studies, and three-dimensional investigations become very 

time-consuming. To overcome these limitations, parallelisation of the software is necessary to allow for 

the use of high performance computing infrastructure. Furthermore, the significance of the pressure 

increase at the boundaries between fluid particles and rigid walls (fixed and movable) is not clear. For 

the present work, this particularly applies to the settling velocity experiments where the pressure drag 

results from the pressure distribution around the sinking body. The problem may have two contributions, 

namely the spurious numerical oscillations in the pressure field and the fluid-structure boundary 

condition itself. Some recent contributions by other researchers provide approaches which may be useful 

to overcome this shortcoming. On the one hand, to smooth out or eliminate pressure oscillations, filtering 

of the density (see e.g. Molteni and Colagrossi (2009)) or the application of truly incompressible SPH 

is suggested. On the other hand, boundary conditions for fluid-structure interaction are still an open and 

challenging task. A promising approach, suitable for the recent applications, is presented e.g. by 

Monaghan and Kajtar (2009). 

It seems to be obvious that as long as the shortcomings of the current modelling approach are not 

adequately solved, numerical experiments with focus on detailed local forces are not reasonable. 

However, these kinds of experiments are necessary to investigate the fundamental physical processes 

occurring during incipient motion and sediment transport. Possible experiments to validate an improved 

version of the model would be e.g. the determination of the drag coefficient of a sphere sitting on a 

boundary of similar spheres as investigated by Coleman (1972) or the incipient motion experiments 

carried out by Fenton and Abbott (1977). 
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6 Applications 

To demonstrate the capabilities of the present model for the simulation of bed-load transport, a slightly 

different modelling approach as used in the previous chapter is applied in the following. The applications 

to bed-load transport comprise a two-dimensional simulation of the development of a scour caused by a 

freefalling water jet and a three-dimensional pier scour experiment. For the present experiments, the 

size of the fluid particles in terms of their initial particle spacing s  is intentionally chosen larger than 

for the model-verification experiments, i.e. 2ss d= . This modelling approach where fluid particles 

are larger than the rigid body, say 3ss d> , is termed Low Resolution Force Model (LRFM). With 

the LRFM, simulations on a larger scale than with the HRFM are made possible. However, due to the 

usually larger computational domain and because the sediment layer also consists of particles, no 

“miracles” concerning the computational costs have to be expected.  

Due to the less detailed resolution of the fluid forces acting on a solid particle, the model parameters 

have to be calibrated to match the desired sediment transport processes; this relates to the spatial as well 

as the temporal scale. Depending on the complexity of the experiment, the calibration can be quite 

extensive. For the present experiments only marginal calibration of the model parameters was carried 

out. Thus, the presented simulation results are rather of qualitative nature and primarily serve for 

illustration purposes. 

 

6.1 Scour Caused by a Freefalling Water Jet 

In the present experiment, the development of a scour due to a freefalling water jet is studied. This kind 

of scour is typical for a natural waterfall, where at the bottom of the subsequent plunge pool a scour hole 

develops caused by the impact of the freefalling water. For the experiment, the specific discharge is 

0.04 m2/s and the head drop is 0.16 m. Since the experiment is carried out as a two-dimensional 

simulation, the sediment consists of circular particles with diameter 2s sd r= =  0.01 m and density 

sr  = 2800 kg/m3. The sediment particles are considered to consist of granite. For the interaction between 

the sediment particles, Hertz’s law is applied and for the internal friction of the sediment layer, equal 

coefficients for sticking and slipping friction are considered. The interaction between the fluid and 

sediment particles is modelled by an MLJ potential. Due to the applied LRFM approach also the concept 

for the parameters of the force law is different to that used for the model verification. For the present 

experiments, the distance from the sediment-particle surface where the repulsive force is zero is 

0w sd h r= -  and the equilibrium distance is chosen as 00.5weq wd d= . The stiffness of the potential 

is 600 N. With this configuration, the sediment particle may behave like a heavy fluid particle when it 

encounters true fluid particles (notice that this only concerns the fluid-sediment interaction). Friction 

between the fluid and sediment particles is also considered.  
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Fig. 6-1: Numerical simulation of a scour caused by a freefalling water jet. 

t = 0.5 s t = 1 s 

t = 2 s t = 5 s 

t = 10 s t = 15 s 
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For the present configuration, the estimated hydrodynamic time-step size is 
32 10s f st h ca -= » ⋅  s and the estimated sediment time-step is 41 10s s st r ca -= » ⋅  s; 

thus the latter is relevant. The total simulation time is 15 s and the corresponding computing time for 

the experiment was approximately 1060 min on a modern computer using one core.  

The results of the simulation at selected times are shown in Fig. 6-1. At the beginning of the simulation, 

the sediment erosion advances quickly due to the unimpeded impact of the water jet on the sediment 

surface. Already after some seconds a scour hole develops and the water depth at the impact location 

increases. The resulting plunge pool now alleviates the momentum of the water jet and sediment erosion 

diminishes. After a simulation time of about 10 s, the extent of the scour hole will barely change. The 

development of the scour, i.e. the profile of the bed level, is reproduced in a characteristic manner by 

the numerical model.  

As can be seen from Fig. 6-1, the fluid particles are able to enter the sediment layer up to a certain depth, 

which is similar to seepage. This behaviour is depicted on the left in Fig. 6-2 in detail where the black 

dots indicate the locations of fluid particles. The fluid particles fill up the voids between the sediment 

particles. The exerted forces by the fluid particles in the pores may be interpreted as a mix of buoyancy 

and lift forces. 
 

     

Fig. 6-2: Influence of interaction law on the erosion process. In the left picture, the result of a simulation with an 

interaction law based on 0w sd h r= -  is depicted (compare Fig. 6-1), where the black dots indicate the 

locations of the fluid particles. On the right, the simulation result for a different configuration with 

0w sd h r= +  is shown. 

The major importance of the possibility for fluid particles to enter the sediment layer for the present 

experiments can be illustrated by varying the parameters of the force law for the fluid-sediment 

interaction. For this purpose, consider a different configuration: the distance from the sediment-particle 

surface where the repulsive force is zero is increased to 0w sd h r= +  while the stiffness, i.e. the size 

of the maximum repulsive force, is kept constant. This leads to a repulsive force which already acts at a 

distance between a fluid particle and the sediment-particle surface which is larger than for the previous 

configuration with 0w sd h r= - . Furthermore, a reduced sediment density of sr  = 1800 kg/m3 is 

considered to emphasize the distinct behaviour. The simulations show that the fluid particles are no 
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longer able to move between the sediment particles (compare Fig. 6-2, on the right), which is due to the 

scaling of the force law. Despite the reduced mass of the sediment, no scour is observed at all. 

 

6.2 Clear-Water Scour at Bridge Pier 

Another well-known kind of scour is the erosion of sediment observed at bridge piers. The deflection of 

the water at the pier and the resulting vortices lead to an erosion of sediment and the development of a 

characteristic scour hole around the pier (see e.g. Unger and Hager (2007)). The channel used for the 

three-dimensional pier-scour experiment is 0.7 m long and 0.15 m wide. The slope of the channel is 

3.5 ‰. The quadratic pier with a side length of 0.05 m is placed adjacent to the left wall. The sediment 

consists of five layers of particles which results in a total of 2484 sediment particles. For the three-

dimensional simulation, the sediment consists of spheres with diameter sd  = 0.01 m and density 

sr  = 2500 kg/m3. The ratio of the sediment diameter to the initial fluid particle spacing is two. Similar 

to the jet scour experiment, Hertz’s law is used to model the interaction between the sediment particles. 

Since the energy of the flow is distinctly smaller than in the previous experiment, the friction between 

the sediment particles is reduced to trigger a faster erosion process. For the interaction between the fluid 

and sediment particles a MLJ potential is applied. The parameters of the force law are 0w sd h r= -  

and 00.5weq wd d= . For the three-dimensional case the stiffness of the potential has to be strongly 

reduced compared to the previous 2D experiment and is 3 N. Based on the chosen particle resolution 

the total number of fluid particles during the simulation is approximately 70’000. The size of the time 

step is similar to that of the jet scour experiments. Furthermore, the simulation starts from an initially 

dry channel bed. 

 

The results of the experiment at different times of the simulation are depicted in Fig. 6-3. At the 

beginning of the simulation, the waterfront moves across the domain and the weight of the water causes 

a small depression of the sediment-bed surface. However, no significant transport of sediment particles 

takes place at this point. At the pier, some part of the water which impinges the pier is vertically deflected 

in the downward direction. With increasing flow depth also this effect amplifies. The downward flow 

exerts larger contact forces on the sediment particles than on those exposed mainly to tangential flow. 

At the first, this leads to initial transport of some sediment particles and to local erosion in front of the 

pier. Subsequently, due to the initial erosion the transport of sediment particles is amplified and the 

erosion extends around the pier and along the channel with time. Due to numerical instabilities the 

computation was aborted after a simulation time of 1.6 s, which corresponds to a computing time of 

17 days. Nevertheless, the simulation results show the initial phase of the erosion process, which is 

reproduced in a reliable manner and which is comparable to experimental observations (see e.g. Radice 

et al. (2008)). 
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Fig. 6-3: Numerical simulation of clear-water scour at bridge pier. A lighter colour of the sediment particles 

indicates “higher above datum”. The sidewalls, the inflow section and the outflow weir are omitted to improve 

visibility. 

 

t = 0.5 s 

t = 1.6 s 

t = 1.0 s 



 

198 

7 Conclusions 

In the present work, a novel numerical modelling approach for the simulation of bed-load transport is 

presented. The model consists of the combination of two strictly Lagrangian methods which allow for 

the simulation of fluid-structure interaction problems. The interaction between the fluid and the 

sediment particles and between the sediment particles themselves is modelled by a well-defined force 

law also accounting for various kinds of friction between the grains. For the present work, the sediment 

grains are modelled as spherical particles. The applied model is able to reproduce the constitutive 

behaviour of sediment mixtures and the different transport modes of bed load, such as sliding, rolling 

and saltating.  

The modelling of the fluid is based on a continuum approach which is discretised by the Smoothed 

Particle Hydrodynamics (SPH) method. The sediment particles are represented by the Discrete Element 

Method (DEM), where the interactions between the discrete sediment grains are modelled by a force 

law, which is also able to account for various kinds of friction. A similar approach is applied to the 

interaction between the fluid and sediment particles. The definition of the interface and the exchange of 

forces between the fluid and sediment grains are inherent to the applied approach. Thus, the use of a 

computational grid or of techniques for the tracking or capturing of the interface is not necessary. 

Two basically different approaches to model bed-load transport with the proposed method are presented. 

On the one hand, the application of the combined methods as a High Resolution Force Model (HRFM) 

is investigated. For the HRFM, the fluid particles are chosen distinctly smaller than the sediment 

particles to simulate detailed interaction forces. To study the interaction forces on a spherical particle 

depending on the resolution of the fluid particles a hydrostatic and a dynamic experiment, namely the 

simulation of buoyancy effects and the determination of the settling velocity, are carried out. The results 

of the simulations show convergence of the applied methods for increasing particle resolution; they 

turned out to be a reliable concept to validate the chosen numerical approaches. Furthermore, the 

importance of the possibility to account for the effect of buoyancy is pointed out. The simulation results 

show the potential of the HRFM to be used for detailed investigations of bed load processes. On the 

other hand, the use of the model in terms of a Low Resolution Force Model (LRFM) is studied. For the 

LRFM, the fluid particles are chosen of similar size or larger than the sediment particles. This requires 

a basically different approach for the determination of the interaction-force law parameters. Due to the 

less detailed resolution of the fluid forces acting on a solid particle, the model parameters have to be 

calibrated to match the desired sediment transport processes; this concerns the spatial as well as the 

temporal scale. The LRFM was applied to scour caused by a freefalling water jet and to clear-water 

scour at a bridge pier. The qualitative simulation results are in satisfying agreement with experimental 

observations and illustrate the use of the applied methods for practical applications. 

The methods also have some shortcomings. The force law used for the interaction of the fluid and the 

sediment grains depend on a reference force, which may not correspond to the actual and local fluid 

forces in a dynamical simulation. This may affect the accuracy of the results. However, this effect mainly 

applies to the HRFM, and its influence is expected to diminish for increasing particle resolution. Its role 

with regard to the forces on a sediment particle embedded or close to the sediment bed has to be 

investigated in subsequent research. Moreover, boundary conditions between the fluid and solids for 

SPH are still an open topic. Another problem arises due to the pressure field, which shows spurious 
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oscillations inherent to the weakly compressible SPH method - several approaches to overcome this 

issue are mentioned. As also pointed out by other researchers, the main drawback of the presented model 

is due to its extensive computational cost for detailed and three dimensional simulations. The common 

way to overcome this restriction is to implement parallelisation techniques to be able to use high 

performance computing infrastructure. However, as far as engineering practice is concerned, the use of 

the present model in the near future is not realistic, since the appropriate application is still a challenging 

task and the corresponding computation time requirement may not be affordable. 
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