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A Tutorial on Prograding and Retrograding Hypo- and

Hyper-pycnal Deltaic Formations into Quiescent Ambients *

Kolumban Hutter!

JrBergstrasse 5, 8044 Ziirich, Switzerland, hutter@vaw.baug.ethz.ch

Abstract

Sediment transport from mountainous rivers into a quiescent ambient with simultaneous for-
mation of deltas is reviewed. To focus on the principal physical processes attention is restricted
to flow in vertical cross-sections with no changes perpendicular to the plane of the flow. The bed
load transport in the river is derived for quasi-steady situations using sediment mass balance and the
MOHR-TERZAGHI shear stress-pressure relation with the angle of internal friction, ¢ as the essential
frictional parameter. The emerging model is a diffusion equation for the upper surface of the moving
sediment layer and corresponding boundary conditions. Its diffusivity is expressible in terms of the
hydraulic discharge, the densities of the sediment and the turbid water, the angle of internal friction
and a parameter characterizing the bed-parallel sediment velocity in terms of the average velocity in
the turbid layer. When this river flow enters quiescent water, two different classes of deltas can be
formed. When the entering water is either neutrally buoyant or lighter than the ambient water, the
sudden reduction in tractive force along the bed generates a conspicuous avalanching flow to depth.
This leads to steep-sloped foreset deposits with delta fronts inclined by the angle of internal friction.
Such so-called GILBERT-type deltas are governed by a jump requirement of the sediment flux across
the shore line and the geometry of the receiving basin. When the inflowing discharge is denser than
the receiving ambient water, it will dive down as a turbulent under-current. The basal sediment trans-
port in this subaqueous density current is analogous to the subaerial case and again described by a
diffusion equation with similarly determined diffusivity. The combined dual subaerial-subaqueous
sedimenting process is mathematically very similar to a (generalized) STEFAN problem, e.g. the
freezing of an ice cover on a lake. We present (mostly analytical) solutions for (i) bedrock-alluvial
transitions, (ii) overtopping failure of a dam, (iii) topset-foreset diffusion processes for hypo- and
hyper-pycnal deltas. Laboratory experiments demonstrate the adequacy of the models.

*This manuscript intends to serve as a basis for the learning student or scientist. In all modesty, most work is by others and
only a few small ideas seem to be my own. No claim of completeness is made, but I hope that a glimpse of elegance of this
theory is recognizable. If it is so, it is the merit of the authors of the referenced papers.
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1 Introduction. Estuarine development due to riverine sediment inflow

1.1 Fluvial-deltaic sedimentation in lakes from rivers

Sediment transport in alluvial rivers constitutes in mountainous lakes the dominant mode of sediment
delivery. These modes arise generally in two different forms, as bedload transport of the coarse grains
and as suspended matter of the clay and silt fractions. The amount of the dense, coarse movable sediment
depends on the driving stress — in quasi-steady flows expressed by the MEYER-PETER [41] or similar
formulae — the packing of the river bed and the size composition of the sand comprising the transported
total sediment mass. Of the total sediment load a nominal threshold grain diameter qﬁf)ﬁ:lf(fa 4 €ssentially
separates the moving sediments into two classes, (i) the bedload, moving in the bottom saltation layer
and (ii) the fine grains, which are suspended in the turbulent water above the saltation layer. The relative
proportion of the dense bedload-mass flow and the suspended dilute sediment-mass diffusion depends
in quasi-steady states on the local inclination of the river, provided this slope is smooth and suffers only
small changes with position.

At the entrance of a river into relatively quiescent waters, an artificial reservoir, lake or the ocean,
the entering bed and sediment loads will suddenly be subjected to an abrupt change of the hydrodynamic
conditions, and depending on the relative hydro-physical changes, the subsequent process will differently
evolve according to these conditions.

In what follows, we introduce a few terms from the geological nomenclature, which will facilitate
later discussions, see SWENSON et al. (2000), [63], LAT & CAPART (2007), [33] and Fig. 1:

e Sediment laden river flow will be referred to as subaerial flow and the region of river flow is called

fopset.

e Correspondingly, the flow immediately beyond the shoreline is called the subaqueous flow, and the

region of this flow is denoted as foreset. Beyond the delta region it is often called the bottomset.

o If the entering fluid flow as a mixture of water and sediment is lighter than, or equal to, the wa-
ter density of the ambient, the flow characteristics will be called hypopycnal and homopycnal,

respectively, if it is denser than the mixture density of the ambient, then it is called hyperpycnal.

Dismissing the complex transition conditions in the immediate vicinity of the advancing (or retreat-
ing) shoreline, the downstream subaqueous deposits differ for the three mentioned pycnal characteri-
zations from one another. The sudden change in speed that occurs when the river water crosses the
shoreline and enters the region of calm water generates ‘for homopycnal and hypopycnal flows, in which
the entering discharge is either neutrally buoyant or lighter than the ambient fluid, a sudden reduction
in tractive force along the bed [...]. This leads to steep-sloped foreset deposits controlled by the angle
of repose (approximately angle of internal friction)’ (LAT & CAPART, 2007, [33]). The coarser grains
will avalanche down the shore slope and the fines will stay afloat in a near surface jet-boundary layer
and settle out further downstream as bottomset beds. ‘Such deltas, and their topset-foreset-bottomset
architecture were first described in a classical work by GILBERT (1890), [19] and are accordingly known
as Gilbert-type deltas’ (LAT & CAPART 2007, [33]).

Two quantities characterize GILBERT-type delta wedges, (i) the shoreline position s(t), which is the
horizontal distance of the shoreline (see Fig. 1a) from a Cartesian origin far upstream in the topset and
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Figure 1: Alluvial river deltas under hypo- or homopycnal, GILBERT-type (a), and under hyperpycnal (b) conditions,
illustrating the common nomenclature. GILBERT-type deltas have plane frontal slopes at the angle of repose of the coarse
grained sediment, and delta growth is by granular avalanching. Hyperpycnal deltas evolve under the action of a turbidity
current, and the basal sediment transport is analogous to sediment transport in alluvial rivers. The horizontal position of
the shoreline is z = s(¢). Similarly, the toe of the slope break is given by z = wu(t). Figure after LAI & CAPART (2007),
[33], with changes, © J. Geophys. Res. Earth Surface

(ii) the delta toe u(t), which is the horizontal distance from the same Cartesian origin of the intersection
point between the deposit-wedge front and the basement. The latter is in geological applications taken
as a subsiding fault block or any well defined lower boundary of the Earth mantle, in engineering-type
sedimentology of lake deposits a well defined lake bottom surface in the recent past or at present. Of
interest are the time evolutions of s(¢) and u(t). The following geological nomenclature is commonly
used (see VOLLER et al., 2006, [66]).

o Regression and transgression refer, respectively, to the foreward (s(¢) > 0) and landward ($(¢) <

0) migration of the shoreline.

e Progradation and retrogradation refer, respectively, to the foreward growth (4(¢) > 0) and land-

ward retreat (4(t) < 0) of the entire fluvio-deltaic system.

1.2 Morpho-dynamics of hypo-, homo- and hyper-pycnal flows

According to LAT & CAPART (2007), [33] hyperpycnal flows occur when the inflowing discharge is
denser than the receiving ambient water. This may occur e. g. when floodwater, laden with sediments,
enters fresh water lakes, or when cold river water from snow melt enters a lake of warmer water. In

these cases the denser river water will form a density current (Fig. 1b) moving down the littoral slope,



approximately in the direction of steepest descent of the lake bathymetry from the plunge point of the
river. Entrainment of ambient water in such density currents is generally small (and in a first approxi-
mation negligible), because stable stratification inhibits turbulence at the upper boundary of the density
current, (ELLISON & TURNER, 1959 [12], TURNER, 1973, [65]). Such flows maintain therefore, in
general, their boundary-layer character as long as their density is larger than that of the ambient fluid. If
this remains so through the entire depth such turbidity currents may travel over considerable distances,
decaying primarily due to a continuous and size dependent settling-out of their suspended matter.

Whereas hypopycnal deltas have steep slopes of the size of the angle of internal friction, hyperpycnal
deltas are much less steep, with generally convex shape (FLEMING and JORDAN 1989, [14], 1990 [26];
KosTic et al, 2002, [28]; KOSTIC and PARKER, 2003, [29], [30]). The steepest inclination occurs
at the plunge point (Fig. 1b) and is commonly substantially smaller than the angle of repose of their
Gilbert-type counter parts. As one moves farther away from the plunge point, their inclination tapers
and smoothly approaches the far distant bathymetric profile. Moreover, the deltaic deposition rates in
(mountainous) lakes are large as compared to the far distant sediment depositions due to the early fall-
out of the coarse-grained suspended matter. It follows that in a first approximation for the estimation of
the formation and erosion of deltas the far downstream lake bathymetry may be assumed to be steady.
Contrary to processes on geological time scales, this assumption is appropriate for applications in water
engineering.

Fluvio-deltaic sedimentation thus appears basically in two different forms, for homo- and hypopycnal
flows as GILBERT-type deltas, and as hyperpycnal deltas. Both grow chiefly by dense granular transport
at the bed, for GILBERT-type deltas as granular avalanches, which continuously adjust their slope to
the angle of repose, for hyperpycnal deltas much like subaqueous streams of which the granular motion
follows classical bedload transport rules.

In geological applications of Pleistocene or Holocene time scales transgressive and regressive ocean
shore movement is linked to the sea level rise and fall and the corresponding topset and foreset estuarine
developments (PITMAN, 1978, [56]). Furthermore, grain size variation in ocean or lake sediment cores
is linked to the particle size segregation of delta deposits in alluvial basins (PAOLA et al. 1992, [52]).
These models all operate with a subaerial bedload mode in the topset region and Gilbert-type deltas in
the foreset. On the other hand, engineering applications may concern formation and decay of tributary
dammed lakes (CAPART et al. 2010, [7]) or reservoir infill during and immediately after heavy rain fall
(LAT & CAPART, 2009, [34]), or forced alteration of delta geometries with the intention to regulate the
alluviation. These situations are characterized by hyperpycnal type foresets for which the Alpine Rhine
River (Alpenrhein) at Lake Constance is a typical case. ‘During flood conditions, the Rhine carries into
the lake a large suspended load composed of 10% clay, 70% silt and 20% sand, at concentrations of up
to 6000 mglf1 (MULLER & FORSTNER, 1966, [44]; ROTH et al., 2001, [58]). This inflow generates
turbidity currents along the bottom, with underflow velocities of more than 1 ms~ ! (LAMBERT, 1982,
[36]), carrying the clay and silt fractions to the deeper parts of the lake, [58]. The associated delta
morphometry is illustrated in Fig. 2. Upstream of the shoreline the long profile of the Rhine River plain
exhibits a mild inclination and a slightly concave curvature. At the shoreline a sharp break of slope is
observed. Downstream the subaqueous foreset exhibits a steeper gradient and a concave profile of more
marked curvature. Near the shoreline break, the maximum inclination of the foreset is of the order of 6°

(ADAMS et al. 2001, [2]), much greater than the topset slope, but well below typical angles of repose.
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Figure 2: Rhine River delta (Alpenrhein) at Lake Constance, Switzerland. (a) Present subaerial and subaqueous long
profile of the Rhine (after HINDERER, 2001, [23]). (b) Progradation of the subaqueous delta foreset from 1885/89 to
1979 (after KENYON & TURCOTTE, 1985, [27]; data from MULLER, 1966, [43], supplemented by more recent profiles
from HINDERER, 2001, [23]), from LAT & CAPART (2007), [33], © J. Geophys. Res. Earth Surface

Towards the deep end of the lake, the leading edge of the foreset bed connects smoothly with the lake
bathymetry. The shape of the delta front thus differs significantly from GILBERT’s description. Plotted
in Fig. 2b, the recorded evolution of the Rhine river delta front between 1885/89 and 1979 further shows
that foresets have maintained a similar morphology over almost a century of progradation’, after LAI &
CAPART, 2007, [33]).

In the ensuing analysis we shall be involved with both GILBERT-type and hyperpycnal-type delta
formations; however, our interest is less in the geological application on Pleistocene and Holocene time
scales, but rather on decadal to century time scales, for which engineering-type regulations of foreset

alluviations are of interest.

2 Sediment transport in the river

As Fig. 1 suggests, the topset is characterized by river dynamics and its fluvial transport. With the some-
what restricting simplifying assumptions stated below, the sediment transport process can be described
by a diffusion equation for the interface position Z = f (X, t) between the bedload layer and the suspen-
sion layer above it, see Fig. 3. ‘The diffusion metaphor has long been used in modeling river systems
[...]" and has been applied to deltas (KENYON & TURCOTTE 1985 [27]) and foreland basins (FLEMING
& JORDAN 1989 [14]; JORDAN & FLEMING 1990 [26])’. A detailed derivation is given by PAOLA et al.
1992 [52] using the MEYER-PETER MULLER formula [41] for sediment transport. Here, we follow LAI
& CAPART 2007 [33], who base their derivation on the COULOMB-TERZAGHI yield criterion. These au-

'PAOLA et al. 1992 [52] cite a large number of references, of which we mention here SONI 1981 [62], GILL 1983 [20]
and ZHANG & KAHAWITA 1987 [70] but CULLING 1960 [10] remains unmentioned as an early example of derivation of the
diffusion equation for erosion problems.
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Figure 3: (a) Side view of a plane river section consisting of a turbid, particle laden fluid layer of homogeneous density p,
mass flow m and thickness h, underlain by the moving sediment-water layer of constant density po, volume flux g parallel
to the bed and thickness d. Both are assumed to move immiscibly on an immobile bed, also assumed of density po and
inclined by the slope of angle 3. The Cartesian coordinate system (z, t) is aligned with the bed. (b) Element of length dz
of the moving sediment-water mixture with volume fluxes at the two side faces. Its growth in thickness is [(0 {/dt)dt)]dx
and a possible external source is [0 (z, t)d¢]dz. (c¢) Column of the particle laden and the sediment-water mixture with the
corresponding gravity forces and basal shear traction 7, and basal normal pressure py. (d) Horizontal-vertical coordinates
(X, Z) and sediment-water interface Z = (X, t) and corresponding inclined (z, z) coordinates with z = ((z, z)

thors present a clearly formulated list of assumptions on which their diffusion equation for Z = é (X, 1)
is based. As with previous derivations the important information is a formula for the diffusivity in terms
of parameters characterizing steady channel flows.

In what follows we list the salient assumptions which are imposed to derive the diffusion equation.

e The river flow in the valley stretch above the plunge point (the topset region) can be assumed to
be one-dimensional. Sources in terms of precipitation or point sources from side tributaries are
treated as continuous prescribed functions of space and time: o (z, t). This assumption is not very
critical since the lowest stretch of a river before entering a basin is generally very flat, shallow and
smooth. On century time scales meandering may occur (and has more frequently occurred in the
past); in such a case the discharge is averaged and the average flow is assumed to be straight and

unidirectional.

e The turbid water and the bedload sediment-water mixture are assumed homogeneous and taking



place in layers, see Fig. 3, for the suspended particle laden fluid as a slurry of thickness % and for
the bedload as a dense granular water saturated fluid of thickness § with particles moving under

saltation.

e The motion of this two-layer system is assumed to take place sufficiently smoothly and slowly
with no abrupt changes such that the currents in both layers adjust in a quasi-steady manner to the
‘slowly varying conditions’. This implies in particular that deposition of fines from the particle
laden layer into the moving bed is negligible. In other words, the interface between the moving
sediment layer and the particle laden fluid layer is material.

Analogously, it is also supposed that no particles of the moving sediment layer will settle, nor
particles from the immobile bed will entrain into the moving sediment layer. Thus, also the bed

surface is material.

e The inclination of the bed is small with negligible curvature; so, the river bed is locally straight

and the local Cartesian coordinates (z, z) are, respectively, parallel and perpendicular to the bed.

e The flow depths of both layers and the river are small in comparison to significant longitudinal

extents of typical variations of the river depth. This is the typical shallowness assumption.

e The bedload material consists of water with density p,, (w for ‘water’) and gravel with density ps
(s for ‘soil’ or ‘sediment’) and porosity ng. Both densities are constant because of the incompress-
ibility of water and gravel, but constant ng is a simplifying assumption. It is further also assumed
that the soil of the immobile bed is the same as in the moving sediment bed, with the density given
by

po = nopw + (1 = n9)ps. (D

In view of the constant density pg of the sediment layer, the mixture mass balance reduces to the

mixture volume balance, which implies (see Fig. 3b)

¢  dq
E + 8737 - U(.’E,t), (2)

in which ¢ is the variable volume flux and o(x, t) is a source term. In (2) x is measured tangential to the
river bed and ((x, ) perpendicular to it. If X, Z = (X, t) are horizontal and vertical, respectively, it is
easily seen that (see Fig. 1.3d)

)f _ co.sﬁ sin 3 x , 3)
¢ —sinf8 cosf ¢

X 1 T

|~ ) 4
(£)- () o

Similarly, if § = g cos 8 =~ ¢ is the horizontal volume flux, (2) may approximately be replaced by

or, since | # |« 1,

56 dq _ 2

In steady state at constant velocity (no acceleration), the tangential normal force components of the



gravity force in the column of Fig. 3c balance with the shear traction at the base, 7, and the normal basal

pressure, p; as follows, see Fig. 3c,
7 = (ph + pod) gsin B, (6)
po = (ph + pod) g cos 3, @)
The normal-to-bed component of the submerged weight of the bedload, on the other hand, is given by
oy, = [(ph + pod) — p(h + 8)]gcos B = (po — p)d g cos B, (8)

and is known as ‘effective stress’.
The lower interface separating the moving sediment bed and the immobile ground is a sliding surface

at which the COULOMB yield criterion applies
Ty = tan ¢ oy, )

in which 7, and aé are given as shown in (6) and (8) with ¢ as the angle of internal friction, in accordance
with TERZAGHT’s principle (FRACCAROLLO & CAPART 2002 [15]). If (6) and (8) are substituted into

(9), and the resulting relation is somewhat manipulated, the equation

b ptan g (10)
h+6  (po— p)(tan ¢ — tan )
emerges, or since 6 < hand | 8 |« ¢
phtan 8 (11

" (po—p)tang’

It transpires that the thickness of the sediment layer is given, if the densities p and pg of the turbid layer
and the sediment layer and the slope, 5, and angle of internal friction, ¢, are known.

The next step towards determination of the sediment mixture-volume flux is the determination of
a velocity profile within the moving sediment layer. For this purpose application of the momentum
principle is out of reach; instead we conjecture a linear relation between the mean velocities of the

turbid, u, and the sediment, v, layers, viz.,
v = Q1 u, (12)

where a; < 1 is a dimensionless parameter, chosen to be constant. For plug flow over the entire depth
a1 = 1 and for a linear profile in the sediment layer with value u at its upper boundary, oy = % With

(11) and (12) one may easily deduce

a1p hutan 8

(1 =no)(ps — p) tan ¢ )

G~q=0v=

for the derivation of which we have set p = p,,, i. e. the density p of the upper layer slurry is set equal
to the water density. We emphasize, this formula has been derived under the assumption that the flow is

quasi-steady, that particle sedimentation from the turbid layer and bed erosion into the moving sediment



layer are excluded (or negligible) and that the bed is flat. Under these conditions one also has

dp

y
—0 and 2 —0. (14)
dx

dx:

These equations state that the density p and the turbid mass flow rate m do not change along their
trajectories, which are here formally given by lines parallel to the z-coordinate. In the words of LAT &
CAPART [33] ‘the values of p and i along the topset are purely controlled by their upstream boundary

values, i.e.,

p(x,t) = pupstream = p1 = constant and (15)
m({E,t) = mupstream = phu = p1Q = constant,

where () denotes the volumetric discharge of the turbid water supplied upstream of the delta’. Since

_ ¢
tanﬁ = —87, (16)
equations (13) and (5) imply
¢ a1p1Q

=-D1—= D, = 17
4 1oz’ ! (1 —no)(ps — p1) tan ¢ an

oC 0 ac\
3t T ax (%x) = olX.t). (18)

Dy is a (constant) diffusivity, which is proportional to the discharge () and inversely proportional to
the tangent of the angle of internal friction, ¢. Equation (18) is an inhomogeneous diffusion equation,
written here for variable diffusivity, even though D; in (17) is constant. As already mentioned, there
are alternative derivations, [10], [52] for geological applications, of which PAOLA et al. [52] use the
MEYER-PETER MULLER [41] sediment transport formula instead of the COULOMB-TERZAGHI friction
law (9).

Equation (18) is a linear parabolic partial differential equation. As it is second order in the spatial
variable, two boundary conditions for its solution are required. In a so-called two-point boundary value
problem such a condition is prescribed at each of the two end points of the interval (X7, X32), for which
the solution is constructed. For the situation in question, an upstream flux will be prescribed as well as
the vertical position of the sediment-turbid fluid interface,

q= —D1ﬁ at X = X;(=0),

0X’ (19)

¢ = Go(t), at X = s(t),
where fo(t) is a prescribed function monitoring the lake level fluctuation. These conditions do not
suffice, however, as a further condition at the shore must connect the solution with the processes of

the delta formation. The condition emerging from that analysis will determine the function s(¢). This

additional condition depends on the type of delta that is formed.
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3 Similarity solution for the homogeneous diffusion equation

It will now be assumed that o(X) = 0, i.e., we are looking for a solution of the homogeneous equation
(18). It turns out that the one-dimensional diffusion equation with constant diffusivity allows construction
of so-called similarity solutions, which are useful for the sediment transport problem at hand. Such
solutions have self-similar structures; through adequate variable transformations the partial differential
equation (PDE) transforms into an ordinary differential equation (ODE). For the diffusion equation the

appropriate transformation is (see HYDON 2000, [25] or any other book on partial differential equations?®)

. — - X

C(Xa t) = f(‘:‘)g(t)ﬂ == @7 f(t) =2 \% D1t7 (20)
with differentiable functions f(Z) and £(¢). The function f(Z) expresses the shape of the profile of the
moving sediment layer as a function of the dimensionless argument =. The factor ‘2’ in the definition of
&(t) is introduced for convenience. (20); is a product decomposition of é into a function characterizing

the time, but having the dimension of length, and a dimensionless function f of dimensionless variable

—
—
—

It follows from (20) that

L (CEEYE)]

at € 8t ¢ ¢
5( o ¢ 1
f (‘—‘) 0 X2 - Ef (‘—‘)7

in which primes on f denote differentiation, so that (18) takes the form
f'E+2{=f (3 - fE} =0 1)

This is a linear, second order ODE for f as a function of =. One solution is f;(Z) = —AE, where A is a
constant. As known from elementary calculus, a second solution can then be constructed by the product

decomposition

(1]

f2(5) == f1(E) g(E) = —
Indeed, with (22) and (18) and with

9(3). (22)

hE) = g'(E) 23)

2Other books are e.g. SOKOLNIKOFF-REDHEFFER 1966 [61], ABRAMOWITZ and STEGUN 1964 [1], KREYSZIG 2006
[31].
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it is easy to show that h(£) must satisfy the differential equation

R'(Z) 2(1+=?)
= — (In(h(Z)) = —
nE) -~ a mE) =
= 2(1 2
— W[AE)] = S (
1 X
1
= 2In(E) —Z2~In| =
0@ -2~ )
=—In(E?)-=2-In 1
B
=)=2
— In (h(“)“ = 52
B
or (=)
— — exp(—Z
ME):=g¢'(E) = B———". 24)
B is a constant of integration. A further integration of (24) now yields>
A 2
- exp(—z~)
= =2 =
= B{%ﬁu) + QJ exp(—z?)dz —i—C}. (25)
= 0
Jrerf(z)
Here, erf is the error function,
2 €T
erf(z) = f exp(—y®)dy, (26)
VT o
and C is again a constant of integration. Once a choice for C' has been made, the most general solution
of (18) is given by
f(Z) = —AZ + B {exp(—E?) + /7E (erf(E) + C)} 27)
with derivative
F'(8) = —A + By/r{erf(Z) + C}. (28)
3We compute this indefinite integral as follows:
A A
J; % exp(—z?)dz = J~ % (—i) exp(—z?)dz
=[P (E) et = [ (<1 (canexpaia
_Edm :ceij T B} - ) exp(—z”)dx

_é exp(—z)|2 — QJ exp(—z”)dz

= ——exp(—4%) + é exp(—E?) 42 JL exp(—z~)dx
= A
%/__/
0 =
J.+]
2 = A Y
= %) + 2J exp(—z*)dz — exp(=A7) _ QJ exp(—xz?)dz
= 0 A 0
2/merf(z) c

=2
= 7GXP(;H ) + 2¢/merf(Z) + C,

which agrees with (25).
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The construction of the solution (27) is standard. The above derivation, here given in details, follows
essentially [6].

CAPART et al. [6] emphasize that ‘the assumed similarity structure also imposes certain restrictions
on the boundary conditions of ODE (21) to be specified at given values of the ratio = = X /{(t); the

boundary positions X; and X5 must be of the form
X1 = M&(1), Xo = (1), (29)

where the scaling constants \;,7 = 1,2, can either be given or are unknown (and must then be subject
to additional boundary conditions). Form (29) allows non-moving boundary conditions, but only at
locations X; = 0 and X; = +o0.
Conversely, any A; different from zero or infinity yields a moving boundary. Restrictions on boundary
speeds then follow from
dX; [ d§¢ 2D, 2D,

A =2y =

=\— = 22 30
dt dt £ X, v (30)

which implies that products X;(dX;/d¢) must be invariants [constants]’. It is also easy to see that at

& € 23 o
€0 X (ax) b

1

boundary points the quantities

must equally be constant. Explicit examples of self-similar evolution for alluvial channels of semi-
infinite length with moving boundaries are constructed by CAPART et al. 2007 [6]. Let us illustrate the

application of the similarity solution to a number of lake-related hydraulic research problems.

3.1 Bedrock-alluvial transition

A somewhat academic example which demonstrates a hydraulic application, is given in [6], see Fig. 4;
it is the sediment flow down a plane inclined bed, which suddenly changes its slope from —S5; to —Ss.
Far upstream and far downstream the steady bed has these slopes, but to adjust to these slopes, the bed
will smoothly change from slope —.S7 to slope —S>. We may interpret the far upstream bed as solid non-
erodible rock and the downstream bed as the alluvial infill. The transition between the exposed upstream
bedrock and the downstream alluvial channel is located at the evolving position s(t). At time ¢ = 0,
it is assumed that s = 0 and that the alluvial cover has constant slope S2 < S7. (Note that this is the
‘academic’ and not realistic condition guaranteeing that the similarity solution is applicable.) A steady
sediment flux @) is provided far upstream; for a flux @) < D157 no deposition occurs in the upper stretch
of the channel and the sediment simply is transported along the channel until it reaches the upstream
edge of the alluvial channel. Clear water conditions can also be examined by setting () = 0. (In this case

it is assumed that the alluvial channel with slope —S; already exists at Z = 0.
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\ Z}  Bedrock-alluvial transition
Q
s(t)

atan(-S,)
QL \/ Z= (X,
s(0)

X 1)
atan(-S,)
initial 20
Alluvial infill

Rigid rockbed

Figure 4: Definition sketch for a bedrock alluvial transition problem. The bedrock is a rigid non-erodible solid with
bed-inclination angle arctan(—S1) and an initial alluvial infill with slope angle arctan(—Ss2). It is assumed that for an
upstream sediment influx @) the sediment will either be deposited or eroded in the vicinity of the sudden change in slope
at X = 0. It is assumed that as X — o0, the alluvial infill will approach the slope —.S2, from [6], © J. Geophys. Res.

The mathematical problem just outlined is given by the following initial boundary value problem:

0¢ 2
E—Dlm—o, ) S(t)<X<w,
CA: _SlXa % = _Qa X = S(t)>
0X Dy
o¢ S y 31)
ax = o
=—-9X, X >0, t=0.

Here, (31); governs the evolution of the alluvial channel profile and is complemented by two upstream
boundary conditions (31)2 3, one downstream asymptote (31)4 and an initial profile (31)5. (Note, we
have formulated three boundary conditions!) This initial boundary value problem is susceptible to a

similarity solution, if the transformations (20) are applied and

s(t) = AE(t) = 20/ Dit (32)

is used with the yet undetermined constant \. In the dimensionless variables, (31) takes the form
J"(E) +2EF(E) - [(B)} =0, A<E<awm,
fQ) ==81A f'(N) = -+ (33)
f/(OO) = —SQ.

The general solution of the first of (33) for f is given by (27), in which the constants A, B, C, and A
must be determined from (33)2 4; however, these are not uniquely determined, unless a fourth condition

is provided. This condition is actually implicitly contained in (33)4 as it requires a constant slope of f as
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= — 00. Now, since
dim f(E) ~ {-A+ By/m(1+ C)}E, (34)

=—>00
we may choose the level of the alluvial deposit for = — co by correspondingly selecting the value for C.
For the choice C' = —1
lim f(2) = —AE, (35)

=—>00
agreeing with the far-downstream profile at ¢ = 0. In other words, there is no deposition far downstream

in the bottomset. Now, it follows from (33)3 4 that

_ S —Q/D
A= B= iy - 1) 0
and from (33),
exp(—A?) + y/mA(erf(\) —1)  Q/D1— S
AT ety - YT s s, &7

This is a transcendental equation for A\ when @ is prescribed.*

CAPART et al. [6] performed some computations. For () = 0 ‘the resulting sediment profiles are
illustrated in Fig. 5a [...]. The results shown are obtained for an alluvial slope set to half the bedrock
inclination, i.e. S2/S; = 0.5, leading to a parameter value w = —1. The corresponding value for
the root A is A = 0.4328. Profiles are given for equally spaced values of the similarity variable £ =
24/Dit = 0,1,...,5, rather than for equally spaced times ¢, and are plotted in dimensionless form
using an arbitrary length scale L. Under zero upstream sediment supply, the clear water flow is erosive
as it reaches the alluvial cover. Consequently, the transition gradually moves downstream, exposing
new bedrock as time advances. The corresponding sediment elevation profiles are concave degrading an
ever greater extent of the downstream alluvial channel. Contrasting with this behavior, convex profiles
associated with overloading are illustrated in Fig. 5b. The parameters for this example are S2/S; =
0.2, w=10.5,(Q = 0.6D157), and A = —0.3578, [6].

Equation (37) can also be interpreted as an equation of A for w,

VaA(erf(\) — 1)
w =AY = SO + VAt 1)

(38)

The inverse function A = A~!(w) is plotted in Fig. 6a in the interval —1 < w < 1. ‘For selected
values of w, marked as hollow symbols on the curve in panel (a) the alluvial channel responses are
further documented in panel (b). Similarity profiles are shown, normalized with respect to the evolving
scaling variable £(t) [...]. Values w < 0 correspond to underloading. In this case the sediment supply
@ is below the equilibrium transport capacity D155 of the downstream alluvial channel and degradation
results. The alluvial edge is gradually washed downstream. At value w = 0, the upstream supply is
precisely equal to the equilibrium capacity of the alluvial channel, and there is no geomorphic change;
this scenario corresponds to the classical ‘graded river’ of MACKIN 1948 [40], see later. Values w > 0
then correspond to overloading. The sediment supply is above the equilibrium transport capacity of the

“Had we chosen C differently from —1, then (36); would read A = Sy 4+ +/7(1 + C) and the initial value for s at t = 0
would no longer be zero. Requesting that s(0) = 0 would in this case fix C to be again —1.
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Figure 5: Profile evolution for bedrock-alluvial transition. (a) under loading with zero upstream sediment flux (S2/S1 =
0.5,w = —1); (b) overloading case (S2/S1 = 0.2,w = 0.5). Dashed lines show the initial profile of the downstream
alluvial channel; continuous lines show successive snapshots of the alluvial channel profile for £(¢t)/L = 1,2,...,5
where £(t) = 24/Dqt, from CAPART et al. [6], © J. Sedimentary Res.
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Figure 6: (a) Bedrock-alluvial transition, plotting A\ = A™*(w), defined in (38), where w = (Q/D1 — S2)(S1 — S2).
Graphs for profiles are shown in panel (b) for the conditions A, [], O, V. (b) Positions of the moving boundary for various

values of the supply parameter where the various symbols belong to: (A)w = —1; ((Nw = —3; (O)w = 0; (V)w = 3.
Continuous lines are the corresponding alluvial channel profiles, and the dashed line is the underlying bedrock. Values

w < 0 imply depletion and values w > 0 imply accretion upstream of the alluvial channel, from CAPART et al. [6], © J.
Sedimentary Res.

downstream alluvial channel and deposition results at the transition. The alluvial edge moves upstream
gradually draping sediment over the bedrock flow when w > 1, the sediment supply starts to exceed the
equilibrium transport capacity D5 of the bedrock channel itself. Sediment is deposited before reaching
the transition covering the bedrock from upstream to downstream. Foreshadowing this complete change
of behavior, the speed, at which the bedrock-alluvial transition moves upstream, becomes infinite as the
value w = —1 is approached from below’, [6].

3.2 Overtopping failure of a dam

A similar academic problem with a realistic touch is the overtopping failure of a sand dam. It turns
out to be mathematically identical to the bedrock-alluvial transition problem. Figure 7a illustrates the
situation. It is assumed that the dam consists of homogeneously packed sand. Given the experience with

the alluvial sediment transport problem, the sediment flow of Fig. 7a at time ¢ for X > s(t) is given by
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(a) z Overtopping failure of a dam

_ Lake rim
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Figure 7: (a) Definition sketch for the overtopping failure problem of a dam. The upstream face of the dam has ‘adverse’
slope (S1 > 0, for the chosen coordinate system). The sand dam is assumed to be homogeneously packed and to
extend to X — F00 with slopes —S2 and Sy, respectively (b) Profile evolution for the overtopping dam failure problem.
The dashed lines show the erodible dam for ¢ = 0. The solid lines show snapshots for the alluvial channel profile for
&(t)/L =1,2,...,5, where £(t) = 2¢/Dit and w = 1, A = —0.1562. The value of A(w) is shown as black diamond in
Fig. 6b; panel (b) from [6], (©) J. Sedimentary Res.

the following initial value problem.

¢ 2¢
E—DlaXQ O, S(t)<X<OO,
. 0¢
= +5X, == =0, X = s(t),
¢ 1 X s(t) (39)
2¢
ox = 5 o
(=—-9%5X, X>0, t=0.

This is the same initial boundary value problem as (31). The only difference is that here ( = 0 and the
slope S1 has a different sign (see (39)2). It follows that s(t) is also given by (32) and A is related to w by
equation (37) with w now given by w = S3/(S2 — S7) and restricted to the range 0 < w < 1. CAPART
et al. [6] performed calculations for So/S; = —%, corresponding to w = i and A = —0.1562. Figure 7b
displays the dam erosion (/(S2L) plotted against X /L for £(t)/L = 1,2, ...,5, where £(t) = 24/Dit.
Obviously, erosion of the dam crest leads to lake drainage.
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4 Hypopycnal (Gilbert-type) deltas

As explained earlier in connection with the diffusion equation (18), the two boundary conditions (19)
are not sufficient to solve the fluvio-deltaic sedimentation problem. An additional relation is required
to locate the shoreline position and thus close the initial-boundary-value problem. For the two cases of
the bedrock alluvial transition [see (31)] and the overtopping failure of a dam [see (39)], such a third
boundary condition was naturally prescribed: at X = s(t), the values for f and ¢ f /0 X are given, as is
the flux condition far upstream and far downstream, respectively. The additional boundary condition was
in both cases a flux (or NEUMANN-type) condition at the shore discontinuity. Physically, the statement
emerges from applying the conservation law of sediment mass. Figure 8 is motivated by a figure in [63].
Accordingly, GILBERT-type deltas are characterized by straight forefronts of constant inclination (given
as the tangent of the angle of internal friction). Should this straight front be disturbed by external or
internal wave activity or by some local effect e.g. of cohesion, it is assumed that the sediment flux from
the topset will quickly smooth the surface by the avalanching processes.

To establish a formula for the sediment flux condition, consider Fig. 8 and the area shaded in dark.
It is bounded on the left by the coordinate line X = 0, from above by the top surface, Z = é (X, 1)
of the moving sediment (in 0 < X < s(¢)) and the straight delta front (in s(t) < X < wu(t)), and
from below by the basement Z = b(X, t), whose motion on geological time scales is likely governed by
subduction processes, but is steady, Z = b(X), on decadal deltaic variations. The lake surface is given
by Z = Z,(t), for which annual variations may be of significance. Monitoring the lake level by a weir

at the outlet may be used to influence temporal development of delta formation.

Topset Foreset
- Sediment supply
L % Plunge point
Lake level
. \ !
¢(X,t) |Bed elevation

—
® Delta slope Zo®)
s(t) :
|
|

L ¥ oxo)
Z Tectonic
Subsidence b(X.t) u(t)

x Basement Delta toe

Figure 8: Idealized hypopycnal delta formation. The region is bounded from above by the topset sediment bed f (X,1)
and the foreset lake surface Z,(t) and from below by the basement b(X,t), subject to a prescribed subsidence rate
o(X,t). The delta wedge has constant slope (— tan|¢|) from the plunge point s(¢) to the delta toe u(t). The far
upstream boundary is fixed but fed by a prescribed sediment supply go, which feeds the delta front surface

The dark-shaded area in Fig. 8 is bounded such that a sediment flux enters it only at X = 0; it is
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given by ¢o. Global sediment conservation then yields’

sT(t) , .
qo = % ; (C(X,t)—b(X,t))dX-i—
u(t)
% » ((Zz(t) — b(X, 1)) — tan ¢ (X — s(t))) dx.

(40)

The first integral on the right-hand side represents the shaded area in Fig. 8 between X = 0and X = s(t).

The second integral represents the corresponding area (minus the light-shaded triangle of the lake). If the

differentiations of the integral terms on the right-hand side are performed (note the LEIBNIZ rule must

be applied in this differentiation), and the condition®

[C(Xa t) - b(Xv t)]|X=u(t) =0 41)
is used, then the following formula is obtained:
ds(t
() — s(e)) tan 62D = (50,1
dZ, (t) u(t) 42)
—(u(t) — s(t)) + J o(X,t)d X,
dt S(t)
in which .
_ 5 96(X)
6O =P 3)
o(X,t) = —aba(f(’t)- (44)
Plunge
Point / Lake level
z . Z=27,(t)
)
(X-s(t))tan®
s(t) T
—= R
&X,t) Z=b(X,t)
// - Basement
z Vox |\
Delta toe
u(t)
X

Figure 9: Close-up of the foreset regime of a GILBERT-type delta, explaining how the basement toe position u(t) can be
determined from the geometric positions of s(t), Z¢(t), b(X, t) and the delta front at slope, — tan ||¢||

S5t (t) = s(t) £e,e > 0,6 — 0.
®An alternative derivation of formula (42) when o = 0 is given in Appendix A
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Equation (42) can be viewed as a differential equation for the shore line position, s(t); however, to
this end u(s) must be expressed in terms of s(¢) and Z,(t). Figure 9 shows that the top surface of the

wedge-type delta is given by the equation’

C(X,t) = ((s(t) — tan ¢ (X — s(t))

(45)
= Zy(t) — tan ¢(X — s(t)).
For X = u(t) (and (u(t),t) = b(u(t),t)) this equation can be written as
{b(u(t),t) + tan ¢u(t)} = Zy + tan ¢ s(t). (46)

For prescribed lake level Z,(t), plunge point s(t), basement elevation b(X,¢) and angle of internal
friction, ¢, (46) can be viewed as a nonlinear equation for u(t). Therefore, (46) must accompany (42)
as an additional algebraic equation to determine w(¢). Thus, u is obtained in general form a functional
equation of the form

u = u[s(t), Z(t), b(u(t),t), tan ¢].

If the basement is immobile, b = b(X), (46) can be replaced by

u(t) = 50) + = (Z0) = WX -0
Thus,
i) =50+ o {0 - g )]
_ {1 + mll ¢§;|Xu(t)} a(t) = (1) + tarll S0

1 db - 1
() =<1 — 5(t Z(t) ¢ .
at) { - tan¢dXX=u(t)} {8( )+ tan ¢ o )}
This formula shows that @(t) = $(t) provided b = const. and Z; = const. Lake level rises, Z; > 0,
enhance wu(t) over $(t), but (db/dX),) > 0 decrease wu(t). All these behaviors are geometrically
obvious.

Let us consider the simplest case of steady lake level, Zg = 0, vanishing subsidence, 0 = 0, and

uniform water depth H. In this case the field equations (18), boundary conditions (19), (42) and initial

"From now on ¢ is counted as positive
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condition s(0) = 0 reduce to

oC . 0%
E—Dlm, 0\X<S(t),
0¢ _
ﬁ(oat) Dy )
C(s(t),8) = 0, )
. 0
HS(1) = a(5(0),1) = ~D1 5 (s(0). 1),
s(0) = so (= 0) initial condition,

where we have set the origin of the coordinates at the intersection point of the lake surface with the
basement. H = (u(t) — s(t)) tan ¢ is the uniform water depth. Note that because of the constancy of b,
equation (46) is linear in u, can be solved for u(¢) and then substituted into (42). The emerging equation
is then (47)4 and constitutes an ODE for s(t).

The above equations (47) are not in a form susceptible to similarity solutions; however, they consti-
tute a so-called single phase STEFAN problem, see [8], [9], which, for instance, arises in solidification-
melting problems of a heat conducting body reaching the melting temperature. It is, perhaps helpful to

quickly look at this problem.

4.1 The classical Stefan problem

atmosphere

T =--I-sun‘ q = qsurf

ice

X
1]

T=0°C 9=-pLs(t) f(t)

water }

T=0°C X

Figure 10: Layer of ice floating on a lake in winter. This is the simplest version of the thermal description of the ice front
s(t). At the atmosphere/ice interface, the surface temperature —7s.,, 5 or the surface heat flux gsur is prescribed

We commence by demonstrating that freezing of a lake and sediment transport into a quiescent
ambient fluid are mathematically analogous problems. Consider a lake in winter with an ice cover of
a certain thickness, Fig. 10. Assume either that the surface temperature, —T,,; (below freezing), or
the heat flux into the atmosphere, g,y is prescribed. [Both conditions are thinkable as upper boundary
conditions, but neither one is strictly correct in a practical application.] Assume, moreover, that the
water layer is at the melting temperature (0°C) and that CLAUSIUS-CLAPEYRON effects (the melting
temperature depends on the pressure) and the non-monotonicity of the thermal equation of state are

ignored. The initial boundary value problem describing the temperature in the ice is then given by the
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following equations

oT 2T
., = iCE A v 03 < X < t )
ot 0 X2 0 o s(t) .
_ _ v _ _Ysurf
T(0,t) = —Tsyrf, or aX(0,1t) D’
T(s(t)) = 0, (48)
0T

—pLé(t) = q(S(t),t) = _”iceﬁ(s(t)’t)v

s(0) =0, initial condition.

In these equations Djce = Kice/(pCp)ice s the thermal diffusivity of ice, ¢, its specific heat at constant
pressure, K;ce its thermal conductivity, p its density and L the latent heat of melting/freezing. The input
quantity is either the surface temperature T, s or the heat flow loss, gs,,¢. Equation (48); is the heat
conduction equation in the ice layer. The two equations in the second line are the driving elements of
the problem, leading eventually to two different initial boundary value problems. The equation in the
third line is the statement that the temperature at the ice-water interface equals the freezing temperature.
The statement in the fourth line of (48) says that the energy, which is withdrawn from the interface and
transported through the ice by the heat flow, ¢, equals the amount of mass of water which freezes per
unit time multiplied with the latent heat, L. This latter statement is the STEFAN condition. By simple
comparison of (47) and (48), it is seen that the different physical problems of sediment transport into a
quiescent ambient fluid and progression of an ice front in a freezing lake are analogous.

Let us demonstrate the solution of the classical STEFAN problem (48) for the case that the surface
temperature T, s is prescribed. Construction of this solution is facilitated by introducing the transfor-
mation

0:=T + Toury. (49)

The initial boundary value problem (48) then transforms into

00 020

R P <

e cheaXQ, O\X\S(t),

0(0,t) =0,

Q(S(t),t) = Tsurf; (50)
L 00

in which §(s(t),t) = q(s(t),t)/(pcice) is the diffusive heat flux per specific heat. A solution to (50); is

sought in terms of the similarity variable

X
Y= — 51
Vv 2Dicet ( )
and can be written as (see e. g. KREYSZIG [31], CRANK [9])
X 2 (Y 2
0 = A+ Berf | ———— f(y) = — ! 52
et (Y, - 2 [ o
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in which A and B are constants of integration. (50) 3 imply A = 0 and

Tsury = Berf (2\;%) . (53)

Because T,y and B are constants, so must be the argument of erf(-), which we now set equal to \,

\ = s(t)
2/ Dot

This representation, first, satisfies the initial condition (50)5 and, second, shows that the thickness growth

= const. —>  $(t) = 2X\/ Djcet. (54)

of the ice cover follows a 4/t-law. Obviously, an analogous law also holds for the forward motion of the
plunge point of a GILBERT-type delta. To determine the constant )\ the remaining STEFAN condition
(50)4 is used. With

20 2B X\ 1
ax = yEot _(2m) ]2 Dicct’ 55)
() = 2V Diee

N

the definition of A\ and with (52), equation (50)4 can be written as

Tsurf
VT(L/Cice)’

which is a transcendental equation for A. As an approximation, we assume A to be small, A « 1; then

Nexp(A?)erf(\) = (56)

exp(A\?) ~ 1, erf(\) ~ A

S

and (56) becomes
)\2 ~ Tsurf
Q(L/ Cice) ’

f 2Dz’ceTsqu

If we translate this result into the prograding process of the plunge point of a hypopycnal delta, it reads

(57)

with the aid of which

s(t) ~ 2D ;ICi"t, (59)

in which @n is the far upstream thickness of the moving sediment layer and H is the constant bottomset
depth.
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4.2 Prograding deltas

It will be shown now that the analogous problem for the sediment transport differs from the thermal
problem only by the ‘STEFAN-condition’. An advancing GILBERT-type delta grows into the bottomset
region of a lake with a frontal slope of the angle of internal friction ¢. With reference to Fig. 9 it is clear
that

Croe = Cs — tan é (u(t) — s(t)) (60)

gives the Z-coordinate of the toe of the delta-wedge, irrespective of the exact form of the geometry of

the basement. However, if the basement is given as an inclined plane, then
étoe = —u(t) tan o + él? = —u(t) tan ay, 61)

where «; is the joint slope angle of the basement in the topset and foreset and fg = 0 applies, if the
origin of the coordinates is shown as indicated in Fig. 36 (see Appendix A). Combining (60) and (61)
yields

—u(t)tan o = Cs — tan ¢ (u(t) — s(t))

or  u(t)[tan¢ — tanay] = C + tan ¢ s(¢),

B (s + tan ¢ s(t)

= ) 62
tan ¢ — tan ay (62)

= u(t)

If this expression is now substituted into (42), in which ¢ = 0 and Zg = 0, the sediment flux at the

plunge point takes the form

(s + tan ¢ s(t)
tan ¢ — tan oy

o(s(0).1) = { _ s(t)} tan¢%. 63)

Thus, the topset diffusion of a sediment flow on an inclined basement is governed by (47)1 235 with
qs(s(t), t) given by (63), viz.,

ol 0%
7—D1W’ 0< X <s(t),
o¢ q0
S X=0 20
(=0, X =s(t), t>0, (64)
C(s(t), ) + tan ¢ s(t) _ dsth)
{ tan ¢ — tan o s(t) ¢ tan ¢ dt
N 3
= q(s(t),t) = YOX (st
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The general solution of (64); has the form { = A + Berf(X /(2¢/D1t). If we write s(t) = A\/D1t with
constant A, the constants of integration, A and B, can be determined with the aid of (64)3 3, so that

: AT A X
= et (3) o (50 ) ) “

Now, since s(t)5(t) = D1A2/2 and ((s(t),t) = 0, the flux boundary condition (64); becomes an

equation for A:
A2 ( )\2> o tang¢ —tanay

2 P 2 - D; tanajtan (66)
@ 1 .
~ = f & .
Dl tan 0617 1 |a1| ¢

It is not difficult to become convinced that this analytical solution could only be constructed, because

{(s(t),t) = 0 was imposed as one of the boundary conditions at the plunge point.

4.3 Fluvial ‘grade’ in river-lake systems

Significant for the fluid mechanical understanding of the formation of GILBERT-type alluvial deltas in
a river-lake system are conditions for which neither net deposition nor net erosion arise. A segment of
a river where this arises is called graded. This terminology was introduced by GILBERT (1877) [18].
According to MUTO & SWENSON (2005) [48], [49] the ‘concept of fluvial grade is typically presented
as the long-term, equilibrium?® state of a river system subject to steady allogenic forcing’. They state,
quoting SCHUMM (1977) [59], that ‘the mechanisms for attaining grade are thought to include adjust-
ments in slope, channel geometry, sinusoidity, bed roughness and grain size.” We add as an important
influential factor temporal variations of the free surface of the lake.

Most stretches of alluvial rivers entering a lake are not, or at most approximately ‘in a graded state
as their long term behavior depends fundamentally on the behavior of its upstream and downstream
neighboring environments. Because of this coupling the alluvial river generally cannot attain a graded
state with steady boundaries’ [49]. This is illustrated in the two panels of Fig. 11, which are motivated by
two figures in [48] and PARKER (1977) [53]. Panel (a) shows an idealized fluvio-deltaic GILBERT-type
system [19], prograding into a flat-bottomed basin with steady eustatic lake level and constant supply of
sediment and water to its upstream boundary. In this case the vertical position of the alluvial-basement
transition (the plunge point) is fixed. However, even if the river stretch at time ¢ = 0 were in a graded
state, the subaqueous avalanching steady sediment flux at the delta front will make the plunge point
move lakeward. Consequently, the constant slope delta front will equally move lakeward and therefore
lengthen the river stretch and thus decrease its slope thereby forcing aggradation (sediment deposition).
The river stretch will thus have its graded state to which it will never return unless an appropriate external
control mechanism enforces such conditions. Lake level variations are among such possibilities.

The situation illustrated in panel (b) of Fig. 11, due to PARKER (1977) [53], shows sediment flow into
an artificial reservoir bounded by a weir. ‘The supplied sediment that progrades and aggrades until the
position and elevation of the shoreline coincide with the top of the weir. From this time onward, sediment
reaching the shoreline (g,,) cannot accumulate on the vertical weir face [. .. ]. The alluvial river system

continues to expand landward through a combination of aggradation and onlap at the alluvial-basement

81 regard the denotation ‘equilibrium’ as introduced by geologists as a misnomer, since the graded state is not a thermody-
namic equilibrium
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Figure 11: (a) Idealized fluvio-deltaic GILBERT-type system prograding into a standing boby of water with uniform and
steady depth. Sediment and water supply are steady. Even when the initial state is graded, progression of the wedge delta
moves the system away from this graded state into aggravation of sediment, from MUTO & SWENSON [48], [49]. (b)
sediment flow on an alluvial basement of constant inclination. A weir fixes the free surface of the reservoir. A graded state

is attained when aggradation and onlap at the alluvial-basement transition generate a linear profile that allows complete
sediment bypass, from PARKER [53]

transition. Eventually, the slope of the alluvial river system becomes constant along its entire length
and all sediment is bypassed (g;, = gout). This graded state, which is characterized by a linear channel
profile, will be sustained as long as the fluxes of sediment and water remain unchanged’ [48].

Sediment & water

Shoreline (X=s(t)) Elevation of supply (9q..)
Eustatic sea aIIuAviaI surfac: -
level (Z;) W (C %) j
Av4

Delta foreset —

Alluvial-basement
Delta toe transition (X=r(t))
(X=u(t) Elevation of shelf

"basement” b(X,t)

Subsidence (o)

¥ ¥ X

Figure 12: (a) Idealized fluvio-deltaic system along a basement of constant inclination (—ca) with a GILBERT-type delta
of slope ¢. Three points are significant: the alluvial-baseement transition, X = r(t); the shoreline or plunge point,
X = s(t), and the delta toe, X = u(¢), all moving. Courtesy MUTO & SWENSON [48] © J. Geophys. Res.

MUTO & SWENSON [48] consider the situation sketched in Fig. 12, where a GILBERT-type delta is
formed. This fluvio-deltaic system is prograded across a linear shelf (‘basement’ b(X, ¢)) in response to
a sediment supply gs0. The shelf has a slope —«; and is subsiding at a spatially uniform rate o (t). The
origin of the coordinate system is taken as the intersection of eustatic lake level with the shelf surface
att = 0. Let ¢ (X ,1),b(X,t) and Z,(t) be the elevations of the sediment surface, the shelf and eustatic
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lake level, respectively. The position of the alluvial-basement transition, shore line (plunge point) and
delta toe are r(t), s(t) and u(t), respectively. The initial [. . .] wedge is vanishingly small [. .. ] such that
att =0,r=s=wu=0[48].

The diffusion equation in the subaerial regime and boundary conditions at a topset cross-section far

upstream, X = X and at the plunge point are

o 02¢
aig_Dlia_X?? = —o0, X1<X<S(t),

¢

+~ = —(tan|aq[)r(t),

0X A X = r(t), (67)

oC

DlaiX = —(gs0,
C = Zy(t), X = s(t).

Here, o = const. is the spatially and temporally constant subsidence of the inclined basement. Equation
(67)2 expresses that the sediment approaches the up-slope of the basement smoothly, whilst (67)3 pre-
scribes the temporally constant upstream sediment flow. (67)4 sets the level of the sediment surface at
the plunge point equal to the level of the lake surface. These conditions must be complemented by a flux
jump condition at the plunge point. This is obtained by geometric reasoning. Before turning to that, it is

advantageous to introduce the transformed bed elevation

ot
C:=C+ f o(r)dr. (68)

0

Since ¢ has by assumption no X -dependence, (68) transforms (67) into

oC 02¢
7 = 1@, 0<‘X'<S(t)7
;—f{ = —tan|aq|r(t),
. X =r(t), (69)
b C
laX = —(s0,
¢
(= Zo(t) + f o(r)dr = Ry(t), X = s(t).
0

The remaining missing boundary condition is the zero jump of sediment flux as the shoreline is crossed:
[gs(s(t),t)]] = 0 and will be given here for conditions of non-vanishing subsidence, o(t) # 0, and
non-trivial lake level movements Z, # 0. A first relation is obtained by evaluating the water depth at the

delta toe by two different geometric expressions, see Fig. 12,

t

Zo(t) —i—JO o(1)dr — u(t) tan |ag | = (u(t) — s(t)) tan|o|,

from which we deduce
ult) = tan |¢|s(t) + Re(t)

70
tan |¢| — tan |aq| ’ (70)
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where Ry is defined in (69)4. Next, the sediment flux is given by

U

dtJ,

as(5(t),1) ¢ —b(x,n] ax

— (u(t) - 5(t)) (dZdet(t) +tan ol 20 a(t))

= (w0 s (Vo5 +anlol 5

(70) tan |aq|s(t) + Re(t) [dRe(t) ds(t)
tan |¢| — tan || dt + tan|g| dt

0¢(s(1), 1)
= —-Dj———". 71
"oy (71)
For prescribed o(t) and Z,(t) this formula allows computation of the slope @ ¢(s(t),t)/d X at X = s(t)
in terms of the basement slope |«;| and the angle of repose |¢|. We rather wish here to use (71) to
determine the temporal evolution of the lake level Ry(t), which is necessary to generate graded conditions
in the topset. Such conditions prevail, if the slope ¢ f /0 X is constant throughout the topset river stretch;

it implies (see Fig. 12)

LIS B R
58)5( |s D xepre).s(0] Dr (72)
ax),

With the obvious relation

dt D e 73
dt|s dt 0X|, dt * ot (73)
~—— ——
—gqs0/D1 =0
leading to
dR(t) gs0 d (1) G0
dt  [graded Dy dt’ « )|graded Dls() (74)

Here, the second expression has been obtained by an integration with respect to time. Now, substituting

into (74); the expression for gsg stated in (71)4, it can be shown that

d 2y 2 Dl
a7 (R})) =R (a17¢7 qso) 4s0 (75
with 1 1
Dy~ Dy}
R? = 2(tan|¢|—tan|o¢1|){1—tan|041|1} X {1—tan|q§|1} : (76)
ds0 ds0

Therefore, by integration

t
Ry = —R\/J gs0(T)dT = —R+/qs0Vt, (77)
0

in which the expression on the far right holds for g;0 = const. Alternatively, in view of the definition of
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Ry(t) in (69)s
Zy = —Ra/qsoVt — o t, for o = const. (78)

The positive root in (77) would correspond to a lake level rise for which no graded flow exists.
Relation (77) can be made dimensionless by using the reference length [L] and reference time [T']

via

dR, [L?]
L] := g0l —|e, [T]=—= 79
(2] = gl G e 171 =15 (19)
and by scaling %, and ¢ by
Ry t
R =——, t¥= (80)
© gL Dy [L]
With these, (77)o takes the form
R; = R*\/t*,

(81)

|041|> ( 450 )3( 450 )1< qs0 |041|)1
R* = —4/2 ( - — 1-— 1—- —

\/ |9 9| D1 9| D1 || D1 o]

in which all quantities are dimensionless.

Time (t)

o

Aggradation

— Trajectory 3 (slow)

- (@RADE)

Relative lake level (R, )

AY
+ Trajectory 1
N (linear)

N Degradation

Al

Trajectory 4
j(fast)ry

Y

Figure 13: Conceptual partitioning of the R, — ¢ space into regions of global alluvial aggradation (shaded) and degrada-
tion. Trajectory 2 is that required for grade. For details of the dynamics of trajectories 1 — 4 see the main text. Courtesy
MUTO & SWENSON [48] © J. Geophys. Res.

MUTO & SWENSON [48] present model predictions of fluvio-deltaic response to the four patterns of
R, —fall, shown conceptually in Fig. 13. Common to all model scenarios are the dimensionless numbers
gs0/(D1]a1|) = 0.5, |a1]/|¢| = 0.2, and the dimensionless duration of progradation (0 < ¢* < 3). They
consider first the response to a linear R, history (Fig. 13, dashed trajectory, labeled 1) , which cannot
support sustained grade.

Figure 14 shows the evolution of the positions X = {r(t), s(¢), u(t)}, and the corresponding strati-
graphic evolution of the fluvio-deltaic system. ‘At small times, the constant rate of fall in R, is less
than that required for grade, thereby placing the system in the aggradational regime of R, — t space.
During this time interval the position X = r(t) migrates lakeward, and the fluvial system is everywhere
aggradational. Att = T}, the linear R, trajectory intersects the graded trajectory, and the fluvial system
attains a state of grade (in an instantaneous sense). The system cannot maintain in this graded state,

however [. .. ], for ¢ > T}, fluvial incision continuously cannibalizes previously deposited sediments and,
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Figure 14: Progradation of a GILBERT-type delta in response to a steady rate of fall in relative lake level. (a) Trajectories
of the alluvial-basement transition X = r(t); shoreline, X = s(¢); delta toe, X = u(¢); (b) time-lines of the free surface.
All quantities are dimensionless. Courtesy MUTO & SWENSON [48] © J. Geophys. Res.

correspondingly, the transition point X = r(¢) migrates lakeward (offlap)’ [49].

Figure 15 shows the graded (top), sub-graded (middle) and super-graded (bottom) states. In panels
(a) (left) the evolutions of the alluvial-basement transition, shoreline, and delta toe for the fluvio-deltaic
response to a relative lake level curve are shown; panels (b) show the corresponding time lines of the
stratal architecture for the indicated dimensionless times. In the top panel the lake level time curve is
given by equation (81). ‘The alluvial basement transition remains stationary throughout the prograding
process. The shoreline and delta toe advance lakeward at a monotonically decreasing rate that reflects
the linearly increasing water depth, [48]. Panel (b) is showing the time lines. The alluvial system has
a linear profile and shows neither net aggradation nor net erosion. Throughout progradation, the entire

sediment supply bypasses the alluvial regime to drive progradation via deposition on the delta’ [48].
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Figure 15: Top: Fluvio-deltaic progradation in a state of grade. Dimensionless relative lake level trajectory, given by
equation (81). (a) Trajectories of alluvial-basement transition, X = r(¢); shoreline X = s(t); delta toe X = u(t); (b)
resultant stratal architecture (time lines). Middle: Same as in the top panel in response to R} oc — V/t*, but with a leading
coefficient, which is half that of the graded value. Note the persistent landward displacement of X = r(¢). Bottom:
Same as in the top and middle panels in response to R oc — V/t*, but with a leading coefficient, which is twice that of
the graded value. Note the persistent lakeward displacement of all these points X = {r(t), s(t), u(t)}. Courtesy MUTO
& SWENSON [48] © J. Geophys. Res.
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4.4 Experimental verification

MUTO & SWENSON [48] present laboratory experiments performed at Nagasaki University, which cor-
roborate the correctness of the theoretical model for fluvio-deltaic formations with the outlined specific
patterns of relative lake level fall.

A stainless steel tank (4.5 m long x 1.0 m wide x 1.3m deep) with a frontal glass wall for photo-
graphic recording of the moving sediment mass was filled with water, whose free surface was computer
monitored via an electromagnetic flow meter with high accuracy. Inside the tank, a narrow 4.3 m long
flume with uniform width (1.0 cm) and longitudinal inclination (|ay]) is placed to mimic the sloping
basement. The downslope end of the flume is open. A slurry of 0.2 mm quartz sand and water was fed
into the flume from a point above the initial water level, which produced from zero inceptions the desired
alluvial deltaic depositions with the typical slope discontinuity at the moving shore line. The sediment
flow depth is approximately 1.0 mm thick, and avalanching was the dominant transport mechanism on
the subaqueous delta. Among the four experiments in this set-up the significant difference was in dou-
bling and halving of the upstream water supply g.,0, which controls diffusivity ) and characteristic
slope of the fluvial surface gs0/D;. The dependence of D; on g0 was determined by separate flume
experiments. Note also that the initial rate of fall in relative lake level according to (77) or (81) has a
square root singularity at ¢ = 0, which cannot be reproduced in the experiments. Instead, linear initial
fall of lake level was used, which intersects the ideal —+/t lake level fall curve at ¢t = T,, say, beyond
which lake level monitoring followed the —+/t curve, for details see MUTO & SWENSON [48]. In the
following we report some of their results, see Table 1.

‘Figures 16 and 17 document the evolution of the fluvio-deltaic system generated in experimental
Run 1, in which the rate of fall in relative lake level was constant. Figure 16 shows the trajectories
X = {r(t),s(t),u(t)} in X — ¢ space; Figure 17 is a set of sequential photographs of the experiment.
With a constant sediment supply in this experiment, the spatial extent of both the alluvial river and the
delta foreset increased with time (Fig. 16). Shore line and delta toe migrated basinward throughout the
experiment, whereas the alluvial-basement transition migrated first landward (0 < ¢ < 450 s) and then
basinward (450 < t < 3736 s). This transition from net alluvial aggradation to net degradation [...] is
clear in Fig. 17. During the degradational phase, material deposited in the previous aggradational state
is re-deposited in the formation of the advancing delta front’ [48].

In the complementing three experiments the lake level R, was monitored in the piecewise continuous
manner explained previously with data as given in Table 1. Figures 18 and 19 show the moving boundary
trajectories and stratigraphic evolution of the fluvio-deltaic system generated in experimental Run 2A (of
MUTO & SWENSON [48]), which approximately mimics graded conditions. During the initial steady fall
in relative lake level (0 < t < T; = 570 s) the alluvial basement transition migrates landward (Fig. 18),
accompanied with sediment deposition in response to the non-graded initial linear lake level drop. This
phase was followed by the graded history R, and re-adjustment into a graded state by degradation and
slight lakeward advance of the alluvial-basement transition, X = r(¢). This phase terminated at ¢t = 720
s beyond which the fluvio-deltaic system was graded. This is clearly seen in Fig. 19, in which the
alluvial-basement transition point (V in the figure) does not move through time. The small shift between
the critical position of this point (1 in the figure) and its position through time (V) is due to the early time
linear lake-level fall (to avoid the —+/ singularity as ¢ — 0) and further experimental imperfections (see

MUTO & SWENSON [48]). Except for these the maintenance of the graded behavior is well kept in this
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Table 1: Experimental parameters for two of the 4 experiments. Courtesy MUTO & SWENSON [48], © J. Geophys. Res.

Run 1 Run 2A
Run time, s 3736 7214
Total Ry fall, cm -38.9 -16.2
Mode of R, fall steady initially steady,
then decelerating

Steady component

Duration T}, s 3736 570

Fall rate dR,/dt cm/s -1.04x102 -7.78%x1073
Decelerating component

Duration, s - 6644

Coefficient in (77) cm s~ /2 - 0.197

Coefficient in (81) - 0.0986
Shelf slope | tan | 0.204 0.196
Foreset slope tan |¢| 0.739 0.654
Alluvial slope® 0.141 0.107
Water discharge qwob, cm?/s 4.88 391
Sediment discharge qsob, cm?/s 0.351 0.181
Fluvial diffusivity D;, cm?/s 2.49 1.69
Length scale, [L], cm 33.7 80.9
Elevation scale, H cm 6.88 159
Time scale [T7], s 455 3860
Dimensionless numbers
Alluvial/shelf slope gso/(D1|a1]) 0.688 0.545
Shelf/foreset slope | tan «q|/ tan |¢| 0.277 0.300

¢ Length-averaged quantity
b Width-averaged quantity

experiment.

S Hyper-pycnal deltas

As already mentioned in the introductory section, hyper-pycnal flows in still ambient waters occur when
the inflowing discharge is denser than that of the receiving ambient. This commonly occurs when flood
waters, laden with fine sediments enter freshwater lakes. In such cases the denser, particle laden, inflow
will plunge down the lake shore in form of a density or turbidity undercurrent as sketched in Fig. 1b.
According to ELLISON and TURNER (1959) [12] such flows maintain their identity for long distances
because, owing to their relatively large density, mixing with the ambient fluid at their upper boundary is
hampered. Their slow secession is primarily due to a gradual settling out of their finer fractions of the
suspended sediments (BELL, (1942) [4]) and because of the dying turbulent intensity due to turbulent
dissipation.

The boundary layer structure of hyper-pycnal flows down the lake bottom from its shore input to
the bottomset far-field generally exerts a significantly different geomorphological influence than do their
homo- and hypo-pycnal counterparts. The foresets of hyper-pycnal deltas have much smaller inclinations
and, unlike the avalanching processes in GILBERT-type delta fronts, their sediment transport is akin

to subaerial bedload transport in the topset river stretches. Such views are supported by studies and
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Figure 16: Trajectories of the alluvial-basement transition, X = r(¢); shore line, X = s(t); and delta toe, X = u(t); in
experimental Run 1, in which R, falls steadily. Note, r(¢) first migrates landward (onlap) until ¢ = 450 s, before moving
basinward (offlap) for the remainder of the experiment. By contrast, s(¢) and w(t) migrate persistently lakeward. The
finite slope of all curves is manifestation of the initial linear lake level fall. Courtesy MUTO & SWENSON [48], © J.
Geophys. Res.

observations in the Alpine Rhine river at Lake Constance (MULLER and FORSTNER, (1966) [44]; ROTH
et al. (2001) [58]), where maximum slopes in the foreset regime are of the order of 5°-10° (ADAMS et
al. (2001) [2], 6°) and have further found corroboration e. g. in the Colorado River delta in Lake Mead
(GROVER and HOWARD, (1937) [22]; SMITH et al. (1960) [60]) and the Noeik River delta in a fjord of
the British Columbia Coast (BORNHOLD and PRIOR, (1990) [5]). Moreover, WRITE et al. (1988) [68]
have studied the marine dispersal and deposition of Yellow River silts by gravity driven underflows and
FAN and MORRIS (1992) [13] employ such density current concepts to study reservoir sedimentation,
all as mentioned by LAI and Capart (2007) [33]. Corresponding laboratory experiments have been
conducted, among others, by YU et al. (2000) [69]; KOSTIC and PARKER, (2003) [30]; TONIOLI and
SCHULTZ (2005) [64] and LAT, (2006) [32].

In this connection an influential paper by KENYON and TURCOTTE, (1985) [27] should be men-
tioned. LAT and CAPART emphasize that these authors have foreseen such kind of foreset morphology
and its time evolution via a diffusion process. They, ‘however, identified bulk transport (creep and land-
slides) as the geomorphologic agent responsible for the subaqueous diffusion. [. .. ] they did not consider
the possibility that turbidity undercurrents could be responsible instead.” This under water density cur-
rent is LAT and CAPART’s (2007) [33] suggested mechanism, which is responsible for the formation of
hyper-pycnal deltas.

In the ensuing analysis we shall rely upon the diffusive transport model for the topset regime as
developed in Sections 2 and 3. This diffusion model will be connected at the plunge point to a similar
diffusion model, which will be valid in the foreset regime. This latter model is by itself a simplified de-
scription of the realistic sedimenting processes as they occur in hyper-pycnal delta regions. Indeed, ‘the
turbulent [under]current carries fine sediments which gradually settle out of suspension, and simultane-

ously they can drive a basal transport of coarser grains. This dual role played by the currents complicates
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Figure 17: Sequence of photo images of the fluvio-deltaic system in experimental Run 1. Experimental run time (in
seconds) is shown in each panel on the left; position of the initial alluvial-basement transition (agreeing with the corre-
sponding theoretical transition position under graded conditions for all time) is shown as . The evolving experimental
alluvial-basement transition point is shown as V and indicates its landward early movement for ¢ < 450 s, followed by
persistent basinward motion afterwards. Courtesy MUTO & SWENSON [48], © J. Geophys. Res.
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Figure 18: Trajectories of the alluvial-basement transition, X = r(¢); shore line, X = s(t); delta toe, X = u(t); in
experimental Run 2A. During the early linear lake level fall (0 < t < T, = 570 s) the alluvial-basement transition point
retreated somewhat; after ¢ = 720 s this transition point remains stationary up to ¢ = 7200 s. This experiment mimics
graded conditions nearly perfectly as the experimental curve X = r(¢) remains practically constant for ¢ > 720 s. Note,
X = s(t) and X = u(t) show linear initial stretches merging into —+/% curves with a slight kink at ¢ = 720 s. Courtesy
MUTO & SWENSON [48], © J. Geophys. Res.

both theoretical developments and experimental interpretations. For this reason, [we will] ignore the first
process, and focus only on the second. It will be assumed that the fines fraction of the turbidity current
(responsible for the density contrast with the ambient water) settles out of suspension at a very slow
rate. As a result, we will not consider the long range delivery or long term settling of these fines, nor
consider the resulting formation of bottom set beds. Instead, we will focus exclusively on the upstream
geomorphic influence exerted by the turbid underflows on the coarser-grained foresets. This simplified
picture is illustrated in Fig. 1b, where it is contrasted with the GILBERT-type delta, Fig. 1a, described

earlier’, [33].

5.1 Foreset diffusion model

The ensuing derivation follows and complements an analysis by LAT and CAPART (2007) [33]. Accord-
ingly, even though limited entrainment of ambient water into the submerged gravity current gives rise to
a growth of mass flow, steady plumes are observed, which corresponds to no growth of mass flow. They
correspond to effectively normal subaqueous flow states for which the basal shear stress (TURNER 1973
[65]) is given by

7 = [{(p = pw)gh + (po — p)gd]sin f ~ (p — pe)ghsin B, (82)
where the approximation holds since § < h. p is the density of the turbid water in the density current,

and the shear stress 73 has been reduced due to the ambient buoyancy. Analogously,
oy = [(peoh + pod) = (pwh + pd)|g cos 8 = (po — p)dg cos B. (83)
Assuming the COULOMB-TERZAGHI relation (9), viz.,

Ty = tan ¢ al’, (84)
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Figure 19: Run 2A, subjected to nearly graded conditions. Sequence of photo images of the fluvio-deltaic system in
experimental Run 2A, subjected to nearly graded conditions. 1 indicates the initial position of the alluvial-basement
transition points. V’s show these transition points at the indicated times (on the left in each panel); this position remains
unchanged after ¢ = 720 s and is, together with the plane free surface of the alluvial deposit, reminiscent of graded
conditions. Courtesy MUTO & SWENSON [48], © J. Geophys. Res.
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and substituting (82) and (83) into (84) yields

s_lp—po)tanB, (o po)tans

- 85
(po—p)tang  [(1—ng)ps — p]tane (85)

where ng is the ponosity. This is the subaqueous analogue to the subaerial representation (11). Note, this

result is at variance with that stated in [33]. Next we write
v = Qo (86)

in which w is the depth averaged downslope velocity of the density current and v is the corresponding
average speed of the moving sediment layer. The dimensionless parameter az plays the same role as oy
in (12) with likely different value, because the velocity profiles in the subaerial flows are not similar to

those of subaqueous flows. Now, with ¢ = § v we obtain

(p — peo) tan 3

q:(gv:a2hu[(1—n0)ps—p]tan¢' (87)
With tan 3 = —9 (/@ X, the definition
' = (p — peo)hu (88)
and the diffusion property R
q= —Dz%
we may alternatively write for the diffusivity
D, - ot (89)

[(1 —no)ps — p]tang’

Even though the thickness, density and velocity of the current can evolve along the trajectory of the

density current, it can be shown that the buoyancy flux (88) remains constant along the trajectory
dm’

dXZO'

This is the vanishing entrainment assumption above. In summary, with the conservation of sediment

mass equation (5) we obtain the diffusion equation

oC 0 o

— === | Dy— 90

ot~ 0X ( 0 X) .
as evolution equation for the position of the upper surface of the sediment layer of hyper-pycnal deltaic

formations.

With Dy and D4 given by (17) and (89), respectively, we may deduce

Dy _as (p—pw)(d —no)(ps — p1)
Dy [(1—mno)ps — plp ' oD
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Replacing as an approximation in the braces of the denominator the density p by (1 — ng)p1, where p;
is the upstream density, the above formula becomes

Dy a2 p—po _ 02 p1— P

Dy a1 p ar p1

92)

This formula may serve as an approximation for estimations of the ratio of the foreset and topset dif-
fusivities. With ao < 1 and p; ~ p, it is seen that the subaqueous diffusion coefficient is smaller or
very much smaller than its subaerial counterpart.’ This reflects a reduction in transport capacity when

the flow transits from subaerial stream flow to subaqueous density current flow.

5.2 Combined topset-foreset diffusion process for hyper-pycnal deltas

According to the above simple formulation of the formation of hyper-pycnal deltas, their evolution is
described by the foreset diffusion equation (18), which is solved subject to an upstream boundary condi-
tion (either prescription of the moving sediment flux or the Z-coordinate of the moving sediment layer).
This topset diffusion problem must be connected to an analogous foreset diffusion problem (90), subject
to the far downstream boundary condition that the layer thickness of the density current tends to zero
as X — oo. At the plunge point the two models must be patched together such that the sediment layer
thickness at X = s(t) is continuous as is the sediment mass flux across the plunge point. LAI and

CAPART [33] write these conditions as

é(X> t) = Zg(t),

=, (X)) < Z(t), (93)

where Z; is the lake level elevation. Equations (18) and (90), combined with upstream and downstream
boundary conditions and transition conditions (93) define a so-called double-diffusion problem, which
prior to LAT and CAPART [33] was already given by JORDAN and FLEMING (1990) [14] [based on pre-
cursory results by BEGIN et al. (1981) [3], KENYON and TURCOTTE (1985) [27], but these authors did

not interpret the foreset diffusion problem as emerging from a turbulent density under-current].

a) Topset and bottomset with equal basement slope As a simple but nevertheless mathematically
not easy example, consider an infinitely long inclined plane defining the topset-bottomset lower bound-
ary basement with slope —S = —tan 3, see Fig. 20a. Assume, moreover, a constant lake surface and
choose a Cartesian coordinate system as shown in the figure with origin at the intersection of Z = Z, and
Z = —5X. Let a sediment transport process be started with this configuration at time ¢ = 0, and assume
a hyper-pycnal delta is being formed for ¢ > 0, of which Fig. 20b shows a snapshot. Its plunge point is
at X = s(t), Z = Zy(= 0 here). The sediment transports in the topset and foreset are then described by
the following initial boundary value problems.

"With a1 = o and p1 = 2100 kgm™® and p, = 1100 kgm™ one obtains D>/D; = 0.48 (foreset conditions).
Alternatively, with p; = 1200 kgm ™2, p., = 1100 kgm~>, we get Da/D; = 0.083.
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Figure 20: Formation of a hyper-pycnal alluvial delta in a lake with a bottom profile of constant slope —S in the topset
and foreset alike. (a) Geometry and selection of the coordinates (X, Z) (situation at ¢ = 0). (b) Delta architecture at
t>0

o¢ 3%
G D 41:0, —o < X <s(t), t>0,

ot loxe
U
87——5, AXF—)—OO7 tZO, (94)
(=0, X =s(t), t=0,
(=0, —wo < X <s(t), t=0,
as well as
¢ 0%
6—%— ga—)gé—o, s(t) < X <o, t>0,
06
aiX = —S, X — 0, t Z O, (95)
(=0, X =s(t), t=0,
(=0, s(t)y < X <o, t=0,
and these equations must be ‘connected’ by the transition condition
q1(s(t),t) — q2(s(t),t) = —d,
(96)

[q(s(®), )] = d.

Problem (94) describes the sediment transport in the topset as a diffusion process, with vanishing layer
thickness at ¢; (X, 0), 1 (s(t), t) and approaching a prescribed slope far upstream. Analogously, the sed-
iment transport in the foreset is also diffusive, starting from a vanishing delta front thickness fg (X,0) =
0, (2(s(t),t) = 0 and approaching the same bottomset slope for X — o0 as in the topset for X — —oo.
These two solutions are matched at the plunge point by requesting that the moving sediment flux may
suffer a jump of size d as given in (96). Its physical significance will be discussed below.

A solution to this problem has been constructed by LAT and CAPART (2007) [33]. The general

solution of the diffusion equation has been derived in Section 2, see (20) and is based on the definitions
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and assignments

. - = . X
G = fiE)&(t), Ei: (1) 97)

&i(t) :=2+/Dit, s1(t) := \/Dit.

(the index (-); stands for ‘topset’). It reads [see (27)]
fi(E1) = —A1E1 + By {exp(—E3) + /7Z1 (erf(Z;) + C1)}, (98)

in which A;, By, C| are constants of integration. As Z; — —o0 we wish to have lim=, ,_» f1(E1) =
—S=1 which implies A1 = S and C; = 1 (else the second term in braces would violate this condition).

Moreover, from (94)3 we deduce

B SA
P 2exp(—A2/4) + Aa(erf(A/2) + 1)

99)

This solution is still incomplete, because the parameter ) is not yet determined. It must await construction
of the solution in the foreset.

To find the general solution for (95); the procedure is analogous. We write (and use the index (-)o
for the foreset variables)

. - = . X
G2 = P(E2)80),  Z2:= (100)

§a(t) := 24/Dat, sa(t) := M\/D1t

and thus obtain for the function f

f2(E2) = —AsZs + Bs {exp(—E3) + /72 (erf(Z2) + Ca) }, (101)
again with constants of integration Ay, By, Co. As 29 — o0, we wish to have limz, o, f2(E2) = —SEo,
which now implies Co = —1 and Ay = S. Moreover, from (95)3, since

=, \Plungepoint _ 52 (t) _ i l& 102
(‘—'2)‘)(:5(15) 2\/D72t 92 DQ’ ( )

we obtain

D
S\ B,
By = TS 12) 75 . (103)
- 1 1 1
2 AN b ) VRSN Tllerf( S/ 22 ) —1
eXp( 4 Dz>+ VT Dz{e <2 D2> }

This solution is incomplete as is the solution for f7, but an equation for A follows from the flux jump
condition (96), which shall now be derived.
The straightforward approach would be to request in (96) that d = 0 and, consequently ¢; = g9 at
X = s(t), or
3¢ e

ey pfa (104)
0 X | x—s(t) 0 X | x—s(t)
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In view of (28) [and the formulae immediately before (21): oC /0 X = f'(Z)] (104) is equivalent to

_Dgfé(52)|\/?% +D1f{(51)|% =0,
2

fiE))y = =S+ Biy/m{erf(S1) + Lz _y (105)

>~

fé(32)|\/?% =-S5+ Bgﬁ{erf(E ) — 1}|_ \/T1A 7

in which B; and B» are functions of A as given in (99) and (103).19 Tt is now clear that (105) is a
transcendental equation for A.

According to LAT and CAPART (2007) [33] ‘the above equations generate profiles which are rela-
tively close in character to the profiles of hyper-pycnal deltas [. . .]. Qualitative comparisons with small
scale experiments [. .. ], however, are rather poor’. They state that substantial improvements of the fit
could be obtained at relatively little costs by including the effects of the inclination thresholds. Following

MITCHELL (2006) [42], they propose

QD
I >
i

max { —Dy 87 + Sinin 70 ; 61(X7t) > Z£7
q2(X,t) = (106)

a<2 min 2
<
aX +S 70 9 CQ(X7t)\va

max { —Dy
where Smm are inclination thresholds below which no bedload transport takes place, applicable to the

topset and foreset, respectively. Application of (106) at the plunge point to the statement [[¢]] = 0 yields

02(s(t),t) — q(s(t),t) = =Ds (gg; + Smm> + Dy (gg? + Smlfl) =0 (107)

or

D2f5(52)|\/?% — le{(51)|% = (D Smln D Svrrnn)7
2 g

d
= =S+ By {erf(E1 + 1z, (108)
=172

f1(E1)
fé(52)|\/?% = —5 + B/ {erf(Zs — 1}|~ _ /Dyas

o[>

22

If g = 0and g2 = 0 at X = s(t), then obviously d = 0.

It is worth interpreting these formulae more closely. Formula (106) defines the sediment-mass flux in
(93), but still demands continuity of it through the plunge point. This is also the interpretation in (107).
However, the differential equations (94); and (95); are based on flux relations which do not conform
with (106) (unless, of course, Smm = Smm = 0). A different interpretation is that the mass flow is
uniformly defined by the Fickian relation (93). In this case, the flux of sediment mass suffers a jump
as expressed in (96) with d given on the right-hand side of (96). The quantity d can be interpreted as a
point production or annihilation rate of sediment mass at the plunge point. It says that the abrupt change
of slope from the topset to the foreset regime is achieved by a local pointwise deposition or erosion of

sediment. This may correspond to a concentrated action of a process which in reality is a smooth but

'Note that the primes in these functions designate differentiations with respect to different variables.
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rapid adjustment of the delta slope from the topset to the foreset regime.

It is a fortunate coincidence that the jump condition (108) can be satisfied for

constant,
d= (109)
gl(s*)*Al,  s(t) = WDt, (s(t)*)* = N°D,

where D is a diffusivity, e.g. D1 or Do and g[-] is a differentiable function of [s%(¢)]" and A. The jump
condition (108) then takes the form

2 [4(2) -
D1\ VA ID)—; {erf(% %) - 1}
4 ()\7 D2> B 2exp (—%%) + /T {erf % B—;) — 1}’ (110)
R A O )
2 exp (—%) + /T {erf (%) + 1}’

and ‘ .
Dy S3" — Dy ST,
d = (111)
gl(s?)%, Al = g[A°D, A].
While (111); has univariate variability, (111)5 is very flexible.

Formula (110) provides an additional flexibility to adjust theoretical-computational results to cor-
responding experimental findings. (111); shows that the flexibility is only through the combination
[DS™n] = d. Variation of this parameter therefore only generates a one-parameter family of solutions.
Separate selection of S1 2 or Dj o does not yield improved matching of experimental results with the

theory.!! Formula (111)q, however, exhibits a broader flexibility through the dependence of g on \.

b) Sediment intake into a constant depth canal Next, let us consider the flow of sediment with initial
level CAO at a distance far in the topset (at X = 0) into an ambient of constant water depth H (see Fig. 21a,
illustrating the situation at ¢ = 0). At the initial time the fluid basin, a semi-infinite canal, bounded by
a vertical wall at X = 0, is free of sediments. The continuous discharge of sediment from this point
will diffusively fill the basin and form the alluvial deposit as sketched in Fig. 21b. Hydraulically, this
problem is somewhat artificial as the position (X, Z) = (0, () is kept fixed, which ‘forces’ the slope of
the topset sediment flow to adjust as the delta formation proceeds. The initial boundary value problem
in the topset regime is described by the equations (for the chosen Cartesian coordinates, see Fig. 21; the

indices (-)1 2 stand again for the ‘topset’ and ‘foreset’ regimes, respectively.)

Lél D 8261

5 = Dig3s 0 <X < s(t),
é’l = fo = const. # 0, X=0, t=0, (112)
{1 =0, X =s(t), t>=0.

"L ATand CAPART [33] choose d = [[D]|S™™, assuming that ST = S5, They say that this choice may be too restrictive,
but it is clear from above that they did not restrict the flexibility of the model by this choice.
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Figure 21: Alluvial deposition into a quiescent ambient channel of constant depth Hy from a far upstream position
(X,Z) = (0,¢). (a) Situation at time ¢ = 0 with vertical sediment motion down a vertical end wall (b) Snapshot of
the situation at ¢ > 0 with the alluvial architecture at the actual time (dark solid lines) and at a selection of previous
times (dashed lines). The early time behavior is hydraulically not realistic. Panel (b) courtesy LAT & CAPART, [33], © J.
Geophys. Res.-Earth Surface

with the sediment flux ¢; = —Dlag} /0X,in0 < X < s(t). Analogously, the foreset problem is
described by
2 02(
— =D )< X <
ot~ Trox? s(t) *
‘=0, X =s(t), t=0,
G (t) (113)
éQZ—H(]:COIlSt.;éO, X - o0, t=0,
(o =—Hy=const. #0, 0 <X <oo, t=0 (initial condition).
The two initial-boundary value problems are to be connected by the flux jump condition (107)
Tqa(s(t),t)] =d=[DS™»], or
(114)

<_D22§? + D 2%) = Dy Smin — Dy gmin,
X=s(t)

The problem, described by (112) — (114) is mathematically nearly identical to the STEFAN problem
of the formation of an ice cover at the top of a lake. (The problem to be described is the more exact
description of the freezing of still water in a lake of which an approximation was described in Sect.4.1).
The situation is sketched in Fig. 22, in which it is assumed that the temperature at the ice-atmosphere
interface is T' = —Ty,, s, at the ice-water interface it is the freezing temperature T" = T = 0°C, and at
depth, identified with X = oo itis T' = To, (= 4°C). The heat diffusion problems in the regimes (1) and
(2) of Fig. 22 are given by

0Ty T

ot - Piaxe 0<X <s),

Th = —Tiut = const. # 0, X=0, t=0, (115)
T = O(OC)7 X = S(t)a t=0,
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Figure 22: Layer of ice floating on still lake water. The surface temperature T,y < T, the freezing temperature
Tt = 0°C and the bottom temperature 7. are assumed constant and prescribed. In the regions (1) and (2) the heat
conduction describes the temperature distributions. The inset shows the heat flows in and out of the layer of freezing
water per unit time and thickness $(t)

and 0T PTy
3 zDgaXQ, s(t) < X < o0,
T, = 0(°C), X =s(t), t=0, (116)
Ty =To(=4°C), X > o0, t>0,
Ty =Ty 0<X <o, t=0 (initial condition),

in which D12 = k12/(c1,2p1,2), where K12,c12 and p; 2 are heat conductivities, specific heats and
densities of ice and water, respectively. Variations of D1 o with X (or T') are ignored. Moreover, q1 2 =
—k1,20T7,2/0 X are the heat flows in the ice and water, respectively.

To derive the STEFAN condition at the ice-water interface, consider the thin layer of thickness 5$(t),
which freezes onto the ice-water interface per unit time. The heat that flows out from, and into, this layer
is g2 — ¢1.This heat must equal the latent heat that is released by the water mass p2$(t), which freezes in
unit time: Lap2$(t). Therefore,

[a(s(t),8) [sty = p2L2s(t), $>0, (117)
where L is the latent heat of freezing water. With the FOURIER heat law, (117) takes the form

oT, 9Ty o
(K}]_M - KQ&)()XS@) = pQLQS(t) (118)

or when introducing the thermal diffusivities of ice and water, respectively,

(DlaTI D 02”2”2) _ 2l (119)
X=s(t)

0X  PepoX c1p1

Inspection of (112) — (119) shows that the deltaic formation of sediment deposition from a fixed
upstream position into a quiescent water channel of constant depth and the freezing of an ice cover on a
lake agree mathematically with one another except for the STEFAN conditions (114) and (119). Complete
agreement could only be achieved if cops = ¢1p1 and if d in (114) would be parameterized as L£5(t),

where L is a constant. This has so far not been suggested, but it is a requirement, if the above solution
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involving the similarity variables (123) satisfy the STEFAN condition, as we shall indicate below.

To solve equations (112) — (114), it is advantageous to use the transformations

V12 = (12 — Co, (120)

where 5’0 is the constant elevation at X = 0. Relations (112) and (113) then reduce to

0t 0%
=D X

a1 1352 0 <X <s(t),

- X =0, t>0, (121)
U = _507 X = S(t)a t=0

and 9 2
2 2

— =Dy X

a1 252 s(t) < X < oo,
9y = —Co, X =s(t), t>0, (122)

1922—(H0+<:0), X - o0, t=0.

Introducing the similarity variables

X
Hig= —0——, 123
12 = 3 N (123)
it is straightforward to see, [8], that the general solutions of (121); and (122); are given by
X 2 [*
Y1 = A+ Berf f(z) := —= —£%)d
| = A+ Ber (wm) ef(z) = —— | exp(~€2)d¢
X o (o (124)
192 = C + EerfC (W) y erfC(af) = \/EJI exp(—fz)df
The boundary conditions stated in (121) and (122) imply that A = C' = 0 and
s(t) ) :
Berf( = —(p
2V Dit (125)

—(Ho + (o) + Eerfc (25/(%) :

The first line of this equation implies, since B and 50 are constants, that the argument of the error function

must also be a constant, which we choose to be

s(t)
= \(= t.). 126
DX (= const.) (126)
Similarly, from the second line of (125),
S(t) D1
=M/—. 127
24/ Dot Dy (127
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Therefore, again from (125),

A H,
_ _5&)7 B=—0 (128)
er
erfc ()\ D—;)
The constant ) is still not determined; this is accomplished by satistying (114), or
019 09 >
—Do—— + D1 — =d, (129)
< 0X 0X X=s(t)
= £i(t), (130)
demonstrating two different parameterizations for the jump [[ ¢ ]. With the representations
do X
Y9 =— f ,
! erf()\)er 24/ Dyt
. Hy X (131)
¥ = —(Ho + (o) + ————erfc [ —— |,
2 ( 0 CO) eric (2m)

erfc ()\ %)

a somewhat lengthy but straightforward computation shows that the jump condition (129) with constant
d # 0 does not allow determination of A; the constructed functions (131) are no solution of that dou-
ble alluvial diffusion problem. If, on the other hand, (130) is chosen with £ = const., the following

transcendental equation for A is obtained:

2 /D
exp(—\?) Dy [D; P (‘A \/ ﬁé) Hy  AMy/m 132
erf()\) D1 D2 erfe ()\ %) 50 60
For £ = 0, corresponding also to d = 0, the sediment flux through the plunge point is continuous. Time
slices of the solution in that case are displayed in panel b of Fig. 21.
The above solution corresponds to the classical STEFAN problem, the freezing of water in a lake

from its surface. The governing equations are (115), (116). If we write
V12 =Ti2+T;s

and make the identifications Ty <> (—fo) and Ty, < (—Hj), then the solutions (131) remain valid,
but the STEFAN condition (119) implies

erf()\) ;1 D2 erfc (A %) Tsurf B CiceTsurf’
2

D
exp(—A?) ko | Dy P (_/\2D7;> T ALy/7 (133)

in which ¢;¢ is the heat capacity of ice. Note, the analogy between (132) and (133) is only complete, if
CicePice = CwaterPwater- 1f We ignore in (133) the second term on the left-hand side (e.g. by assuming
that 7., = 0°C, then (133) reduces to (56) with (58) as /¢-relation for s(t). The corresponding relation
(59) is less realistic, since it is not obvious that the second term on the left-hand side of (132) may be
negligible.

Finally, if the parameterization of the jump of the sediment flux d in (129) does not possess the form
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Table 2: Reported research on laboratory experiments for hypo- and hyper-pycnal delta formations

Hypo-pycnal Hyper-pycnal

KoSTIC & PARKER (2003) [29] [30] | LAI (2006) [32]

MuUTO (2001) [45] LAT & CAPART (2007) [33]

MUTO & STEEL(1992) [46] CAPART et al. (2007) [6]

MUTO & SWENSON (2005) [48] LORENZO-TRUEBA et al. (2009) [39]

(130), the construction of the solution with functions involving similarity variables (as in this section)

breaks down. In such situations one must use numerical techniques to find solutions.

6 Laboratory Experiments

The theory presented in the previous sections has been tested for both GILBERT-type and hyper-pycnal
formations of alluvial deltas under the restrictions of two-dimensional motion in a vertical plane, for
which the model has so far been developed. Experiments by MUTO & SWENSON (2005) [48] on
GILBERT-type delta formations have been reported in Section 4.4. Laboratory experiments on prograda-
tion from the topset to the foreset regime on both types of deltas have been conducted by several research
teams and are listed (as far as I know) in Table 2. Here, we shall present a brief description of laboratory
experiments on hyper-pycnal delta formation and compare results from them with results obtained from
the double-diffusive theory. Results are due to LAT and CAPART [32] — [34].

6.1 Progradation of hyper-pycnal deltas

In what follows we shall report on a subset of results, which have been described in greater detail by
LAT1 (2006) [32] and LAT & CAPART (2007) [33]. The experiments were conducted at the Hydro Tech
Research Institute of the National Taiwan University. The apparatus, which they constructed was es-
sentially a small scale copy of an experimental set-up by Garcia (1993) [17] for the study of turbidity
currents (see Fig. 23 and the description in the figure caption). The flow is photographed with a CCD
digital camera from the side perpendicular to the observation window. The bed elevation profile, position
of the plunge point and the lake level height are extracted from each digitized photo (note the scale bar
on the observation window). Details of this careful analysis of the experiments are available from LAT
(2006) [32] and LAI & CAPART (2007) [33].

LAT & CAPART [32] — [35] present results on two experiments, called ‘run 1’ and ‘run 2’ which

differ by the amount of brine influx

Q1 = 154mm? s 1, Qs = 229mm? s 1.
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Figure 23: Experimental set-up by LAI & CAPART [32], [33], used for the small scale experiments on prograding hyper-

pycnal deltas.

The narrow flume is separately fed by steady streams of salt water at the top left and dry sand from a silo somewhat distant
down flow. For material properties of brine and sand and other experimental parameters, see Table 2. This brine-sediment
mingling moves down the prefabricated sand-bed with 10°-slope. Initially, subaerial steady flow is established without
fresh-water in the basin. Then, freshwater is rapidly added to establish a fresh-water basin with constant water level, kept
by a weir. This establishes conditions for delta formation and subaqueous progradation. By adding fluorescent dye to the
brine, the subaqueous density current is easily visible. To make the temporal formation of the hyper-pycnal deltas visible,
black coal grains are intermittently added to the dripping sand, of which each event leaves imprinted stripes in the deltas,
and thus illustrates their architecture. Courtesy LAT & CAPART, [33], © J. Geophys. Res.-Earth Surface
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Figure 24: Series of photographs from a laboratory experiment depicting the progradation of a hyper-pycnal delta in a
lake of constant water level, starting from a bed of constant inclination. Flow is from left to right (indicated by the arrow).
For details, see main text. Photographs courtesy LAT & CAPART [33] © J. Geophys. Res.-Earth Surface
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A sequence of consecutive snapshots is displayed in Fig. 24, which shows side views of the delta
build-up in run 1 with sediment flow from left to right. ‘The current is subaerial upstream, plunges
into the ambient basin at the shoreline break, and then continues as a subageous density current. The
delta progrades lakeward by simultaneously building topset and foreset deposits on the two sides of
the shoreline. The repeated dark stripes are coal-dust traces bedded into the topset deposit at times
corresponding to their intermittent release. As for the observed morphology ‘topset and foreset profiles
are concave upwards, and everywhere gently curved except for the sharp cusp at the shoreline break,
with the topset curvature milder than the foreset curvature. The maximum inclination of the foreset
is 24°, well below the measured angle of repose of 37° (see Table 3). At its toe the foreset connects
smoothly with the original bed’ [33]. Delta profiles at different times are similar to each other; this is
shown in Fig. 25, where in panel a) measured delta profiles from four time slices (t = 20, 45, 80, 125s)
are plotted: (Al,g against X. If, instead the same profiles are plotted as 61,2 /4/Qt against X /4/Qt, then
the graph in panel b) is generated. All curves collapse to a single profile, which beautifully demonstrates
the self-similarity property. A stronger test of the theory emerges when this same transformation is also
performed for (¢t = 20, 45, 80, 125s) for experimental Run 2 with (). This is demonstrated in Fig. 26b,
where e and o are taken from the respective photographs of Run 1 and Run 2. The two experimental
profiles in the scaled plot ‘define’ a single curve through the foreset and most of the topset. Panel a)
shows the profiles for the four time slices (t = 20,45, 80, 125s) for the second run. The measured
profiles in panels a) of Figs. 25 and 26 show as solid curves also the computed profiles of the analytical
solutions, derived in Sect. 5.2.

Finally, Fig. 27 displays in physical dimensions the time evolution of the shoreline position for
Run 1 and Run 2 (open and full circles) together with the theoretical v/t-curves (solid lines) based on
s(t) = A/D4 with X as given in Table 3. These values for A achieve the more rapid shoreline advance

for run 2 than for Run 1.

6.2 Reservoir infill by hypo- and hyperpycnal deltas over bedrock

LA1 & CAPART (2009) [34] also performed computations along the above lines and extended these
by comparing results under homo- and hyperpycnal conditions and sediment loads at different rates.
For hyperpycnal conditions the approach of the mathematical solution for the delta formation follows
Section 5, and delta configurations are as shown in Figs. 24-27. For homopycnal conditions the foreset
diffusivity vanishes (see formulae (89), (88), when p = py) and the diffusion solution is replaced by
a frontal deltaic slope equal to the angle of repose of the sand in water. The topset diffusion equation
then still holds with prescribed sediment flux at the bedrock-alluvial transition and a general STEFAN
condition as illustrated in App. A, Fig. 36.

The experimental stand used by LAT & CAPART [34] is similar as that shown in Fig. 23. The flume is
1 [m] long and 1 [cm] wide and side-glass walls allow visual inspection. Downstream, the flume is fitted
with weirs to control the lake water level and the subaqueous interface. Upstream, a head tank supplies
the constant river discharge, and a conveyor belt supplies the bedload sediment. For the river discharge,
either freshwater (p = 1000 [kgm™!]) or brine (p = 1200[kg m~']) are used to generate homo- and
hyperpycnal inflows into the freshwater lake. The sand characteristics for the bedload sediment are:
median diameter d5y = 0.17 [mm], coefficient of uniformity dgo/d19 = 2.3, angle of repose ¢ = 3°

(see Table 3). Green fluorescent dye is added to the brine to visualize underflows, and black ash is
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Figure 25: Results for hyper-pycnal delta progradation for Run 1 with Q@ = 154mm? s~". Panel (a) shows four snapshots
at times (t = 20, 45, 80, 125s), ¢ plotted against X . Points represent topset and foreset profiles as read from photographs
at the above times, solid lines depict the computed profiles of the double diffusive model as explained in the main text.

Panel (b) shows the same experimental data now rescaled by the inverse square root: QA“ /4/Qt versus X /4/Qt. Courtesy
LAI & CAPART [33], © J. Geophys. Res.-Earth Surface
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Figure 26: (a) Hyper-pycnal delta progradation for Run 2 with Q = 229mm? s~*. Measured data (circles) are compared
with results from analytical solutigns (solid lines) of the double diffusion model. Panel (b) combines the data of both
Runs 1 and 2 in rescaled fashion: ¢/+/Q t plotted against X //Q ¢ for (t = 20,45, 80, 125s) and Q1) = 154mm?s !

(full circles), Q2) = 229mm?s~! (open circles). Courtesy LAT & CAPART [33], © J. Geophys. Res.-Earth Surface
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Figure 27: Comparison of experimental and analytical results for the time varying shoreline position of hyper-pycnal
deltas. Full circles show results for the sediment flux Q1 = 154mm?s ™", open circles for Q2 = 229mm?s~!. Solid lines
represent the theoretical results. Courtesy LAl & CAPART, [33], © J. Geophys. Res.-Earth Surface

sprinkled at repeated intervals to visualize the stratigraphy of the deposits. Photography is taken as in
earlier reported experiments. ‘Figures 28a,b,c,d show deltaic morphologies resulting from homo- and
hyperpycnal river inflows, respectively, over bedrock forms of moderate inclination (§ = 10°)’. The
experiment A (Fig. 28a) shows typical GILBERT-type behaviour. ‘To examine the effect of inclination,
experiment C is conducted under the same hyperpycnal conditions as experiment B with the steepness
of the bedrock floor increased twofold to § = 20°. Experiment D shows what happens under the same
conditions when the bedload supply is decreased by a factor of approximately 5.5, and the hyperpycnal
current ponds into a subaqueous pool at the downstream end of the flume [...]. All tests are performed
under the same river discharge, held steady at a volumetric flow rate per unit width, ¢ = 80.6 [mm?s~!]",
[34].

‘The experiment photographed in panel A and performed under homopycnal conditions and § = 10°
bedrock slope leads to a GILBERT delta with a topset of mild inclination, a steep foreset, inclined at the
angle of repose and sharp slope breaks at the shore line and at the delta toe. This behaviour is contrasted
in experiment of panel B, which was performed under hyperpycnal conditions; it has again a topset of
mild inclination and slope break at the shoreline, but smaller now, well below the angle of repose. The
concave foreset profile changes smoothly, is therefore longer than for GILBERT-type deltas and reaches
the base theoretically at an infinite distance from the shoreline. Qualitatively, whereas the foresets in
panels A and B are different, the topset geometries are qualitatively very similar. This is quite different
in the experiments of panels C and D, of which both have a basal bedrock inclined by 20° and are
subjected to hyperpycnal conditions. In panel C the upstream sediment flux is the same as in panels A
and B, but owing to the increased bedrock slope, this flow drives a greater proportion of the sediment
load into the lake. The delta foreset is highly elongated, nearly straight but still concave-curved, with a
small topset forming the subaerial delta. The fluorescent trace indicates the sediment flow very clearly.
The experiment in panel D, in which the water flow and bedrock slope are the same as in panel C, but the

upstream sediment inflow qq is reduced by a factor of 5.5. The entire river sediment load is now driven
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Table 3: Properties of the sand material and brine solution used in the experiments and values of parameters for the double
diffusion problem, which fit the illustrated experiment (after [33], [34])

Property Value
Median sand diameter dso [mm] 0.17
Sand uniformity coefficient C,, = dgo/d10 2.3

Sand density p,[kgm™3] 2670
Porosity of uncompacted sand bed ng = Vipig/V [ -] 0.507
Angle of repose ¢ [deg] 37°

Upstream brine density [kg m 3] 1200
Water density in receiving ambient [kg m ™3] 1000
Q(1)- Discharge in experimental Run 1:[mm?* s~] 0.59
Q(2)- Discharge in experimental Run 2 [mm? s~1] 0.30
a1 Velocity ratio (topset) [ - | 0.59
ap Velocity ratio (foreset) [ - | 0.30
Dgl) Diffusivity (topset) [mm? s~] 199

Dél) Diffusivity (foreset) [mm? s ] 16.9
D' Diffusivity (topset) [mm? s~!] 295

D§2) Diffusivity (foreset) [mm? s~1] 25.1
A A@) 0.468

into the lake without formation of a subaerial delta but building a subaqueous delta, prograding into the
turbid pool. Evidently, the subaqueous delta of experiment A and the subaerial delta of experiment D are
quite similar in their morphology. Both exhibit short, straight foresets, inclined at the angle of repose,
and long topsets with small curvature. Their difference is in the topset inclination. Panels C and D on
the other hand, demonstrate that it is possible for lake deposits to exhibit very different patterns, even at
the same bedrock slopes’ [34]. The theoretical profiles, corresponding to the four different experiments
displayed in Fig. 28 possess similarity structure (as one would expect). So, if in each experiment 6 /A/qot
is plotted against X /4/qot the results in all experiments should fall onto one curve. LAI and CAPART
[34] have done this and present Fig. 29, in which the panels A to D correspond to the panels A to D
of the experiments shown in Fig. 28. Figure 29 shows as solid heavy lines the computed similarity
solutions, and as coloured symbols the digitized experimental profiles from photographs taken at four
different times. The shapes of the sediment bed and the elevations are well predicted with only slight
errors in phase for the positions of the delta fronts. Most important, the theory is able to reproduce the
wide range of the experimental deltas. This range includes the production of straight and curved foresets
(A versus B), contrasted ratios of foreset to topset lengths (B versus C), and the formation of topset -

foreset deposits of opposite extents (C versus D). The theory may obviously help explaining depositional
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Figure 28: Experimental deltas over bedrock: (a) homopycnal delta (bedload influx go = 5.7 [mm? s~1], bedrock in-
clination § = 10°); (b) hyperpycnal delta (go = 5.2[mm?s™'], # = 10°); (c) hyperpycnal delta over steeper bedrock
slope (g0 = 5.2[mm?s 1], 6 = 20°);(d) hyperpycnal delta with smaller rate of sediment influx (¢qo = 0.94[mm? s 1],
0 = 20°), from LAI & CAPART, [34], © Geophys. Res. Letters

patterns that have been documented in mountain reservoirs, [34].

LAT & CAPART [34] list a number of field sites, where the situations displayed in Fig. 28 have been
observed. A GILBERT-type delta similar to panel A of Fig. 28 has led to the recent infill of the small
Ronghua reservoir, upstream of the large Shihmen reservoir (CAPART et al., 2007 [6]) in Taiwan. In this
reservoir, the river inflow is highly turbid during floods (LEE et al. [38]) yet, homopycnal conditions
prevail because this small reservoir rapidly becomes turbid itself, blurring the density contrast between
inflow and lake waters. The Shihmen reservoir, on the other hand, shows deposits similar to case D.
Well known hyperpycnal deltas having morphologies matching cases B and C are the deltas of the Upper
Rhine at Lake Constance (HINDERER, 2001 [23]) and the Colorado river at Lake Mead (GRAF 1971
[21]). A first step into this direction has been taken by CAPART et al. (2011) in a study of the formation
and decay of a tributary-dammed Lake in the Laonong River [7].

At the research forefront the next urgent steps should now be the application of the illustrated theo-
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Figure 29: Comparison of measured (symbols) and theoretical (solid lines) profiles for the experimental deltas of Fig. 28.
Data points coloured red, green, blue and orange denote delta profiles measured at evenly spaced time ¢; to t4. Normalized
coordinates are used to demonstrate self-similarity, from LAI & CAPART, [34], © Geophys. Res. Letters

retical concepts to the sediment infill of artificial lakes in mountainous areas during floods and the release

of deposited sediments through the bottom or side outlet of the reservoir barrage.

7 Formation and Evolution of Tributary Dammed Lakes

7.1 Introduction

In this section a dynamical description of ‘onset and growth of tributary dammed lakes’ due to HSU
and CAPART (2008) [24] is presented. In mountainous regions many natural lakes have been formed by
glacial retreats at the termination of the last Ice Age. Apart from this glaciogenic formation natural lakes
have also been created by river obstruction due to landslides, which may occur during heavy rainfall
events. Sudden sediment deposits at a localized restricted region of a valley from a side tributary may

block the continuous flow of sediments down the valley, whilst the water flow, after a short interruption
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Figure 30: Tributary-dammed Lake Pepin, formed across the Mississippi River because of sediment influx from the
Chippewa River: (a) Map showing the local relief (digital elevation data from the Upper Mississippi Basin Stackholder
Network, St. Mary’s University of Minnesota) and watercourse (bathymetry from the USGS Upper Midwest Environ-
mental Sciences Centre) and (b) elevation plot showing the influence of the Chippewa and Wisconsin rivers on the long
profile of the Upper Mississippi (source of the data, USGS). The marker at river mile 765 has latitude 44°24°49”N and
longitude 92°06°54”’W, from HSU & CAPART (2008) [24] (©) Water Resources Research, American Geophysical Union

may continue, once the lake level has reached the crown of the dam of the sediment deposit. Early de-
scriptions of such tributary dammed lakes are by DAVIS (1933) [11] and LANE (1955) [37] and examples
are reported by GALAY et al. (1983) [16]. HSU & CAPART report that the ‘Upper Mississippi River,
where postglacial outwash deposits supplied by the tributary Chippewa River caused the formation of
Lake Pepin (ZUMBERGE, (1952) [71]; WRIGHT et al. (1998) [67])’, Fig. 30. Two different regimes of
river morphology may ensue from such tributary sediment depositions. ‘When this influx is moderate,
the main river can deposit sediment upstream of the aggrading tributary junction to maintain a down-
valley bed inclination. The result is a cuspate profile [Fig. 31a]. When the influx from the side is large,
by contrast, the deposition rate in the main river cannot keep pace with [the] confluence aggradation be-
cause of insufficient sediment load. This causes the formation of a natural lake upstream of the tributary
mouth, as in the case of Lake Pepin upstream of the Chippewa confluence’, HSU & CAPART (2008)
[24].12

In the ensuing analysis a simplified situation will be considered, in which the sediment flow in the
principal valley is one-dimensional and defined by the classical diffusion equation. Moreover, the sedi-

ment influx from a tributary is represented by a steady'> point source, and the origin of the horizontal-

12Similar, somewhat reminiscent alterations of sediment regimes have frequently occurred in the Alps during the Middle
Ages when ice avalanches, formed from hanging glaciers, dammed riverine valleys, ROETHLIBERGER (1978) [57]. As long as
the ice deposit existed, an ice-dammed lake formed and changed the upslope and downslope sediment flows. More significantly,
floods due to sudden dam break caused devastating debris flows. Other, related processes are artificially formed when barrages
are built for valley reservoirs. They change the upstream sediment regimes and slowly fill the reservoir, thereby reducing the
power-generating capacity. Through a base opening in the barrage or side channel and judicious flushing operations, in which
the discharge and the lake level are monitored, the sediment deposit is partly removed, a process which affects the sediment
regimes in the lake and its topset as well as the sediment flow in the river stretch below the barrage.

3Unsteady situations can also be analysed, but may need pure numerical solution techniques.
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Figure 31: Self-similar alluvial responses to sediment supply from a tributary: (a) tributary-induced cuspate aggradation
and (b) tributary-dammed lake, forming when the tributary supply exceeds twice the original sediment transport rate in
the river (I > 2qo), from [24] (©) Water Resources Research, American Geophysical Union

vertical coordinate system (X, Z) is chosen to be the location of the point source. With the notation of
Section 1, the sediment diffusion equation takes the form
0¢s , 04

oo =0 = 15(X), (134)

in which fs is the vertical coordinate of the upper surface of the sediment layer, ¢ is the sediment flux in
the main river and [ is the (here) steady point sediment source from the tributary river (a change of the
amount of water in the river stretch below the source point is ignored). 6(X) is the HEAVISIDE function.

We further assume that the longitudinal sediment motion is driven by a steady uniform water dis-
charge (per unit width), q,,, flowing down valley (q,, > 0). Variations in the evolution of the sediment
profile are assumed to be sufficiently slow as the water surface reacts quasi-statically. This implies that

Z = és and Z = fw are varying ‘in parallel’, so that with sufficient accuracy

2w _ 06 0w _ 06

= = ) 135
ot ot’ X 0X (133)
Finally, éw and és are subject to the following inequalities:
= = 0 éw I~ = 0 gw
> —— > — (s — —= =0.
CozCotho, =520, (Co—dimho) 52 =0 (136)

Theses inequalities subdivide the river course into stretches of running water and sediments for which

aéw _ aCs N s
87_ 5X >07 C’w_CS_hOa (137)

59



where steady (normal) flow is assumed, and segments with standing water for which

aéw _ aCAs _ 2 2
-T2 =0, L>lth (138)

In other words, these regions are the lake-pools, where the water surface is horizontal and larger than
Z = (f s + ho, and where the sediment flux vanishes.
We also follow HSU & CAPART (2008) [24] and postulate the sediment flux in the form

q:Dmax{_gg}U_Sminvo}a (139)

in which D is the alluvial diffusivity, defined in Section 1, formula (17), and Sy, is the minimum slope
required for sediment transport. Note that (135) contains & C,, /0 X, but it can be replaced by ¢ G /0 X, if
(135) is satisfied. For segments where —¢ fw /0 X > Smin and with Sy,;, = constant and D = constant,
we have 0 ¢/0 X = —DdC, /@ X = —DdC, /@ X ; in this restricted case (134) takes the form

¢ (s
ar TPaxe

— 18(X). (140)

There remains to establish the initial and boundary conditions, for which (140) is to be solved.
Hsu & CAPART (2008) [24] assume that the process starts from initial conditions fs (X,0) = =S X,
representing a linear profile of constant inclination .Sy exceeding the transport threshold (Sp > Smin).

The background sediment transport rate is then
Qo = D(So — Smin)- (141)

7.2 Theory

The solution for the partial differential equation (140) is determined by constructing it intuitively from
independent functions which satisfy the boundary conditions at X = 0 and X = +00. We shall construct
solutions in —o0 < X <€ Oand in 0 < X < o0, independently and then will match the two solutions
at X = 0. Linearity is a crucial element of this approach. For mathematical properties of the involved

functions, see Appendix B.

e The linear function
(M =—Sx (142)

satisfies (140) with I = 0 trivially and matches the asymptotic requirement that the full solution

approaches —SpX as X — +o0.

It follows that any further solution which is added to (142) must satisfy the asymptotic limit
AS(Q)(XJ) — 0as X — oo and égg)(X,t) —0as X —» —o0.

e The function

() = %\/ﬁierfc ( X>0 (143)

i)

is equally a solution of the homogeneous equation (140) (with I = 0) in X > 0 with the properties

60



that

A§2)—>0 as X — o0,

2 144
P C8(2) ‘ A (144)
0X Ix=o+ 2D’
e The function 4 X
‘() = Zy/Dtierfc ( X <0 (145)
* D 20/Dt)’
is also a solution of the homogeneous diffusion equation (140) (with I = 0) and with the properties
that A
§§3) -0 as X — —o,
2¢® A (146)

0X Ix=0- 2D’

These properties, claimed for §§2) and f §3) are collected in Appendix B and can be verified by ele-
mentary computation. The complete solution of the inhomogeneous partial differential equation (140)

may now be written as

A X
—SuX + Bx/Dt ierfc () , 0< X < oo,

& = A 2|VX1|) t (147)
~SoX + E/Dtierfe [ 2}, 0w <X <0,
7D (2\/Dt)

The free constant A follows by patching the two solutions (147) at X = 0. A first condition is that
C(07,8) = (,(07, 1), which is already satisfied. A follows by integration of (140) from X = —e to
X = +¢ for arbitrarily small € > 0. Indeed,

+e 9 és +e a2 és +e
JE = dX—JE Digr=1] o(0ax,

in which [ f]] = f(0%) — f(07) is the jump of f across the discontinuity. Therefore, using the results of
items 2 and 3 above, we obtain —[[Da(,/0X lix,=1or

(S()D + f21> — <S()D - ;4) =A=1. (148)

Consequently, a compact form of the solution of (147) is

: I (X )
s = =S50 X + =V Dtierfc | —— ), —w0< X <o, 149
G 0 M <2\/ﬁ (149)

which is the form reported by HSU & CAPART [24]. This solution represents conditions of aggradation

during which the sediment bed maintains its cuspate shape of Fig. 31a. The self-similarity of the profile

becomes evident, if (149) is written as

I. X {s
s = _S + f 9 = } = )
3 o€ + pierfe(l¢]), € WirERENT

(150)
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which demonstrates that for fixed Sp, I the similarity variables in the horizontal and vertical directions
are subjected to the same scaling.

The solution (149) is, however, not valid for unrestricted values of the flux I from the side tributary.
Its limitation for the validity of (149) follows from the slope of the river channel immediately upstream

of the tributary junction
1

-=5 - —= 151

So- =50~ 55 (151)

(see Appendix B and (148)). In order that sediment flux ¢; > 0 occurs at X = 0, we must have
So > Smin, implying with (151)

T < 2D(So = Swin) = 240, (152)

where ¢qq is the sediment flux far upstream at X — —oo. If the inequality (152) is violated, i.e. if
I > 2qq, the sediment flow at X = 0~ ceases and all upstream sediments are deposited. In HSU &
CAPART’s [24] words ‘the sediment infill upstream of the junction cannot keep up with the aggrading
confluence, and a tributary channel lake forms, Fig. 31b. The point of minimum inclination S' = Sp;, at
the downstream end of the upstream alluvial reach is forced to retreat up-valley, producing a migrating
slope break at [the] evolving position X = — L(t). The resulting gap —L(t) < X < 0 is filled by a pool
of standing water, across which sediment transport is suppressed’, [24].

Under these conditions two separate mathematical problems of sediment transport must now be

solved,

(i) the sediment transport for the downstream part of the river, which is fed at X = 0% with a sediment

flux of the side tributary only, whose upper Z-coordinate at X = 0" is given by the moving lake

level, and
(ii) the upstream sediment flow with vanishing flux (and thus slope) at the lake end X = —L(t) and
flux qq far upstream at X = —oo.

Sediment flow below the lake: 07 < X < oo. With a constant sediment flux at X = 07 and a basal

slope of magnitude —Sy as X — oo, it is easy to see on the basis of the previous analysis that the function

- A 3 —
Co(X,t) = —SoX + Bmlerfc(ﬁ), €= T (153)

solves the diffusion equation for which

0 Cs B A
o+ = —D (é’X — Smm> = D(Syp — Smin) — E[erf(f) —1] (154)
describes the flux. At X = 0T, we have

A
qo+ (154) D(Sp — Smin) + 3= 1

= A =2[I-D(So— Smin)] = 2(I — q0)- (155)
N —

q0
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Consequently, the sediment flow below the lake is described by the equation

. 2(I — qo) ) ( >
(X 1) = —SoX + 25D /D jerf 0<X <o 156
Cs(X, 1) 0 D lerfc Wi (156)
At X = 07 this becomes o]
&t = =) 5y (157)

Dy/m
which is positive, since I > 2qg according to (152) and the text following it. On the other hand, if no
lake is formed, (149) applies and C, (07, ) takes the form

. 1
07,t) = —=VvDt. 158
CS( I ) Dﬁ ( )
The thickness of the sediment deposit at the tributary mouth is thus given by
. 1 2(I —qo) I
H :=(,(0,t) = ﬁmax{(DO),D}\/Dt. (159)

With (157) the lake level at X = 0* then follows as'*
Cw(0T, 1) = ((07, ) + ho. (160)

Because of (159) ‘the dependence of the deposit thickness on the tributary influx I is nonlinear. A
break of trend occurs at the onset of lake formation (I = 2¢p), beyond which aggradation is enhanced at
the tributary junction. When the influx exceeds this threshold, a lake of rising level and increasing length
develops (Fig. 31b) [...]. Water continues to flow past the dam and only sediment transit is interrupted
across the lake. The up-valley transgression of the lake leaves a characteristic bathymetric signature
with a lake bed that acquires a downstream facing slope of constant inclination. Unlike avalanching
[GILBERT-type] delta foresets, for which the slope is determined by the angle of repose, here the lake
bed inclination is set by the rate of aggradation of the tributary dam. A faster aggradation [by an increased
value of I] yields more rapid lake transgression, hence a lake of milder downstream-facing slope [...]",
[24]. Analogous shoreline transgressions for deltas responding to sea level rise are due to MUTO &
STEEL (1992) [46] and PARKER & MUTO (2003) [54].

Sediment flow above the lake: —o0 < X < —L(¢). Under standing water conditions, & C,,/0 X =
0, the upstream edge of the lake rises in lockstep with the aggrading ‘dam crest’, defined by (157)
(Fig. 31b). The initial boundary value problem again possesses the solution

. A ) X
(X, t) = =S X + Bx/ﬁlerfc <_W> i (161)

Indeed, this function satisfies the homogeneous diffusion equation (with constant diffusivity) and the

asymptotic boundary condition that ¢y = Sp.D. Additional conditions must be satisfied at the upper edge

41y is the water depth on the assumption that the water flux leaving the lake is the same as the in-flux.
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of the lake. First, we have with L(t) = A/ Dt

L= L e, " Wm

(S g A/Di + \/ Dt ierfc (A WVDJ

from which one may deduce

% n Aiegf;(fm . Iﬁi‘)’ —0, qo:=S,D. (162)
Once A is determined, this is an algebraic equation for A. Second, at X = —L(t), the sediment flux is
given by Sy, which together with (161) yields
So + % {erf < /2\) + 1} = Smin, (163)
from which one obtains 2D(S0 — Suin) %0
A= erfe(V2)  erfe(\/2)’ (164)

Finally, substitution of (164) into (161) and (162) yields

Co(X,t) = —SoX + 200 VDt ] erfc( —X

), —0 < X < —L(t),

D erfc(A\/2 24/ Dt (165)
A L 40 ierfc(A\/2)  IT—qo _ 0
2 DSperfc(\/2) /TDSy

as the sediment transport equation and lake length L(t) = A/ Dt.

7.3 Experiments

As a test the above model approach, HSU & CAPART (2008) [24] performed laboratory experiments.
The experimental set-up is sketched in Fig. 32. It consists of a 250 [cm] long, 1 [cm] wide channel of
adjustable inclination angle. The water flow, g, far upstream enters the flume from a constant back tank
and the sand is dropped onto the steady upstream water flow from two feeders whose fluxes, gg and I,
are adjustable. A sink tank at the lower end collects the sediment and water outflow. The most important
data are collected in Table 4.

Calibration runs with the tributary influx I turned off and the bed brought to equilibrium grade under
steady upstream inflows of water and sand were first performed to characterize the relation go(qy, S)
between upstream water discharge ¢,,, inclination S = —6425 /0 X and sediment flux go. The resulting
data (Fig. 33) are well approximated by the power law

= k¢ Sﬁ
(166)
k=1.03[mm2s '@ =139, J3=228

(and root-mean-square residual = 4 [mm 2511 for sediment fluxes in the range 0 < ¢ < 130 [mm2s~1]).
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Figure 32: Sketch of the laboratory experiment to check the theoretical model, performed by HSU & CAPART (2008)
[24], (© Water Resources Research, American Geophysical Union

Table 4: Key properties of the laboratory experimental stand and the physical parameters of the sand used

Channel length 250 [cm]
Channel width 1 [cm]
Flume inclination angle adjustable
Submerged angle of repose 36 [°]
Sand median diameter dxg 0.32 [cm]
Sand coefficient of uniformity dgo/d10 1.84[-]

“Tributary experiments were conducted for different values of water discharge and tributary sediment
influx. All experiments were started from the same initial grade Sy = 0.11, obtained by adjusting the
upstream sand supply ¢g to the corresponding water discharge. At t = 0, the tributary sand supply
is turned on at prescribed rate of influx /. The ensuing response of the sand bed is observed through
the transparent side wall using time-lapse photography’, [24]. HSU & CAPART performed a total of 27
runs with water discharges q,, = {280,470, 730} [mm2s~!] subject to various tributary influxes I such
that 1 < I/qo < 5. For comparison with the theory, which is not built on a functional relation (166),
the power law (166) must first be approximated by the simplified form of equation (139). This was
done by cross calibrating the coefficients D and Sy, against k, o and 3 (using least squares over range
0 < S/Smin < 2, yielding D/qp = 30 and Spin/S = 0.7, and the precise relation represented by the
bold line in Fig. 33.) Once the two coefficients have been determined, all other results can be calculated
from the theory, and thus present testable predictions.

Comparison of theory and experimental results. Figures 34a,b show in dimensionless representa-
tion the lake length L.Sy/H and sediment deposition thickness H /+/Syqot against I/qg. The solid curve
in Fig. 34a represents the results of the theory, symbols those of the experiments. As shown theoreti-
cally, a lake is formed only when I > 2¢g, which explains the onset of non-vanishing values for L at
I/qp < 2. The curve in this latter range of I/qq follows from solutions of (165) for A and (159) and grows
sharply for I/qq slightly larger than 2, but quickly tapers with a decelerating growth. The experimental
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Figure 33: Calibrated sediment transport relation (thin curve power law; thick curve, approximate diffusion flux). Sym-
bols represent experimental data for water discharges g1 = 283 [mm?s™'] (squares), gz = 467 [mm?s~'] (diamonds),
and g3 = 733 [meS_l] (circles), from HSU & CAPART (2008) [24], (©) Water Resources Research, American Geophys-
ical Union
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Figure 34: (a) Normalized lake length versus ratio of tributary sediment supply / to undisturbed sediment transport go
,with lake formation predicted to occur when I > 2¢q. (b) Dependence of the normalized sediment deposit thickness at
the tributary on the ratio I/qgo. The thick curves in the two panels are the theoretical predictions, and symbols represent
experimental data for water discharges g1 = 283 [mm?s™!] (squares), g2 = 467 [mm?3s™1] (diamonds), and g3 = 733
[mm?s~1] (circles), from HSU & CAPART (2008) [24], (© Water Resources Research, American Geophysical Union

lake length L(t) is represented for each run with a data point and error bar for ¢y = {283,467, 733}
[mm?s~!], represented by {squares, diamonds, circles}, respectively. Evidently, even though the ob-
served onset of the lake formation is slightly delayed, and the measured data fall slightly below the
theoretical curve, the experimental data and the theory follow the same trend. Results for the theoret-
ical dimensionless sediment deposit thickness H /4/Soqot follow two linear (I/qy)-dependences, given
mathematically by (159), Fig. 34. The experimental points follow the same trend, but a kink at I /gy = 2
is not clearly identifiable.

Longitudinal profiles for two experimental runs below (I /gy = 1.6, Fig. 35a) and above (I /gy = 4.4,
Fig. 35b) the lake-formation threshold are presented in Fig. 35. As profiles (AS(X ,t) are geometrically
self-similar, they collapse together when plotted in the normalized coordinates of Fig. 35. Below the
threshold I/qp = 2, a cuspate aggradation is observed. ‘The deposit thickness [then] exhibits mirror

symmetry about the tributary mouth, and the bed profile maintains an elevation that monotonically de-
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Figure 35: Self-similar river and lake bed profiles produced by steady sediment influx from a tributary: (a) cuspate
aggradation (I /qo = 1.6) and (b) tributary-dammed lake (I/qo = 4.4). Lines are the theoretical predictions, and rotated
triangles represent measured profiles approximately 1, 2, 3, 4 minutes after the start of the tributary influx. Both experi-
mental runs correspond to water discharge g2 = 467 [mm?s™!], from HSU & CAPART (2008) [24], (© Water Resources
Research, American Geophysical Union

creases down valley [Fig. 35a]. Above the threshold [. . . ], the alluvial profile is no longer monotonically
decreasing, and a lake forms upstream of a tributary dam [...]. The downstream deposit accumulates
more sediment (received from the strong tributary influx) than the upstream deposit (which traps the
weaker background sediment flux). Overall the theoretical and experimental profiles match well, [ex-
cept] for a slightly underestimated cuspate deposit thickness in Fig. 35a, and for the upstream dam face
in Fig. 35b, assumed vertical in the theory (no up-valley sediment motion is allowed), but which re-
laxes to the angle of repose in the experiments [. .. ]. The other features of the tributary-dammed lake of
Fig. 35 show good agreement between theory and experiment. This includes the predicted retreat of the
upstream lake edge along a line of constant inclination (well below the angle of repose), the shallow de-
posit upstream of the lake, and the half-cusp profile of the river bed downstream of the tributary mouth’,
[24]. Qualitatively this is reminiscent of the recorded profile of the Upper Mississippi River (Fig. 30b)
with the convex segments upstream and downstream of the Wisconsin junction, and the existence of Lake

Pepin with its triangular bathymetry.
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8 Discussion and Conclusions

A review has been given in this article on sediment transport from an alluvial river stretch into a quies-
cent ambient. Depending upon whether the river-water density is lighter than, the same or heavier than
that of the water of the lake, two kinds of delta formations could be distinguished: for priver < Plake
(hypo-pycnal delta formations) the coarser sediments tend to separate from the suspended fines and form
deltas with constant frontal slopes generated by the angle of repose. For priver > plake (hyper-pycnal
delta formation) the subaerial river current plunges down into the still ambient water and forms a turbu-
lent subaqueous density current with moving coarse sediment load. For hypo-pycnal deltas, the alluvial
river transport can be described by a sediment diffusion equation, generally subject to upstream flux and
downstream lake level prescriptions. The positions of the shore line as a function of time is obtained from
a generalized STEFAN condition relating the sediment flux to the basement geometry and basement de-
formation processes. For hyper-pycnal deltas the subaerial and subaqueous sediment transports are both
governed by diffusion equations with different diffusivities (Dgsubaerial # Dsubaqueous)- Far upstream and
far downstream boundary conditions in the topset and foreset and lake level prescription at the temporally
varying shore line complete the problem formulation except for the determination of the shore line posi-
tion via a generalized STEFAN condition. This condition is formulated as a jump condition of sediment
flux across the shore line position, in which the jump of sediment flux is given as a phenomenological
statement for the turbulent mixing processes induced in the transition region of the abrupt flow changes.
Numerous analytical solutions for both delta types have been presented and some have been compared
with results from laboratory experiments. Moreover, the close mathematical connection is demonstrated
of the single and double sediment diffusion problems with freezing of lake water in winter when being
subject to constant freezing atmospheric temperature.

The presented model is limited because several simplifying assumptions both in the physical and

mathematical descriptions have been imposed. Among such assumptions are the following restrictions.

e The subaerial and subaqueous sediment flows are restricted to motions taking place in a vertical
plane. This is particularly restrictive as soon as the river water enters the lake environment. A
generalization to a three-dimensional set-up of the concept is likely possible if one is satisfied with
increased phenomenology in place of physics. A step towards this end has been undertaken by
VOLLER et al. [66].

e The suspended matter in the turbid water has been ignored as have been the particle size separation
and the segregational depositions in the bottomset. Memoirs, which include these processes in a

two-dimensionally restricted setting are given by KOSTIC et al. [28], [29], [30].

e All applications, which have been presented, have so been chosen that mathematical solutions
could be constructed analytically. More generally, (generalized) STEFAN problems are moving
boundary value problems and therefore require care, when numerical integrations have to be per-
formed. If sedimentary processes are strictly prograding or strictly transgrading, the time ¢ can be
replaced as an independent variable by s(t), the shore line position, and a fixed-domain formula-
tion without moving boundaries be constructed.

For GILBERT-type deltas numerical solutions have been constructed by VOLLER et al. (2006)
[66], and for hyper-pycnal deltas by LAT & CAPART (2011) [35].
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e The focus in the present paper has been sediment transport and deployment in a quiescent ambient
on decadal and centennial time scales, but it must have become clear that the formulation is equally
applicable to geological time scales of millennia and multi millennia through the Holocene. In this
connection the term ‘graded’ river stretch was introduced (see Section 4 and [48]), and it became
clear that graded sediment flow was the exception rather than the rule. The concept is important in
long term sedimentary processes as a special response to lake level fall, which generates alluvial
aggradations, whereas lake level rise leads to shore line transgression. Such hydro-geological
processes are studied in detail by MUTO et al. [49], [50], [55].

e Applications to river-reservoir hydraulics have been given by LAT & CAPART (2009) [34], and
CAPART et al. (2010) [7] and LAT & CAPART [35].
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Appendix A: Derivation of the sediment flux boundary condition at the plunge point of a Gilbert-
type delta

In this appendix an explicit derivation of the flux boundary condition (42) at the plunge point of a hy-
popycnal delta will be given. The derivation follows KOSTIC & PARKER [29] but in the notation of this
article.

Consider Fig. 36. With reference to this figure the front surface of the foreset delta can be described

as

{(X,t) = (s —tan ¢ (u(t) — s(t)), where (o = ((s(),1). (167)
If this is evaluated at the toe of the alluvial deposit,

Gy = Cs — tan ¢ (u(t) — s(t)) (168)

is obtained.
If conservation of mass is formulated for a sediment element as shown in the inset of Fig. 36, then

one may deduce

nsgidX = qs(X) — (X +dX)
] i 0q, . 07



or, since the solid volume fraction is assumed to be constant,

aé _ a(qs/ns) _ 0qs
ot oX X’ (169

In the above, g, is the sediment flux at a certain volume fraction, whereas g is the corresponding effective

flux.

< topset foreset bottomset —

plunge l

3 T S

s(t) X~
Sediment Lake
Z=b(X)
a'ﬁj
> > < Z=b(X)
%(Xt) QOc+AX,Y
— ldX |e—— Basement

Figure 36: Definition sketch for a GILBERT-type deltaic deposition on a non-erodible basement of slope angle «;.
The origin of the (X, Z)-coordinates is at the intersection of the basement, Z = b(X) and the lake surface at time
t=0,Z = Z;(0), the plunge point is at [X = 5(t), Z = (,(t)] and the front of the wedge is at [X = u(t), Z = Croe(t)].
The sediment flow through the plunge point from the topset is ¢s(s(t), ) and the conservation of mass of the sediment,
expressed in formula (169) is explained in the inset. The river water depth at the plunge point is hs(¢) and the level of the
lake may vary with time, Z = Z,(t)

An explicit expression for g5 is obtained, if equation (169) is integrated from X = s~ to X = u(t).
This integration is composed of an ‘integration’ from X = s~ (¢) to X = s1(¢) plus the integration from
X = s*(t) to X = u(t). Thus,

SOFY,

st —
Wl = a0 —alsm @) = - | e =0

Here, the integral on the far right vanishes because of continuity requirements for é (+). It follows that the

flux ¢, is continuous across the plunge point. Therefore, we may write

u(t) 9q u(t) ol
dX = qs, . —Qs—ls(r) = =dX
L(t) 0X &Z@/ Gl Js(t) ot

=0 (170)

ut) o ¢
= —Qs|s—(t) = —L(t)ath,

in which integration can now be restricted to X > s(¢). Moreover, it was assumed that the sediment flux

at the toe of the frontal surface of the delta vanishes, which is realistic. With é as given in (167) one may
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write

0C d., g
— = —=C(s(),t) — = (tand(X — s(t)))
t dt ot (171)
= L 0.1) + tan oS — (tan )" (X — s(1)
in which
d /. o¢ 0¢
o (C(s (t),t)) i + 555 5(0) 1)
o¢ :
T Oty tanan ., 30)

Here, tan « is the slope of the sediment bed in the topset of the plunge point. Substituting (172) into
(171) and the resulting expression for ¢ é /0t into (170) yields

u) (o
@, 0= | P19 ftanan — tan ¢)3(t) — (tan ¢)' (X — s(1)) | ax
O s (Otlsw

o ds .
= {aﬂs(t) + (tan ¢ — tanal)dt} (u(t) — s(t)) — 3 (tan @) (u(t) — s(t))>

(173)

The surface point é|s(t) is given by the level of the lake surface and the water depth above the sediment

as follows: §| st) = Zo(t) — hys(4)- Consequently,

a¢ 2 : oh
—= =—(Z¢—h =Z(t) — — . 174
CH 57 (Ze )|s(t) o(t) 3 (174)
Substituting this into (173) yields a first variant of the final formulae for g5:
. 0h ds
qs|8(t) = { [(Zg — E| ) + (tan ¢ — tan o) dt] (u(t) — s(t))
—5(tan ¢)* (u(t) — S(t))2}-
Sometimes it is more convenient to additionally use the trigonometric relation
_ é — étoe
(u(t) = 5(t)) = tang (176)
We then obtain
. 0h
Zat) - E| (t) tanag \ ds
- I L O} _ Y22 (6.~ ¢
Golst) = tan ¢ - (1 tan ¢ ) dt] (CS Ctoe)
(177)
L. \2
1 ) (Cs - gtoe)
—§(tan ar) W
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Even though tana; < (<)tan¢, itis not justified in general, to ignore
tan a1/ tan ¢ in the above formulae. However, it is justified to ignore the term associated with (tan ¢)".
Ignoring also (0 h/0t) sy and Zy(t) yields

. d
As|s(t) = (Cs Ctoe) z(tt) . (178)

Formula (42) with o = 0 is obtained from (175), if the river water depth is ignored, (0 h/0 t)‘s(t) ~ 0

and tan o is ignored in comparison to tan ¢.
Appendix B: Characteristics of error functions

In this Appendix we collect a number of properties of mathematical expressions which are connected
to the error function. These have been collected and/or derived in CARLSLAW & JAEGER (1959) [8]

o Definition of the error function and complementary error function

erf(z WJ exp(—£€2)d¢, (179)

erfe(x) = 1 —erf(x \/>J exp(—£2)de, (180)

o The above definitions imply

erf(0) =0, erf(0) =1, erf(—z)=—erf(x),

(181)
erfc(0) = 1, erfc(w) =0, erfc(—z) = 2 — erfe(x).
e Both,
x T
erf | —— and erfc | ——
(2\/Dt) (2\/Dt)
satisfy the diffusion equation
of 0% f
— —-D—= =0.
ot 0 x2
e The n-th integral complementary error functions are defined as
a0
i"erfc(x) = J i"lerfcéde, n=2,3,4,...
i%erfe(x) = erfe(z), (182)
Q0
ierfe(x) = f erf £d¢
integr. by parts 1 [(*®
P ool - —= | (20 exp(—€Y) ¢ (183)
ﬁ r ———
Je(exp(—€2))
- —zerfe(z) + exp(—a%) (184)

I
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e The function erfc(x) exhibits the following properties:
ey

N A x
) (2,t) = =+/Dt ierfi () >0
CS (J:? ) D leric 2\/@ ) X )

T—00

ol 4 x
() )

— C2(x,t) satisfies the diffusion equation

A(2) 2 A(2)
¢ (x,t) _Dé’ s (x,t) _o,

ot 0 x2

2

§§3)($,t) = %\/Dt ierfc (%) , <0,

- lim (P, t) >0,
xr—>—00

o0l a,t)y A |
_ My A4 <—erf(2m> +1> (186)

— (B (x,t) satisfies the diffusion equation

080 @ t) &) _
ot 0 x? '

Appendix C: Notation

Roman Symbols

A Constant of integration in the construction of similarity solutions of the diffusion equation
B Constant of integration in the construction of similarity solutions of the diffusion equation
b(X,t) Basement function, defining the solid bed below the lake and alluvial deposits, see e.g. Fig. 8
C Constant of integration in the construction of similarity solutions of the diffusion equation
Cp, Cice Specific heat of ice at constant pressure or constant volume
D; Topset diffusivity of the subaerial moving bed load
D, Topset diffusivity for hyper-pycnal sediment processes
D;.. = Ziee  Diffusivity of ice

PCp jce

d Point production/annihilation rate of sediment mass at the plunge point

73



~

9o

Qsurf
Ry(t)
Ry(t), Ry
(t)

Sip2

min

1,2

X/\/Qt

X

Y = /2Djecet
v4

Z=74(t)

Constant of integration in the construction of similarity solutions of the diffusion equation
Similarity functions for the detritus surface

Gravity constant (g = 9.81m s~ 2)

Constant thickness/depth of a channel of still water

Thickness of the moving slurry-layer of water above the detritus layer at the basement
Sediment source to the main bed load from a side tributary

Latent heat of freezing/melting of water/ice

Downslope (horizontal) subaerial total sediment mass flow

Downslope (horizontal) subaqueous total mass flow

Porosity in the moving subaerial bed load

Normal pressure at the sediment bed.

Volumetric discharge = specific volume flux

Specific downslope sediment flux

Specific down-slope sediment flux at far upstream position - constant value of ¢ at graded conditions
Heat flow through the free surface of a lake

Relative lake level (Rg(t) = Zo(t) + Sé ot’'dt’ at X = s(t))

Dimensionless relative lake level

Alluvial-basement transition (X = r(t))

Far up-stream and far-down-stream bed slopes

Inclination thresholds below which no bed load transport is possible

X -position of the shore point (plunge point) as a function of time

Temperature

Temperature (of the water) at the free surface of a lake

- Temperature of the lake water at the deep bottom

Time

Mean downslope velocity in the turbid layer water (possibly with suspended sediments)
Position of the toe of a hypo-pycnal delta

Mean down-slope detritus velocity in the sediment layer

Horizontal Cartesian coordinates

Similarity variable

Downslope Cartesian coordinate in the topset tangential to the basement

Similarity variable [see (51)]

Vertical Cartesian coordinate

Position of the lake level as a function of time
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- ()
= ()

S, ™ w

=T+ Tsurf
7~91,2 = 51,2 - 60

Ry Rice

A Separation constant, introduced in the generalized STEFAN conditions arising as s(t)

£o
Pws Ps

P1

Cartesian coordinate perpendicular to the inclined sediment bed

Greek symbols

Ratio of the subaqueous down-slope sediment velocity to the down-slope density current velocity,

1
<a;<l1

Ratio of the subaerial down-slope sediment velocity to the down-slope slurry velocity
Inclination (slope) angle of the subaerial sediment layer
Thickness of the moving sediment layer - DIRAC Delta-function
Small parameter (0 < ¢ << 1)

Vertical position of the upper surface of the moving sediment

as a function of (z, t) measured perpendicular to the basement
as a function of (X, t) , measured vertically

Z-coordinate of the lake level

Upper surface of the moving sediment layer at the plunge point
Detritus level at the delta fore front

Similarity variable

Temperature variable

[see (120)]

Heat conductivity of ice

[see (38)]

= A§(t)
Similarity variable for the sediment position [see (20)]

=3.14159

Mass density of water or slurry (due to wash load)

Mass density of the moving sediment layer

True density of water, — of sediment

Buoyancy corrected detritus density in the top set

Density of the particle laden lake water at the upper edge of the subaqueous turbidity current
Supply rate of moving sediment mass

Effective stress (pressure) at the top of the moving sediment layer

Shear traction at the upper surface of the bed load layer

Angle of internal friction (angle of repose measured under water)

Ratio of slopes, defining the parameter A in the generalized STEFAN condition [see e.g. (38)]
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Miscellaneous Symbols

d/dt Total time derivative operator
0/0t Partial time derivative operator
V Nabla (gradient operator)
erf Error function
erfc Complementary error function

ierf Integrated error function [see (183) and (184)]
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Abstract

Sediment transport arises in alluvial lake-river systems in two different forms: (i) as bed load,
comprising the moving detritus of the river bed and of the shallow, often only near-shore regions,
and (ii) the suspended sediment load of the finer fractions. In river hydraulics the latter are often
neglected; so, the bed load transport is treated without back-coupling with the wash-load. This is
justified on decadal time scales. In the deeper parts of lakes wind-induced shearing in the benthic
boundary layer hardly mobilizes the bed material, which stays immobile for most time and may be
set in motion only interruptedly. However, the particle laden fluid transports the suspended material,
which is advected and may on longer time scales settle in deposition-prone regions. In general, the
deposition to and erosion from the basal surface occur concurrently. This environmental interplay is
studied in this article.

The slurry - a mixture of the bearer fluid and particles of various sizes — is treated as a mixture
of class I, in which mass, momentum and energy balances for the mixture as a whole are formu-
lated to describe the geophysical fluid mechanical setting, whilst the suspended solid particles move
through the bearer medium by diffusion. The governing equations of this problem are formulated,
at first for a compressible, better non-density preserving, mixture. They thus embrace barotropic
and baroclinic processes. These equations, generally known as NAVIER-STOKES-FOURIER-FICK
(NSFF) fluids', are subjected to turbulent filter operations and complemented by zeroth and first
order closure schemes. Moreover, simplified versions, e.g. the (generalized) BOUSSINESQ, shal-
low water and hydrostatic pressure assumptions are systematically derived and the corresponding
equations presented in both conservative and non-conservative forms. Beyond the usual constitutive
postulates of NSFF—fluids and turbulent closure schemes the non-buoyant suspended particles give
rise to settling velocities; these depend on the particle size, expressed by a nominal particle diameter.
A review of the recent hydraulic literature of terminal settling velocities is given. It shows that the
settling velocity depends on the particle diameter and on the particle Reynolds number.

A separate section is devoted to the kinematic and dynamic boundary conditions on material
and non-material singular surfaces as preparation for the mathematical-physical description of the
sediment transport model, which follows from an analysis of jump transition conditions at the bed.

The simplest description of detritus transport does not use the concept of the motion of a thin
layer of sediments. It treats it as a singular surface, which is equipped with surface grains of various
grain size diameters. Such a simplified theoretical level is also used in this article; it implies that
solid mass exchange, as erosion and deposition of different particle size fractions, is the only phys-
ical quantity relevant in the description of the sediment transport. It entails formulation of surface

mass balances of an infinitely thin detritus layer for the sediment and surface momentum balance of

IStress tensor, heat flux vector and mass flux vectors are given as proposed by Navier&Stokes, Fourier and Fick, respectively.
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the mixture. The deposition rate of the various grain fractions, expressed as grain classes, follows
from a parameterization of the free fall velocity of isolated particles in still water, but is in general
coupled with the local flow and then follows from the solution of the hydrodynamic equations and
the processes at the basal surface. The erosion rate is governed by two statements, (a) a fracture crite-
rion determining the threshold value of a stress tensor invariant at the basal surface, which separates
existence and absence regimes of erosion, and (b) determination of the amount of erosion beyond the

threshold value of the mentioned stress invariant.
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1 Description of the sediment transport model

The spatially one-dimensional model for the formation of deltas due to alluvial sediment progradation
from straight rivers provides enlightening insight into the physical behaviour of the interacting processes
which are exhibited by the sedimentary erosion and deposition in river-lake systems. Laboratory experi-
ments demonstrated excellent agreement between the theoretical predictions of the two limiting forms of
the evolving deltas - GILBERT-type ‘triangular subageous slopes’ under hypo- and homo-pycnal condi-
tions and smoothly evolving weakly curved foreset depositions so generated by turbulent density-under
currents. The laboratory experiments reflect realistic flow states, but the theory was shown to equally
reproduce realistic conditions, when in a linear valley an elongated lake is formed by steady sediment
deposits from a side tributary and when, under special conditions, it may relatively quickly again disinte-
grate. Practically of significance is also the development of the sediment regime in an elongated reservoir
after its construction; large sediment input through the decades after dam erection may fill the reservoir
and make flushing scenarios necessary through a bottom outlet or a side-pass tunnel. Qualitatively, these
scenarios can also be described by the model.

It is, however, clear that multi-dimensionality of the sedimentary processes generally prevails in a
river mouth and its vicinity, especially in mountainous lakes of complex geometry, see Figs. 1, 2. More-
over, the sediment loads generally occur in two different forms, as (i) bed load, comprising the moving
grains of the alluvial river bed or the frontal part of the delta, formed and evolved by the coarser sediment
fractions of the prograding processes, and (ii) the suspended sediment load of the finer fractions (usually
clay and silt). Both participate in the formation of the bottom boundary and its evolution in time and
space, on the one hand by deposition or settling processes of the suspended, non-buoyant fines according
to the local water current, which they are exposed to, and, on the other hand, by motion cessation, re-
suspension of the sliding, rolling and saltation particles of the bed load and their consequential transports
in suspension.

It transpires that the settling and re-suspension of particles depend upon (i) the state of the water flow
above the sediment bed and the wind induced barotropic or baroclinic current in the wider vicinity of
the river mouth, and (ii) the grain size distribution of the alluvial sediments. In deposition processes of
the suspension load, often also called wash load, the coarser grains will settle out first, followed by the
smaller ones. So, the slurry-like upper water layer will be subject to persistent particle size segregation
and consequential alteration and steepening of the grain size curve. It is evident that an adequate model
for the suspended sediment load must be formulated as a mixture of a pure fluid with a number of solid
constituents, each representative of a specific grain size range, and expressed as a balance of mass of its
size-range with FICKian parameterization of its flux and vanishing production rate.?

In much the same way the moving sediment bed is equally composed of grains of different sizes,
generally coarser than those of the suspended load. The material in this moving layer may again be
interpreted as a mixture of a number of particles in very narrow size ranges plus an interstitial fluid.
Except for eruptive intermittent bursts over which an averaging of the particle motions and the fluid
might be justified on time scales relevant for sediment transport, all these components have nearly the
same velocity, but it turns out that nevertheless balance laws of mass and momenta for the constituents
need to be formulated. Because of its small thickness the moving sediment layer may then be viewed as

a singular surface equipped with mass and momentum for which two-dimensional mass and momentum

™t is assumed that no fragmentation of particles into sizes other than those in the own size-range occurs.
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Figure 1: Channelized entrance of the river Rhine (Alpen-Rhein) into Lake Constance at Fussach, near Bregenz, showing
alternating sandbanks within the artificial channel and a large patch of suspended sediments in front of the river mouth.
The island on the right frame is Lindau. Copyright: ‘Tino Dietsche - airpics4you.ch’

balances are to be formulated. Its mass density changes by deposition of fines from the wash load and
re-suspension of the eroded components from the moving bed.

The likely computational procedures for the moving sediment bed can be either a continuum ap-
proach as stipulated above, or application of molecular dynamics of the particles interacting with each
other and with the fluid, better and more adequately known as Discrete Element Method (DEM). This ap-
proach has been carefully studied in a Ph.-D. thesis by VETSCH (2011) [49], but the method is presently
not sufficiently advanced to warrant a detailed presentation here. Consequently, the text below will be
based on the continuum approach, but, of course, with implementation of additional simplifying assump-
tions. One is the complexity of the mixture formulation. The most detailed situation prevails when each
component is equipped with its own density, velocity and temperature. For each of them balances of
mass, momenta and energy must then be accounted for. HUTTER & JOHNK (2004) [17], p. 255, call
this a mixture of class I1l. When heat exchange between the constituents is rapid, all constituents possess
(nearly) the same temperature; then it suffices to only consider the energy balance of the mixture as a
whole, involving a single temperature field, while balances of mass and momentum of all the constituents
are kept. This defines a mixture of class II. Still a further simplification is possible, if for some reason all
constituents except one arise in small concentrations and have nearly the same velocity as the dominant
bearer fluid. Such conditions prevail for the salts defining the mineralisation or salinity of lake or ocean
water. In this case it may suffice to formulate also momentum balance for the mixture as a whole and
to account for the variation of the concentrations of the constituent masses by their mass balances. This
defines a mixture of class 1. This is the principal conceptual formulation of the sediment transport as
wash and bed loads for which the balances of momentum and energy are formulated for the mixture as a

whole, but balances of mass for each tracer individually and for the mixture as a whole.

85



Figure 2: Close-up to the mouth of the river Rhine (Alpen-Rhein) at Fussach, near Bregenz, showing the right river dam
and the suspended sediments (wash-load) with the strong spatial variation of its concentration. Copyright: ‘Tino Dietsche
- airpicsdyou.ch’

Which mixture class ought to be applied depends on the sort and scale of application in focus. For
hydraulic and possibly also geologic applications bed-load is likely restricted to near shore zones and
the vicinity of river mouths. [Exceptions are, of course, large, very shallow lakes of, say, less than
5 m maximum depth (Neusiedler See, Austria/Hungary; Lake Taihu China; Northern part of Caspian
Sea).] On the other hand, the suspended particle phase can be ignored in most interior parts of less
shallow lakes for shorter, hydraulically relevant, e.g. decadal time scales, but ought to be considered for
variations over geologically relevant time scales over centuries and millennia. In near shore zones and
close to river mouths, particle laden mixtures will likely govern the wash and bed load transports.

The above description indicates that for certain questions, bed load movement or relatively rapid de-
positing or erosive detritus rates are localized to sub-regions of, but not subject to, the entire lake. In such
cases application of sub-structuring or nesting is suggested, of which the use is as follows: Global, e.g.
wind induced processes of the entire homogeneous or stratified lake are investigated with a judiciously
simplified model (e.g. in which bed load movement is ignored) and a discretisation allowing determina-
tion of the current, (temperature and particle concentration®) fields within the entire lake, however, with
values of the field variables only at the grid points of the relatively large meshes of the lake-scale global
problem. A sub-region of the lake in the vicinity of the river mouth and the lowest part of the river is
subsequently selected and the governing equations describing the dynamics of the upper-layer and the
bed load are then discretized with a much finer net than the equations of the global, whole lake analysis.
At the open, lake-ward boundaries the flux conditions must then be properly transferred as boundary
values for the boundary value problem, valid in the sub-region within which the evaluation of the bottom

topography in the river mouth region is determined.

30Often these fields may even be dropped and simply assumed to be frozen to the fluid particles.
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Figure 3: Lake domain divided into the large particle laden fluid part, I, and the moving detritus layer, II, with indicated
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Figure 4: Lake domain bounded by the free surface S, and the basal surface 8. The surface 8 incorporates also domain
II.

In the subsequent analysis the lake domain will at least be subdivided into two layers, see Fig. 3. In
the upper layer the lake water will be treated as a particle laden, possibly turbulent BOUSSINESQ fluid
subject to the shallow water approximation.* This layer may, at a later stage be further sub-divided into
sub-layers for computational reasons or in order to model stratification. The second layer is the domain
of the sliding, rolling and saltating sediment, saturated by fluid. Its upper boundary will, in general, move
or deform, and it defines the bathymetric profile of the lake bottom as a function of time and space. Its
lower boundary marks the upper boundary of the rigid immobile solid bed. In comparison to the upper
layer, this second layer is very thin, and it may well be thought to be describable by an infinitely thin
sheet of which the physical properties must account for its finite thickness.> We will conceive layer II as
a singular surface §; separating the rigid bed and layer I (lake domain), see Fig. 4, being equipped with
its own material properties and balance laws.

Layer I is interacting at its upper surface with the atmosphere; wind-shear transfers momentum to
it, and solar irradiation may give rise to changes in the stratification. The interface between the two
layers is non-material in general unless neither suspended material from layer I is deposited nor certain
fractions of the bed-load in layer II are (re)-suspended into layer I. This fact makes adequate definition of
the interface between the two layers difficult. Experience with laboratory experiments, however, shows
that under given dynamical conditions immediately above the interface, grains above the corresponding
minimum grain diameter do not erode, i.e. are not lifted into layer I (for a substantial amount of time),

but stay within the detritus layer. This implies that an erosion inception condition which depends on the

“The focus is not on strong internal baroclinic motion but rather on the reproduction of the current near the basal surface
(e.g. the benthic boundary layer).
5In the theory of interfaces such sheets are called diffuse interfaces.
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each of them defining a particle class; 0 is the nominal particle diameter.

particle diameter must be established.

2 Governing equations in lake domain

The field equations in lake domain are formulated at this general level as those for turbulent motion of a

BOUSSINESQ fluid of a mixture of class I. We briefly explain the derivation of these equations.

2.1 NSFF flow

The solid particles surrounded by the bearer fluid possess nominal diameters in the interval [dpin, dmax)s
dmin < dmax. This interval is partitioned into N subintervals, and so particles in [dy—1,d,) define
the a-th particle class, see Fig.5.° Such a class is modelled as a continuous body with its own motion
and rheology. Thus, at the level of fine resolution (at which methods of direct numerical simulation are
applicable) the slurry is modelled as a continuous mixture consisting of a fluid and IV solid constituents
(classes). Moreover, since the solid particles are dragged on by the fluid with nearly the same velocity
as that of the fluid, a mixture of class I is an appropriate concept to be applied for the description of the

slurry flow. The equations describing this flow take then the forms

e Balance of mass for the mixture

dp
— 4+ pdive = 0; 1
qc 77 ey
e Balance of momentum for the mixture
dv .
p E#—Qﬂxv = —grad p+divo: + pg; 2
e Balance of mixture energy
de . . 7 8
paz—dlvq—pdlvv—i-tr(aED), or
(3)
dh dp
p— — — = —divqg + tr (oD
®This is motivated by sieve experiments: one has a whole column of sieves, numbered 0, . . . , @, . .., N — 1, with the largest
mesh size on top and the smallest at the bottom; class « (« = 1,..., N) consists of those particles which are collected by

sieve a — 1. It is tacitly understood that the sieve with number ‘0’ is impermeable for all particles of sizes larger than a chosen
minimum (say for clay and silt fractions which cannot pass very small holes simply because of cohesion coalescence).
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in which A is the mixture enthalpy,

hEe+%; )
e Balance of tracer mass of constituent «
deq : . s (ca)
pﬁz—dlv {Ja—pcowl}+ 0\, a=1,...,N. 5)

In these equations p is the mixture density, v is the barycentric velocity, p, oz, €, g, are the pressure, the
extra stress tensor, the internal energy and the heat flux vector, respectively, all referring to the mixture as
a whole, g is the gravity vector, and Q (2] = 7.272 x 10° [s!]) is the angular velocity of the rotation
of the Earth. (As customary in Geophysical Fluid Dynamics, the EULER acceleration is ignored and the

centripetal acceleration is thought to be incorporated in the gravity term.) Moreover, we use the notation
—2 =4 (grad("))v, D =sym(gradv) = H(L+ L") with L =gradv, (6)

as the substantive derivative following the barycentric motion, and the strain rate or rate of strain or
stretching tensor D of the barycentric velocity, respectively. Finally, the balance law of tracer mass
of constituent «, (5), requires special justification. It is easy to show that the mass balance law of
constituent v, pa /0t + div (pave) = ¢, where pg, v4 and ¢(¢) are the density, the velocity and

the mass production rate density of constituent «, can be written as

de o~
p—r = —divs + ¢, (7)
dt
in which ¢, J, are the mass fraction or concentration and the diffusive-advective mass flux of constituent
«a, respectively:

Ca = —, 3& Epca(va_'v)- (8)

We recall that the constituent « is composed of particles of various diameters ranging in [do—1,dy).
Thus, one may think of class « as a continuous mixture of a finite number of constituents. A possibility

to account for this fact is to introduce the decomposition

JCM = Pca(va - ng) + PCa(UZ - ,UZ ) (9)
=5,  =-peaw,

"tr is the trace operator: tr A = A;;, where A is a second order tensor.
8Consider the term p div v on the right-hand side of (3);. With the aid of (1) this takes the form

. pdp d (p dp
—pdive=2%2_ _,2 (P} &P
PaVY=sat ~ TPat (p) T

Therefore, the balance of mixture energy may also be written as

d D dp .
Py <e+ p) 1= divg + tr (o D),

suggesting the definition of the mixture enthalpy (4). In almost density preserving materials the term p div v in (3); and the
term dp/d ¢ in (3)2 are generally ignored, which implies de/d¢ ~ dh/dt, which is the reason why one can often see in the
literature both formulations using € or h.
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where v}, is the velocity of a representative granular constituent (perhaps that one with greatest concen-
tration or that with the mean diameter) of the mixture class a. Thus, j, is now the diffusive flux of the
constituent o with respect to the representative particle in the class a. For this flux term a gradient type
constitutive relation will be postulated in the spirit of FICK’s law. The second term expresses the advected
flux of the representative particle relative to the barycentric motion. For this advected flux a constitutive

relation is postulated. In sediment transport work a rather restricted but courageous statement is made:
w;, =wie, < pco(vi —v) = —pcawie, (10)

where w;, > 0 is the terminal free falling velocity of the selected representative particle in still water, and
e, is the unit vector against the gravity vector.” This is how w? e, would enter formula (5). Of course,
in reality this is not correct; perhaps as an approximation, non-vanishing horizontal components of w?,

are expected. A likely better choice may be

W, = w’ {tanQvH n ez} : (11)
[va||
where
vg={v—(v- 62)ez}sb (12)

is the horizontal velocity at the basal surface S;, see Fig. 3, and 0 is a tilt angle (approx. 0° or somewhat
larger) to be determined. More generally, determination of the motion of a solid particle immersed in a
moving fluid is a difficult specialized topic of interaction dynamics.

The above balance equations can also easily be transformed to conservative form by judiciously
combining them with the balance equation of mass (1). Often these forms are better suited to numerical

implementation. This yields'®

e Balance of mass for the mixture
0
a—f +div (pv) = 0; (13)

e Balance of momentum for the mixture

é’(éozj) + div (pv @ v) + 2pQ x v = div (—pI + o03) + pg ; (14)

e Balance of mixture energy

°For a non-buoyant particle o falling in still water we have w, = —(v5 — v) = wie.; here v?, is the velocity of the
solid particle, and v & 0 is the velocity of the surrounding fluid at rest. When the grain stops to decelerate it has attained the
so-called terminal settling velocity or free fall velocity.
10(a) Using (1) yields for the left-hand side of (2)
dv _dpv dp ()dpv

. 0 pv .
= = d =—+d
Pz 17 i ? 47 + (pdivo)v 2t + div (pv @ v),

whilst the right-hand side remains unchanged.
(b) Using (1), for a scalar function f we obtain

df _dpf _dp . dpf wo)f= 2P0 g
Par = ar “acd T ap Tledivelf =+ diviefv),

which turns (3) and (5) into (15) and (16), respectively.
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Are) | gy (pev) = —divg —pdive + tr (D) or

ot (15)
h
a(&’pt ) + div (phv) — {g]; + grad p - v} = —divg + tr (o D) ;
e Balance of tracer mass o
o o . . .
(gi ) + div (Pcav) = —div (Ja_pcawZ) + ¢(Ca) , a=1,...,N. 16)

In (16), p cqw?, could be incorporated into the div-term on the left-hand side, but will not be done here.

2.2 Turbulent motion

For the turbulent motion it is common usage to average equations (13)—(16) by applying adequate filter
operations to the balance laws. If the filter operation is denoted by (-), any field variable f can be

composed of its average { f ) and fluctuation f” according to

f=CH+1, ==, amn

If this decomposition is applied to all field variables and a statistical filter with the property () = {-)
is chosen, the filter operation is called REYNOLDS averaging. For example, the averaged balance law of

mass (13) takes the form

K0 4 aiv (Co o)) = —div (/). (18)

Evidently, the correlation { p’v’ ) only arises because of density variations due to turbulence. The turbu-
lent mass flux on the right-hand side of (18) is the only place of all averaged balance laws, where such a
term arises. It is small for nearly density preserving fluids and will then be ignored.!!

Rather than referring to the general balance laws (13)—(16) we consider the balance laws (i) corre-
sponding to a generalized BOUSSINESQ fluid and (ii) those obtained with the assumption that the density
fluctuations are negligibly small.

2.2.1 Model 1: Generalized BOUSSINESQ fluid

A BOUSSINESQ fluid is defined as a fluid for which density variations are ignored except in the gravity
term of the momentum equation. Balance of mass then reduces to div v = 0, agreeing with the continu-

ity equation of density preserving continua. A somewhat more general assumption is as follows, see e.g.

UTf for the velocity the so-called FAVRE averaging operator is employed,

o} = PO
{v} = S (19)

then the averaged mass balance takes the form

X0 4 aiv (o)) = 0. (20)

So, Favre averaging would preserve the conservative form of the balance of mass under filtering. However, this would also

imply consequences in the remaining balance laws. A complete derivation using FAVRE averaging is e.g. given in LUCA et al.
(2004) [26]. We prefer to stay with (18).
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Hutter et al. [18]:

(@) p = po(2) + pa(x, t),
(21)
(ii) pg(a, t) is everywhere ignored except in the gravity term.

We call this the generalized BOUSSINESQ assumption. In (21), po(z) is a static density field, which in a
lake usually represents the stable stratification induced by radiation. For po(z) = constant, (21) reduces
to the classical BOUSSINESQ assumption. Owing to (21)), with

z
P =Dd+Dst, Dst = gf po(§)d¢, (22)
0
where g is the gravity constant, we introduce the dynamic, pg, and the ‘quasi-static’, ps, pressures, which
implies
—grad p = —grad pg — po(2) g - (23)
With (21)-(23), the physical balance laws (1)—(3), (5) subjected to the generalized BOUSSINESQ as-

sumption take the forms

e Balance of mass for the mixture

div pgv = 0; (24)
e Balance of momentum for the mixture
dov .
PO qf +2Q x vy = —grad pg+dive: + (p — po)g; (25)
e Balance of mixture energy
d dh d
po—6 = —divg — pdivv + tr (6xD) or py— — ep _ —divq + tr (e:D) ; (26)
dt dt dt
e Balance of tracer mass of constituent «
deg . . s (ca)
Poﬁz—dlv{ja—pocawa}—i—qb “ a=1,...,N, (27)

or in the alternative, conservative forms, see (13)—(16),

e Balance of mass for the mixture

div pgv = 0; (28)
e Balance of momentum for the mixture
0 (po'v) . _ .
En + div (pov ® v) + 2peQ x v = div (—pal + 0%) + (p — p0)g ; (29)
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e Balance of mixture energy

0 (5;6) + div (ppev) = —divg — pdivv + tr (D) or
30
d (ap(;h) + div (pohv) — {6619 + gradp - v} = —divqg + tr (6:D); 0
e Balance of tracer mass of constituent «
a?fn+dN@MM0:—&VUw—m%w@+¢%L o=1. . N. a0

We mention that for relatively shallow basins the term involving d p/d ¢ in (26)2 and (30)2 is ignored in
the enthalpy formulations.

The turbulent analogues to the balance laws (24)—(31) are obtained if these laws are subjected to the
filter operation (-). In this process, pg, g, 2 do not possess fluctuations, so that {pg) = pg, {g) = g,
(©2) = Q. When omitting the angular brackets, the REYNOLDS averaged equations then take the forms

e Balance of mass for the mixture

div pgv = 0; 32)
e Balance of momentum of the mixture
dv d(pov) | ..
po— +2p0 xv (= ——- +div(ppv ®v) +2poQ x v | =
dt ot
(33)
—grad pg + div R+ (p — po)g ;
e Balance of mixture energy
d
p()(?jt (: 8(5(;6) + div (poe'v)) = —pdive —divQ, + ¢,
dh d d(poh) d (34)
b Lo . p . .
097 T dt <= 1 + div (pohv) — dt> = —divQ, + ¢V + div?P;
e Balance of tracer mass of constituent «
deg o . .
Po dct <= 5(/;0; ) + div (pocav)) = —div{J, — pocaw’} + ¢>(Ca). (35)

In these equations df/d ¢ is the substantive derivative of f following the averaged turbulent velocity.
Furthermore, the non-conservative and conservative forms have been written together to save space. The

quantities'?
R={0y) —pov' @V, Q.={@)+po('v), Qn={q)+po{h'v'),
o) =tr ({oxX{D)) + trlelD"y — (dive’y, P =), (36)

Jo = (o) + po{cp’) — po{chwiy),

12For these formulae we employ the symbol {-) of filter operation to emphasize the role of the averaged laminar quantities
and averages of turbulent correlation quantities.
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represent

(i) the total stress R (modulo the pressure) as a combination of the averaged extra stress tensor (o)
and the REYNOLDS stress tensor —pg (v’ ® v") due to turbulence;

(ii) the total heat flux Q., @), as the sum of the averaged ‘laminar’ heat flux ( g ) and the energy flux
due to turbulence in the internal energy, po{¢’v’), and the enthalpy, po{h'v") formulation, respectively;

(iii) the averaged internal energy/enthalpy production rate density ¢(7) due to the power of working
tr (o (D) of the mean motion and the correlations tr (o} D"y, (p'divv');

(iv) the average pressure work P (note that it only arises in the enthalpy formulation of the energy
equation and that it can in principle be combined with the heat flux term Q},);

(v) the total mass flux of constituent oz comprising the averaged laminar mass flux (j ), turbulent

mass flux pg (¢, v") and turbulent mass flux due to non-buoyant particle flow pg (¢’ w? ).

It is the goal of turbulence theory to propose closure relations for the quantities (36). We refrain to do

this here and pass to the presentation of another model, for which, however, we give closure relations.

2.2.2 Model 2: Small density fluctuation assumption

One can find in the literature yet another set of averaged field equations which are stated as such but
without any or little motivation. It can be motivated by considering the density fluctuation p’ in the
decomposition p = {p) + p’ so small, that it is everywhere ignored. Of course, this strictly requires that
|p'| « {p) and that any correlation |[{p’a’)| is smaller than |[(a’b")| (¥’ # p'). We therefore propose the
following

Small density-fluctuation-turbulence assumption: Consider a non-density preserving fluid sub-

Jjected to turbulent motions for which turbulent density fluctuations p’ are negligibly small,

W] <oy, Kol <[ty (¥ = ) G7)

can be dropped from the equations.

With this assumption the density function p(x, t) can be everywhere approximated by

p(x,t) = {p(x,1)) . (38)

Omitting the angular brackets (), with this approximation applied to the mixture mass density, the

averaged balance laws as deduced from (13)—(16) can be written as

e Balance of mass for the mixture

op .. e
3t + div (pv) = 0; (39)

e Balance of momentum for the mixture

0
(ap:)+div(pv®v)+2pﬂ><v=—gradp+divR+pg; (40)
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e Balance of mixture energy

8(;6) +div (pev) = —pdivo — divQ, + ¢7)  or

oo a @
PR div(pho) — 52 = —divQ, + divP + oD ;
ot dt

e Balance of tracer mass of constituent «
5(2?) +divpeav = —div(J4 — peqwsl) + ¢(C‘*) ) (42)
with the definitions
R={oy) —p(W'®v"), Q.={q+p{v), Q,={(q) +p{h'v'),
qﬁ(T) = tr (o} D)) + tr{a/D"y — (p'dive’y, P={p'v'), 43)

Jo = o) + plchv’y — plchws) .

In the subsequent analysis we will use equations (39)—(42), for which we assume the following closure

relations:

(i) As in physical limnology, we take

6:C’U(jj_j_‘o)—i_607 h:Cp(T_T0)+h0,
(44)
¢y = specific heat at constant volume , ¢, = specific heat at constant pressure ,

where T is the absolute temperature, as expressions for the internal energy and enthalpy in the respective
formulations; the specific heats c,, ¢, are assumed constant. For a thermodynamic justification of (44)

or its generalization, see Appendix A.

(i1) The density p is taken as

N N
p = (1 - Z Va) pw(Tv 5) + (2 Voe) Ps (45)
a=1

a=1

in which v, is the volume fraction of sediment v, p,, (T, s) is the water density at temperature 7" and
constant salinity s, and p, ~ 2100 kg m 3 is the buoyancy corrected density of the suspended sediment.
Explicit formulae are e.g. given in (I, 10, p. 344ff)!3. If the contribution of the mineralization is

negligibly small, then

puw = pu(T) = p* (1 —&(T - T*)?) ,

(46)
p* =1000kgm™3, T* =277°K, & =6.493 x 105K—2,

is a useful quadratic approximation; p* is the reference density of water at 4°C.
It was already mentioned that in very deep lakes of depth larger than approximately 500 m (Lake
Baikal, Lake Tanganijka, Caspian Sea) the pressure dependence in the thermal equation of state should

3We shall refer to specific pages of [18] as (I, ... ).
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not be ignored. This implies that (45) is replaced by

N N
p = (1 — Z VC\() ,Ow(T,S,p) + (2 Va) Ps 5 47)

a=1 a=1

in which the contribution of the pressure to p,, requires that the energy equation is used in the enthalpy

formulation.

(iii) The specific energy production #D), also called dissipation rate density, is deduced by assuming
the Newtonian law for the dissipative stresses o. Thus, with o, = 2pvy D, where v, is the ‘laminar’

kinematic viscosity, (43), yields

oD = dpyIlipy,  + ApuIlp) —dive’y =
— —_—
dissipation rate due turbulent dissipation
to the mean velocity rate pe (48)
= p (4l py +€) — (p'dive’),
in which II4 = J(A-A) is the second invariant of A. Moreover, for (p'div v') we assume
'dive’y = (pydiv(vy, (=0, (49)

while the turbulent dissipation rate € will be later discussed, see (vii) below in this section.

(iv) For suspended particles of size range o we ignore fragmentation into other size ranges, so that

we assume ¢(¢) = 0.

(v) The second order tensor R, and vectors Q,, Q. Jo (o = 1,...,N) are combinations of
the averaged laminar and the turbulent fluxes of momentum, energy and species masses, given by the

following gradient type parameterizations:'#

1
~R=2yD - @v')y=—-2kI +2(v;+1)D,
P

B SNPN ) PCo o\ [ (T, YVt
I Q.= —x,; 'gradT + p*[cv]<T v )= (Xg + o grad T,
1 (T) PCo_ypiy (1) , "
= — T Ty = — T
o] Q, X, ‘grad T + o] (T Xy + or grad T, (50)

1 7
—J, = —Xﬁco‘)gradca + pﬁ*<clavl> — /TP* {cpwy, )

o Vi p /
_<X§C)+00a>gradca_,0*<daw3>7 a=1,...,N.

“Parameterization (50)4 does not account for cross dependences of the form

cg

N
_ZAQB<XECﬁ)+i>gradcﬁ7 azla"'7N7
A= o

with Aag < 1. Our selection in (50)4 is A\ag = dag. In principle the more general case is possible.
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In (50)1, k is the turbulent kinetic energy per unit mass'> and v is the turbulent kinematic viscosity; they
will be parameterized below in this section. The quantities [c,] and [c,] arising in (50)2 3 are typical
values of the specific heats c,, c,. Then, in (50)2_4 the FOURIER law for the heat flux g and the FICK
law for the diffusive flux j, are understood, which explains the ‘laminar’ difussivities XgT), Xf“).
Moreover, or and o, are turbulent PRANDTL and SCHMIDT numbers; they are always assumed to
be constant, which expresses a certain similarity between the diffusive processes of momentum, heat
and species masses, which is generally not borne out experimentally. The coefficient of grad 7" in
the representations (50)2 3 is supposed to be the same; this choice is exact if [c,] = [cp] is selected.
Additionally, to differentiate the viscosities from the diffusivities in (50)2 3 4 one often makes use of the

replacements

(5D

and calls D(T) the thermal diffusivity and D(®) the species diffusivities. We shall follow this custom.
We will also use the interpretation

v+ —> g

in (50); and call the new vy — the kinematic turbulent viscosity. Finally, in the parameterization (50)4 of

J, we may assume
(hwiy) = Lea)ws), (=0,
as is the custom in the literature. Summarizing, for R, Q., Q;,, J. we have the following closure
relations:
R = —%pk‘I + 204D |
Q. = —p*[es] DD grad T, Q) = —p*[c,] DTMgrad T, (52)
Jo = —p*Dlgradcy — CpleaXw?), ¢(~0, a=1,...,N.

(vi) For w; we assume (10), where expressions of the particle settling velocity w?, are discussed

below in (vii).

(vii) Now, given numerical values for the laminar viscosity v, specific heats c,, ¢,, and diffusivities
D(T), D(¢) | the above model equations (39) - (52) must still be complemented by closure relations for
v, k, €, wl. The way of approach how this is done depends on the sophistication which is applied to
the turbulent parameterization. When applying classical zeroth order closure schemes, algebraic param-
eterization for 4, k and € are given; for higher order closure relations one or two equation models or full
REYNOLDS models are suggested. Next we refer to such closure relations for 14, k and ¢ and then we

review parameterizations for the particle settling velocity w; .

Zeroth order, algebraic parameterization for v, k and ¢ In (I, 6.2.6, p. 201ff), PRANDTL’s eddy
viscosity formula [34] was generalized and a proposal for the turbulent kinetic energy was given. More-

over, since dimensionally [¢] = [£%?]/[¢], where ¢ is a mixing length introduced by PRANDTL, the

SFor a solenoidal velocity field it is often customary to incorporate the contribution of the turbulent kinetic energy k in
relation (50); into the pressure term, or to ignore it.
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following propositions may be meaningful:

(@1, 6.55) v = 202/ p,
(L, 6.56) k = cralIlp, (53)
1,6.57) &= 8T,

where the third expression follows from € = const x k32 /{. PRANDTL added a balance equation of the
form (54), below, but this would correspond to a first order closure scheme. At zeroth order closure, £ is

an adjustable constant scalar coefficient.

First order parameterization — the (¥ — ¢)-model The most popular first order turbulence model is
the so-called (k — €) model. Its full derivation is e.g. given by HUTTER & JOHNK [17], Chap. 11, and a
summary is given in I, 6. Here we give a short presentation of this model.

The most simple first order turbulent closure model is based on a differential equation for ¢ and was
proposed by PRANDTL [34] as

ol
E+div€v+2€\/§+---=0, (54)
including the unspecified ‘- - -, but was not pursued any further by him. We shall neither elaborate on

this and will directly pass on to the standard turbulent two-equation model, which is the (k — ) model. It
uses evolution equations for the specific turbulent kinetic energy & and the specific turbulent dissipation
rate ¢, and is based on the fact that v, k and ¢ fulfil the dimensional identity [14] = [k?]/[¢], suggesting
the parameterization ,
k
ve=cu_s (55)
in which ¢, is a dimensionless scalar, determined by inverse methods from experiments, but interpreted

as a ‘universal’ constant. For k and ¢ balance laws are established,
ok

5 +div (kv) = —div A ‘;i + div (ev) = —div ¢° + 7%,

in which the flux, d)k , ¢°, and production, ok

, ¢, quantities must be parameterized. For a BOUSSINESQ
fluid, these are proposed and adequately justified e.g. by HUTTER & JOHNK [17] and also listed in I, 6,

equations (I, 6.63)—(I, 6.65), to which the reader is referred. The fluxes have gradient closure form

oF = —;—Z grad k, ¢° = _n grad e, (56)

Oc¢
and the production terms are given by

per vt
p* or

g2 par
¢ =div (v grade) + 4 kllp — o e
p

7 = div (v grad k) + 4 Ilp — € + g-grad T,

(57)

“u kg-grad T,
or

in which a7 is the coefficient of thermal expansion of water and c3 is small but not well constrained.

Numerical values for the various closure constants are given in Table 1.
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Table 1: Numerical values for the closure constants of the (k — ¢) model

¢, = 0.09 c1 =0.126 co =1.92 c3 ~0 o =14 o =1.3

Historically, the (kK — €) model has originally been developed in the 1970s by HANJALIC & LAUN-
DER [14], JONES & LAUNDER [21] and LAUNDER & SPALDING [24]. RoODI [35],[36] describes its
applicability in geophysics and hydraulic engineering. Apart from the (k — £) model, other two-equation
models have also been proposed. The (k — ¢) and (kK — w) models use, besides the turbulent kinetic
energy, a length — the PRANDTL mixing length, or the turbulent vorticity, w, with dimension [k/¢?].
Expositions on these latter models are given by ROTTA [37] and WILCOX [51], [52]. For REYNOLDS
stress parameterization by Large Eddy Simulation (LES), see Appendix B.

Particle settling velocity The fall velocity w;, is the remaining quantity of the above model, which
has not been specified so far. It is an exhaustively treated subject of hydraulic research and still a topic
of active on-going work. Its introduction in (42) and earlier equations, e.g. (10), is the fall velocity of
particles in a specified size range under dynamic conditions of laminar or turbulent flow. Studies on the
settling velocity are generally restricted to spherical particles in still water; but it is well known that the
fall velocity of a non-buoyant particle in a fluid depends on both the particle shape and the flow state in
the ambient fluid. This complex non-linear interaction is out of reach and physically too difficult for our
purposes. Consequently, authors on this subject identify w;, with the terminal velocity of a free falling
particle in still water, generally restricted to spheres or (unspecified) natural sediment particles. Here, we
adopt this restricted view as well.

The ensuing description is based on the study by SONG et al. (2008) [42], who summarize earlier
work and replace the different formulae by their own one. For an isolated spherical particle in a fluid at

rest the settling velocity can be estimated by balancing the net gravitational force and the drag resistance,

™

1 T
=5 pCo, TR, A=B o, (58)

“ p

where ps, p, g, 04, Ch,, are the densities of the particle and the fluid, the acceleration due to gravity, the

Apg

(nominal) diameter of a representative element in the sediment class «'%, and C,,, is the drag coefficient;

(58) can be written as
_ 4400,

3 (wg)?”

which is used to deduce the settling velocity w;, once the drag coefficient C , is given as function of w;.

(59)

[

Thus, it is well known that, depending on the particle REYNOLDS number

S
0
Req = 222 (60)

v

there are two asymptotic limits for the settling velocity: Cy, = A/Re, when Re, < 1 (STOKES flow),
and Cy, = B when 10° < Re, < 2 x 10° (turbulent flow), where A and B are constants, see any book

15Such a representative element in class « has already been used when defining the advected mass flux pcaw?,. To simplify
the notation, we use 0, for the diameter of this grain particle; note that 9 € [da—1,da), so that 9, should not be confused
with dq.
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on fluid dynamics of viscous flow. Substituting these expressions into (59) implies

S

w2 A9
“ 34 v

4
5= 3—BA g0, for turbulent flow .

According to SONG et al. [42] most of the existing quasi-theoretical or semi-empirical formulae are
).17

for STOKES flow,
(61)

w,

based on the asymptotic solutions (61 A smooth connection between the two asymptotic representa-

tions for Cy,, is e.g. reached by

n

1/n
Cy, = {(Ri ) +Bl/"} (62)

(CHENG (1997) [8]). Indeed, as Re, — 0, relation (62) implies Cy_, ~ A/Re,; similarly, for Re, —

o, Cy, = B. Introducing the dimensionless particle diameter

1/3
oF = (A9> 0 (63)

2

into (59) and using the definition (60) for Re, yields

(64)

1/n

Equating (62) to (64) leads to a quadratic equation for (Re,,)"", which can be solved; subsequently an

explicit formula for w;, can be found via the definition of the REYNOLDS number. This is done by SONG
et al [42]. Their formula reads

. v 1 (AN /4 (@)Y 1 A\Ym '
RS \/4(B> ) -2(B) [ (©

Various values for A, B and n that have been used by different authors for spherical particles and nat-

ural sediments are given. However, comparison of results with experiments is not satisfactory, and the
disparate values for A, B and n, obtained by different authors make application of (65) cumbersome.

As an alternative, SONG et al. [42] restrict consideration to STOKES flow and choose (61); to evaluate

_w(sxoa_i #\3
Req = =% = — @1)°. (66)

Somewhat surprisingly'8, they substitute this into (62), obtain

2/n n
Co,, = {(\/‘S’A> + Bl/n} 7 (67)

2(22)%2

""MCGAUHEY [27], ZANKE [56], CONCHA and ALMENDRA [9], TURTON & CLARK [45], ZHANG [58], JULIEN [22],
SOULSBY [43], CHENG [8], AHRENS [1], GUO [13], JIMENEZ and MADSEN [20], BROWN & LAWLER [6], SHE et al. [38],
CAMENEN [7].

18Formula (62) was proposed by CHENG [8] to match both asymptotic limits for STOKES and turbulent flows.
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and using (64) deduce the settling velocity

—n/2
34A\*" /3B 1/n
wz=:ﬁ{(4) v (% o0 . (68)

SONG et al. [42] take experimental data by EGLUND and HANSEN [10] and CHENG [8] and determine

A, B and n by least square error minimization; they found
A=322, B=117, n=1.75,

and then, on substituting these into (68), obtained the following formula for w},

—7/8
w? = 01 (0)* {38.1 +0.93 %)} ", (69)

and listed alternative formulae of settling velocities by other scholars, viz.,

e ZHU & CHENG (1993) [59]

,ws _ L(a*)?) 1
B \/144 cos8 B + (4.5 cos? B + 0.9sin? B) (9%)3 + 12 cos® 8 ’
(70)
0, F <1,
/6 =
{2 +2.5(log0*) 3}, 0of > 1.
e CHENG (1997) [8] 3
s _ YV \/—*2_
W= ( 25 1 1.2(0%) 5) . 1)
e AHRENS (2000) [1]
s _ Vo #1\3/2 %13/2
wl = -0 (DY + )
C1 = 0.055 tanh [12(0%) 177 exp (—0.0004(d2%)%)] , (72)
Cy = 1.06 tanh [0.01(%) "% exp (—120/(0%)%)] .
e GUO (2002) [13]
-1
3
= Lyt [ L] 73)
e SHE et al. (2005) [38]
s _ v £40.765)12-2
w, = 1.05W [1—exp (—0.315(0%)" )] ™. (74)

Table 2 presents a comparison of calculated settling velocities using formulae (69)—(74) with the
experimental data of ENGLUND & HANSEN (1972) [10] and CHENG (1997) [8]. The average value of
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the relative error E and the standard deviation o, defined as'®

N

1
x 100%, o= N;

2
x 100% ,

(w3)

(w3

(w3
(w3)

-1

1
E:NZ —1

i=1

are listed in columns 2 and 3 of Table 2. It corroborates the best performance for (69). Even more

convincing results are shown in the graphs of [42]. We therefore recommend to use (69).

Table 2: Fit accuracy of formulae (69)—(74) against experimental data by EGLUND & HANSEN [10], CHENG
[8].

Equation Nr  Error E(%)  Standard deviation o(%)

(69) 6.36 9.10
(70) 7.02 11.30
(71) 6.96 10.96
(72) 16.93 16.84
(73) 6.87 10.56
(74) 16.34 16.49

All these parameterizations enjoy the property that w?, does not depend on the flow dynamics of the
slurry. It is, however, intuitively clear that the turbulent intensity may inhibit the free fall velocity. A

bold account of this property may be the following choice

L 2 —7/8
wS = exp [— () ] 01*(03)3 {38.1 + 0.93(0;)12/7} : (75)

Ok

in which k is the turbulent kinetic energy and o, a standard deviation, chosen to be sufficiently small.
This reduces the value of w? whenever k is large, which is the case close to the free surface, in the
metalimnion and immediately above the moving detritus. A dependence on the RICHARDSON number

would be a competing alternative.

2.3 BOUSSINESQ and shallow water approximations in Model 2

In this section we simplify the equations characterizing Model 2 by using the Boussinesq assumption
or/and the shallow water assumption. Thus, when written with respect to a Cartesian coordinate system
with horizontal (z,y)-axes and vertical z-axis, the REYNOLDS averaged equations (39)—(42), are as

follows:

e Balance of mass
op Opu Odpv Opw

ot T ar Tay T U (76)

' N is the number of experimental points where values for (w? )P have been measured.
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e Balance of momentum

al+uau+val+wi+fw fu = 0P OB | ORey | 0FRa:,
ot ox oy 0z Oz ox oy oz '
ov ov ov ov op O0Ry, O0Ry O0Ry.
il hid hilhd =__£ : 77
(at Yoz Ve Tz +f> "oy T ox oy | - 77
8w+ 87w+ 87w+ 87111_]; __@+6sz+6Rzy+6Rzz_ '
P\t %%z T8y TV YT T T e T oy | a2 P9
e Balance of energy
ot ‘oz é’y Yoy )T oxr oy 0z
0 50 (78)
005 y 2 (T) .
<é’x+6y+é’z>+¢ ’
oT 0T 0T T\ _dp
ot Yoz "oy TV, ) T at
ok  0Q oQ" 0P, 8P, 0P 7
_ _ T Y z T Y z (T) .
(6x+8y+6z>+<8x+8y+6z)+¢ ’
e Balance of species mass?’
<6ca+uﬁca+vaca+wﬁca)__8Jaz_5Jay_6Jaz
ot ox oy 0z ox oy 0z 80)

ai(pcawg) +¢le) a=1,...,N.

In these equations u, v, w are the Cartesian velocity components in the x, y, z directions, Qm ,Qy h, QY h
are the Cartesian components of the heat flux vectors in the internal energy and enthalpy formulations,
respectively; moreover, Jogz, Jay, Ja. are the Cartesian components of J, and f, f are the first and
second CORIOLIS parameters,

f =2Q sinp, f =20 cos ©, (81)

in which = ||€2| is the angular velocity of the Earth (2 = 7.272 x 1077 [s"!]) and ¢ is the latitude
angle. Writing (76)—(80) one has made use of the closure assumptions (10), (44).

It is now assumed that the typical processes have large horizontal but small vertical scales. For in-
stance, typical horizontal scales of water disturbances are often many kilometers, while the correspond-
ing depth variations are generally tens of meters and less; similarly, horizontal velocity components are

generally large, while corresponding vertical velocity components are a factor of 10~ smaller. This

This equation holds with w?, = wie.. If w?, is parameterized as in equation (11), then

0 s .
+ @(p CaW,, tan sin &)

(pcawy tan B cos &)

ox

must be added to the right-hand side of equation (80). Here, £ is the angle between the z-axis and v .
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suggests to introduce the aspect ratios 2!

typical vertical length scale [H]

L= typical horizontal length scale ~ [L]’

typical vertical velocity scale  [WV]

V= typical horizontal velocity scale  [V]’

to substitute these into the governing field equations, to suppose that
O<Arp=Ay=A«1,

and to look at the governing equations in the limit as A — 0.

To compare the various terms arising in the governing equations, each quantity, say ¥, is written in
the form ¥ = [W]W, where [¥] is the scale for ¥ (and has the physical units of ¥) and ¥ is dimensionless
and of the order of unity if the value for [¥] is correctly selected. The procedure is well known and is

e.g. demonstrated in [18], p. 150-154. We shall select the scales according to
€
[/]
[H] [H]

(0,0, = ([V] w V1o vim, [L]mws;) ,

p=p"(1+[o]a), p=—p*gz+p*[fIIVI[L]D,

(xvyVZ) = ([L]f7 [L]ya [H]z)v (t7f7f) = ( i? [f]?v [f]f) )

(82)

T:T0+[AT]T7 Ca = [calCas ¢ =[c]Cy, Cp:[cp]@7

¢ = [pMNgM,  glew) = [gle]glca) | P = p*[c, |[fI[H][AT] P

Moreover, we introduce the kinematic turbulent viscosity, N, heat diffusivity, D), and species mass
diffusivity, D(¢=), by

v = [fIIHAIN, DD = [f[H* D), D) = [f][H*|D). (83)

After some lengthy but straightforward calculations and with the assumption R = 2p v, D for the
turbulent REYNOLDS stress?2, the field equations (76)—(80) take the following forms (the overbars char-

acterizing dimensionless quantities are omitted):

e Balance of mass 0]
oldo ) .
%E—i—dlvvﬁ-[a]dlv(av) —O7 (84)

I'The symbol [f] denotes an order of magnitude for the quantity f within the range of values which f may assume (in the
physical dimensions in which it is expressed) in the processes under consideration.
22We neglect the contribution of the turbulent kinetic energy in (52);.
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Table 3: Physical parameters and typical orders of magnitude for the scales in (82)

Parameter Order of magnitude Nomenclature

p* 103 kgm™3 Reference density at 4°C

[o] ~ 1073 Density anomaly

[L] ~10* - 10°m Horizontal length scale

[H] ~ 10! — 103 m Vertical length scale

V] ~ 1072 - 10! ms~! Horizontal velocity scale

[f] ~ 107457t CORIOLIS parameter

To ~ 10°C Reference temperature

[AT] ~ 10°C Temperature range

[co] ~ 4200 m? s~2 Kt Specific heat at constant volume
[cp] ~ 4200 m?s 2K ! Specific heat at constant pressure
[ca) ~ 1073 - 1071 Scale for mass fraction of tracer o
[6(D)] Scale for energy production
[p(c)] Scale for production of tracer

e Balance of momentum

(1+[o]o) {M + Ro (grad u) - v +

ot

A P

(1+[co]o) {81} + Ro (grad v) - v + fu

ot
0

ot

105

{5:5 [(1 + [o]o)N (ZZ +

5 [(1 + [o]o)N (ZZ + 22’

+jy [(1 T [o]o)N (g;‘ ; Z;)]} TS

2 {(1 + [o]o)N (ZZ T ‘22‘;)] ,

) s oo+ eo
;Z [(1 + [o]o)N <ZZ * %)] 7

(1+ [0]0){ {‘9“’ + Ro (grad w) - v] _ fu} _ 9,

0z

- [(1+[0]U)N(Zz+ ZZ’)]+ 87)

Jw

)] +2 % {(1 + [U]U)Naz} — Bo;



e Balance of energy

c41+[ﬂ0){%f—%Ro@de)4}c:—?(—éiz+p>dﬁv+

0 oT 0 oT 0 oT
v (m-- - (mv- i (rme- (T) 4 (T)
{8:15 (D 6x>+6y (D 8y)}+6z (D 6z>+:PE o0

%u+{ﬂ®{%€+RMQMJUm}—H{Zf+mdgmpyv—9w}

G oT 0 oT 0 oT
_ 2| O (pmly L (ot I (pmL 89
[596 (D 5w>+5y <D 5y)}+5z (D 52) )

0P, N 0Py, N 0P,
or oy 0z

(88)

+ inLT) qb(T) ;

e Balance of tracer mass

dc 0 dc 0 dc
1 0Ca wb = 2| 2 (pleay@Ce L 9 [ plea) P Ca
1+ [a]a){ 37 + Ro (grad c,) ’U} {53: < 0a:> + 7y ( 3y

0 0 ca 0
_ (ca) ¥ _ S (ca) plca)
+ > (@ B ) + Ro . {(1+ [o]o) cqws} + P .

(90)

In these equations all variables, including the operators, are dimensionless. The dimensionless pa-
rameters arising in equations (84)—(90) are listed in Table 4 together with their nomenclature and (some)
together with their orders of magnitude as obtained with the scales of Table 3. Note that the buoyancy

parameter may also be written as

and thus depends linearly on the aspect ratio A, but it is not thought to take the limit value 0 as A — 0. It
is rather assumed that B assumes a finite value as A becomes vanishingly small. This is indeed the only
correct limit as long as gravity is acting as one of the driving mechanism. This is also the reason why A
has not been put in evidence in the expression of B in Table 4. Special attention should also be devoted
to certain combinations of the dimensionless quantities of Table 3 as they occur in the energy equations
(88) and (89). One of these is

BF gA[V

o] = m[CU%[A]T] ~ 0.25 x (103 — 10°). 1)
Note that, while B arises together with [¢], the combination BF/[o] is free of [¢]. On the other hand, F
by itself is much smaller than (91). This shows (see the term multiplied with div v on the right-hand side
of (88)) that the power of working due to the dynamic pressure is much smaller than the corresponding
power due to the hydrostatic pressure. An analogous inference also follows from the corresponding term
in (89). Here, it can be shown that IT = O(10~7 — 10~2), while GIT = O(10~7 — 10~!) is generally
somewhat larger, but it is not so clear whether the dynamic or the static pressure or both or none ought
to be kept in the equation.

In the present context, our interest is in orders of magnitude of numerical values for the parameters

[] and A. This information suggests derivation of approximate models:
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Table 4: Dimensionless parameters

Parameter Order of magnitude Name
= [[H]] 1075 — 1072 Aspect ratio
glol[H] 2 402
B = 1072 — 10 Buoyancy parameter
LAILIV]
DT
D) = (TE] 10=% —10° Heat diffusivity
(ca) D) —4 0 : oo
o) = [ATE] 107* - 10 Species mass diffusivity
(V2] 7 _10-1
F e IAT] 10 10 Pressure work parameter
H
G = [f%g[L]ﬂ 10° — 103 Squared velocity ratio
N = [ f]?;.ﬁ] 1076 — 10! Dimensionless kinematic turbulent viscosity
L
II = [[f]][[i[g]] 1077 — 1072 Pressure work parameter
Cp
(T)
’PET) i fg(fc ]% AT Power working parameter
(]
Pl — L9 Power working parameter
bt flepl[AT]
ey 9] . _
Pl = — (Fllce] Constituent mass production parameter
p Ca
Ro = [[]‘E]L] 1074 —10° ROSSBY number
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BOUSSINESQ approximation The BOUSSINESQ approximation obtains if the limiting equations
are used for which [0] — 0. Inspection of (84)—(90) shows that in this case the variable density is
set equal to a constant except in the gravity term. The only term of concern is the combination (91)
which shows that the limit [0] — 0 does not affect the values for BF/[c]. Nevertheless the value for
(91) is generally large, a fact which explicitly indicates that the power of working due to the hydrostatic
pressure may not be negligible at large depths, whereas the corresponding dynamic contribution may be
negligible. In any case, these terms can only contribute when the velocity field is not solenoidal, i. e.,

when

for which the first term of (84) survives. Except for these cases the mass balance equation reduces to
divwv = 0, which agrees with the continuity equation of a density preserving fluid even though density

variations are accounted for.

Shallow water approximation The shallow water approximation is obtained if equations (84)—
(90) are applied in the limit as A — 0. Inspection of (84)—(90) then implies the following inferences:

e The second CORIOLIS parameter drops out of the equations. It enters the equations only when
O(A)-terms are kept.

e The vertical momentum balance reduces to a force balance between the vertical pressure gradient

and the gravity force (in dimensionless formulation):

0
9P L gy —0), 92)
0z
or, in dimensional coordinates, 5
52 4pg=0, (93)
z

equivalent to the hydrostatic pressure assumption. This equation is violated provided O(A) or

higher order terms are accounted for.

o In the balance equations of momentum, energy and species masses, only the vertical gradients of

the flux terms survive. This means:

a é’u asz
Fpe |:(1+[0’]0’)Naz:| — 5
0 ov Ry
az[(l"‘[U]U)N] 5.
O (p 0T ., 0e
0z 0z 0z

0 dc % 0
- (ca)? T i s PEEEN Yo s
Py (@ . ) + Ro . {(1 + [o]o) caw e (—=Jaz + pcowy)

are the only flux terms which contribute in the shallow water approximation to the field equations.

This is a well-established result in Geophysical Fluid Mechanics.

108



BOUSSINESQ and shallow water approximation The governing equations in both the BOUSSI-
NESQ assumption, [c] — 0, and the shallow water assumption, A — 0, are obtained from (84) — (90)

and have the following forms in dimensional notation:

e Balance of mass (continuity equation)

dive =0; %94)
e Balance of momentum
a—? + (gradu)-v — fv = —pl*gi + jz (V,éj) ,
% + (gradv)-v + fu = —pl*gz + % <l/ta;)) , 95)

e Balance of energy (heat conduction equation)

oT 0 oT
® vL . _ % v (mv+ (T)
p cv{ 3 + (grad T') v} p [cy]az (D é’z) + o\, (96)

T
p*cp{aat+(gradT)-’u}z—{?t)—kgradp-v}—i-

0 oT oP ©D
Pl s, (D(T)ﬁz) tg ol
e Balance of tracer mass
p* 9 + (grad cq) v} = ,0"‘i D(CO‘)% + p*i(caw;}) + glea)
ot 0z 0z 0z 98)

In the above equations, 1; stands for the sum of the laminar plus turbulent viscosities, the former can in
general be ignored in comparison to the latter, but is better included when the turbulent viscosity should
become small; ¢, is the heat capacity of water at constant volume and ¢, is the heat capacity of water
at constant pressure, while D(¢*) is the mass diffusivity of the suspended particles of the size range .
Moreover, ¢{7) is the dissipative work power and #(c) the mass production rate of the particles of size

range «.. Both are generally ignored in sedimentation processes in lakes.”?

2.4 BOUSSINESQ and hydrostatic pressure assumption in Model 2

In a comparison with (84)—(90) equations (94)—(98) show that in the shallow water approximation the
horizontal diffusive flux terms are all dropped in a zeroth order shallowness approximation (A — 0).
Inspection of (84)—(90) further shows that these terms are (’)(AZ). Resurrection of the horizontal flux

terms in the balance laws of momentum, energy and constituent masses therefore strictly means that the

Bg(ca) could consist of fragmentation and abrasion of suspended particles, which, however, are unlikely processes.
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full equations (84)—(90) must be kept and only be reduced by the BOUSSINESQ approximation [o] — 0.
However, as shown by (87), the hydrostatic pressure assumption can not be maintained if the O(A?)-
terms are kept in the remaining field equations. Moreover, since the Coriolis terms in (85)—(87) are of
O(A), these terms should also be kept (the f term in (85) and (87)!). Nevertheless, in the literature
equations are used in which the BOUSSINESQ approximation is combined with the hydrostatic pressure
assumption. A derivation from a systematic scaling analysis is not known to us, but the following sup-
positions lead to the very popular system of field equations in the BOUSSINESQ and hydrostatic pressure

approximations:

Hydrostatic pressure assumption: Ignore in the vertical momentum equation (87) all acceleration

and diffusive terms and keep only those of zeroth order in A.

This hypothesis reduces (87) to (92) or, in dimensional form, to equation (93). Writing the latter as

6p 4 $7y727t
5, = P9 g(p —p)=—p"g = pTgo(z,y,2,1), oy, 2t) = (p**) -1, (99
after integration we obtain
C(z,y,t)
Py at) = p g G ) =) + @y )+ [ ol 00)
- ~ ~ P
t - ~- ~
P pint

&

Here, p** is a constant density (smaller than any density in the lake, e.g., p** = p(30°C), so that

atm

o > 0), z = ((z,y,t) defines the deformed free surface, and p*™ is the atmospheric pressure. In lake

atm

applications one usually assumes that p*™ is spatially constant. The derivatives of (100),

@ e % apatm

e O [ClEwt) - 1\ 3
5, =P 9t g te gaxJZ o(x,y,z,t)dz,

ap_ . aC apatm " p, J((z,y,t)
6y_p g&y+ oy T g&y

(101)

G(;U? y’ Z? t) dz?

z

may then be substituted into (85), (86) to eliminate the pressure formally as a variable from the horizontal

momentum equations.

In oceanography the hydrostatic pressure assumption is often combined with other ad hoc assump-

tions, which can not be motivated by the shallow water assumption. These assumptions are the following:

e Assume the horizontal diffusivities in the horizontal momentum equations to be large of O(A?2)

and constant, and the vertical diffusivities to be variable and of O(1):

— horizontal momentum diffusivities: N — Nhor/A2 and constant;

— vertical momentum diffusivities: N — Nyex(,y, 2, 1) .

e Assume in the energy and constituent mass balances the horizontal diffusivities to be large of
O(A™2):

— horizontal energy diffusivities: D) — p(T) JA?,

hor
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— vertical energy diffusivities: D) — D).
— horizontal constituent mass diffusivities: D(e) — Dlgf)?) JA?;

— vertical constituent mass diffusivities: D(c) — @szﬁ‘t) .

If these assumptions are substituted into (84)—(90) and the limits A — 0 and [0] — O are taken, the

following system of equations (in physical dimensions) emerges:

e Balance of mass:

divo = 0; (102)
e Balance of momentum:

1 op
E—i—(gradu)-v—fu- E%—l—

103

Fu a0 (ou o], o, "

Mol \ a2z T a2 ) T oz \az | dy a2 \"a; )

v 1 op
E—i—(gradv)-'v—fv——aafy—i-

(104)

v

2oy, o (o, o], o, wy
Phor | \ 942 0y? oy \dx 0dy oz \ ""oz)’

e Balance of energy:

prey <0T + (gradT) -v) =

ot
“[e,] DD *T TN [ ]ﬁ pmITY | 4 (105)
P [Cv hor 51'2 ayg P [Cv 62 Vertaz ’
T
pcp a*Jr(gde)-'v = - a*er(gmdp)-v +
ot ot (106)
N 0*T  0°T . 0 oT
p [Cp]D}(er) <axg + ayg) +p [Cp]g (D&Qaz) + ¢
e Balance of tracer mass:
. [ Oca e n(ca) 0%cq  0%cq
p ((}‘t + (grad ca) "U) = p*D, . (é’:cQ + I +
(107)

<O (plear®@a @0 05y 4 plea)
p az (Dvert az)+p az(caw ()é)+¢ .

These equations are to be complemented by the pressure equation (100). We further remark, that physical

2571, while those for vyer are 107 — 1072m?s~ L. Similar order of magnitude

(T) D(T) D(Ca) and D(Ca).

hor > “vert> ~hor ° vert

However, the underbraced terms are omitted in the oceanographic and limnological literature. In

values for vy, are 1 m

differences also exist for the horizontal and vertical diffusivities D

that reduced form the momentum equations were first presented by MUNK in 1950 [31]. We also note
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that there is no rational justification of the above laws which would be based on continuum mechanical
principles of an anisotropic viscous stress-stretching relation. Wang (1996) [50], however, presents in
his dissertation a derivation based on such principles and delimits the conditions under which equations
(102)—(107) hold true. This derivation is also given in Hutter et al. (2011) [18].

3 A primer on boundary and transition conditions

The free surface, the transition surface between regions I and II (Fig. 3) and the lower boundary sepa-
rating the detritus region from the immobile rigid bed are singular surfaces; these are so called, since
physical quantities may suffer a jump discontinuity from values on one side to the other side when the
surface is crossed. For instance, from region I in Fig. 3, to the atmosphere, the density changes by a
factor of 1073; likewise the velocity changes from that of the lake water to that of the air. Depending
on specific conditions such surfaces may be occupied by the same material particles for all times, or
may be simply discontinuity surfaces for some fields; they are then called material and non-material
surfaces, respectively. Two kinds of mathematical statements can be derived for such surfaces: (i) those
of geometric-kinematic nature and (ii) those of dynamic meaning. They are used to formulate boundary
conditions for the equations in the bulk adjacent bodies. Our derivation will be brief and partly incom-
plete. The reader is directed to the specialized literature e.g. MULLER (1985) [30], HUTTER (1992)
[15], SLATTERY et al. (2007) [40]. In order to present these conditions we need some basics from the
geometry and kinematics of a moving surface.

First, we consider geometric properties of a (stagnant) surface S, given parametrically in a Cartesian

reference system Oz'z223 by

r=wx(,&?) = ) er, (€67 €A, (108)

where {ej, e, ez} is the Cartesian basis. It is supposed that the function 7 is such that the vectors

or oxk
TQET@:T@E,Q, 021,2, (109)
satisfy the condition

T1 X T2 #0, V(fl,fQ)EAU,

implying, in particular, that 71, 75 are not zero. At r(¢ £2) the vectors 71 and 75 are tangent vectors
(generally not perpendicular to one another and neither necessarily of unit length) to the coordinate lines

€2 = constant and ¢! = constant, respectively. Their span defines the tangent space to 8 at 7(£%, £2), and

T1 X T2

n (110)

[71 % 7o
is a unit vector normal to this tangent space. This way one obtains a basis, {71, T2, n}, for the space of

three-dimensional vectors, and hence we may write?*
0T,
ocP

*We employ the summation convention from 1 to 2 over doubly repeated coefficients of contra and covariant tensor compo-
nents: A,v. or A%%0¢, etc.

=TT+ b m,
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which is the representation of 07,/0¢" with respect to this basis. The coefficients I';, are called CHRISTOF-
FEL symbols and are proved to be given by

¢ ¢ ag agb agab
o= 39" (a;;’ + a;a — 88) , (111)

where gqp are the coefficients of the first fundamental form of 8,

Gab =Ta " To,

and ¢°® are defined as

with {71, 72} the reciprocal basis of the natural basis {T1, T2} of the tangent space, i.e.,
T4 T = 0%,

where §°% is the KRONECKER delta; the matrix (¢g°°) is the matrix inverse of (gqp): (9°°) = (gap) ~*. On
the other hand, b are the so-called coefficients of the second fundamental form of S, and they can be

calculated as
0T, on

:T@.n:_TG'T@:bba’

once the functions z* (¢!, £2), k = 1,2, 3 (see (108)) are known. Since

bap (112)

on

aigb:_bubTa7 621727

it is clear that the scalars by, give an insight on how much the surface is ‘curved’. An intrinsic (i.e.,
independent of the parameterization (108) for §) quantity measuring the curvature of § is the mean
curvature

K=1¢"bg. (113)

Now, we refer to the kinematic properties of a moving surface 8. Thus, now 8 denotes a one-

parameter family {8;},c7, with I < IR an open (time) interval, of surfaces 8; given by

w=r( &) =2 E e, (€ e, tel. (114)
The vector 5
T

is the velocity of the surface point (¢!, &%) at the moment ¢. With respect to the basis {71, T2, n} it has
the representation
w=w"T, +Un. (116)

The normal component U of w is independent of the choice of the parametric representation (114), and
is called the speed of displacement of that point on 8; for which the position vector is 7(£1,£2,t), or

simply, the speed of displacement of S.
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Figure 6: A surface S, given by the equation F' = 0, separates the three-dimensional space into the semi-spaces on the
(+)- and (-)-sides of S. The (+)-side is on that side into which the unit normal vector points.

3.1 Kinematic surface condition

The moving surface § may be given implicitly, that is, by an equation of the form
F(x,t) =0. (117)
Choosing a local parameterization for 8, say in the form (114), we have

F(r(¢',&%,1),t) =0

for all (£',£2) € Ag and for all t € I. Differentiating this relation with respect to ¢ and recalling

definition (115) of w, we obtain

F
%ﬁgmﬂﬂw=0, (118)

which is called the kinematic condition for F'. Now, if the surface parameters are conveniently ordered,
the unit normal vector (110) is n = grad F'/||grad F'||, and so with (116) we rewrite (118) in the form

oF/ot grad F' oF /ot
n =0 e U=-_T7 (119)
lgrad F[| ||grad F| lgrad F|
[
=n
| —
~u

which serves to calculate the speed of displacement U if the function F' is known, or stands as a partial
differential equation for F' if the normal velocity U is known. It is customary to denote the semi-space to
which n is directed the positive side of the surface and the other semi-space the negative side of it, see
Fig. 6. Altering the orientation from (+) to (=) is possible by replacing F' with —F'.

It may happen that the surface S is a material surface, that is, it is always occupied by the same
bodily particles identified with their position vectors X in a reference configuration and having their
own motion on 8. Thus, if

z =x(X,1t)

represents the motion of the particle X, since for all times ¢ the particle lies on 8, we have

F(x(X,t),t)=0.
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Differentiating this relation with respect to ¢ and defining the velocity vg of the surface particle X as

v = — 120
8 n ) ( )
we obtain the kinematic COl’ldl.[l.Ol’lfOI the material surface 8:

F
%—i—gradF-vg:O. (121)

This gives
oF
Vg M = —E/ngadFH )
which, when comparing with (119), shows that for material surfaces equality vs - n = U holds (for

details see Fig.9). If § consists of particles of a three-dimensional continuum body B, then vg = v,

where v is the velocity field corresponding to B, and (121) takes the form

F
%—t—i-gradF-v:O. (122)

3.2 Dynamic surface jump conditions

Consider a bodily region, in which the physical fields are continuously differentiable (smooth), except
for singular surface(s) § across which some fields may suffer jump discontinuities; 8 is supposed to not

have its own physical properties. Figure 7 and its caption explain the situation. Applying the balance law

d
— fdv= —f
dt Jp—p+ B FB—0B+ LB~

to the pillbox volume B (Fig. 7b) and performing the limit ¢ — 0 in the emerging statement such that 8

(pf-nda—i-f (s" + 70y dv (123)
BtuB—

stays between lid and bottom, leads to the expression

[f (v —w) n]+[¢' -n]=0. (124)

In the above equations, f, ¢/, s/ and 7/ denote the physical quantity inside B = BT U B, its flux
across the outer surface 0B = 0B* U 0B, the supply and the production rates within B = BT U B,
respectively. Moreover, with ¢/ the values of a quantity ¢) immediately on the (+)- and (—)-side of S,
respectively, [ ¢ ] = ¢+ — 4~ is the jump of ¢ across 8. The derivation of (124) from (123) is given in
books on continuum mechanics, e.g. HUTTER and JOHNK (2004) [17].

In the balance statement (123) it is assumed that the integral SB(sf + 7/) dv vanishes as ¢ — 0, so
that s/ and 7/ do not arise in (124). Similarly, it is also assumed that SB f dv vanishes as ¢ — 0. The
relevant quantities f and ¢ are collectively summarized in Table 5 for the physical laws (76)—(80).

For instance, when referred to the physical laws (76)—(80), to which the entries of Table 5 correspond,

the jump condition (124) takes the forms
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Pillbox

Figure 7: (a) Body B = B* U B~ whose physical fields may suffer jump discontinuities across 8, but are smooth in the
vicinity of 8. (b) Pillbox, zoomed from panel (a). Its total surface consists of the lid on the (+)-side of $ and the bottom
on the (—)-side; its mantle surface has thickness €. Balance laws (124) for this bodily surface will be formulated in the
limit as & — 0. The unit normal vector to § points into B and w is the velocity of surface coordinates on 8, but only
U = w - n is kinematically relevant for 8.

Table 5: Expressions for the quantity f and its flux ¢f in the physical
balance laws*

Quantity f f o'

Mixture mass balance 0 0

Constituent mass balance PCa, Jo — pcaw§
Mixture momentum balance pv pl — R

Mixture energy balance ple+iv-v) Q.+ (pI — R)v
Mixture energy balance p(h+3v-v) Q,+ (pI — R)v

“ p is the mixture density, ¢, — the mass fraction of tracer «, J,, — the
constituent laminar and turbulent mass flux vector, w¢ — the settling
velocity of constituent o, v — the barycentric velocity, p — the mixture
pressure, R — the turbulent REYNOLDS stress tensor, € — the internal
energy, h — the enthalpy, Q., Q,, — turbulent heat flux vectors.
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[o(w —w) - n] =0,
[pcalv —w)-n] + [Ja — pcaw®] -n =0, a=1,...,N,
[o((v —w)-n)o] — [~pI + R]n =0, (125)
Lo + 3v - v)(v — w)-n] + [Q. + (b ~ Rw]-n =0,

[p(h+ 3v-v)(v —w)n]|+ Q)+ (pI — R)v]-n=0.

These describe the jump conditions of the mass of the mixture as a whole and of the tracer masses, of
the mixture momentum and mixture energy balances. All are written by using the mass fraction ¢, and
the barycentric velocity as basic fields. In the BOUSSINESQ approximation p may be replaced by p*.
Of special interest is the situation when w - n = v - n. In this case only the second terms on the left-
hand sides of (125) survive. Even though this does not exactly define the physical jump conditions for a
material surface, it is customary to call such surfaces material. The better denotation is to say that such
surfaces follow the barycentric motion.

Note that, due to the jump condition (125)1, explicitly

—w) n=p (v —w)-n, (126)

=M+ =M-
in fluid mechanical applications the kinematic surface relation (118) is often written as

oF /ot 4 M
— 4t v n=—, (127)
[grad 7| pE
where M = M* = M. We emphasize that (118) is a pure kinematic statement, while (127) is a mixed

kinematic-dynamic statement.

3.3 Surface balance laws

The above jump conditions are obtained on the assumption that the singular surface S does not possess
its own physical properties. We shall now relax this assumption and request that & contributes to the
balance law of the pillbox with a surface density fs, having a production 7/s and a supply s/s per unit

area of 8, and a flux ¢/$ per unit length and tangential to 8 through the boundary C of 8 (see Fig. 8):

d{f fm+fﬁ&&=-f ¢ﬂnM—J ofs - hds+
dt (Jp=s+_B- S OB=0B+ LB e=as

J (7Tf+sf)dv+J(7rf5+sf5)da.
BtuB~ 8

(128)

Here, ds is the line element along the closed loop € (without double point), generated by the intersection
of & with the mantle surface of the pillbox; h is the unit tangent vector to 8, exterior to the pillbox mantle

and normal to C (thus, h together with the positive direction of € and the orientation of the unit normal
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(a)

Figure 8: (a) Surface S spanned over a simple double-point free closed loop C; 7 is the unit normal vector on § at a point
on C; ds is the incremental tangent vector to the curve C ; h is the unit vector normal to € and tangential to 8; h, ds, and
n form a right-handed orthogonal triad. (b) Two-dimensional sketch of the singular surface § with unit normal vector 1
and spanned by the closed loop C. The panel shows positive (B*) and negative (B ™) regions separated by §, the surface
flux ¢%¢ into 8 along G, the vector h (compare panel (a)) and the conductive and convective fluxes from the bulk region.

vector n of § form a counterclockwise skrew, Fig. 8 a).

The derivation from the global balance law (128) of the local balance law valid on 8 can be found,
e.g., in the book by SLATTERY et al. [40] (2007). Here we sketch the proof. Thus, letting the thickness
of the pillbox approaching zero (¢ — 0 as in Fig. 7b) turns (128) into

d
el da =
dthS a

_L¢fs.hds+L(Wfs +sfs) da _L[[¢f+f(v—w)]]-nda.

J

(129)

N " g

(D (2) ®3)
The three underlined terms represent
(1) the flux of fg out of & and tangential to & along the loop C,
(2) the production and supply of fs on S,

(3) the conductive plus convective flow of the bulk quantity f through 8.
The term on the left-hand side of (129) will be transformed with the aid of the transport theorem for a

material surface (see Fig. 9),

d ofs | 0
T fs(wt) Lt{fs a£§§“+f( —2UK)}da:

Jgt{a(f—i-Dlv(f vg)—ggaw }da.

Here f % is explained in Fig. 9, vg is the velocity of a surface material point (see (120)), w" and U are the

(130)

components of the surface velocity, see (116), 1% denotes the covariant derivative of a tangent surface
vector field ¥ = %7,

a a
ib L
o€

(see (111) for the definition of CHRISTOFFEL symbols I'%,), K is the mean curvature, and 0 fs/0t and

¢a; b= [ 9
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= X(Xv t)

X = x, (u', u? / =& &%)
\—/XJO
A oo
Xl
Er=£(ulult)
a=1,2

ul - 'S

A

Figure 9: 8 = {S;} is a moving (‘geometric’) surface; it is given parameterically by & = r(£*, €%, 1), (€',€%) € A and
moves with the velocity w = or(¢', €%, t)/0t. © = {Z;} is a moving material surface: ¥, = x(Zo,t), where I is
the material surface in a reference configuration. The velocity vs of X € X is vs = ox(X,t)/ot. X is so movmg that

¥, C 8; at each instant ¢. Therefore, Xy = r(A, t), for a some A, c A, and forx e X,z = x(X,t) = r(¢*, &%, 1),

which can be written as © = x(x,.(u',u?),t) = r(¢' (u',v?, 1), € (u', u?, 1), t). Differentiation of this relation with

respect to ¢ yields vs = £%7T4 + w, where £* = 0% (u', u?, t)/0t, showing, in particular, that vs - n = w - n = U.

the surface divergence operator Div are defined by

ofs _

Ofsvs -
ot ot '

f (€',€%,t), Div(fsvs) = e (131)

For the term (1) on the right-hand side of (129) the GAUSS’ law will be used. This process yields the
local, point form of the surface balance law as

g + Div(fsvs + @) — 22w = —[[¢f + flv —w)] - n + (7f5 + 575). (132)
Apparently, due to the tangential components w* of the surface velocity w, relation (132) would depend
on the parameterization of 8. However, this is not so, since the combination 0fs/0t — w®dfs/0&",
representing the delta-time derivative (THOMAS [44] (1961)), is independent of the parameterization
of 8. Relation (132) is the extension of the classical jump condition (124) if smooth surface fields fs,
@'s, wfs | sfs are occupying the singular surface S; (132) reduces to (124) if all surface fields vanish.

If fs is a scalar field, the balance law (132) reads

0fs s\ afs a
ot +(f5”8+¢ ) o o

—2fsUK = —[[¢) + flov —w)] -n+ (=T +s/5).  (133)

Let us discuss special cases:
(a) No curvature effects. The curvature effects are contained explicitly in K, the mean curvature, in
the last term on the left-hand side of (133). When such effects are negligible and the coordinate cover is

Cartesian, we have
:0:>F;b =0, K=0, (), = (')77

so that the balance law (133) takes the form
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ofs + (fsvs + ¢fs)a _ s w' = —[[¢) + flv—w)]-n+ (x5 +575). (134)

ot a  0&%

Still further simplified versions of surface jump conditions are possible by ignoring some of the surface
terms fs, (be, nfs sls.

(b) Surface following the bulk motion. If w - n = v - n, the jump term in (133) reduces to the jump

in volume flux, [[qbf || - n. For mass balance this term is absent and only surface mass fields interact with
one another in this case.

(¢) Reduced surface balance law. Some of the surface fields in (133) may be small in comparison to
others. When fs = 0, (133) reduces to

(@)% = —[¢' + flv —w)] - n+ (xfs + s75). (135)

This variant (usually with s = 0) accounts for surface tension effects if (135) is a reduced momentum

balance.

4 Boundary conditions; a simple model of detritus layer

The simplest model for the detritus transport (thin layer II in Fig. 3) is obtained if the layer concept for the
detritus transport is collapsed to zero thickness, see Fig. 4. Thus, the field equations presented in Sect. 2
must be complemented by boundary conditions at the free surface S and at the basal surface S;. At this
level two procedures are principally possible: (i) One may assume the basal surface 8 to be equipped
with surface masses and surface momenta for all constituents «, but treat these as a mixture of class I.
This then means that mass balance laws must be formulated for the solid constituents and the mixture
as a whole and momentum balance is only formulated for the mixture as a whole. (ii) A full mixture
formulation of class II is formulated for all constituent mass and momentum balances. In this process the
interaction of the bulk fields with the surface fields from the (+)- and (—)-sides of the singular surface
must be accounted for. We adopt the simpler case (i). Moreover, the time evolution of the basal surface
is governed by the kinematic equation (119) and the erosion and sedimentation rates are incorporated in

the surface mass balances for the NV sediment classes.

4.1 Boundary conditions at the free surface

We shall treat the free surface as a surface following the barycentric motion, with
F(xz,t) =z — s(x,y,t) =0, (136)

where s(z, y, t) describes its z-position. With u, v, w the mixture ‘material’ velocity components in the

x,y and z directions of the Cartesian coordinate system, the kinematic surface condition (122) takes the

form? p P p
a—i+£u+§—zv—w=0, at z = s(z,y,t). (137)

Now we refer to the dynamic jump conditions (125), in whichv - n = w - n:

21f barotropic surface waves are ignored, i.e., the rigid lid approximation is imposed, then (137) is replaced by z = 0, where
the origin of the coordinate system is at the undeformed free surface and the x and y axes are horizontal.
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(i) Condition (125); is identically satisfied.

(i1) The stress boundary condition (125)3 emerges as || —pI + R||n = 0, or, explicitly,
g P y
(—pI + R)ns = 0™™ny at z = s(z,y,t).

Projections of this equation perpendicular and tangential to S¢ reveal the following statements at z =

s(w,y,1):

normal to 8 : —p+ns-Rng = —p*™,
(138)
tangential to S, : Rn, — (n, - Rny)ng, = 7Vnd
where
patm = _o_atmns ‘N, Twind = a_atmns + patmns .
In the shallow water approximation formulae (138) can easily be shown to reduce to
normal to 8 : p = pim,
(139)
tangential to S; : Ry, = TVind, R,. = T?}”i“d,

at z = s(w,y,t). The atmospheric input of the surface tractions p™m, 7¥nd = (7wind, ) ind) is generally
implemented by the parameterizations®®

p™™ = constant (often = 0),

(140)
wind _ patmccvlvind H,lev{ind(

T x,y,t)”vvﬁind(:ﬁ,y,t),

with dimensionless drag coefficient C}"™ ~ 2 x 1073, and v}™ = (v}, vpind); y¥ind yWind are the

wind at the free surface Ss.

Cartesian components in the x, y directions of the wind velocity v

(iii) If also temperature evolutions are in focus, the heat flow from the atmosphere into the lake must
be prescribed. Relation (125),4 together with the stress traction continuity and the closure law (52), then
states that

p*[eo] D) (grad T) - ~(=pI + R)n,) - [v]= Q1™ (141)

v~

power of working of the

surface tractions
Here, Q%™ is the energy input from the atmosphere into the water: Q3™ = —Q"™ - n,, with Q*™

the heat flux in the atmosphere. The power of working of the surface tractions is often ignored or

computed by assuming that [[v]] = v%ViMd — p%ater ~ Wind With this last assumption in the shallow

The right-hand side of (140), should involve the difference (v — v but the water velocity is very much smaller
than the wind velocity, which justifies the approximation.
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water approximation, (141) reduces to

70T
0z
atm

The contributions to the energy input Q™ are written as Q4™ = Q3™ — Q¥ + Q; + Q5, with

p*[cs] D' — . pynd = Qi (142)
Q3™ = (black body) radiation of air,

Q" = (black body) radiation of water,

Q¢ = latent heat flow between water and air,

(s = sensible heat flow between water and air.

Parameterizations of the latent and sensible heats are given by HUTTER & JOHNK (2004) [17].

(iv) The free surface is not only assumed to follow the barycentric motion, it is here simultaneously
supposed to be impermeable to the suspended sediments of all fractions. This implies that (125), reduces

to

(Jo — pcqw?) -ms =0 at z=s(z,y,t), a=1,...,N, (143)

expressing vanishing mass flow of tracer « through the free surface. With gradient-type closures (see
(52), (51)), (143) takes the form

Ica
ong

or, in the shallow water and BOUSSINESQ approximations,

p*DC) =% 4 hewd ong=0 at z=s(z,y,t), a=1,...,N, (144)

D<0a)aac;+cawg=o, a=1,....N, at z=s(z,y.t). (145)

With this the discussion of the dynamic jump conditions (125) is completed.

Remark The parameterization of w;, in (144) and (145) with the final free fall velocity (69) seems
rather inappropriate at the free surface, where the turbulent intensity is generally large and falling dis-
tances for particles are restricted. When k is parameterized by (53)y or the (£ — ¢) model is employed,
(75) ought to be used instead.

If the (k — ) model for turbulent closure is employed, physically acceptable postulations for the

boundary conditions of the turbulent kinetic energy and its dissipation are

k
0 =0, Oc =0, atz=s(zyt)), (146)

ong

or in the shallow water approximation,
ok 0
5207 6—2:07 at z = s(x,y,t). (147)

In this case, the rigid lid assumption, s(x,y,t) = 0, is often justified.
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4.2 Boundary conditions at the rigid bed

The simplest description of detritus transport does not use the concept of the motion of a thin layer
of sediments. The existence of this layer is negated and the lower boundary of the lake domain is
directly the singular surface between the slurry layer and the rigid bed of alluvial detritus. We treat this
surface as having its own physical properties in the context of a mixture of class I, and so the surface
balance law (132) will be now used. Moreover, the surface moves and deforms with time owing to the
removal of grains from the bed, their incorporation in the particle laden water, and the deposition of
some components of the washload from the slurry above the bottom surface. Therefore, in these simple

models essentially only two physically significant statements are made:

e A criterion, or more generally, some criteria are established, which define the onset of erosion
of sediments of grain class a. It is expected that a characteristic variable will act as a threshold
measure. Below a certain value of this variable only sediments of classes o will be lifted, for which

the grain size is smaller than for class aypres”’

e For those components o which are eroded and incorporated in the slurry, the amount of eroded
material per unit time for each grain class, i.e., the mass flow for each component from the rigid

bed to the ambient water must be quantified.

For the ensuing developments it is perhaps advantageous, if the classical approach to sediment transport

is briefly illustrated. Thus, the next two sections are devoted to this issue.

4.2.1 Erosion inception

In the words of KRAFT et al. (2011) [23], ‘the erosion of sediment begins when the shear stress on the
bed surface, 7, exceeds the critical wall shear stress of the corresponding sediment material, 7.”. A
widely used procedure for the determination of the beginning of entrainment of cohesionless particles is
represented by the SHIELDS curve (1936) [39]; see also VAN RIIN (1984) [47], which is based on the
results of numerous laboratory measurements with different grain sizes, densities and wall shear stresses.

A critical SHIELDS parameter (the dimensionless critical shear stress) is defined by

=)= -—"  A=P_q, (148)
(=6c) Apgd P

where 0 is the mean particle diameter for class a of particles with a range of particle diameters in the
interval [dn—1, dy); we suggest to take this mean value to be 0 = %(da_1 +d,). Moreover, p; is the true
density of the sediment and p is the mixture density.

A large number of laboratory experiments has been conducted (for a review, see VETSCH (2012)
[49]) and identified the critical dimensionless shear stress 7. or 6, for a grain size 9 as a function of the
critical particle REYNOLDS number

v W0 v (9P
Re’ = ,me1L_<A) . (149)

If 94 and D, thres 4T€ the nominal grain diameters of the grain size classes « and e, Tespectively, then all grains with
Oa < Doy .o A€ mobilized, whilst those with 9, > USRI still at rest.
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Thus,
5 = f(Re}). (150)

Re} is sometimes also called ‘dimensionless particle diameter’ and is then identified with

. 9N\,
DZD(%) (= Re?) (151)

see KRAFT et al. [23]. This formula can be motivated by dimensional analysis, see Appendix C. A great
number of representations of f(Re’) = f(0*) have been proposed, see again VETSCH for a review; he

lists, among many others, expressions by VAN RIIN (1984, 2007) [47], [48], viz.,

-

0.115(0*)7%%  for 1<0* <4,
0.14(0*) =064 for 4<0* <10,
T. =3 0.04(0*) 01, for 10 <9* <20, (152)

0.013(0*)%-29, for 20 <0* <150,

0.055, for 150 < 0*.

This automatically suggests a possible division of the grain size distribution into five regimes. Again
according to VETSCH, YALIN and DA SILVA (2001) [55] approximate the VAN RIJN data by a continuous

functional relation

¥ = 0.13(0%) 7% exp(—0.015(2*)?) + 0.045 (1 — exp (—0.068(2*)%)) . (153)

There are also a number of other formulae for the critical shear stress 7,7. For instance, KRAFT et al.
(2011) [23] list a formula due to ZANKE (2001) [57],

T

¢ =vYztan(p) — 0, (154)

in which ¢ is the angle of internal friction of the sediment and 6!, is the root mean square turbulent

fluctuation of the wall shear stress. For natural sediments the coefficient ¢/ takes the value vz = 0.7.
This is about the appropriate place where a clarifying remark about the critical shear stress should be

made. Formulae (148) to (154) are expressed in terms of a shear stress 7, since the stress distribution in

river flow is close to simple shearing plus a hydrostatic pressure,

0 0 7, 1 00 0 0 7.
c=10 00 |-l 010 |=0om=]0 00 | (155)
7. 0 0 0 0 1 7. 0 0

in which oy is the stress deviator of o. In a more general flow, the actual basal criterion describing the
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onset of sediment motion cannot so simply be described. A likely adequate definition of the onset of the

sediment movement, which subsequently will systematically be used, is to identify 7. in (148) as

1/2

Te = (Uop) iy > (156)
where I, = %tr ((o-E)Q) is the second invariant of the stress deviator o, evaluated just below the
sediment bed. For simple shearing this is just the shear stress. Thus, a stress state invariant definition of
0. or T} is28

I 1/2
0, = % ) (157)
Apgd

4.2.2 Erosion amount

The second statement, which is needed, is the parameterization of the entrainment amount. The literature
again knows a large number of formulations for determining the erosion rate. KRAFT et al. (2011) [23]

quote three formulae which here are briefly outlined as well:

e VAN RIIN (1984) [46] conducted laboratory experiments to determine the sediment erosion rate
for various particle sizes and flow velocities and proposed for the pick-up rate per unit mass, area

and time the function

E
¢p_

2 2
_W=0.0003(a*)0-3fl-5, T=H (““”) 1 <“““) 1), (158
Ps g .

Ur,

where H is the Heaviside function and

Ur, =4[ and s, =, )2 (159)
p p

denote the critical and actual wall shear velocities, defined as suggested in (156).

e The approach of EINSTEIN (1950) [11] is stochastic. A statistically averaged wall shear stress
is not considered here, it is rather assumed that turbulent fluctuations will push the particles in

motion. The pick-up rate is expressed as

E =g ps (Ag0)"° P, (160)

in which ¢ g is a universal constant, and P is the fraction of time during which a sediment particle
is suspended by the flow. Note that this relation contains no critical shear stress. While for small

wall shear stress P is negligibly small, for sufficiently large wall shear stress P will rapidly reach

*More generally, a criterion marking the onset of erosion is an equation of the form
fUe, gy, g ) =0 (%)

between the first stress invariant and the second and third stress deviator invariants at the basal surface. A dependence on I,
describes a possible influence of the (mean) pressure; that on I, accounts for the significance of shearing, but the role of
Il is presently not clear. In the form (x) the erosion inception is very much reminiscent of the onset criterion of yield in the
theories of plasticity.
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its saturation value. In the present application we consider P simply a constant (for a given grain

size range o) and the erosion will occur just as the shear stress exceeds its critical value.

e YALIN [53] determined the erosion rate from statistically averaged flow parameters. If the critical
shear stress is exceeded, particles are entrained. The number of eroded particles rises linearly with

the wall shear velocity. The erosion rate is computed by

E = Yy psiir,. (161)
The constant 1)y should be determined by experiment.

It is evident from the above formulae that VAN RJIN’s and EINSTEIN’s erosion rates depend on the
particle size, and for this reason can and should be restricted for a given grain size distribution curve
to a single a-class of grain sizes. This makes YALIN’s formula inapplicable to mathematical erosion
processes which differentiate a-classes by grain size. KRAFT et al. [23] also remark that ‘YALIN and
VAN RIJIN assumed in their formula that the number of eroded particles increases with increasing wall
shear velocity’. ALAN and KENNEDY (see e.g. YALIN (1985) [54]) in their experiments demonstrated
that the flow near the sediment bed is fully saturated when a certain wall shear velocity is reached, and the
erosion rate converges to a certain value and does not rise further. With this in mind, only the approach
of EINSTEIN does justice to these observations.

The above formulae have formally been written for a single particle diameter. Here, we interpret
them as being applicable to the narrow range of particle diameters of class a. Let us summarize the

salient formulae with this identification:

e Dimensionless a-particle diameter (see (151))
. g 1/3 .
0, = 0a (7%) ; (162)

e Dimensionless critical shear stress according to YALIN and DA SILVA [55] for class « and inter-

preted in the spirit of formula (156),

(73)a = Y = 0.13(d}) 23 exp(—0.015(2%)?) + 0.045 [1 — exp(—0.068(0%)%)] ;  (163)

e The pick-up rate for class « is given, according to VAN RIJN [46], by

Eo = 0.0003(05)" T % ps (A g92)*7 (164)

where, from (158) and (159),

(165)

Tw Tw Tw Tw
= — =1 — =1 = — =1 — =1}
" (Tc ) (Tc ) " (Tc*ApgDa ) (Tc*ApgDa ) ’
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e According to EINSTEIN [11],

E, = Ypps (A goa)*” Py, P, = constant. (166)
Subsequently we shall employ (162)—(165).

4.2.3 Detritus layer as a singular material surface

The basal surface, separating the particle laden fluid and the rigid bed from which sediment can be eroded
and to which washload is deposited, will be conceived as a surface with its own material properties
intended to model the thin detritus layer. As for the bulk material in layer I, the surface detritus will
be treated as a mixture of class I. Thus, as dynamic boundary conditions in Model 2 we formulate the
averaged balance laws of mass for the sediments of classes « and the detritus-mixture as a whole, as well
as the momentum balance law for the mixture as a whole, the master equation being (132).

The surface is defined by

F=-b(x,y,t) +2=0, (167)
or, parametrically with ¢! =z, £2 =y,
= zey +yes + b(z,y, t)es = r(z,y,1), (es=e.). (168)

With definition (167) of F', n, = grad F'/||grad F'|| points info the fluid domain and satisfies (109) with

or n ob or 4 ob
TI=—=¢€ —e3, To=—=e¢€ —e3.
1= 1+ 5oes 2 2y 2 2y 3
We have 12
ab b L (90 2+ ab\?
ny,=c|l———e ——ex+e c= - -
b or oy 20 ox oy
Corresponding to (168), the surface velocity w is given by, see (115),
ob
w=—es,
ot °
so that, with respect to the basis {71, T2, 7}, w has the representation®
ob ob ob
w=c—UWrTi+c—UyTo+Upny, Up=c—. (169)
ox oy ot
To prove this, we write
w=ari + B2+ Upn, = aeg.
If the above expressions for 71 and 7 are substituted this yields
ob ob ob 0b ob
w = (a - cm,%) e+ (5 - cuba—y> ez + <aa—x +ﬁa—y + cub> e; = Eeg,
implying
0b 0b
azcuba—m, Bzcuba—y.
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Table 6: Elements for the averaged surface balance relation (132) when referring to the detri-
tus mixture and Model 2 ({-) are omitted)

fs ofs nfs sfs f o'

e 0 0 0 Pa =pCa PP =Jd4— pcowd
=2 ot fif 0 0 0 »p ¢’ =0

pvs =3, HaVsa + ppvsy —Rs 0 pg  pv ¢ =pl — R

The displacement speed U, is interpreted as erosion/deposition rate or entrainment rate and for it we
will give a law according to the discussion in Sec. 4.2.2. So, we may keep in mind that U, is a known
quantity. In particular, we note that (169)s stands for the determination of the basal elevation function b
once Uy is known.

With the identification of the fields fs, ¢/$, /s, s/s, ¢/ and f in equation (133) as stated in Table

6, it can be shown (see Appendix C) that the surface mass balance law takes the forms:

e For the sediment classes o, « = 1,..., NV,
0 0
Tt vl G o = 2ok =
(170)
(=9 )t — (pcav-mp)™ — (055" = (pca)™) W
e For the mixture
o a on 4 2 U K — + bed _ [ (171)
EJF(MUS) ;G_T@w —2pUpK = —(pv-mp)" — (0™ = p")Uyp .

Here the (+)-sign indicates the water side of 8y and p,, 14, as well as the other quantities in (170), (171)
are functions of (¢! = x,£2 = y,t). Moreover, the components w!, w? of the surface velocity w are
given by

ob ob

1 2
— U = U
w C . b, w Cc Y b

see (169). In deducing (170), (171) it is assumed that the motion of the basal surface is not subject to
turbulent fluctuations, implying that (rn,) = np, ( K ) = K, {(w) = w and (Up) = Uy.

The balance laws of mass, (170) and (171), contain unknown velocity components tangential to the
surface § of the constituent classes o and the mixture. These velocities need be determined and for this

determination essentially two procedures are at our disposal, namely

e We complement these laws with momentum equations for the surface flows of i, (v = 1, ..., N)
and p. These laws then allow determination of the momenta f1,vs, and pwvg (or pyvsys). This

defines a surface mixture of class II.

e We are less ambitious and introduce instead diffusion mass fluxes of the a--class sediments,
Jsa = Ha (Vsa — Vs) , (172)
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for which closure relations are postulated, while the barycentric velocity is determined from the

surface momentum balance law for the mixture as a whole. This defines a mixture of class I.

As already mentioned, we follow this second route. Note that, since vg, - Ny, = vg - ny, (= Uy), the

diffusive surface mass flux is parallel to S:
Jsa =Jsa| = HaVsa| =Jsa T HaVs| -
So, with definition (172) of jg, we rewrite equation (170) as

Ot
ot

a

Opa
+ (Mavs)a;a - alg w =216 Up K =
(173)

— (Jsa)a + (=07 )T — (pcav-mp)* — (o = (pca) ™) Us .-

Now, the (averaged) surface momentum balance equation for the detritus mixture follows from (132)
with the choices stated in Table 6, where Ry is the surface Reynolds stress tensor, see (240) in App. D,

which can be represented as

Rs = SUr. @ T + ST ®@np +Mp @ T4) + Sny, ® 1y, (174)
—_—— — —
in-plane surface stress surface shear L to 8 normal surface pressure

Splitting this surface momentum balance law into a tangential component and a normal component to

8y, we obtain the following results (see the derivation in Appendix D):

e Tangential surface momentum balance for the detritus mixture (a,b = 1, 2),

Op§ b b p Ow’ 6 0Us o Oy b O
ot + (Mvg’l}s—sa>;b+ﬂ7)867§b—,uw aigb—,uubga Té_b—vgw aié_b—
2uUpvl — S°) bpeg®™® — 2K (uUpvd — S*) =
( Upvg ) bcd (HUpvg ) 175)
—(=pI + R) 'y, - 7%+ ((pv)" - 7%) (0" -y — Up) +
(—pI+ R) np- 7"+ g - 7%
e Normal surface momentum balance for the detritus mixture,
oply Uy ou 9
Er (HUpvg — )., + p(vg — w*) age wauba—ga — 2K (pUi — S) =
(176)

—(—pI + R)"ny -y + ((pv)" - myp) (07 -y — W)+

(=pI + R) ™ ny-np + pug - myp .

Note that (176) describes the evolution of the speed of displacement U;. However, we have chosen to

prescribe U, by giving an erosion/deposition law, so that (176) will be next omitted.*® Equations (171),

¥Developing a model with the consideration of (176) requires further assumptions on S, ( — pI + R)*ny - ny, (—pI +
R) " ny - mp. We prefer to give an erosion/deposition law and so omit (176).
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(173) and (175) stand for the determination of the surface fields p, uq and vg. However, there are
quantities therein which must be prescribed, and this is dealt with in the next subsection.
4.2.4 Boundary conditions at the bed

Equations (171), (173) and (175) must be complemented by closure relations for the diffusive fluxes jg,,
the stresses S, S9, and for the bulk quantities ¢, pT, v*, (¢?*)* - ny, (—pI + R)*ny - 7°. Thus, we

make the following assumptions:
e For jg, we assume the FICK law

aba:ua
ocb 7

Jsa = _DavS,Ua — (jSa)a = _Dag

where D, [m?s™!] are the surface mass diffusivities. This parameterization ignores cross depen-

dencies analogous to those in (50),.

e The shear stresses S are assumed to be negligibly small, because they represent physically thick-
ness integrated shear forces perpendicular to 8 and the thickness is infinitely small. For the surface

parallel stresses S°° we assume

S = Shtic + 5o (177)

e viscous ?

where

Sglgstic = _p(lu’) gab )
(178)

Sab

viscous

= (s tr(Dg) g + 2us [ng — %tr (Ds) gab] )

p is an elastic pressure depending on the surface mass density (and also on the temperature in non-
isothermal processes), (g is an aerial viscosity analogous to the bulk viscosity in three dimensions,
vg is a surface shear viscosity which operates on the surface deviator of Dg, and Dy is the surface

rate of deformation tensor,
Ds =} (P (Vsvs) + (Vsvs)T P) = D1 ®Ty. (179)

In (179), Vs is the surface gradient and P is the projection operator onto the tangent plane to S:

Vsu = Sg‘@Ta’ P=r,®1%,
where u is a vector field defined on 8. With u = u%r, + un, we deduce
PVsu = u“;b'ra RT°,
so that definition of Dg implies the following expression for the components ng:

DY =1 (ua;cgCh + ub;cgcu) :
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Figure 10: Pressure p as a function of w for the 3 choices in (182)

Note that tr(Dg) = Dghgab = (Dg)%. If one assumes (s = 0 the correspondingly reduced

equation (178)o, viz.,

(SShcons) = 2vs | DE = Fu(Ds) g™ | | (180)

corresponds to the STOKES approximation of (178)2. Note, since no ‘areal preserving’ is imple-

mented, the tensor on the right-hand side of (178)3 is (still) the deviator of the surface stretching.

A closure relation for p(u) is still needed. The intuitive understanding is that surface pressure can
only build under areal compaction but not dilatation. Moreover, with increasing density p, com-
paction will be more and more inhibited, or the corresponding pressure more and more increased.
So,

p() = H (~tr(Ds)) P(n). (181)

Three choices for P are

P(u) = Ho (182)
€ [2p1,0) = po,

Py Ph 1
/ / _
P(u) = pip+ ;u” = (pl + ;u” ) o,

where p1, p’L2 > 0 and n > 1. For (182);2, p(p0) = 00, so preventing n from going beyond
to- Such a limit is not built into (182)3, but selecting n large, produces physically effectively
the same (for the graphs of (182); 2 3 see Fig. 10). These proposals account for the fact that with
w1 > 0 also p > 0; furthermore, the larger p is, the larger will be the pressure. Relations (182)1 2
incorporate a densest packing condition, (182)3 does not, which is more realistic since grains can

escape perpendicular to 8. This completes the postulation of the stress parameterization for S°.
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e The sliding laws
(—=pI + R)"ny — ((—pI + R)"my - mp) myy = p*Cillv| — vy | (’UW - Usn) ,  (183)

(—pI + R)*nb — ((—pI + R)*nb . nb) n, = pbedCQH’USH H V3| 5 (184)

with the (dimensionless) drag coefficients C1, Co > 0, will determine (—pI + R)*mny,- 7% in (175).
In the BOUSSINESQ approximation p* may be replaced by p* = p(4°C); and in the shallow water

approximation, v reduces to the horizontal component of v, vy, so that (183) reads

(Taz, Tyz) = P*Cl\/(u+ —ug)? + (v+ —wg)? ((u™ —ug), (vF — vg)).

e For (¢*)T - my, we simply evaluate ¢ on 8:
(¢pa)+ ‘N = ¢p0¢ |z=b(.7:7y,t) ‘T .

+ ot

+
e Now werefertov™, p™, ¢,

, C

First, for the velocity v it is natural to request a kinematic condition of sliding or no-slip. When
expressed in terms of the linear velocity profile across the thickness of the diffusive interface, see

Fig. 11, this request implies
vt =2lr, +Upn, Ze[1,2]. (185)

Now, the velocity tangential to Sy at the ‘upper’ interface of this thin layer is twice the barycentric
tangential surface velocity vg). If a plug flow profile is assumed, then the sliding velocity is
Hvﬁr —wg|[|- So, Z € [1,2], but = = 2 is the likelier value. These considerations lead to the above

representation (185).

Second, since

p
p+:20¢ V;,Os'F(l—ZaV;)Pw, p(—x’_:p—"_cz—l’_ —>I/;_:762, (186)
—— — 4, —
pe it
where v, is the solid volume fraction of « constituent and p,, is the true density of the fluid, we

find

ot = Pu . (187)
1= Y, (1-22)

So, according to (186)1, (187), p* is known, once Y, v or >, ¢} is known. We postulate closure

conditions for c, or v, (v = 1,..., N).

Third, to postulate a phenomenological relation for ¢} or ) is the hardest, because it is physically
not obvious. In such a situation it is probably easiest to formulate a surface balance law for ¢ as
stated in (133), viz.,

oct a oct
(g ) G
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In this equation the jump terms of the bulk quantities are absent as is the supply term. For none of

them the introduction would be justified. Moreover, ¢Cg is the flux of ¢} (parallel to 8;),

(#%)" = =g (1),00™ (189)

in which d - are diffusivities, and cross dependences on the concentrations cg (B + «) have been
. . . e +

ignored. If one considers the evolution of ¢ to be non-diffusive, then ¢ = 0, and (188) becomes
a pure evolution equation for ¢}. The production rate density is assumed to depend on quantities

in the slurry at 8 and of the moving interface,
At
= #Ca (Da,cg,Rez,ua,Hvﬁ —vgll; ), (190)

such that 7% |equi1 = (. Equilibrium conditions are characterized by uniform and time independent
¢ and Uy, = 0, so that the left-hand side of (189) vanishes. It transpires that appropriate selection

aot . .
of 7 is crucial.

We now incorporate into (171), (173) the entrainment-erosion and deposition rates for which spe-
cialists in sediment transport substitute parameterizations. The mass flow from below into the basal bed
is identified as entrainment, erosion or pick-up rate, and from the moving bed to the base as deposition
rate. With

N
phed = 2 pbed 4 pl}ed’
a=1
they are, obviously, given by

MY = —Up p2, M = —Up P, My = —Up p*°, (191)

from which we easily deduce

pbed ; pt}ed
o 8] —
My = hed My, My = WJ\/&,. (192)

Positive (negative) U, [negative (positive) Mp] corresponds to deposition (erosion). The result (192)
implies that we are not free to select closure relations for M?’f independently and evaluate M from
these via
n
My = > Mg +M].
a=1
On the contrary, we must postulate a closure relation for M; and evaluate Mg"f from (192)1 2 via the
known grain size distribution and the corresponding densities pgf‘} just below 8. Erosion and deposition

occur below the detritus layer. It is convenient to write
My = MG — MIP (193)

and to independently postulate representations for erosion and deposition. On the basis of the concepts

of ‘erosion inception’ and ‘erosion amount’ we now postulate
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N*
M = Z (ca)®Y(Eq)™  (erosion),
o=t (194)

Mgep =—pt 2 ch (wses -my +Uy)  (deposition)
o

where N* follows from the evaluation of the critical shear stress according to formula (153):

1/2
(TH)a < o) ™ } . (195)
8

N* = max a
{ Apgd,

a=1,....N

Here Il , is the second stress deviator invariant in the basal material evaluated at the basal surface. The
parameterization for Mgep makes use of the terminal velocity of a particle in an ambient fluid field, w*,
see (9) and (10). For particle class « this yields the mass flow —p w?' - n;, towards the basal surface.
However, this surface itself moves with the displacement speed Uy in the direction of 1. Thus, the mass
flow of class-« particles is —p (wit - my + Up). Summation over all a-classes now yields the total

depositing mass flow

Mgep = —Zpi (wng "Ny + ub) warLaes —PJFZ@ (wfjez "Ny + Ub) )
e «

which is (194)9, and where expression (69) is to be substituted for w?. When the shallowness approxi-
mation is justified then e, - n, =~ 1.
With (191) and (192) the mass balance relations (173) and (171) can respectively be written as

0 0
Gha | (pavg)®, — Ha e _ 2p0 UK =
ot e gge
bed (196)
\a o +_ ot [t P
— (7sa) ot (=@ -myp)" — p,, ('v “ny — Ub> + ﬁMm
% + (,u'vg)a_ - ai w® — Q[LubK = —pJr ’UJr Ny — ub + Mb, (197)
ot . gL —_
fora = 1,..., N. In these relations the underbraced term vanishes when the normal component of the

barycentric velocity follows the displacement speed U;, of 8p. If My, is known as a function of space and
time on &, (196) and (197) are field equations for p, and p. Of course, also U, must be known; it is
determined by (191)3, (193), (194).

Equation (197) states that the time rate of change of the specific surface mass y grows by the mass
flow from the slurry, [(v" - ny, — Up) < 0] and by the erosion rate (M, > 0) from below. (Note, M,
contains both erosion and deposition, but M > 0 is a net erosion.) For p = 0 the two contributions on
the right-hand sides of (196), (197) must balance. Equation (196) allows an analogous inference, but for
constituent « a diffusive flow normal to 8 is added to this balance.

For the boundary condition of heat we proceed as for the traction boundary condition. In fact, we
impose either a DIRICHLET or NEUMANN condition on the slurry side of 8;. The simplest procedure is

to impose

T(:Ev Y, z, t) |z=b(x,y,t) = @(l’, Y, t) ;
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where O(z, y, t) is the temperature profile at the deepest position of the lake domain which is subject to

the study. As an alternative the NEUMANN condition
oT
K’T’nb = QJ.(xv Y, z, t)|z:b(m7y,t) )
where () is the geothermal heat, can also be used.

There remains the formulation of boundary conditions along the lake shore and at the corresponding

boundary lines on the surface 8.

For the domain of the particle laden fluid It is convenient to think that the lake domain is divided
into a number of layers which are bounded by fixed horizontal surfaces. Identify the layers by the
subscript k£ and let hy be their thicknesses. In each layer we think the corresponding portion of basal
surface to be replaced by a vertical wall. For k& = 1 this wall defines the mathematical shore line. Along
the vertical walls fields of unit vectors [N can be introduced which lie in horizontal planes parallel to

the (x, y)-plane. If no detritus moves, then vlg =0and ulg = (, and boundary conditions are given by

0 , forimpermeable wall,
(hkproy) - Ni =
9Ny, , for discharge into ground;

(heJ) - N 0 , forimpermeable wall,
k) iNVE =
9Ny, for discharge of a- mass into ground;
h 0 , forno heat loss, .
(@) - N = or T =T

Qi‘”‘h , for prescribed heat flow,

The usual boundary conditions are those describing the ground as impermeable surface; else 915 and

9N} must be prescribed, which requires a model for the ground.

For the boundaries of the sediment ‘layer’ For the detritus layer the boundary value problem is
that on a curved surface, which is bounded by a closed loop, most of which can be identified with the
mathematical shore line. Because of the Fick-type diffusive constitutive relations for the constituent
mass fluxes jg, and the NAVIER-STOKES-type stress parameterizations for S% closure conditions are
analogous to those of the three-dimensional case. However no boundary condition must be formulated
for the surface heat flow in our case, because energy considerations have been left unspecified. So, let
C be a loop along the mathematical shore line (including a segment of the river bank and across the
tributary). Define by h the unit vector field along € which is tangent to 8§ and perpendicular to C. With

vg, the barycentric surface velocity vector, and jg,, the surface mass flux, we may now write

] 0 , along C where vg = 0,
J8a h =
—mg , along C, where wash-load enters the lake from the tributary ;
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(vs) 0 , at the shore segments where vg is tangential to the shore,
pvs) - h =
— (>, mg + m/ ), at the river cross section.

5 Transformation of the surface mass distribution into a detritus layer

thickness

From a practical point of view the surface mass densities of the sediment classes y,, (. = 1,..., N) are
not very useful variables. Better is the determination of the thickness h of the detritus layer; so, let us

assume

_ — o
K = PsVmean by Viean = E Vimean »
o

where p; is the true density of the sand, and v, are mean values of the solid volume fractions of the
sediment classes & = 1,..., N in the detritus layer. Note that pean = (1 — n), where n is the average
porosity within the detritus layer. Subsequently, the thickness of the detritus layer follows from

[ (198)

PsVmean

and our aim is to provide a model for Viean- !

First, we consider that the detritus layer has linear volume fraction and velocity distributions across
its thickness. The expectations are that the linear volume fraction through the layer has a maximum at
the bottom and a minimum at the top. Similarly, the layer velocity vanishes at the bottom and reaches a
maximum at the top surface, umax, see Fig. 11. So, their distributions are given by

Vmin — Vmax Umax

V= ——""—"—""2+%Vnax, U= h

h

(199)

As the figure shows, the layer may become instable if it is sufficiently sheared from above. A RICHARD-
SON number dependence of the mean volume fraction in an arbitrary detritus layer (i.e., not necessarily
as in Fig. 11) is then suggested.

So, still referring to Fig. 11, we define

1di 1 dv

Pmean dz g _ _ Vmean Eg _ {2(Vmax - Vmin)} gh

du 2 du 2 Vmax + Vmin u?
dz dz

max
where Vmean = (Vmax+Vmin)/2 has been used. For particular values of yin, Vmaxs %max, the RICHARDSON

) (200)

number Ri is a function of the thickness h: Ri = Ri(h). Now, our assumption for the mean volume

3f we assume fta = psVheanh, then the mean volume fractions vfean are known once the height h is known: vfean =
ta/(psh); or, equivalently, if vmean is known, see (198): viean = (fa/it)Vmean. For the detritus layer the mean volume
fractions vmean are practically better quantities than the surface densities fiq .
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Figure 11: Detritus layer with thickness h. Distribution of the volume fraction v and detritus velocity u as
functions of z.

fraction in an arbitrary detritus layer is

Vmean = Vmean(Ri(h)) .

When inserted into (198), this yields an equation for the determination of h:

po .
ok Vmean(RE(h)) . (201)

Moreover, with an obvious reminiscence to the KELVIN-HELMHOLTZ instability of two stratified vis-

cous fluids with different constant densities under simple shear, MILES [28] (1967), we suppose a [i-
dependence as shown in Fig. 12. This function can qualitatively and quantitatively be given as

Vmean = %(l/top + Ubottom) + @ tanh (b(Ri — Rz’cm)) ,
(202)

2s Viop — (Vtop + Vbottom) }

1 1
a= E(Vtop - Vbottom) 5 b= c atanh{
Vtop — Vbottom

Here,0 < ¢ < 1,0 « s < 1, and a, b are so adjusted that

Ri — —  Vmean = Vtop »
Ri —» —o© > Vmean = Vbottom 5
F_ -Crit _ — 1
Ri=Ri > Vmean = Verit = §(Vt0p + Vbottom) s

Ri = Ri*™ +€ —> Vmean = S Viop -

The modeler can pick values for viop, Vpottoms Ri®t ¢ and s. Suggestions are given in Table 7. Obviously,
for a Newtonian fluid Ri is the value of the RICHARDSON number below which instability sets in.
With the parameterization (202), relation (201) becomes a nonlinear equation for /, which is easily

seen to possess a unique solution. An iterative solution h is best found as

pm+1) L RO = 2p ’
psymean(Ri(h(m))) ps(Vtop + Vbottom)
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Figure 12: Qualitative behaviour of the mean volume fraction vyean of the mixture.

Table 7: Suggested values for the parameters in equation (202).

Viop = 0.8 RiM =0.25  1pogom = 0.02 £=0.02 s=0.98

and computations are interrupted when

pm+D) _ pm)| 1

This computation must be performed for all x, y and each time step ¢.

6 Discussion and Conclusion

In this article transport of sediments in suspension and in the detritus layer of an alluvial river-lake (or
ocean) system was analyzed from a perspective of global processes, taking place in the lake or ocean
basin, on the one hand, and in the moving or stagnant detritus layer at the bottom of the water body,
on the other hand. These two regimes interact at their common boundary via erosion of sediments
from the basal surface or as deposition of wash-load to the rigid bed. The suspended sediment fractions
are transported by the wind-induced barotropic or baroclinic circulation of the homogeneous or density
stratified lake or ocean water. These sediment fractions are carried into the lake as wash loads from river
inlets. The bed-load detritus, on the other hand, is carried into the estuarine environment of the lake and
contributes thereby its deposition to deltaic formations. In the vicinity of the river mouth both sediment
formations are subjected to a new flow regime, which is governed by large scale circulation dynamics, in
which the current speeds are generally smaller. This leads to an enhanced sedimentation of the coarser
grain fractions and associated aggradation with progressing delta formations.

Whereas on decadal time scales the important regions of such land aggradation in oceans is restricted
to estuarine zones, these zones may in lakes extend over substantial portions of the basins or the entire
lake. This is particularly so for artificial reservoirs and mountainous terrain. Rigorous models on this
complex detritus-particle-laden fluid interaction are still missing. It was our intention to present in this
memoir the foundation for a class of such models as a basis for later use in attempts of software devel-
opments for sediment transport of this sort.

To this end, the lake domain was divided into two regions, the actual water domain with suspended
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(non)-buoyant particles, called also slurry, and the detritus layer with moving sediments, also a solid-
fluid mixture, but very thin. Because of its thinness, this layer was collapsed into an infinitely thin
moving and deforming surface, covered by a mixture of the NV sediment classes « (= 1,...,N) and a
fluid. This mixture moves along the surface, with each constituent having its own tangential velocity,
and thus intermixing with the others by surface parallel diffusion. However, further mass exchanges
with the slurry above and the ground below takes also place as erosion and deposition processes. The
mathematical description of this local interaction problem turned out to be rather subtle, even in the
simplest possible form as dealt with here.

In the slurry domain (domain I in Fig. 3), the governing field equations for the lake as a particle
laden fluid are handled as a continuous mixture of class I, i.e., the balance laws of mass are formulated
for the sediment classes o (= 1,..., V) and the mixture as a whole, but balances of linear momentum
and energy are only formulated for the mixture as a whole. This is done for a nearly density preserving
fluid, whose density changes due to variations of the temperature, mineralization and pressure but also
the distribution of the wash-load. The formulation is also complicated by the presence of turbulence.
As a consequence, a considerable number of approximate models exists, all of which are claimed to be
relevant to describe the three-dimensional circulation dynamics, including dispersion of the suspended
wash-load. They differ in certain terms but the differences are seldom explained in the context of their
physical implications. We have tried to close this gap.

Two model families were presented. In model family 1, referenced as generalized BOUSSINESQ

models, two subfamilies were distinguished:

o In the classical BOUSSINESQ assumption variations of the density are ignored, except in the grav-
ity term. This implies that the velocity field is solenoidal. This property is preserved also when

turbulence averaging is performed and averaged equations are looked at.

e A generalized BOUSSINESQ fluid is defined by a mixture-density composition, p = pg(z) +
pa(x,t), in which pg(x, t) is ignored everywhere except in the gravity term. In this case the mass
flux or momentum density pov(x, t) is solenoidal. This property is also preserved in the turbulent-

averaged equations.
Model family 2 is based on the assumption of small turbulent density variations; it was coined by us

o Small density fluctuation assumption. It is based on the assumption that approximations are only
introduced after the turbulent averaging operations have been performed with the compressible
governing equations. Then, with p = {p) + p/, every correlation term { p’a) is ignored. This
assumption implies that the averaged mass balance of the mixture is preserved, see (39). So,
acoustic waves can be studied in a turbulent fluid as can the influence of the pressure dependence

of the equation of state, both effects which may be significant in very deep lakes.

A further popular approximation is the Shallow Water Approximation (SWA), in which the ratio of
typical depth to length scales is used as a perturbation parameter A and the lowest order approximation
to the reduced equations in the limit A — 0 is constructed. This implies that the vertical momentum
balance reduces to a force balance between the gravity force and the vertical pressure gradient. This

approximation is known as the hydrostatic pressure assumption. Moreover, the divergence of the stress
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deviator, and the divergences of the heat flux and the species mass fluxes reduce to

0res 01y 0QS" 032
oz’ 0z’ oz = 0z’

whilst all other terms drop out. Both assumptions are today regarded as critical. An in-between compro-
mise, which is sometimes used, still employs the hydrostatic pressure assumption but accounts for the
horizontal stress, heat flux and species mass flux gradients. The modern trend, however, abandons the
SWA altogether. These formulations are known as non-hydrostatic models. They are certainly needed
in the aftermaths of incessant heavy rain fall with strong detritus and wash-load discharge from a river
into the river-mouth region, when strong up- and down-welling are likely to occur, see Fig. 13. In such
systems it may be advantageous to employ nesting, where a simpler model is used for the circulation
dynamics of the entire lake, and the river-inlet environs are analyzed with a more complex model subject

to the current, pressure, temperature, etc., input along the open boundary. A word of caution or alertness

Figure 13: Sediment laden water in the forefront of the estuary mouth of the river Rhine (Alpen-Rhein) at
Fussach near Bregenz, Austria. The picture demonstrates that up-welling and down-welling processes must
be active, indicating that the Shallow Water Approximation in computational software should not be applied.
A full non-hydrostatic three dimensional model is required. Copyright: ‘Tino Dietsche - airpics4you.ch’

concerns the formulation of the heat equation (first law of thermodynamics), which has consistently been
given in two different forms, one in which the caloric potential is the HELMHOLTZ free energy (and the
energy equation is written in terms of this free energy), and a second one, where the potential is the free
enthalpy. As explained in the appendix, if p and T are the independent thermodynamic variables, then
the heat equation is based on the free energy formulation, and, strictly in this case, the thermal equation
of state has the form p = p(p, T). Alternatively, if p and T are the independent thermodynamic variables,
then p = p(p, T) is the appropriate thermal equation of state and the energy is expressed in terms of the
free enthalpy. In applications confusion may arise, since for most situations the thermal equation of state

is given as p = p(7") without a pressure dependence. In these cases it is irrelevant which energy equation
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is employed, the enthalpy formulation would be logical. Luckily it does not matter, since numerical
values for the specific heats ¢, and ¢, are nearly the same.

Closure relations of the flux terms in the slurry have consistently been proposed as being of gradient
type. A critical point in this formulation concerns only the constituent mass fluxes ¥, defined in (8).
These mass fluxes are written as compositions of two contributions, (i) a diffusive flux due to the dif-
ference of the velocity of particles of the same class relative to a representative particle velocity within
this same sediment class plus a slip velocity of this representative particle of class « to the barycentric
velocity of the mixture at the same position, which is fundamentally related to the free fall velocity of
the representative particle in still water. Even though this latter choice is questionable in its own right,3?
this kind of parameterization tries to explicitly account for the convective motion of the non-buoyant
particles and the diffusive nature of the analogous process due to particle size differences in the same
sediment class.

Domain 11 is in reality a very thin layer of a granular fluid mixture with N sediment classes and an
interstitial fluid at saturation. This system has been collapsed in our theoretical formulation into a moving
singular surface with surface particles being equipped with surface masses, momenta, etc. This procedure
is tantamount to replacing a mixture layer and its top and bottom boundary by a sharp interface, which is
equipped with surface mass and evolves under the influence of the sedimentation and erosion processes.
As a first approach, we have assumed this interface to be a material surface, being aware that in reality it
is nourished from above and below by settling and eroding particles. Essential in this approach was the
surface balance law (132), which is based on the transport theorem (130), valid for material surfaces.

The complications with the above described boundary conditions are connected with the fact that NV
surface sediment classes are introduced, which each may have its own motion tangential to the deforming
surface, whose motion is defined by the kinematic equation of motion. If on either side of the deforming
surface simple constituent continua are present, the possible surface material is also a simple constituent
continuum. Then, the subtle issue is that the geometric motion of the surface from its reference state to
its present state and given by the kinematic equation of the surface moving with the velocity w, is not
the same as the motion of a material body, geometrically-kinematically constrained to the surface, but
free to move and deform tangentially to the surface with the material velocity vg. The two are related by
(see Fig. 10)

vg=E"T,+tw — wvgn=w-n,

were (£1,€2) e A is the coordinate cover of the moving surface 8 and 7, are the base vectors 7, =
or/0 &%, withx = r(&4, €2, t). With these prerequisites the derivation of the local surface balance law for
a physical quantity (132) from the corresponding global form (129) due to SLATTERY et al. (2007) [40] is
more general than corresponding equations of earlier surface models for which vg = w was assumed, see
e.g. MULLER (1985) [30], or for which w = Un is assumed, see e.g. ALTS and HUTTER (1988) [2]-[5]
and references therein. The more general equation has then served as master equation for the derivation
of the physical balance laws for the surface-detritus-water mixture involving among others, the surface
mass densities u, 1 and velocities vg,,, vs (o = 1,..., N), such that vg, - ny = vsg - ny = Up. These

equations also contain the surface jump quantities from the bulk fields which represent, for mass balance

32The determination of the velocity of a particle in a moving and perhaps accelerating fluid field relative to the velocity of
the fluid at the same position before the latter was inserted in the fluid, is a complex topic of fluid dynamics which does not, in
general, agree with the free fall velocity.
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physically the deposition and erosion rates and, for momentum balance laws the traction and impulse
jump quantities. Parameterization of erosion consisted of two statements, (i) a criterion defining the
onset of erosion of sediments of grain class « and (ii) a statement of the amount of eroded material.
Reviews for both have been provided.

A conceptually decisive decision in connection with the detritus motion is whether a surface mixture
theory of class II ought to be pursued or a less complicated mixture model of class I should be employed.
The latter makes only use of the balance law of momentum for the mixture as a whole, but mass balances
of all constituents, and it is technically simpler. The constituent surface velocities have been eliminated

by introducing the diffusive surface-mass flux

Jsa = ta(Vsa — vs) = pa(Vsa — vs))

as a new variable of the sediment class « and writing a FICK-type constitutive relation for it. If the class
a-velocity needs to be computed, this can a posteriori be done by

1 .
Vgal| = /Tajs(x + vg|| -

The surface mixture momentum balance law entailed the parameterization of the surface parallel stress
components S, which were postulated as a two-dimensional linear viscous fluid with areal compress-
ibility (but vanishing resistance to expansion). This avoids build-up of cohesion.

Further closure relations were needed in the form of detritus interface sliding laws from above and
below and values of the particle concentrations ¢} (o« = 1,..., N) immediately above the detritus
interface. These are IV statements, which were postulated in terms of surface balance laws (188), each
involving a FICKian gradient postulate for its flux quantity and N production terms. These balance
relations for the boundary value of ¢} are likely the most esoteric feature of the model and call for the
application and the use of the entropy principle and experiments to constraining the coefficients. A last
set of relations completing the theory are explicit relations for the erosion and deposition rates, (194).

To treat the dynamics of the detritus layer by concepts of sharp interfaces is a simplification. In
reality the detritus region is a thin layer of finite thickness, which is sheared by the bottom near flow of
the wind induced motion of the lake water. By mimicking the thin detritus region as a sheared layer with
linear volume fraction and velocity distributions across the layer and assuming the mean volume fraction
in this layer to depend on the RICHARDSON number with stable and unstable regimes, the detritus layer
thickness can be evaluated, see (198), and its transition from stable (and thin) to unstable (and thick)
regimes be estimated.

To summarize, this theory of sediment transport in alluvial systems is fairly substantial but the mod-
eler has some freedom to adjust its complexity somewhat by selecting the number of sediment classes
when approximating the grain size distribution curve. There is also some flexibility in selecting the model
equations for the lake circulation flow as a slurry and in the application of sub-structuring techniques by
dividing the lake domain in subdomains with and without detritus transport. However, apart from these
simplifications and some variation in the constitutive postulates the presented equations likely constitute
the minimum complexity accounting for the essential physics. Further extensions are possible and have
transpired in the derivation of the model. For instance, in (176) the momentum equation perpendicular

to the moving detritus interface was presented, but it was ignored. Paired with additional closure state-
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ments involving jumps of bulk fields across §, this equation is interpreted as an evolution equation for
the displacement speed U;. When used, it would make postulation of deposition and entrainment rates
obsolete. This fact would give sediment transport theories a completely different structure from what it
has been so far. Moreover, the entire concept could also be pursued with a mixture of class II with all
of its consequences. Presently the most urgent activities would be validation of the model by parameter
identification, development of software for its use and application to realistic cases, such as that shown
in Figs. 1, 2, 13.
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Appendix

A Implications from the Second Law of Thermodynamics

This appendix gives a justification for the approximation (44). The results which are presented can be
taken from any book on thermodynamics, e.g. Hutter (2003) [16]. The basis of the considerations is the

so-called GIBBS relation of a heat conducting fluid,

1 P
dn = 7 (de — 2 dp> , (203)

in which 7 is the entropy, 1" the KELVIN temperature, € the internal energy, p the pressure and p the fluid

density; (203) is a consequence of the second law of thermodynamics. Solving (203) for de,

de = Tdn + 2 dp, (204)
p

identifies € as a function of 7 and p, so that, alternatively and with e = &(n, p),

de= 2an+ 284, (205)
on op
Comparison of (204) and (205) implies
0é 0é
T=— =p’—. 206
o PP, (206)

The internal energy, interpreted as a function of entropy 1 and density p, is a thermodynamic potential

for the absolute temperature and the pressure.

143



With the functions

1) = e —Tn HELMHOLTZ free energy,

h=c+2  enthalpy, (207)
p

g = h —Tn GIBBS free energy,

(these are LEGENDRE transformations) the GIBBS relation (204) takes the alternative forms

p ~

dd)z—ndT—i—Edp — Y =Y(T,p),
1 ~

dh=—-Tdn+=-dp — h=h(n,p), (208)
P
1 .

dg:—ndTJr;dp — g=g(T,p).

With the indicated different dependencies and the obvious potential properties, analogous to (206), we
have

_ 500
77 aT7 p p 6p7
oh 1 _dh
T=-—2" == 7 (209)
an’ p dp
dg 1 _dg
77 aT? p_ap?
and the integrability conditions
on o [ p A
———=— =] f T
M= (%) o i,
oT o (1 .
- =— |- for h(T 210
p aT(p) or  h(T,p), (210)
on_ o

1
—— = - f g(T,p) .
oy = a7 <p> or §(T'p)

Internal energy formulation

If we regard 1" and p as the independent thermodynamic variables, then according to (207); we have

R L N )
=y —Tor = T8T<T)’ 211)
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and therefore,

de AT dp
at ~ Par TP Trar
o a0 [U))  ae
“T T (T oT <T>) ST (212)
o 2 0 [0djop) _ ¢
r oT T op
With the separation assumption
¥ =Pr(T) +4p(p) , (213)

¢y = &(T) and ey = é7,(p) = dﬂp/d p. Therefore, (212); can be written as

de . d4dT  d&p,dp ., AT
— = pé(T)— + p—L =L ~ pe,(T)—.
Pay ~ P gy T g, qp ~ e gy
—
nearly 0

(214)

The second term on the right-hand side of (214) can be ignored since density veriations in a nearly

incompressible fluid are minute.

Enthalpy formulation If we regard 7" and p as the independent thermodynamic variables, the GIBBS
free energy is the thermodynamic potential and the enthalpy the adequate internal energy function. In

view of (208) we now have

B 09 .20 (g
h=g-Tog =T 75 (%) @15)
and therefore,
dh_ AT dp
Pag ~PPqy TPTrgy
0 o (3§ oh
=—— (T (2] ) ==
K aT< 8T<T)) o7’ 216)

T oh
Crp i= — ——= ) = —.
Tp oT \Tdp op
With the separation assumption
h=gr(T) + gp(p) , 217)

we have ¢, = ¢,(T") and c1p, = érp(p) = dgp/dp. Therefore, (203); can be written as

dh dT dg, dp dTr
— = pé(T)— 4+ p—L -2 ~ péy(T)— . 218
pdt P Ep( )dt pdpdt pey( )dt (218)
—
nearly 0

Here the second term on the right-hand side can be ignored, since dg,/dp must be very small, the growth
of the enthalpy due to a pressure rise cannot be large as its working is due to dilatational deformations,

which are small.

Parameterizations Because the temperature range of lake or ocean water is small, 0°C < T' < 50°C,

the coefficients ¢, and c, exhibit a constrained variability and may well be assumed to be constant or
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linear functions of T'. This then suggests to use

o for constant specific heats,

T T
¢ = f eo(T)dT = (T —T) + 0, h = f (D) AT = (T —Ty) + ho,  (219)
TO TO
o for specific heats as linear functions of T:
s 7 0 L, 2
€= [CU+CU(T—T0)]dT=CU(T—T0)+§CU(T—T0) + €,
To

. (220)
_ _ 1
_ 0 _ 0 2
h = Lo[cp + (T = Tp) ] dT = ¢)(T — Tp) + 5c;,(T —To)* + ho.

The expressions (214), (218) (219), (220) provide a thermodynamic justification of relations (44).

B Turbulent closure by Large Eddy Simulation

Large Eddy Simulation (LES) is another popular approach for simulating turbulent flows. In this tech-
nique the large, geometry-dependent eddies are explicitly accounted for by using a subgrid-scale (SGS)
model. Equations (76)—(80) are now interpreted as resolved field equations obtained by applying a non-
statistical filter to the NAVIER-STOKES equations.>?

The effect of the small eddies on the resolved filtered field is included in the SGS-parameterization

of the stress R, as shown in (52) but now given by
R =2pvggsD, trD =0, (221)

where vggg is the SGS-turbulent viscosity,

1/2

vsas = (CsA)? (tr (2D?)) (222)

This parameterization is due to SMAGORINSKY (1963) [41]. C is a dimensionless coefficient, called
SMAGORINSKY constant, and A is a length scale, equal to the local grid spacing. Thus, (221) with
(222) is the classical viscous power law relating stress and stretching. According to KRAFT et al. [23],
the above ‘model is found to give acceptable results in LES of homogeneous and isotropic turbulence.
With Cs =~ 0.17 according to LILLY (1967) [25], it is too dissipative [...] in the near wall region
because of the excessive eddy-viscosity arising from the mean shear (MOIN & KiM (1982) [29]). The
eddy viscosity predicted by SMAGORINSKY is nonzero in laminar flow regions; the model introduces
spurious dissipation which damps the growth of small perturbations and thus restrains the transition to
turbulence (PIOMELLI & ZANG (1991) [33]).

The limitations of the SMAGORINSKY model have led to the formulation of more general SGS mod-
els. The best known of these newer models may be the dynamic SGS (DSGS) model of GERMANO et al.
(1991) [12]. In this model Cj is not a fixed constant but is calculated as a function of position and time,
Cs(x,t), which vanishes near the boundary with the correct behaviour (PIOMELLI (1993) [32], [23]).

33Such a filter need not to fulfil the condition ({-)) = {-», where {-) is the filter operation.
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The parameterisations for the energy flux, @, and constituent mass fluxes, J,, are the same as stated
in (52)2 3, however, with vggs evaluated as given in (222). It is also evident from this presentation that

the (k — ) - equations are not needed.

C Justification for (150)

In this appendix we provide a derivation of formula (150) for erosion inception on the basis of dimen-
sional analysis. We consider sediment transport at a lake basal surface. It is rather intuitive that the
erosion inception will likely depend on a stress (the shear stress) on the lake side of the basal surface,
¢, the true densities, ps, py, of the sediment grains and the fluid, the solid concentration, c;, gravity
acceleration, g, mixture kinematic viscosity, v, and the nominal diameter, 0, of the sediment corn, all
evaluated at the base. So, inception of sediment transport can likely be described by an equation of the

form
f(Tesps, ppr9,0,v,¢5) = 0. (223)

The dimensional matrix of the above 7 variables has rank 3; so, there are 4 independent dimensionless
m-products, which we choose as follows:
Te _Ps

= , T2
Apgd pf

m (224)

g )1/307

) 7T3:Cs, 7T4:<AV2

where p is the mixture density and A = (ps/p — 1). Here, 7. has been scaled with the ‘submerged’
density (ps — p). Furthermore, it is not difficult to see that for small ¢, the mixture density in (224) may

approximately be replaced by p;. We may thus write

Te

Rop - f(mwa, m3,74) . (225)

f(my,me, m3,m4) =0 or

The number of variables is now reduced from 7 to 4, a dramatic reduction! However, even further
reduction is possible. For sediment transport in the geophysical environment 77 is very nearly a constant
on the entire Globe, and 73 is very small (< 10~2); so, the m3-dependence may be dropped (i.e. expressed

in a Taylor series expansion of 73 and restricted to the term f (72,0, m4)). Thus, we may assume

Tec
Apgd

. = = f(ReD) = %), m=Rer =0t = (55) 0. (226)

A2

This derivation assumes that only a single sediment fraction is present. It is important to note that the
viscosity v of the mixture is present in the variables describing the erosion inception. If it is dropped,

then f in (226) reduces to a constant and
7. = const. x A p gd*,

which is not supported by experiments. Omitting g as a governing parameter is disastrous, because 71

and 74 are then missing as 7-products. In this case f (g, m3) = 0 is simply meaningless.
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D Justification for (170), (171) and (175), (176)

Justification for (170), (171): For the constituent masses, noting that

Pa(Va — W) = pa(Va —v) +pa(v —w),
—_——

=J,, seeeq. (8)

the non-averaged balance (133), in which fs = pq, @fs =0, f = po, v = Vo, @' = 0, can be written as

0 0 ~

G (mavsa)e = Ged 0t = 200 WK = ~ 3+ palv —w)] 7. (227)
Analogously, for the fluid we deduce

Oy o Opf o I U

o T (npvsp)”, — i 20 WK = =I5 + pp(v —w)] - my, (228)

where J s = pr(vy — v), with oy and v the mass density and velocity of the fluid (o5 = p — >, pa)-

Now we sum equations (227) and (228) over all constituents. Using relation
D Ja+Ip =0, (229)
o

and definitions
W= Y fha+p, VS = Y laVsa + [LfUsy (230)
o (07

for the mixture surface density p and mixture velocity vg, we obtain the mass balance for the mixture by
summation of (227) and (228):

ou o

Frin (hvs)®, — Erl w' =2pUp K = —[[p(v —w)] - np,. (231)

We now average equations (227) and (228). In so doing we assume that the interface does not perform

any fluctuations, whence necessarily (ny ) = np, ( K ) = K, {w ) = w and (Up) = U;. Thus, for the

averaged equations we get

0 | ey 3o+ (i (050 )", ;g? O U UK
(232)

= [T+ (P> + {pad{v ) — w)] - ms

NI gy Cosp))® + (o (w57))" = ggﬁ W = 2 UK
7 (233)

= —[K3p) +{ppv") +pp vy —w)] - ms .
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If we sum (232) and (233), because of (229), (230) we obtain

K
ot

b (o) (0 (09)))"y = St~ 20 WK

— [ Y (v —w)] my (234)

——
= ¢” in Table 6

Of course, (234) is the average of (231), and only two of (232)—(234) are independent. For computations

of initial boundary value problems we recommend to use (232) and (234) and to infer (1) a posteriori

from (juy) = () — 3, (pa).

It follows: with REYNOLDS averaging we have a non-vanishing mass flux in the mass balance (234).
A FAVRE-type averaging would have to be performed. However, if p’ is small on both sides of the basal
surface we can drop { p'v’ ) in (234). Moreover, with p’ = 0, p,, = pc,, decomposition (9) and definition

of J, (see (43)), for the constituent class « the mass flux { J,) + ( p,, v’ ) takes the form

(Jay +<pav") = Ja — p{ea)wy),

which explains Table 6 for Model 2. The main text, formulae (170), (171) (as deduced from (232), (234))

and Table 6 show the averaged fields without the averaging operator <-) and with negligible correlations
<M/a (v8a)1>7 <NI (US)I>'

Justification for (175) and (176): Now we consider (132), in which fs = pqvsa, qbfs = —03a»

7fs =0, 87 = pag, f = pava, v = Vo, ¢/ = —0,, foreacha =1,...,N:

. 0

% (HaVsa) + Div (taVsa ® V3o — T30) — a?a(uavsa) w® =

(235)
—[[Pava ® (Vo — w) — oa]| M + 11ag -
A similar equation holds for the interstitial fluid:

0 . 0 a

= (1fvss) +Div (upvsp @vsp — osf) — =za (yvsy) w =

ot ot (236)

—lpvy® (vf —w) —o sl + pfg.

Summing (235), (236) and using definition (230) we obtain

0 , 0
% (uvg) + Div (pvs @ vg — ag) — a—gu(;wg) w' = —[[pr® (v —w) — o ny + ug, (237)

where the bulk, o, and surface, og, mixture stress tensors are defined by
pv@v—aEZ(pava(@va—aa)—i—ﬁfvf@’vgf—a'f, (238)

«
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Vs Qg — 08 = Z (HaVsa @ Vsa — T8a) + pifVsf ® Vs — Tsf - (239)

«

Averaging (237) under the assumptions p’ ~ 0, p’ =~ 0, recalling definition (43); of the Reynolds stress

tensor R and introducing the laminar and turbulent surface mixture stress tensor g according to
Rs = (o) — n(vs ®vs), (240)
we deduce (we omit the angular brackets)

0 : 0 o
o (nvs) + Div (pvs @ vs — Rs) — age (nvg) w =
(241)

—[pv® (v —w) + pI — R]|ny, + ug,

which explains the last line in Table 6.

Next we want to write (241) using the components of vectors and tensors with respect to the local
basis {71, T2, 1}, which will give (175) and (176). To this end we use the formulae (for simplicity in
this derivation we omit the lower index b in U, and n, referring to the basal surface)

oT on on U
fg ZF;ch-i-babn, a75(1:_[)@7-5’ E :_gab{‘i‘bcbwc}T[j,

o0&
(242)

0Ty  Ow {6111[’

au
3t~ oen | ae +w‘F?a—Ubacg°b}Tb+{+wbbba}n,

08

and for a scalar function f, vector fields u, v and a second order tensor field T" defined on the surface S,

the rules of differentiation3*
Div (fv) = fDivv + Grad f - v, Div(fT) = fDivT + TGrad f,
0
Div (u ® v) = Uaa—; + (Divv)u, Divn=-2K, Div(n®n)=—-2Kn, (243)

Div(n®Tq) = —ber’ +I%n, Div(T,®n) = —2K1,,

where 5 o
Grad f = (3‘@{‘ 7%, Dive = (?;‘ %, DivT = 6§“Ta'
Thus, using the decomposition
vs = vg| +Un = v'7, +Un,

we obtain

0 ouv® ow®

E(;wg) = % Ta + pv° {8{" + wTy — Ubbcg‘“} Ta—

(244)
ou oplu ou
pUg®™ {é’fb + bhcwc} Ta+ {gt + uvaa—ga + ubhuv“wb} n.

34(243) can be easily deduced with the aid of (242).
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Then,
Div (uvs ®@ vs) =
Div (uvg) ® vg))) + Div (uUvg ® n) + Div (uln ® vg)|) + Div (P ®n) =
Div (pvg) @ vg)) — plU v° bye g% T4 + Div (pUvg)) n — 2uKUvs,

and with the notations (174) for the components of Rg,

DivRs = Div (5%, ® 74) — {Scbcbg[’“ n QKSC‘} o + {Div (S%7,) — 25K} n .
Finally, we have

0 ouv® opl
a—gb(,uvg) w® = w® {85" + v Iy — ,uUbbcgca} Ta+w’ {/LUC bep + 65"} n

(245)

(246)

(247)

Now, substituting (244)—(247) into (241) and separating the tangential and normal parts of the emerging

relation yields (175) and (176).
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E List of symbols

Roman Symbols

a

CTp

[eo], [ep]

C1,C2,C3
ck7c,u,7 Ce

Cs

Parameter in the representation (202) of the volume fraction v
Parameter arising in formula (61) for the particle drag coefficient C;,,
Unspecified symmetric second rank tensor

= [H]/[L] Aspect ratio for lengths

= [W]/[V] Aspect ratio for velocities

= A = Ay Aspect ratio for lengths and velocities

Parameter in the representation (202) of the volume fraction v
z-coordinate of the basal surface: z = b(z,y,t)

Coefficients of the second fundamental form of a surface

Parameter arising in formula (61) for the particle drag coefficient C,,
Material body parts on the + sides of a singular surface

= g[o][H]/[f][L][V] = 102 — 10? Buoyancy parameter; material body
Function arising in the formula for the unit normal, n;, at the basal surface
Mass concentration (fraction) of sediment class «

~ 1073 — 10! Scale for mass concentration of sediment class o
Coefficient in the zeroth order parameterization of the turbulent kinetic
energy k

Specific heats at constant volume and constant pressure, respectively
Constant specific heats

Parameters in the linear representations (220) for specific heats
Specific heat at constant temperature in the energy formulation
Specific heat at constant temperature in the enthalpy formulation

~ 4200 m? s 2K~! Typical values of the specific heats ¢, and ¢,
‘Universal’ coefficients in the zeroth and first order parameterizations
fork —e

SMAGORINSKY coefficient
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¢

C1, Co
Cyind
Ca,
[dmin; dmax)
[da—1,da)

as OO(

€1,€2,€3
€,
E

E, E,

Closed double point free curve bounding a surface

Drag coefficients of basal sliding laws (183), (184)

~ 2 x 1072 Wind drag coefficient

Drag coefficient for sediment class o with the mean diameter 0,
Range of particle diameters of sediment classes a, « = 1,..., N
Range of nominal particle diameters of sediment class «

Nominal mean diameter of sediment grains and in class «:

0,04 € [da—1,dn)

= (A g/v*)'/39(d,) Dimensionless mean particle diameter of class a
Surface mass diffusivities

Z . e o
(M 4 Laminar + turbulent thermal mass flux diffusivity

1% . . . ..
= XEC”‘) + —~ Laminar + turbulent species mass flux diffusivity
Ocy

= D) /[f][H?] ~ 10~* — 10° Dimensionless thermal diffusivity

= D() /[f][H?] ~ 10~* — 10° Dimensionless species mass diffusivity

Rate of strain-rate (strain rate, stretching) tensor of the mixture
Surface rate of strain-rate tensor of the detritus surface mixture
Unit vectors in the z, y, z-directions

= eg Unit vector in the z-direction

Relative error for settling velocities of different authors
Erosion (entrainment) rate of sediments « from the base

= 2Q2 sin ¢ First CORIOLIS parameter;

specific density of an unspecified physical bulk quantity

= 22 cos ¢ Second CORIOLIS parameter

Specific density of an unspecified physical surface quantity
Function identifying a singular surface by F'(x,t) = 0

= [V?]/[co][AT] = 1077 — 10~} Pressure work parameter

~ 10~*s~! CORIOLIS parameter
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1/1/]

YJab

ab

ho

M, ME

eros/dep
Mb

Mb7 Mg/f

Time scale

Gravity constant; GIBBS free energy (= h — 1)
Gravity vector

Coefficients of the first fundamental form of a surface

Components of the inverse matrix of (gqp)

g[H]/[f?][L?] ~ 10° — 103 Squared velocity ratio

Specific enthalpy (= € + p/p); thickness of the detritus layer

Reference specific enthalpy

Unit vector tangent to a surface $ and normal to the closed curve € bounding §
Heaviside function

~ 10! — 10® m Vertical length scale

= pca(ve — v3)

Diffusive flux of sediment class « vs. a representative particle in the class «
= pca(vy — V)

Diffusive flux of sediment class o with respect to the barycentric motion
= ps(vy —v)

Diffusive flux of the bearer fluid with respect to the barycentric motion
Laminar + turbulent specific species mass flux of sediment class a:

= (j )+ po vy — po{cws> in BOUSSINESQ model,

= (j, )+ pld vy — plcw?) in Model 2

Specific turbulent kinetic energy

= % ¢"bgy Mean curvature of a surface

= grad v Spatial velocity gradient

Transpose of L

~ 10* — 10% m Horizontal length scale

Mass flow through a singular surface (in (126))

Erosion and deposition mass flow through the basal surface

Mass flow through the basal surface (in (191))
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ny

N

N*

atm

DPd

Dst

P, P,

P, Py, P2

q

e,h
$7y7z

t:
Q"
atm
ir
water
r
Qe
Qs

Q1

Average porosity within the detritus layer

Unit normal vector to a surface

The unit normal vector to the basal surface pointing into the flowing material
The unit normal vector to the free surface pointing into atmosphere
Number of constituents «

Limit index for v determining 9 5+ such that « classes for which 9% <+
are erosive sediment classes

= 1,/[f][H?] =~ 10 % — 10! Dimensionless kinematic turbulent viscosity
Mixture pressure

Atmospheric pressure

Dynamic mixture pressure (see (22))

(Quasi)-static pressure (see (22))

Fraction of time during which a sediment particle is suspended by the flow;
P - surface pressure function (in (181), (182))

Cartesian components of the average pressure work P

= [6D]/p*[f1[co][AT] Power working parameter

= [6D]/p*[f][cp]|[AT] Power working parameter

= [¢®)]/p*[f][ca] Dimensionless constituent mass production parameter
= (p/v") Pressure velocity correlation

Cartesian components of the pressure velocity correlation P

Heat flux vector

Cartesian components of the heat flux vectors Q,, Q)

= Q"™ - ny Atmospheric heat flux through the water surface

Radiative atmospheric heat flow at the water surface

Radiative water heat flow at the water surface

Latent heat flow between water and air

Sensible heat flow between water and air

Geothermal heat from the rigid bed
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Qy

To

Laminar +turbulent heat flux:

= {q )+ po{€v") in generalized BOUSSINESQ model,
=(q)+ p{€v')in Model 2

Laminar +turbulent heat flux:

= (q) + po( h'v") in generalized BOUSSINESQ model,
= {(q)+ p{h'v") in Model 2

Atmospheric heat flux vector through the water surface

Position vector of a point on a surface

(wid,,)/v Particle REYNOLDS number of sediment class «

(u*d)/v Critical particle REYNOLDS number

RICHARDSON number

Critical RICHARDSON number

= [VI/[f1[L] ~ 10~* — 10° ROSSBY number

Components of R with respect to a Cartesian coordinate system
Laminar + turbulent mixture stress tensor:

= (o) — pp{v' ®v") in generalized BOUSSINESQ model,

= {o:) — p{(v' ®v') in Model 2

= (o) — u{vs ® vg) Laminar + turbulent surface mixture stress tensor
Constant salinity; parameter in the representation (202) of Vpean
z-coordinate of the free surface: z = s(z,y, t)

Supply rate density of the physical bulk quantity f

Supply rate density of the physical surface quantity fs

Surface

Basal surface

Free surface

Time

Temperature measured in KELVIN or Celsius scales

Reference temperature in energy/enthalpy constitutive relation (44)
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= 4°C Reference temperature in the law (46) of the water density p,,
Function of shear velocities (in (158), (165))

Mixture velocity component in the z-direction

= (gy/A)l/ % Critical shear velocity

Maximum value of the velocity v within the detritus layer in the linear
representation (199)

= m Critical wall shear velocity

= /Tw/p Actual wall shear velocity

= w - n Displacement speed of an unspecified singular surface
Displacement speed of the basal surface

Mixture velocity component in the y-direction

Barycentric velocity vector

Velocity vector of sediment class «

Fluid velocity

Velocity vector of a representative particle in sediment class «
Horizontal component of the barycentric velocity at the basal surface 8
Wind velocity at the water surface

Horizontal component of the wind velocity at the water surface
Velocity of a material point moving on a surface

Component of v® tangent to the surface

Velocity of a sediment material point in class o which moves on the basal surface

Component of v5 tangent to the basal surface

~ 1072 — 10 ms~! Horizontal velocity scale

Mixture velocity component in the z-direction

Terminal fall velocity of a particle of sediment class «
Components of the surface velocity w with respect to 71, T2

Surface velocity of a moving surface

S

= —(v? —v) Negative of the relative velocity of a representative particle in

sediment class « vs. the barycentric motion
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[W] Vertical velocity scale
z z-coordinate of a Cartesian coordinate system
T Position vector in R>

X Position vector of a surface material point in a reference configuration

Y y-coordinate of a Cartesian coordinate system
z z-coordinate of a Cartesian coordinate system
Greek Symbols
Q Counting index for the sediment classes
& = 6.493 x 10° K2 Thermal expansion coefficient of water
I} Parameter arising in the formula for w?, in equation (70)

A, k)  Exponent coefficient in formula for A

| CHRISTOFFEL symbols

A Ratio of submerged sediment density to water density (= ps/p — 1);
local grid spacing scale in SMAGORINSKI viscosity (222)

[AT] ~ 10° C Temperature scale

€ Specific internal energy
€0 Reference specific internal energy
€ Turbulent specific energy dissipation (= 4vy {II p));

parameter in the representation (202) of the volume fraction v

€0 Parameter in the boundary layer representation of €

i Specific entropy

0 A tilt angle (see (11))

0. Critical SHIELDS parameter (also called 7)

0., Root mean square turbulent fluctuation of wall shear stress

O(z,t) Temperature profile at the deepest position of the lake domain
K Thermal conductivity

Aag (N x N)-matrix for species mass flux v due to sediment class 3
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fha
[

Mo, K1

Vmean

mean
Vtop/bottom

Vmin/max

Verit
Ve, Vt
vsas

¢, &

Ps

Pr

bed

Dynamic viscosity of the bearer fluid;

surface mass density of the mixture moving on the basal surface
Surface mass density of sediments in class & moving on the basal surface
Surface fluid mass density

Constant coefficients in (182)

Kinematic viscosity of the bearer fluid = 11/ p;

volume fraction within the detritus layer

= >, Vean Mean averaged sediment volume fraction in the detritus layer
Mean averaged volume fraction of the sediments « in the detritus layer
Parameters in the representation (202) of the volume fraction v
Minimum and maximum values of the volume fraction v in the linear
representation (199)

Critical sediments volume fraction in the detritus layer

Laminar, turbulent kinematic viscosities of the mixture

SMAGORINSKI turbulent viscosity

Parameters on a surface

Specific production rate density of a physical bulk quantity f

Specific production rate density of a physical surface quantity fs
Specific production rate density of turbulent kinetic energy

Specific production rate density of turbulent dissipation

= [fIIL][V]/[ep][AT] = 10~ — 1072 Pressure work parameter
Mass density of constituent «

= nps Mass density of the interstitial fluid (porosity x true density)

= >, Pa + py Mixture density

~ 2100 kg m—3 Buoyancy corrected density of the suspended sediment
True mass density of the interstitial fluid

= 1000 kg m—3 Reference density of water at 4° C

Mass density in the rigid bed immediately below the basal surface
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bed
Pa

bed

O

atm

T1, T2

Mass density of particles in class « in the rigid bed immediately below
the basal surface

Mass density of fluid in the rigid bed immediately below the basal surface
Steady density function describing vertical ground stratification

= p — po(z) The excess of mixture density over the steady density po(z)
Natural water density as function of temperature and salinity

Standard deviation; dimensionless mixture density

~ 1073 Scale for density variations of water; density anomaly
PRANDTL number of heat

SCHMIDT number of species o

PRANDTL number of turbulent kinetic energy

PRANDTL number of turbulent dissipation rate

(CAUCHY) stress tensor

Extra (CAUCHY) stress tensor of the mixture ((CAUCHY) stress deviator)
(CAUCHY) stress tensor at the water surface

Tangent vectors to a surface

Critical shear traction

= 7./Ap g0 (d,) Critical shear traction (dimensionless)

Shear stress on the basal surface

Wind shear traction at the water surface

= (rYind, T&”Zi“d) Horizontal shear traction components

Latitude angle; angle of internal friction (water submerged)

VAN RIJN’s erosion rate per unit mass, area and time

Laminar + turbulent internal energy/enthalpy production rate density

= tr{ox (D) + tr{a/D"y — (p'divv’)

Production mass density of sediment class «

Scale for energy/enthalpy production density rate

Scale for production of mass density of tracer «
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o' Flux density of a physical bulk quantity f

'8 Flux density of a physical surface quantity fs

oF Flux of turbulent specific kinetic energy k

@° Flux of turbulent specific energy dissipation &
X§T), X(C") Laminar kinematic heat/species mass diffusivities
X Function describing the motion of a material point on a surface
P = ¢ — T'n HELMHOLTZ free energy

w“; b Covariant derivative of the surface vector field ¥
Vg Parameter in EINSTEIN’s erosion rate formula
Yy Parameter in YALIN’s erosion rate formula

0y Parameter in ZANKE’s critical shear stress

Q0 Angular velocity of the Earth

Miscellaneous Symbols
) Turbulent averaging operator

=) Statistical averaging property of the REYNOLDS filter

{-} {p(+) >/{p) FAVRE filter (barycentric)

D Turbulent average of f

Vil Turbulent fluctuation of f

N71 = f* — f~ Jump of f across a singular surface

Ia = trA First invariant of A

T4 =1 (I42 — (Ia)?) Second invariant of A

IIT 5 = det A Third invariant of A

I Z’,k Parameters in the boundary layer representation of € and k
Vsf, Grad f = 55{1 7% Surface gradient

Div Surface divergence: Divv = 8;; -, DivT = ZZ; ¢
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Abstract

The assessment of sediment transport and involved processes is a major issue in hydraulic and river
engineering. The common approaches for the determination of sediment transport rates are mostly based
on empirical relations. Since these approaches are not able to describe the underlying physics in detail,
they are not suitable to study the generally complex sediment transport processes. However, numerical
models which are able to reproduce and to resolve the involved processes are not very common, since
they would have to imply the rather complex fluid-sediment interaction. In the present work, a numerical
model which is based on a Lagrangian approach with force-coupling, namely the combination of two
meshfree particle methods, is presented. The fluid is modelled by a continuum approach which is
discretised by the Smoothed Particle Hydrodynamics method. The sediment particles are represented
by discrete elements, where the interactions between the discrete sediment grains are modelled by a
force law, which is also able to account for various kinds of friction. A similar approach is applied to
the interaction between the fluid and sediment particles. The definition of the interface and the exchange
of forces between the fluid and sediment grains are inherent to the applied approaches. Thus, the
application of special techniques to describe a movable or deformable interface as used for grid-based
methods is not necessary. The satisfying simulation results demonstrate the potential of the presented
model for the detailed investigation of sediment transport processes as well as for complex practical

applications.

1 Introduction

Investigations of river morphology have mainly an experimental background. The processes involved
in sediment transport, as the inception of motion, the transport itself and the deposition of sediment, are
usually reduced to empirical relations and are combined in the form of a transport formula. Especially,
the common concept of incipient motion, where the motion of sediment depends on a threshold
condition, has to be questioned. Alternative approaches based on probability distributions used to
describe the state of the sediment seem to be more reliable, since their concept corresponds to the natural
continuous motion of sediment. Furthermore, the driving forces acting on the sediment, which actually
cause the transport, are usually derived from averaged flow quantities. These approaches are useful and
of great importance for engineering practice, but they only allow for the determination of a temporally
and spatially averaged sediment transport. For river engineering problems, where the morphological
development plays an important role, a variety of numerical tools exists. These are able to simulate
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sediment transport from a local to a regional scale with satisfying accuracy as far as sufficient data for
their calibration is available. By the application of modern numerical tools it is nowadays possible to
resolve the flow field, i.e. the water phase, in detail. However, depending on the resolved scales, the
gained advantage will be lost due to the rather approximate approach for sediment transport, i.e. the
solid phase of the water-sediment mixture flow. In the last decades, many researchers tried to overcome
the shortcomings of physics in the common approaches, however, with limited success. Despite
investigations using state-of-the-art measuring techniques and providing an in-depth view of acting
forces at the sediment bed, a reasonable approach, which does not need calibration but is still convenient
for practical application, does not seem to be available in the near future. However, such kinds of
investigations highlight the complexity of the involved processes and the sediment transport per se.
Furthermore, the detailed experimental data may serve for the validation of advanced numerical models.
Because of the availability of increasing computational resources, the application of numerical models
for the investigation of the mechanics of sediment transport becomes more and more popular. Such
numerical tools are rather sophisticated, since they have to be able to model the interaction between the
fluid and the sediment grains as well as the interactions between the grains themselves. Such models
also have to include friction to correctly reproduce the constitutional behaviour of the sediment and the
different modes of bed load transport, as sliding, rolling and saltating. One of the main challenges in
developing such approaches is the appropriate modelling of the movable interfaces between the fluid
and the sediment grains and the exchange of forces. Although several different numerical techniques
exist which are suitable for such problems, they often have deficits concerning efficiency or accuracy.
Furthermore, many common numerical approaches for the simulation of fluid flow use computational
grids for the spatial discretisation, which may reduce the flexibility for the modelling of arbitrary
geometries and lead to quite complex schemes for movable boundaries. However, when it comes to
three dimensional applications, the main handicap of these approaches is the computational expense
necessary to obtain qualitatively good results, and the use of high performance computing seems to be
inevitable.

In this article a novel modelling approach is presented, which is able to simulate sediment transport and
reproduce the involved processes in detail. To reduce the complexity of this challenging task, the
primary focus of this work is on bed load transport. Since the involved physical processes rely on fluid
and rigid body dynamics, numerical discretisation techniques are applied, which account for the distinct
characteristics of these disciplines and which allow for flexible modelling of fluid-structure interaction.
Thus, the combination of two meshfree particle methods, namely the Smoothed Particle Hydrodynamics
method and the Discrete Element Method, is considered. These are able to model the different properties
of the fluid and the sediment as well as their interaction without the need for a computational grid.
Furthermore, this hybrid approach allows for the description of the processes of bed load and the
corresponding transport modes by discrete forces. The successful application of the model to various
problems shows the potential of this approach for the numerical simulation of bed load transport. The
model is a suitable numerical research tool and may serve for future investigations, especially with
regard to increasing computing power.
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2 Basic Considerations

2.1 Bed Load Transport

The mechanism of bed load transport is described by processes occurring in the upper-most layer of the
river bed. Sediment grains are moved in different forms due to stream forces or strikes of other grains
in motion (Bagnold (1941)). The transport modes are comparable with Aeolian transport which can be
observed at sand dunes in deserts; grains move in flow direction by saltating, or, which is less usual, by
rolling or even by sliding along the bed (Fig. 2-1). The distinction between transport in the form of
saltation or in suspension is not obvious. Bagnold (1973) defines transport of a solid in suspension as a
state in which the excess weight of the solid is compensated by a random succession of upward impulses
due to eddy currents of fluid turbulence moving upwards relative to the bed. Therefore, the solid may
remain out of contact with the bed for an indefinite period depending on the random nature of turbulence.
In contrast, saltation as well as bed load transport in general may be characterised as motion with
successive contacts between the grains and the bed.

saltating rolling sliding

Fig. 2-1: Modes of bed load transport

Church (2006) gives an overview on the different sediment transport regimes, on the categorization of
fluvial sediments as well as on the relation of bed load transport and morphology in alluvial rivers. A
quantitative distinction between bed load and suspended load can be found in Murphy and Aguirre
(1985).

2.2 Incipient Motion

The topic of incipient motion - the onset of transport of sediment - has been studied by many researchers
in the last hundred years or so. In most cases, the goal was to define a threshold for sediment motion
which is an essential premise for the estimation of sediment transport in alluvial rivers. The main
motivation for the investigations was and still is the development of a transport relation to asses bed
load discharge in rivers that serves as essential tool for river engineering works. The methodology to
find a criterion for the threshold is usually based on theoretical investigations or visual observations as
well as measured reference bed load transport rates, acquired in a laboratory flume or in a natural river.
Consequently, in engineering practice the rate of sediment transport is calculated with empirically based
transport equations which are usually defined as a function of a certain threshold. From a physical point
of view it is obvious to express a threshold condition in terms of stream force. Thus, approaches based
only on the mean flow velocity seem not to be reasonable because they do not account for flow depth
and turbulence. Thus, the criterion for incipient motion is usually determined by threshold quantities
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like the critical bed shear stress 7, the critical shear velocity w.., or the amount of the critical lift force
FL(’ = ‘ﬁLp ‘ Dey and Papanicolaou (2008) provide a review on the different concepts.

A very common approach for the definition of incipient motion was introduced by Shields (1936). Based
on the consideration of equilibrium of moments and dimensional analysis, he proposed to express the
dimensionless critical shear stress T: as a function of the grain or particle Reynolds number. This
finding may be formulated in terms of critical values (see e.g. Yalin (1977)) for a grain of size d, as

= e frel), Rl = @

* U*Cd
TC =
Apgd, v

where Ap = (ps — pf) is the density difference between sediment (subscript s) and fluid (subscript
f), ¢ is the gravitational acceleration, Rei is the critical particle Reynolds number, v is the kinematic
viscosity. The dimensionless critical shear stress T: (also denoted as the critical Shields parameter 6,)
and the critical shear velocity u., were determined by observations in a laboratory flume. However,
the definition of the point of inception is not clear and varies considerably among the various studies.
This means that in practical cases of turbulent flow there is no single criterion for the beginning of
movement of sediment. Buffington and Montgomery (1997) give an extensive review on the issue.
Due to the ambiguity in the determination of a value for the critical shear stress and to account for the
random nature of turbulence and sediment movement, some researchers developed approaches which
describe and quantify an observable state of motion, rather than a hypothetical state of zero movement.
These kinds of approaches are termed probabilistic or stochastic. One of the first derivations of a
stochastic concept for bed load transport was presented by Einstein (1937) within his doctoral thesis.
Einstein (1950) defined the pickup probability for a particle as “the probability of the dynamic lift force
on the particle being larger than its weight (under water)”. For the evaluation of the pickup probability
p, , he derived theoretically the following formula:

1 p+BY—n o

p, =1— ﬁ B e ' dt (2.2)
where U, = 1/75 is the flow intensity with dimensionless shear stress TZ, 1, = 0.5 is the standard
deviation and ¢ is the only variable of integration. The constant B, = 1/7 was obtained for uniform
sediment by using the data of Meyer-Peter et al. (1934) and others. The non-central probability density
function (abbreviated as pdf) on the right hand side of equation (2.2), i.e. the definite integral of the
Gaussian normalized by its total area \/; , can be interpreted as the probability for a particle being
stationary for a given flow intensity W.. . A solution for the integral in closed form in terms of elementary
functions does not exist but can be gained by approximation. Cheng and Chiew (1998) reviewed
approximations of different authors and Wu and Lin (2002) provide improved approximations for the
probability distribution with application of a log-normal pdf for the instantaneous velocity at the bed
and appropriate values for the lift coefficient best fitting experimental data. Further enhancements for
smooth turbulent flows were contributed by Wu and Chou (2003), who, apart from lifting also
considered rolling probabilities and defined the mean total probability of entrainment as the sum of both.
The results reveal that a distinct probability for the critical state of sediment entrainment cannot be
found, i.e. a critical shear stress does not exist. This finding is also acknowledged by other researchers
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(see review by McEwan and Heald (2001)). Further refinement of the approaches noted above can be
found e.g. in Wu and Yang (2004) or Hofland and Battjes (2006).

The fundamental different views of the two approaches described above for incipient motion - the
conventional threshold criterion according to Shields and the stochastic or probabilistic approach - are
depicted in Fig. 2-2. The first is most commonly applied in river engineering due to its simple use.
However its correct application requires calibration and experience, especially because of the explicit
form of the motion threshold. Besides Einstein’s or comparable subsequent work, the latter is still
subject to current research driven by new measurement techniques allowing for a more and more
detailed insight into the flow properties. For both, useful bed load transport formulas exist.

conventional stochastic
Shields probabilistic
Tonax ‘Pe =1 permanent
motion \
disturbed
>
= 5 ) . state
2 motion 8 increasing of
% g_ motion majority
; c of
9o 2 particles
= o
S
undisturbed
‘L'(,
)
7,=0 p.=0 at rest

Fig. 2-2: Comparison of the two different concepts for particle motion

In addition, Fig. 2-2 shows a classification according to the state of the majority of the particles in
direction of the flow intensity and the motion probability, respectively, which is valid for both models.
In Bagnold’s sense (Bagnold (1936)), the expression “‘undisturbed’ describes a particle which has not
been displaced, whereas a particle that is displaced and then is resting is called ‘disturbed’. Furthermore,
the rather undefined state of permanent motion, where 7, = 7. and p, = 1, can be interpreted as

transition from bed load to suspended transport, ending up in hyperconcentrated or debris flow.

2.3 Fluid and Rigid Bodies

Two effects are crucial for a correct simulation of the different transport modes of rigid bodies in fluids
(see Fig. 2-1). On the one hand, applied forces and torques on spheres occur due to their interaction. On
the other hand, the applied forces and torques due to the presence of the fluid and its flow also play an

171



important role. By way of illustration, both effects are composed in Fig. 2-3. In this section the basic
hydro-mechanical forces are introduced from an integral and partially empirical point of view. Notice
that for the present work, rigid bodies are considered as spheres for the sake of simplification. The
approaches for the modelling of the detailed particle interaction forces are introduced in section 4.2.

Fig. 2-3: Acting forces at a river bed consisting of spheres. The depicted velocity distribution U(z) is based on
the logarithmic law for wall-bounded turbulent flow.

2.3.1 Hydrostatic Forces

The effect of buoyancy, also known as Archimedes’ principle, occurs when a body has surfaces in
contact with the fluid which have a normal with a non-zero component in downward direction. The
buoyancy force fg) is due to the pressure difference above and below the immersed body and is
equivalent to the weight of the fluid displaced by the body. The use of an appropriate model allowing
for fluid between the spheres of the channel bed (as illustrated in Fig. 2-3) and including buoyancy
effects correctly may be crucial in order to obtain reliable simulations of bed load transport. This is also
affirmed by the fact that the hydrostatic pressure distribution is implicit in the definition of the Shields
parameter (see equation (2.1)). The effect of non-hydrostatic pressure distributions on bed load transport
has been pointed out e.g. by Francalanci et al. (2008) and is discussed in the next section.
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2.3.2  Hydrodynamic Forces

The force ﬁdr acting in the direction of relative motion of a body immersed in a fluid is called drag or
fluid resistance. In other words, drag is the force in the direction of relative motion that has to be applied
to move a body through a stagnant fluid or to keep the same body at rest in case of fluid flow (the weight
of the body is neglected). The drag is made up of two contributions, namely the pressure drag arising
from the non-uniform pressure distribution on the body and the skin friction drag due to shear stresses
on the body surface. Besides the drag force but with the same origin, the second component of the force
exerted on an immersed body due to fluid flow is the lift force ﬁ, acting perpendicular to the direction
of relative motion.

For the flow over a channel bed made of spheres, as depicted in Fig. 2-3, the nature of the drag and lift
forces is rather complex. Close to the rough boundary, the velocity is not uniform and the flow is
turbulent. Since the acting pressure is a combination of hydrostatic and hydrodynamic pressure, the lift
force may be reduced to a pressure difference that occurs due to the turbulent effects on the side of the
sphere facing the flow; which has been measured by Einstein and Elsamni (1949) for hemispheres, by
Dwivedi et al. (2010) for spheres, by Detert et al. (2010) for spherical as well as mixed sediments and
by Smart and Habersack (2007) for natural gravel in a river, for example. Investigations into the drag
force exerted on a sphere set on top of a bed of closely packed spheres have been carried out by Coleman
(1972). He concludes that the drag coefficient function for this situation corresponds with the function
for a sphere in free fall. Schmeeckle et al. (2007) studied the situation of a sphere surrounded by other
spheres without contact and for different exposure of the sphere to the flow. For decreasing exposure
the drag force also decreases due to sheltering by the other particles while the lift force increases. The
residual drag which exerts forces on the sphere can cause angular momentum; this is not covered in the
mentioned study, but may be of importance in the process of particle entrainment.

For open channel flow, the most common engineering approach is to express the forces close to the bed
by temporally and spatially averaged quantities, i.e. the bottom shear stress 7, or the shear velocity w.
(cp. section 2.2). However, the quantities which entrain and move sediment are neither bed shear stress
nor any other average characteristic of the flow, but instead the fluctuating forces, such as lift and drag,
exerted directly by the flow on the particles, as stated by Schmeeckle et al. (2007). Thus, a force
expressed in terms of F' = 7, A is a rough simplified model of reality. The hydrodynamic forces
discussed herein certainly play an important role for the incipient motion or entrainment of sediment
particles, but peak values of the forces may not be sufficient. The duration of the peak values is also a
significant factor as pointed out by Valyrakis et al. (2010). Therefore, they conjectured that impulse,
rather than just the magnitude of hydrodynamic forcing, is relevant to the description of the incipient
motion phenomenon.
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2.4 Modelling Approach

The modelling approach applied in the present work comprises the representation of the gravel bed and
the water flow by particles which interact with each other. Therefore, Lagrangian methods, also called
meshfree or particle methods, are applied to both the hydrodynamics and the bed load transport, which
allows for a homogeneous discretisation of the underlying equations of motion. In other words, for
discretisation of the computational domain and the multi-phase system, basically the same kind of
approach is used; however with respect to the distinct properties of each phase, different methods are
applied. The single grains of the gravel bed are modelled by discrete elements in the form of rigid spheres
and their motion and interactions are resolved by application of the Discrete Element Method (DEM).
For the water flow, i.e. the hydrodynamic equations, a continuum approach, namely the Smoothed
Particle Hydrodynamics (SPH) method, is applied. The modelling approach used is depicted in Fig. 2-4.

------------------------

water flow “ . hydrodynamlcs
~> B ¥ee SPH parliclos SRrAs

gravel
DEM particles

gravel bed

Fig. 2-4: Representation of (a) water flow and gravel bed by (b) SPH and DEM patrticles, respectively.

The primary advantage of this approach relies on the fact that any phase interface or fluid-structure
coupling as well as interaction between solid objects is treated on a particle to particle basis. The basic
difference between grid-based methods and meshfree methods is that no grid is necessary for the
discretisation of the computational domain. For meshfree methods, a set of arbitrary distributed particles
is used which represent the nodes required for the spatial discretisation. This permits to overcome many
of the problems arising from the use of a computational mesh, especially the treatment of movable
boundaries and the generation of grids. Furthermore, meshfree methods seem to be a promising approach
for the simulation of fluid-structure interaction as discussed in this paper. An overview on some common
meshfree methods is given by Huerta et al. (2004), Nguyen et al. (2008) and Koumoutsakos (2005)
shows the potential of particle methods for multi-scale flow simulations. For the present work, the
simulation software Pasimodo, which is a multi-purpose particle simulation tool developed by Fleissner
(2010), is used (see also Lehnart (2008), Fleissner et al. (2010)).
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3 Governing Equations
3.1  Fluid Flow

3.1.1  Euler equations

For the present work, a simplification of the Navier-Stokes equations is applied, where the fluid is
considered to be inviscid. The assumption of an inviscid fluid may be appropriate for convectively
dominated flows with large Reynolds number (ratio of inertial force to viscous force) where laminar
boundary layer effects do not have a significant influence. The corresponding equations are called Euler
equations. Note that their general formulation is for a compressible fluid. They consist of the
conservation of mass and the conservation of momentum,

oy =
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where Py is the density of the fluid, « is the flow velocity, p is the pressure and ]_i are applied external
volume forces per unit mass.

3.1.2  Lagrangian Form of the Euler equations

For the derivation of the conservation laws in the previous sections the time-dependent quantities, i.e.
density, velocity and total energy, were considered as infinitesimal parts of a continuum. From the
Eulerian viewpoint which is well-established in computational fluid dynamics, their time rate of change
has to be evaluated at fixed points, e.g. at (xz. yj) as depicted in Fig. 3-1. Hence, the history of a
quantity is limited to these points and it is generally not possible to track the path of a fluid particle.
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Fig. 3-1: Eulerian (a) and Lagrangian (b) viewpoint.

An alternative viewpoint is the Lagrangian description; it can be regarded as a natural extension of
particle mechanics. The fluid is considered to consist of material particles that move with the flow. Each
particle is identified by its initial position ?’z,o and a quantity carried with the particle is given in
Lagrangian variables by
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=0, (7). (3.3)
The position 7; of a particle can be obtained by its path function or trajectory 7. (Fig. 3-1h),

=7 (Tgt) . (3.4)
Based on the path function, the velocity, 177; = 8@/825 and acceleration, az. = 82@/8 t* of a particle
can be defined. With this approach, the history of a particle can easily be tracked. However, since the
Lagrangian analysis of fluid flow is usually quite difficult it is rarely applied. Nevertheless, when the
fluid is discretised by particles, the use of the Lagrangian approach is reasonable. Therefore, a time
derivative for Eulerian variables is introduced that can be evaluated for a moving particle, called the

substantive or material derivative,

D) 8 . =
—=—=4u-V(.). 35
TR () (3.5)
By application of the substantial derivative, the Euler equations can be written in Lagrangian form as
Dp S
Du 1= 2
—=—-——Vp+1f. (3.7)
Dt Py

The energy conservation equation has been omitted, since for the present work the fluid is considered
to be isothermal water at 20° C. Thus, the fluid is a liquid that generally can be regarded as
incompressible. Nevertheless, under specific circumstances it may be necessary to take the small
variation of density with change of pressure into account. Therefore, Batchelor (2005) presented an
equation of state for water. A similar relation is useful to obtain an approximate solution of the Euler
equations as discussed in section 4.1.4.

3.2 Motion of Rigid Bodies

3.2.1 Equations of Motion

For moving bodies Newton’s laws apply. The three laws describe the relation between the acting forces
and the motion of the body. Newton’s first law states that a body with mass m at rest will stay at rest
or the same body with velocity ¥ will not change its velocity, if no unbalanced force acts on the body.
The state of a body in motion can be described by its linear momentum as

p=mu . (3.8)

Accordingly, the time rate of change of linear momentum, if not zero, demands an acting, non-balanced
force F,. This fact is postulated by Newton’s second law which reads for constant mass

L - —— (3.9)
dt dt ’

where @ is the acceleration of the body. Newton’s third law describes the interaction of two bodies in
contact; it is also called the law of action and reaction. Based on this third law, Newton derived the
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conservation of linear momentum that is elementary for the description of colliding bodies. In the
absence of dissipative forces due to deformation, it states that the sum of linear momentum of the
colliding bodies before and after collision is constant, i.e. linear momentum is conserved.

Newton’s laws are said to deal with point masses; they describe the translational motion of an extended
body only, while its rotation is not covered. Therefore, Euler introduced equations that describe the time
rate of change of angular momentum; they are called Euler’s equations (not to be confused with the
homonymous equations for fluid dynamics from the same author introduced in section 3.1.1). In analogy
to equation (3.8) for linear momentum, angular momentum reads

-

L =1u, (3.10)
where @ is the angular velocity and I = I” is the tensor of moment of inertia in the fixed principal
frame of the body. Similar to Newton’s second law, the time rate of change of angular momentum is
caused by the applied torque ]\Zfa. Accordingly, the dynamic Euler equations read in the general vector
form

A N . —
I~d—‘;’+wx(l-w):Ma (3.11)

Equations (3.9) and (3.11) are the equations of motion and actually the conservation laws for linear and
angular momentum. They describe the time dependent motion of a body due to applied forces and
torques and can be solved for their time dependent terms, i.e. the linear, df?;/dt, and angular, d@/dt,
accelerations (see e.g. Fleissner (2010)).

3.2.2  Applied Forces and Torques
For a modelling approach like the discrete element method, the forces FI , and contact torques Ma ;

applied on a particle 7 are the sum of contact forces F and torques M due to interacting particles
j plus external forces F or torques M respectlvely,

E, = ZF“] +E (3.12)
= ZMW +M,; . (3.13)
J

The forces acting on a sphere surrounded by other spheres are depicted in Fig. 2-3. The contact forces
are split into components normal and tangential to the contact surface and are treated differently
depending on their orientation. The primary contact or interaction forces act normally to the contact
surface (normal forces). If the body is a sphere, they will only apply as a concentric force and thus not
cause a torque at the centre. Force laws used to model the interaction of rigid bodies in terms of spheres
are discussed in section 4.2.2. The secondary contact forces act tangentially to the contact surface and
are due to friction (tangential forces). In most cases they lead to a torque. Two kinds of friction are
distinguished, namely static and Kinetic friction. In a static system, tangential forces due to static friction
may be of importance, e.g. for a block on an inclined ramp. This effect can also be observed at sand
piles. Kinetic or slip friction occurs when bodies interact with relative lateral velocities. Kinetic friction
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depends on the material properties of the interacting bodies and the normal force acting between them.
Friction forces as used in this work are briefly discussed in section 4.2.3.

Besides contact forces, also external forces have to be considered. The main external force is due to
gravity. Assuming a constant acceleration of gravity of g = (O, 0, —g) with g = 9.81 [m/s?], the
weight of a rigid body is given by

F, =Vpg=mg, (3.14)

where m is the mass of the body, V' is its volume and p its density.

4 Numerical Methods
4.1  Smoothed Particle Hydrodynamics

411 General

Monaghan (2005b) describes the basic idea behind SPH as replacing the fluid by a set of points that
follow the motion of the fluid and carry information about the properties of the fluid. These points can
be seen either as interpolation points for the discretisation of the governing equations or as real material
particles. Monaghan (1994) applied the method to free surface flows and demonstrated that SPH requires
no explicit treatment of the free surface. In contrast, other methods like finite difference or finite volume
schemes need special approaches that would require very fine meshes or adaptive grids for the modelling
of complex flow with one or several convoluted free surfaces. Furthermore, the interaction with rigid
bodies or boundaries can be handled as particle to particle interaction without the need of additional
tracking or capturing of the movable interface. An example which illustrates these capabilities is
depicted in Fig. 4-1. Overviews about SPH can be found in Monaghan (2005a), Monaghan (1992) or
Liu and Liu (2003) for example. Compared to established numerical schemes like the Finite Difference
Method, the SPH method is still under development. It has been improved by contributions of many
researchers during the last two decades and the number of applications increases continuously.
Nevertheless, one of the main and well-recognised drawbacks is the high computational cost when it
comes to 3D applications, especially when a fine special resolution is desired (Gomez-Gesteira et al.
(2010y).

Fig. 4-1: Impacting of a sphere on a free surface simulated with the presented approach (Vetsch (2012)). Colour
indicates the vertical velocity: lighter negative, darker positive with respect to the z-direction.
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The standard SPH method (Monaghan (2005a)) used in this work is also termed “weakly compressible
SPH” (WCSPH), because the computation of the pressure is based on an equation of state for water.
This approach is suitable for flows where relative density variations range within 1% (see Monaghan
(1992)). Some draw backs are for instance pressure fluctuations and long computation times. The latter
are due to the used CFL condition that depends on the velocity of sound (or a propagation velocity
specific to a problem) instead of the fluid velocity. The velocity of sound is usually many times larger
than the maximum velocity of the fluid. To circumvent these problems, a different approach has been
introduced by Cummins and Rudman (1999) for flows without free surfaces and has been extended by
Shao and Lo (2003) to free surface flows. This alternative approach is often termed “truly
incompressible SPH” (ISPH). Instead of an equation of state, a Poisson equation is used to predict the
pressure. The approach to solve the Poisson equation is similar to grid-based Navier-Stokes solvers. The
different approaches to treat the compressibility of the fluid are still an open topic in the SPH
community. By comparison of the approaches, Hughes and Graham (2010) reach the conclusion that
WCSPH performs as well as ISPH does and in some respects even better. Alternatively, Lee et al. (2010)
show that ISPH is superior for some cases.

4.1.2  Particle Approximation

Since SPH is a Lagrangian method, each particle moves with the fluid flow and carries quantities such
as the velocity i, , the density Py.i and its mass m, . In other words, these quantities are only known at
the location of the particle itself. For numerical discretisation, any quantity or function AT(F) at location
7 can be obtained by interpolation based on a kernel function W(rab,h), where 7, = ‘Fa -7 ‘ is the
distance between two particles and £ is the smoothing length. For the present work, the Gaussian kernel
with a cut-off at distance of 2A is preferred. The Gaussian kernel has proved to be a good choice with
regard to accuracy and efficiency and has been successfully applied in many simulations. Considering
particles (interpolation points) with mass m , density p and position 7 identified by indices a and b,
where « identifies the particle of interest and b the neighbouring particles with masses according to a
volume element of the fluid m, = p,(7;)d7; and A = A (7;), the summation interpolant can be
written as

A (

a3

) = ZmbﬁW(rab,h) . (4.1)
b Py
For example, the density can be estimated by
p(1) = D mW(r,.h) - (42)

b

By using a kernel function that is differentiable, the derivative of A can be obtained by ordinary
differentiation as

VA @) =S "m, ﬁﬁaWab . 4.3)
b

b

For the sake of clarity, the notation %aWab was introduced to denote the gradient %W(rab,h) taken
with respect to the position of particle o . Since the derivative in form of equation (4.3) is not very
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accurate even for a constant function, it should not be used for practical applications. According to
Lehnart (2008), other forms of the derivative are used that are more accurate; they depend on the
properties of the equation to be discretised.

4.1.3 Discrete Form of Euler Equations

Due to the Lagrangian approach, the original partial differential equations reduce to a set of ordinary
differential equations which can be discretised for particles according to the concept introduced in the
previous section. Hence the conservation of mass reads

by _ oM (G .S
e pazb: ” (ua ub) VW, ., (4.4)

and the conservation of momentum in its discretised form reads
dua

dt

=-2.m, p_;er_ngHab(O"ﬂ) VW, + £ (4.5)
b o, Py

where II , (a,ﬁ) is the artificial viscosity term (see section 4.1.5). The particles are moved by
dr,
dt

The index a denotes the actual particle and index b its neighbours within the cut-off distance. The

=1, . (4.6)

properties of particle a are mass m,, , density p_, velocity ¢, pressure p, and position 7 and similar
for neighbouring particles with index b . Equations (4.4) and (4.5) are the Euler equations discretised
by the SPH method according to Monaghan (1992). The equation system is closed by an appropriate
equation of state for the pressure p.

4.1.4 Equation of State

For WCSPH, the motion of the fluid particles is simulated based on the compressible Euler equations,
i.e. particles may be regarded as the molecules of a gas and their motion is driven by local density
gradients. According to the laws of thermodynamics, the pressure can be related to the density by an
equation of state for a compressible fluid to close the governing equations. Thus, a quasi-incompressible
equation of state is used for the present approach, which reads

.| cZp
p, =B i]—&, B ==L (4.7)

where p, is the reference density of the fluid, p, is the particle density and usually Yy = 7. The
choice of B determines the speed of sound c, . Since the time-step size of the simulation may depend
on the speed of sound, a rather small value of ¢, compared to its effective value of ~1500 m/s is
preferred to gain a faster simulation progress. In order to limit density variations to a maximum of 1%,
Monaghan (1994) argues that the sound velocity has been chosen so that the Mach number of the flow
should be 0.1 or less; this yields

c, = lOumf . (4.8)
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The reference velocity u,,, depends on the problem, i.e. for a dam break problem with initial water
depth H, the approximate upper bound to the velocity is Upop = 2gH, whereas for shallow water
flows, where the ratio of wavelength to water depth tends to zero, the reference velocity is equal to the
wave propagation velocity Upop = ghf . In terms of a conservative estimate, the first expression has
been used for this work.

415 Enhancements

Artificial Viscosity

The introduction of some sort of damping similar to finite difference schemes may be necessary for the
stability of the numerical scheme. Therefore an artificial viscosity in terms of an artificial pressure
11, (a,ﬁ) is introduced in the momentum equation (see e.g. Monaghan (2005a)). Even though the
parameters controlling the artificial viscosity, o and (3 , are not critical, good results were obtained for
free surface flows by a choice of = 0.01 and g = 0 (compare Monaghan (1994)).

Turbulence Models

The standard formalism of SPH was successfully applied to complex flow types such as wave breaking,
e.g. by Landrini et al. (2007). It was shown that detailed properties of vortices can be recovered.
According to Cottet (1996), artificial viscosity models can be seen as eddy viscosity models but
parameters have no explicit reference to any regularization of motion, i.e. the parameters have to be
calibrated according to the problem at hand. However, in general the approach allows for taking into
account turbulent effects in a similar way as algebraic turbulence models. For the present work, only
artificial viscosity was considered. An overview on SPH and advanced turbulence modelling, e.g. the
k-e model or Large Eddy Simulation, is given by Violeau and Issa (2007).

Correction for Free Surface Flows

The XSPH correction is useful to obtain better results for free surface flows (see Monaghan (1994)) or
for immiscible multiphase flows. A correction for the velocity is introduced that leads to an adaptation
of the particle velocity to the mean velocity of the surrounding particles, which keeps the particles to
move more orderly. The correction term, added to the right-hand side of equation (4.6) is

(ub - U’a) W

ab

A, = ey > my (4.9)

b Pab

where p , = (pa + o )/2 The parameter 0 < e, < 1 was introduced by Monaghan (1992) and is
usually chosenas ¢, = 0.5.

4.1.6 Time Integration and Time-Step Size

The fluid particles are advanced in time by solving equations (4.4) to (4.6) numerically. Since these
equations are ordinary differential equations, theoretically any stable time-stepping scheme for ordinary
differential equations can be used. However, for dissipative systems, Lehnart (2008) proposed a
predictor-corrector method based on the leapfrog scheme (PC-leapfrog) as presented by Monaghan et
al. (2003).

For the SPH method applied here, three characteristic time scales exist. The first corresponds to the
general stability condition for numerical problems where advection is dominant, i.e. the CFL-condition.

181



It means that in the time step At a quantity must not advance further than a given length scale. For SPH,
the relevant length scale is the smoothing length £ and the reference velocity (O is the higher of the
maximum flow velocity or the specified sound velocity c_, i.e. U,p = MaX (‘ u

N ) . The second
max h
and the third characteristic time scales restrict the time step to the maximum of acting internal and
external forces, i.e. the viscous forces and the applied forces in terms of the maximum particle
acceleration a ., whereas the former is only relevant for flows with low Reynolds numbers. According
to these considerations, the size of a time step can be obtained by the assignment
2 o

At = a min[—, ,
Uy V a

(4.10)

max

where « is a safety factor similar to the CFL number. According to the results reported by other
researchers, « lies in the range of 0.125 and 0.5 (see e.g. Lee et al. (2008)). Values around 0.25 may
be preferred for flows with strongly varying boundary forces like those in the present work.

4.2 Discrete Element Method

4.2.1 Basic Concepts

For simulations of interacting rigid bodies, the focus is on their contact and the balancing of the
occurring contact forces. Cundall and Hart (1992) distinguish between hard contacts where
interpenetration of the bodies is regarded as non-physical and soft contacts that allow for interpenetration
(see Fig. 4-2). For solids, the first seems to be reasonable from a physical point of view since a collision
results in surface deformation. However, a simulation model for hard contacts at least has to exactly
track the moment of contact (the deformation of the surface would be a further task, if required). This
usually requires the application of an iterative scheme. Hence, corresponding applications are commonly
restricted to a rather small number of interacting bodies. If soft contacts are considered, the
interpenetration is regarded to be an equivalent for the surface deformation. The contact forces are
related to the displacement or the amount of interpenetration 6 in general. A well-known example for
that is the Hertz contact theory (see section 4.2.2) which describes the contact between two deformable
spheres. Furthermore, the approach of soft contacts is the basic concept of the discrete element method,
since it allows for stable and accurate interaction modelling of rigid bodies and can be applied to an
almost unlimited number of particles as far as computational resources are available. An overview of
applications in mechanical engineering is presented by Fleissner et al. (2007). Lanru and Ove (2007)
present the application of DEM to rock engineering, Tavarez and Plesha (2007) demonstrate the
capabilities of the method for the modelling of solid materials and Teufelsbauer et al. (2011) investigated
the interaction between granular flow and rigid obstacles by application of DEM — to mention some
recent applications of the method.
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before hard contact soft contact
collision without with
penetration penetration

Fig. 4-2: Modelling approaches of interacting rigid bodies: collisions with and without penetration of the
colliding bodies.

The procedure of a DEM simulation may be outlined as follows. In a first step it has to be detected for
each particle whether collisions with neighbouring particles will take place or not, i.e. whether
interpenetration occurs or not. If a collision occurs, a so-called penalty force depending on the amount
of interpenetration will be applied. With regard to a pair of colliding particles, the penetration continues
until the forces exerted by the particles are balanced by the penalty force, i.e. when maximum
penetration is reached.

4.2.2 Penalty Force Models

A common approach to model penalty forces between two colliding rigid objects is the implementation
of a spring-damper system (e.g. Cundall and Strack (1979)). Such a system of two colliding spheres P,
and Pj is depicted in Fig. 4-3. The spring is responsible for putting back the spheres to the state of
contact. It exerts a penalty force ﬁn (k(é)) depending on material properties and penetration depth 6
in the direction of relative motion along the spring-damper system axis €,,, i.e. normal to the contact

surface,
E, (k) = —k(8)e,, . (4.11)

A simple approach for modelling dissipation is the application of a viscous damper. The exerted force
of the damper depends on the collision velocity 6= 17; — z?'j‘ in the direction of the spring-damper
system axis,

F, = —dée,, (4.12)

where d is the viscous damping coefficient. By adding equations (4.11) and (4.12) the collision force

-

F results as

C

—

F, =F (k&) +F, . (4.13)

The penalty force ﬁn (k(é)) can be determined using different approaches, either linear or nonlinear
depending on £(&) . A common linear approach is to model the spring according to Hooke’s law, where
the spring is assumed to be perfectly elastic. Thus, k(6) = c¢6 for a spring with stiffness ¢ and
displacement & . A more physically motivated approach for modelling the interaction of two perfectly
elastic spheres with frictionless surfaces is based on the contact theory of Hertz (1882). For Hertzian
contact k(6) = K 6", where K is the generalised stiffness constant. The exponent n depends on the
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distribution of the contact stresses and is set to 1.5, as in the original work by Hertz. For two colliding
spheres the stiffness parameter depends on the radii and the material properties, i.e. the Poisson’s ratio
and the Young’s modulus. An in-depth description of the Hertz contact theory is e.g. given by Popov
(2010). To evaluate the fitness of the linear and the Hertz force law, test simulations have been carried
out. The results show that the Hertz force law is the preferred choice with regard to accuracy and

stability. Thus, the Hertz law is used to model the penalty force between rigid spheres.
d

_|

Fig. 4-3: Spring-damper system for the modelling of penalty forces due to overlapping including friction.

4.2.3 Friction

Although friction between solid bodies is a very complicated physical phenomenon, there exists a simple
law for dry friction that is an appropriate approximation for engineering applications. Based on
experimental investigations, Coulomb proposed the frictional force as a function of the normal force
multiplied by a friction coefficient. He distinguished two kinds of friction: kinetic and static friction.
One difficulty in numerical modelling of kinetic friction is the discontinuity of the friction force at zero
velocity, where it changes its sign. Close to the discontinuity, in reality already for small tangential
velocities v, , relatively large forces occur. This may lead to numerical instabilities. To overcome this
problem, the discontinuity is approximated by a continuous sigmoidal function, e.g. the hyperbolic
tangent. Thus, the kinetic friction force reads

Fp, = —Mk‘Fn‘tanh(n{vt})é’t , (4.14)
where 1, is the kinetic friction coefficient, €t is the unit vector of the tangential component of the
relative velocity perpendicular to the normal force F, and 7 is the slope of the function at v, = 0. Static
friction is more complicated to model than kinetic friction. Cundall and Strack (1979) proposed a penalty
sticking friction model that inserts a tangential spring-damper system between the bodies in contact as
depicted in Fig. 4-3. Thus, the bodies will actually not statically stick at the contact point but will move
constrained by the spring-damper system. The elastic force of the tangential spring-damper system is
F

St

= —¢,0¢, , (4.15)
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where ¢, is the stiffness of the tangential spring and 6, is the tangential displacement. The maximum
retaining force of the spring-damper system is given by the static friction force according to Coulomb’s
law

¢ , (4.16)

where i is the static friction coefficient. The combination of static and kinetic friction is called stick-
slip friction. According to Popov (2010), this is the basic process at the contact zone when rolling occurs.

4.2.4  Time Integration and Time-Step Size

For DEM, the size of the time step actually depends on the desired accuracy, since a correct capturing
of the impact process is important. This may not go hand in hand with little computational efforts and a
fast simulation progress. Therefore, use of the largest possible time step that meets the accuracy
requirements is desired. Fleissner (2010) presents some implicit, unconditionally stable schemes for
time integration, which dynamically adjust the time step for a corresponding state of the system.
However, with regard to the coupling of SPH and DEM, the same explicit PC-leapfrog scheme is used.
Thus, the size of a time step can be obtained by similar conditions as for the SPH method. The relevant
length scale is the radius of the smallest sphere . . ~and the maximum occurring velocity is taken as
the reference velocity, i.e. u,, = ‘ﬁ‘max. Furthermore, viscous forces are not considered. Including a
safety factor o, this leads to the following conditions for the time-step size

T

Tmin , min . (417)
U, of a

At = ay min

max

4.3 Fluid-Structure Interaction

The interaction between fluid and structures, such as spheres, can be modelled in a similar way as the
interaction of two spheres. However, different laws for the interaction as well as the friction force are
applied.

4.3.1 Normal Force

To model the interaction of fluid particles with a rigid body in the same manner as molecular interaction
seems to be a reasonable approach. Therefore, the interaction force is obtained by a so-called Modified
Lennart-Jones (MLJ) potential suggested by Muller et al. (2004). Other than the original Lennard-Jones
potential that leads to an infinitely large force for a particle distance towards zero, they propose a force
law with a finite value £ of the force at the boundary. For the investigation of wall bounded flows, an
approach depending on the particle distance to the boundary ¢, , i.e. the surface of the sphere, is
preferable. Furthermore, only repulsive forces are considered (notice that the original form also includes
attractive forces). Thus, the according interaction force reads

F”H 6’11/ =~ 6“, - 6“, € 6“) < 5“} . (4.18)
) (‘5wo+7"5)4( o =8 ’

where 7, is the radius of the sphere and ¢, , is the maximum influence distance of the potential from
the boundary. Please refer to Vetsch (2012) for a detail discussion on interaction laws and their
properties.
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4.3.2 Tangential Force

The friction between the fluid and the surface of a sphere or triangle can be modelled in a similar way
as the friction between solid bodies as described in section 4.2.3. However, the exerted tangential force
is actually a viscous shear force plus effects due to the character of the surface. Thus, the friction
coefficient depends rather on the viscosity of the fluid and the surface roughness than on dry material-
to-material properties.

4.3.3 Time Integration for Coupled Simulation

For the combination of DEM and SPH, the use of different time integration algorithms can lead to an
asynchronism, resulting in an unstable simulation. Hence, the same integration scheme with identical
parameters is preferred. Therefore, the use of the PC-leapfrog integrator for both methods is suggested.
The time-step size is determined by a combination of conditions (4.10) and (4.17).

5 Model Validation

The applied models are validated by comparing the results of the test cases with reference solutions
obtained by physical or empirical relations from the literature. If necessary, the relevant model
parameters will be varied in terms of a model calibration until the result of the numerical experiment is
in reasonable agreement with reference data. The applications comprise a hydrostatic buoyancy
experiment and the settling of a rigid body in a tank filled with water. For the experiments, the size of
the fluid particles in terms of their initial particle spacing As is chosen several times smaller than the
diameter d_ of the corresponding DEM particle. In the present work, this modelling approach where
fluid particles are smaller than the rigid body, say As < dS/B , is termed High Resolution Force Model
(HRFM). The spheres are uniform with diameter d, = 0.03 m. The initial particle spacing and other
parameters vary according to the configuration. The size of the smoothing length is chosen to be
h = 1.5As, which corresponds to 29 and 123 neighbouring particles in two and three dimensions,
respectively. Since the accuracy of SPH depends on the relation between the number of neighbours and
the smoothing of local quantities, this is a good choice but also has its computational cost.

5.1 Buoyancy

The numerical buoyancy experiments are carried out in a small tank filled with an initially quiescent
fluid, i.e. particles are at rest. The dimensions of the water body are: length lf = 0.2 m and height
hf = 0.1 m for the two-dimensional (2-D) discretisation and hf =1, = wy = 0.1 m in the three
dimensional (3-D) case. Three model configurations have to be distinguished: for case A the sphere is
located in the middle of the tank at height 2z, = 0.5hf , for cases B and C the sphere sits on top of fixed
spheres arranged in a close packing. For the given cases, experiments with different resolution of fluid
particles in terms of the initial particle distance As, hereafter referred to as particle resolution, are
carried out as listed in Tab. 5-1. In addition, the ratio of the number of fluid particles per sphere diameter
is given (column 2); it can be seen as an alternative indicator for the level of discretisation. Furthermore,
the average size of the computational time step At is listed since it depends on the smoothing length.
The initial particle discretisations for the studied cases and the different configurations are illustrated in
Fig. 5-1 (notice that each configuration was studied with the three different particle resolutions).
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The resultant submerged weight of the sphere is measured by a kind of load cell connected to the sphere.
Actually, the load cell is modelled as a fixed special particle that interacts only with the sphere and not
with fluid particles. This special particle overlaps with the sphere and its initial position corresponds to
a penalty force that is equal to the submerged weight. For their interaction, the linear force law is applied.
The interaction of the fluid particles with the sphere is modelled by a MLJ potential. The distance to the
sphere surface where the penalty force is zero is set equal to the smoothing length, i.e. 6, , = &, which
corresponds to an active penalty force as soon as interaction takes place. The stiffness of the potential is
obtained by evaluating a slightly modified form of equation (4.18), namely

4
h+r

h(l_%q)

where @beq = 6weq / h and the amount F' of the force is equal to the median pressure acting on the
sphere. Hence, the force law depends on the parameter ¢eq which actually defines the equilibrium
distance between the fluid particles and the sphere by ¢, . = hap, ;- Thus, the parameter Y, , indirectly
controls the amount of displaced fluid and, consequently, the buoyancy force. Furthermore, the mass of
the fluid particles is set to Py (As)a, where the term (As)a with dimensionality of the problem o

corresponds to a finite area or volume of fluid.

(5.1)

Tab. 5-1: Initial particle spacing used for buoyancy experiments and resulting number of fluid particles
including boundary particles. The second column indicates the number of fluid particles per sphere diameter.

AY; d, / As +1 number of particles average At
[m] [-] 2-D 3-D [s]
0.01 4 266 2456 2.10E-04
0.005 7 920 13018 1.10E-04
0.0025 13 3376 82116 5.30E-05

Fig. 5-1: Configurations of cases A, B and C (from left to right) with initially evenly spaced fluid particles in the
vicinity of the sphere. The particle spacing is As=0.01, 0.005 and 0.0025 m from left to right. The colour
indicates the hydrostatic pressure, where red corresponds to larger values than blue.
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Fig. 5-2: Case A: final arrangement of the fluid particles in the vicinity of the sphere for the two dimensional
experiments with As=0.005 m (left) and As=0.0025 m (right).

For the numerical experiments with a configuration according to case A, the parameter 1/16q was varied
until the difference of the exact submerged weight and the force measured by the load cell was within a
few per cent. For the present case with h = 1.5As, it could be expected that 6weq converges to As/ 2
for decreasing values of As and weq — 1/3 . This tendency was quite well reproduced by the
experiments. By taking a closer look at the results, it can be seen that the fluid particles arrange in a
corona like manner around the sphere as depicted in Fig. 5-2. This corresponds to the expected behaviour
since the pressure acts in the normal direction of the curved surface. However, the resulting pressure
distribution around the sphere, i.e. the pressure of the fluid particles in contact with the sphere, is not in
agreement with the surrounding fluid particles and is incorrect. Although the final pressure distribution
corresponds to an equilibrium state, there are large pressure gradients in the particle corona and fluid
particles with relatively small pressure are squeezed.
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Fig. 5-3: Final arrangement of the fluid particles in the vicinity of the sphere for the two dimensional
experiments of case B (left) and case C (right) with As=0.0025 m.
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For the configurations B and C the force law between the fluid particles and the sphere is configured in
the same way as for case A. Since the situation is similar to the experiments of case A, the above
determined parameters weq are also used for the present cases. To allow for the measurement of the
submerged weight, no interaction has been specified between the sphere and the fixed spheres at the
bottom. Thus, in case B, the sphere sinks a little due to the smaller buoyancy force and the larger
submerged weight, respectively. In case C, the sphere is raised a bit due to the fluid particles which
squeeze into the gap between the spheres (see Fig. 5-3).

According to the results of case A, the pressure distribution around the sphere is incorrect for the cases
B and C; this also holds true for the pressure around the fixed boundary spheres. Furthermore, the sphere
is initially not completely surrounded by fluid particles as depicted in Fig. 5-1. However, in reality the
sphere would be covered by fluid except for the small areas at the contact points. Thus, it could be
expected that the exact submerged weight of the sphere is the same as in case A. The simulation results
show that for decreasing values of As the measured submerged weight converges to the exact value.
However, that rate of convergence strongly depends on the particle resolution, i.e. the number of fluid
particles located in the spacing between the spheres. This fact confirms the importance of a correct
simulation of the buoyancy force.
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5.2 Settling Velocity

For the settling velocity experiments, a tank filled with initially quiescent water is considered. The
dimensions of the water body are length lf = 0.15 m and height hf = 0.3 m in the case of 2-D
discretisation and in addition width wp = 0.15 m for 3-D. To study the influence of the spatial
discretisation on the settling velocity, two and three dimensional experiments with different particle
resolution are carried out as listed in Tab. 5-2.

Tab. 5-2: Initial particle spacing used for settling velocity experiments and resulting number of fluid particles
including boundary particles.

case dim As number average At
[m] of particles [s]

A 2 0.01 620 1.20E-04
AA 2 0.005 2135 6.20E-05
AAA 2 0.0025 7865 3.10E-05
AAAA 2 0.00125 45125 1.50E-05
A3D 3 0.01 12400 1.20E-04
AA3D 3 0.005 74725 6.20E-05

Similar to the buoyancy experiments, the interaction of the fluid particles with the sphere is modelled
by a MLJ potential. Thus, the stiffness of the potential is obtained by equation (5.1), where weq is chosen
corresponding to the initial particle distance and the dimensionality according to the parameters obtained
by the calibration of the buoyancy experiments. Since there will be no hydrostatic pressure distribution
around the settling body, the reference pressure is not known a priori. Hence, the dynamic pressure is
taken as reference and the amount of the reference force is obtained by F' = O.Spwa2 As7h

The terminal settling velocity w, of a rigid body in a fluid is reached when the drag force acting on the
sphere is balanced by its submerged weight. Considering Newtonian flow, the terminal settling velocity

of a sphere with the given properties is w ~ 1.27 m/s. This corresponds to the three dimensional

s,sphere
case. If the situation is reduced to a two d/irz;lensional problem, the sphere is replaced by a cylinder with
distinct properties. Hence, for a cylinder the terminal settling velocity is Wy ot ™ 0.83 m/s. To account
for the effect of wall interference on the settling velocity of the body (see e.g. DiFelice (1996)), the
unaffected terminal velocity w, is reduced to 1w, i.e. W, . p.. =0.76 m/s. For
both cases, the cylinder and the sphere, the boundary layer around the body is mainly laminar and the
dominant contribution to the drag force is the pressure drag (compare e.g. Douglas et al. (2001)). Thus,

for the current experiments the influence of the friction drag is not considered.

= L16m/sand w,
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Fig. 5-4: Case AA (left) and case AAA (right): contour plot of vertical velocity and velocity vectors, where the
colour indicates magnitude.

With increasing number of particles, i.e. smaller initial particle spacing, larger terminal settling
velocities w, are observed. The measured settling velocity for the coarsest two dimensional particle
resolution (case A) is w, = 0.262 m/s which increases up to w, = 0.733 m/s for the finest resolution
(case AAAA) studied in this work. Thus, the measured terminal velocity approaches the intended value
of w, .,
for the three dimensional case was limited to As = 0.005 m (case AA3D) due to the required computing
time (19 days for this case). However, similar behaviour as for the 2-D case is rudimentary observed.

=0.76 m/s, which indicates convergence of the applied methods. The finest particle resolution

Furthermore, the flow around the sphere can be reasonably reproduced already for the coarser
resolutions; moreover, with smaller initial particle spacing the features of the flow become more
detailed, as expected. This is shown by Fig. 5-4 for selected cases AA and AAA. Despite the reliable
results of the flow field, spurious numerical oscillations in the pressure field are observed. This
corresponds to results obtained by other researchers (e.g. Colagrossi et al. (2010)), since WCSPH is
known to be noisy.

For the sake of completeness it has to be mentioned that besides the particle resolution also the role of
the artificial viscosity and influence of the force law has been investigated. However, for physically
correct configurations, i.e. where the fluid particles and the rigid sphere cannot interpenetrate, no
reasonable improvement is observed.
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5.3 Discussion

The chosen experiments have proven to be a reliable concept to evaluate the numerical methods which
are used to model the fluid-structure interaction. Besides the parameters defining the interaction between
SPH and DEM particles, the particle resolution plays a major role, especially when it comes to dynamic
problems. The expected convergence of the SPH method is demonstrated and approved by the results
of the experiments. Nevertheless, some drawbacks of the applied methods have to be pointed out. The
computational cost is already quite high for two-dimensional simulations with a moderate number of
particles. This limits the scope of parameter studies, and three-dimensional investigations become very
time-consuming. To overcome these limitations, parallelisation of the software is necessary to allow for
the use of high performance computing infrastructure. Furthermore, the significance of the pressure
increase at the boundaries between fluid particles and rigid walls (fixed and movable) is not clear. For
the present work, this particularly applies to the settling velocity experiments where the pressure drag
results from the pressure distribution around the sinking body. The problem may have two contributions,
namely the spurious numerical oscillations in the pressure field and the fluid-structure boundary
condition itself. Some recent contributions by other researchers provide approaches which may be useful
to overcome this shortcoming. On the one hand, to smooth out or eliminate pressure oscillations, filtering
of the density (see e.g. Molteni and Colagrossi (2009)) or the application of truly incompressible SPH
is suggested. On the other hand, boundary conditions for fluid-structure interaction are still an open and
challenging task. A promising approach, suitable for the recent applications, is presented e.g. by
Monaghan and Kajtar (2009).

It seems to be obvious that as long as the shortcomings of the current modelling approach are not
adequately solved, numerical experiments with focus on detailed local forces are not reasonable.
However, these kinds of experiments are necessary to investigate the fundamental physical processes
occurring during incipient motion and sediment transport. Possible experiments to validate an improved
version of the model would be e.g. the determination of the drag coefficient of a sphere sitting on a
boundary of similar spheres as investigated by Coleman (1972) or the incipient motion experiments
carried out by Fenton and Abbott (1977).
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6 Applications

To demonstrate the capabilities of the present model for the simulation of bed-load transport, a slightly
different modelling approach as used in the previous chapter is applied in the following. The applications
to bed-load transport comprise a two-dimensional simulation of the development of a scour caused by a
freefalling water jet and a three-dimensional pier scour experiment. For the present experiments, the
size of the fluid particles in terms of their initial particle spacing As is intentionally chosen larger than
for the model-verification experiments, i.e. As = ds/2 . This modelling approach where fluid particles
are larger than the rigid body, say As > ds/?) , Is termed Low Resolution Force Model (LRFM). With
the LRFM, simulations on a larger scale than with the HRFM are made possible. However, due to the
usually larger computational domain and because the sediment layer also consists of particles, no
“miracles” concerning the computational costs have to be expected.

Due to the less detailed resolution of the fluid forces acting on a solid particle, the model parameters
have to be calibrated to match the desired sediment transport processes; this relates to the spatial as well
as the temporal scale. Depending on the complexity of the experiment, the calibration can be quite
extensive. For the present experiments only marginal calibration of the model parameters was carried
out. Thus, the presented simulation results are rather of qualitative nature and primarily serve for
illustration purposes.

6.1 Scour Caused by a Freefalling Water Jet

In the present experiment, the development of a scour due to a freefalling water jet is studied. This kind
of scour is typical for a natural waterfall, where at the bottom of the subsequent plunge pool a scour hole
develops caused by the impact of the freefalling water. For the experiment, the specific discharge is
0.04 m%s and the head drop is 0.16 m. Since the experiment is carried out as a two-dimensional
simulation, the sediment consists of circular particles with diameter d, = 2r, = 0.01 m and density
p, =2800 kg/m*. The sediment particles are considered to consist of granite. For the interaction between
the sediment particles, Hertz’s law is applied and for the internal friction of the sediment layer, equal
coefficients for sticking and slipping friction are considered. The interaction between the fluid and
sediment particles is modelled by an MLJ potential. Due to the applied LRFM approach also the concept
for the parameters of the force law is different to that used for the model verification. For the present
experiments, the distance from the sediment-particle surface where the repulsive force is zero is
d,, = h —r, and the equilibrium distance is chosen as d,,,, = 0.5d,,, . The stiffness of the potential
is 600 N. With this configuration, the sediment particle may behave like a heavy fluid particle when it
encounters true fluid particles (notice that this only concerns the fluid-sediment interaction). Friction
between the fluid and sediment particles is also considered.
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Fig. 6-1: Numerical simulation of a scour caused by a freefalling water jet.
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For the present configuration, the estimated hydrodynamic time-step size is
At = %hf/cs ~ 2-107° s and the estimated sediment time-step is At = 0‘57”5/05 ~1-107" s
thus the latter is relevant. The total simulation time is 15 s and the corresponding computing time for
the experiment was approximately 1060 min on a modern computer using one core.

The results of the simulation at selected times are shown in Fig. 6-1. At the beginning of the simulation,
the sediment erosion advances quickly due to the unimpeded impact of the water jet on the sediment
surface. Already after some seconds a scour hole develops and the water depth at the impact location
increases. The resulting plunge pool now alleviates the momentum of the water jet and sediment erosion
diminishes. After a simulation time of about 10 s, the extent of the scour hole will barely change. The
development of the scour, i.e. the profile of the bed level, is reproduced in a characteristic manner by
the numerical model.

As can be seen from Fig. 6-1, the fluid particles are able to enter the sediment layer up to a certain depth,
which is similar to seepage. This behaviour is depicted on the left in Fig. 6-2 in detail where the black
dots indicate the locations of fluid particles. The fluid particles fill up the voids between the sediment
particles. The exerted forces by the fluid particles in the pores may be interpreted as a mix of buoyancy
and lift forces.

Fig. 6-2: Influence of interaction law on the erosion process. In the left picture, the result of a simulation with an
interaction law based on dwO =h-— 7, is depicted (compare Fig. 6-1), where the black dots indicate the
locations of the fluid particles. On the right, the simulation result for a different configuration with

d,, = h +r, isshown.

The major importance of the possibility for fluid particles to enter the sediment layer for the present
experiments can be illustrated by varying the parameters of the force law for the fluid-sediment
interaction. For this purpose, consider a different configuration: the distance from the sediment-particle
surface where the repulsive force is zero is increased to d,, = h + r, while the stiffness, i.e. the size
of the maximum repulsive force, is kept constant. This leads to a repulsive force which already acts at a
distance between a fluid particle and the sediment-particle surface which is larger than for the previous
configuration with d, , = h — r,. Furthermore, a reduced sediment density of p_ = 1800 kg/m? is
considered to emphasize the distinct behaviour. The simulations show that the fluid particles are no
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longer able to move between the sediment particles (compare Fig. 6-2, on the right), which is due to the
scaling of the force law. Despite the reduced mass of the sediment, no scour is observed at all.

6.2 Clear-Water Scour at Bridge Pier

Another well-known kind of scour is the erosion of sediment observed at bridge piers. The deflection of
the water at the pier and the resulting vortices lead to an erosion of sediment and the development of a
characteristic scour hole around the pier (see e.g. Unger and Hager (2007)). The channel used for the
three-dimensional pier-scour experiment is 0.7 m long and 0.15 m wide. The slope of the channel is
3.5 %o. The quadratic pier with a side length of 0.05 m is placed adjacent to the left wall. The sediment
consists of five layers of particles which results in a total of 2484 sediment particles. For the three-
dimensional simulation, the sediment consists of spheres with diameter d, = 0.01 m and density
p, = 2500 kg/m®. The ratio of the sediment diameter to the initial fluid particle spacing is two. Similar
to the jet scour experiment, Hertz’s law is used to model the interaction between the sediment particles.
Since the energy of the flow is distinctly smaller than in the previous experiment, the friction between
the sediment particles is reduced to trigger a faster erosion process. For the interaction between the fluid
and sediment particles a MLJ potential is applied. The parameters of the force law are d,, = h — 7,
and d,,, = 0.5d,,,. For the three-dimensional case the stiffness of the potential has to be strongly
reduced compared to the previous 2D experiment and is 3 N. Based on the chosen particle resolution
the total number of fluid particles during the simulation is approximately 70°000. The size of the time
step is similar to that of the jet scour experiments. Furthermore, the simulation starts from an initially
dry channel bed.

The results of the experiment at different times of the simulation are depicted in Fig. 6-3. At the
beginning of the simulation, the waterfront moves across the domain and the weight of the water causes
a small depression of the sediment-bed surface. However, no significant transport of sediment particles
takes place at this point. At the pier, some part of the water which impinges the pier is vertically deflected
in the downward direction. With increasing flow depth also this effect amplifies. The downward flow
exerts larger contact forces on the sediment particles than on those exposed mainly to tangential flow.
At the first, this leads to initial transport of some sediment particles and to local erosion in front of the
pier. Subsequently, due to the initial erosion the transport of sediment particles is amplified and the
erosion extends around the pier and along the channel with time. Due to numerical instabilities the
computation was aborted after a simulation time of 1.6 s, which corresponds to a computing time of
17 days. Nevertheless, the simulation results show the initial phase of the erosion process, which is
reproduced in a reliable manner and which is comparable to experimental observations (see e.g. Radice
et al. (2008)).
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Fig. 6-3: Numerical simulation of clear-water scour at bridge pier. A lighter colour of the sediment particles
indicates ““higher above datum”. The sidewalls, the inflow section and the outflow weir are omitted to improve
visibility.
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7 Conclusions

In the present work, a novel numerical modelling approach for the simulation of bed-load transport is
presented. The model consists of the combination of two strictly Lagrangian methods which allow for
the simulation of fluid-structure interaction problems. The interaction between the fluid and the
sediment particles and between the sediment particles themselves is modelled by a well-defined force
law also accounting for various kinds of friction between the grains. For the present work, the sediment
grains are modelled as spherical particles. The applied model is able to reproduce the constitutive
behaviour of sediment mixtures and the different transport modes of bed load, such as sliding, rolling
and saltating.

The modelling of the fluid is based on a continuum approach which is discretised by the Smoothed
Particle Hydrodynamics (SPH) method. The sediment particles are represented by the Discrete Element
Method (DEM), where the interactions between the discrete sediment grains are modelled by a force
law, which is also able to account for various kinds of friction. A similar approach is applied to the
interaction between the fluid and sediment particles. The definition of the interface and the exchange of
forces between the fluid and sediment grains are inherent to the applied approach. Thus, the use of a
computational grid or of techniques for the tracking or capturing of the interface is not necessary.

Two basically different approaches to model bed-load transport with the proposed method are presented.
On the one hand, the application of the combined methods as a High Resolution Force Model (HRFM)
is investigated. For the HRFM, the fluid particles are chosen distinctly smaller than the sediment
particles to simulate detailed interaction forces. To study the interaction forces on a spherical particle
depending on the resolution of the fluid particles a hydrostatic and a dynamic experiment, namely the
simulation of buoyancy effects and the determination of the settling velocity, are carried out. The results
of the simulations show convergence of the applied methods for increasing particle resolution; they
turned out to be a reliable concept to validate the chosen numerical approaches. Furthermore, the
importance of the possibility to account for the effect of buoyancy is pointed out. The simulation results
show the potential of the HRFM to be used for detailed investigations of bed load processes. On the
other hand, the use of the model in terms of a Low Resolution Force Model (LRFM) is studied. For the
LRFM, the fluid particles are chosen of similar size or larger than the sediment particles. This requires
a basically different approach for the determination of the interaction-force law parameters. Due to the
less detailed resolution of the fluid forces acting on a solid particle, the model parameters have to be
calibrated to match the desired sediment transport processes; this concerns the spatial as well as the
temporal scale. The LRFM was applied to scour caused by a freefalling water jet and to clear-water
scour at a bridge pier. The qualitative simulation results are in satisfying agreement with experimental
observations and illustrate the use of the applied methods for practical applications.

The methods also have some shortcomings. The force law used for the interaction of the fluid and the
sediment grains depend on a reference force, which may not correspond to the actual and local fluid
forces in a dynamical simulation. This may affect the accuracy of the results. However, this effect mainly
applies to the HRFM, and its influence is expected to diminish for increasing particle resolution. Its role
with regard to the forces on a sediment particle embedded or close to the sediment bed has to be
investigated in subsequent research. Moreover, boundary conditions between the fluid and solids for
SPH are still an open topic. Another problem arises due to the pressure field, which shows spurious
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oscillations inherent to the weakly compressible SPH method - several approaches to overcome this
issue are mentioned. As also pointed out by other researchers, the main drawback of the presented model
is due to its extensive computational cost for detailed and three dimensional simulations. The common
way to overcome this restriction is to implement parallelisation techniques to be able to use high
performance computing infrastructure. However, as far as engineering practice is concerned, the use of
the present model in the near future is not realistic, since the appropriate application is still a challenging
task and the corresponding computation time requirement may not be affordable.
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Mosonyi Emil: Wasserbau, Technik oder Kunst? 1977

50 Jahre Versuchsanstalt Obernach,

Ausleitungen aus geschiebefiuihrenden Flissen, Seminar am 15.10.1976 in Obernach

Cecen Kazim: Die Verhinderung des Geschiebeeinlaufes zu Wasserfassungsanlagen
Midgley D.C.: Abstraction of water from sediment-laden rivers in Southern Africa

Jacobsen J.C.: Geschiebefreie Triebwasserfassungen - Modellversuche am Beispiel des
sogenannten Geschiebeabzuges

Scheuerlein Helmut: Die Bedeutung des wasserbaulichen Modellversuchs fiir die Gestaltung
von Ausleitungen aus geschiebefiihrenden Flissen, 1977

Hack Hans-Peter: Lufteinzug in Fallschachten mit ringférmiger Stromung durch turbulente
Diffusion, 1977

Csallner Klausotto: Stromungstechnische und konstruktive Kriterien fir die Wahl zwischen
Druck- und  Zugsegment als Wehrverschluf3, 1978

Kanzow Dietz: Ein Finites Element Modell zur Berechnung instationarer Abfliisse in Gerinnen
und seine numerischen Eigenschaften, 1978

Keller Andreas; Prasad Rama: Der Einflul3 der Vorgeschichte des Testwassers auf den
Kavitationsbeginn an umstrémten Koérpern - Ein Beitrag zur Frage der Rolle der Kavitationskeime
bei Stromungskavitation, 1978

Hartung Fritz: 75 Jahre Nilstau bei Assuan - Entwicklung und Fehlentwicklung, 1979, vergriffen

Knauss Jost: Flachgeneigte Abstirze, glatte und rauhe Sohlrampen

Scheuerlein Helmut: Wasserentnahme aus geschiebefiihrenden Fliissen

Hausler Erich: Unkonventionelle neuere Stauhaltungswehre an bayerischen Flussen als
gleichzeitige Sohlsicherungsbauwerke, 1979, vergriffen
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Seus Ginther J.; Joeres Erhard P.; Engelmann Herbert M.: Lineare Entscheidungsregeln und
stochastische Restriktionen bei Bemessung und Betrieb von Speichern, 1979, vergriffen

Meier Rupert C.: Analyse und Vorhersage von Trockenwetterabflissen - Eine Anwendung
der Systemhydrologie, 1980, vergriffen

Treske Arnold: Experimentelle Uberpriifung numerischer Berechnungsverfahren von
Hochwasserwellen, 1980, vergriffen

Csallner Klausotto; Hausler Erich: AbfluBinduzierte Schwingungen an Zugsegmenten -
Ursachen, Sanierung und allgemeine Folgerungen

Herbrand Karl; Renner Dietrich: Aufnahme und Wiedergabe der Bewegung von
Schwimmkoérpern mit einem Video-Mef3system

Keller Andreas: Messungen des Kavitationskeimspektrums im Nachstrom eines Schiffes - die
ersten GrolRausfiihrungsmessungen mit der Laser-Streulichtmethode

Knauss Jost: Neuere Beispiele fur Blocksteinrampen an Flachlandflissen

Scheuerlein Helmut: Der gelbe Fluf3 - nach wie vor Chinas Sorge oder die Unerbittlichkeit der
Natur gegentiber 4000 Jahren menschlicher Bemiihungen

Seus Gunther J.: Nochmals: Das Muskingum-Verfahren. Fingeriibbungen zu einem bekannten
Thema als "gradus ad parnassum" sowie neue Gedanken zur Interpretation des Anwendungs-
bereiches und eine Lésung des Problems der Nebenfllisse

Treske Arnold: Hochwasserentlastung an Dammen. Zwei konstruktiv &hnliche Lésungen im
Modellversuch, 1981, vergriffen

Schmitz Gerd: Instationare Eichung mathematischer Hochwasserablauf-Modelle auf der
Grundlage eines neuen Ldsungsprinzips fur hyperbolische Differentialgleichungs-Systeme,
1981, vergriffen

Scheuerlein Helmut: Der wasserbauliche Modellversuch als Hilfsmittel bei der Bewaltigung von
Verlandungsproblemen in Fliissen

Knauss Jost: Rundkronige und breitkronige Wehre, hydraulischer Entwurf und bauliche
Gestaltung

Keller Andreas: Mal3stabseffekte bei der Anfangskavitation, 1983, vergriffen

Renner Dietrich: Schiffahrtstechnische Modellversuche fiir Binnenwasserstraf3en - Ein neues
System und neue Auswertungsmdglichkeiten, 1984, vergriffen

Sonderheft: Erhaltung und Umbau alter Wehre (Wasserbau im historischen Ensemble, drei
Beispiele aus dem Hochwasserschutz bayerischer Stadte), 1984, vergriffen

Knauss Jost; Heinrich B.; Kalcyk H.: Die Wasserbauten der Minyer in der Kopais - die alteste
FluRregulierung Europas, 1984, vergriffen

Hartung Fritz; Ertl Walter; Herbrand Karl: Das Donaumodell Straubing als Hilfe fir die
Planung und Bauausfiihrung der Staustufe Straubing, 1984

Hahn Ulrich: Lufteintrag, Lufttransport und Entmischungsvorgang nach einem Wechselsprung in
flachgeneigten, geschlossenen Rechteckgerinnen, 1985

Bergmann Norbert: Entwicklung eines Verfahrens zur Messung und Auswertung von
Strémungsfeldern am wasserbaulichen Modell, 1985

Schwarz Jirgen: Druckstollen und Druckschéchte - Bemessung und Konstruktion, 1985,
vergriffen

Schwarz Jirgen: Berechnung von Druckstollen - Entwicklung und Anwendung eines
mathematischen Modells und Ermittlung der felsmechanischen Parameter, 1987

Seus Ginther J.; Edenhofer Johann; Czirwitzky Hans-Joachim; Kiefer Ernst-Martin;
Schmitz Gerd; Zunic Franz: Ein HN-Modellsystem fir zweidimensionale, stationéare und
instationdre Strdomungen beim Hochwasserschutz von Stadten und Siedlungen, 1987

Knauss Jost: Die Melioration des Kopaisbeckens durch die Minyer im 2. Jt.v.Chr.;
Kopais 2 - Wasserbau und Siedlungsbedingungen im Altertum, 1987

Mtalo Felix: Geschiebeabzug aus Kanalen mit Hilfe von Wirbelréhren, 1988

Yalin M. Selim; Scheuerlein Helmut: Friction factors in alluvial rivers

Yalin M. Selim: On the formation mechanism of dunes and ripples

Keller Andreas: Cavitation investigations at one family of NACA-hydrofoils at different angles
of attack, as a contribution to the clarification of scale effects at cavitation inception, 1988

Schmitz Gerd H.: Strémungsvorgange auf der Oberflache und im Bodeninneren beim

Bewdasserungslandbau. Grundlagen, Kritik der herkdmmlichen Praxis und neue hydrodynamisch-
analytische Modelle zur Oberflachenbewasserung, 1989
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Muckenthaler Peter: Hydraulische Sicherheit von Staudammen, 1989, vergriffen

Kalenda Reinhard: Zur Quantifizierung der hydraulischen Versagenswahrscheinlichkeit
beweglicher Wehre, 1990

Knauss Jost: Kopais 3, Wasserbau und Geschichte, Minysche Epoche - Bayerische Zeit
(vier Jahrhunderte - ein Jahrzehnt), 1990

Kiefer Ernst-Martin, Liedl Rudolf, Schmitz Gerd H. und Seus Ginther J.: Konservative
Stromungsmodelle auf der Basis krummliniger Koordinaten unter besonderer Beriicksichtigung
von Wasserbewegungen im ungeséttigt-gesattigten Boden, 1990

Hartung Fritz: Der agyptische Nil 190 Jahre im Spiel der Politik (1798-1988)
Hartung Fritz: Gedanken zur Problematik der Nilwehre

Doscher Hans-Dieter und Hartung Fritz: Kritische Betrachtungen zum Stutzwehr im
Toschka-Entlastungsgerinne des Assuan-Hochdammes, 1991

Schmitz Gerd H., Seus Ginther J. und Liedl Rudolf: Ein semi-analytisches Infiltrations-
modell fur Fullung und Entleerung von Erdkanéalen

Keller Andreas P.: Chinese-German comparative cavitation tests in different test facilities on
models of interest for hydraulic civil engineering, 1991

Liedl Rudolf: Funktionaldifferentialgleichungen zur Beschreibung von Wasserbewegungen in
Bdden natirlicher Variabilitat - Beitrdge zur Theorie und Entwicklung eines numerischen
Lésungsverfahrens, 1991

Zunic Franz: Gezielte Vermaschung bestehender Kanalisationssysteme - Methodische Studien
zur Aktivierung freier Riickhalteraume unter besonderer Berticksichtigung der Abflusssteuerung,
1991

Eickmann Gerhard: Malistabseffekte bei der beginnenden Kavitation - lhre gesetzmafige
Erfassung unter Beriicksichtigung der wesentlichen Einflul3gréf3en, 1991

Schmid Reinhard: Das Tragverhalten von Erd- und Steinschittddmmen mit Asphaltbeton-
Kerndichtungen, 1991

Kiefer Ernst-Martin: Hydrodynamisch-numerische Simulation der Wasserbewegung im
ungesattigten und geséttigten Boden unter besonderer Berticksichtigung seiner nattrlichen
Variabilitat, 1991

Strobl Th., Steffen H., Haug W. und Geiseler W.-D.: Kerndichtungen aus Asphaltbeton fur
Erd- und Steinschittdamme, 1992

Symposium: Betrieb, Unterhalt und Modernisierung von Wasserbauten
Garmisch-Partenkirchen, 29. - 31. Oktober 1992

Heilmair Thomas und Strobl Theodor: Erfassung der sohlnahen Stromungen in Ausleitungs-
strecken mit FST-Halbkugeln und Mikro-Flowmeter - ein Vergleich der Methoden, 1994

Godde Dominik: Experimentelle Untersuchungen zur Anstrémung von Rohrturbinen.
Ein Beitrag zur Optimierung des Turbineneinlaufs, 1994

Knauss Jost: Von der Oberen zur Unteren Isar

Alte und neue Wasserbauten rund um die Benediktenwand. Bachumleitungen, Treibholzfénge,
durchschwallte Rohre, eine besondere Entlastungsanlage

Sohlensicherung an der Unteren Isar. Sohlstufenkonzept - Belegung der Sohle mit grol3eren
Steinen in offener Anordnung, 1995

Knauss Jost: Argolische Studien: Alte Stral3en - alte Wasserbauten. Talsperre von Mykene;
FluRumleitung von Tiryns; Hydra von Lerna; Kistenpass Anigraia, 1996
Aufleger Markus: Ein Beitrag zur Auswertung von Erddruckmessungen in Staudémmen, 1996

Heilmair Thomas: Hydraulische und morphologische Kriterien bei der Beurteilung von
Mindestabfliissen unter besonderer Beriicksichtigung der sohlnahen Strémungsverhaltnisse,
1997

Maile Willibald: Bewertung von Flie3gewésser-Biozonosen im Bereich von
Ausleitungskraftwerken (Schwerpunkt Makrozoobenthos), 1997

Knauss Jost: Olympische Studien: Herakles und der Stall des Augias. Kladeosmauer und
Alpheiosdamm, die Hochwasserfreilegung von Alt-Olympia, 1998

Symposium: Planung und Realisierung im Wasserbau - Vergleich von Zielvorstellungen
mit den Ergebnissen, Garmisch-Partenkirchen 15. — 17. Oktober 1998

Hauger Stefan: Verkehrssteuerung auf Binnenwasserstralen — Ein Beitrag zur Optimierung der
Schleusungsreihenfolge in Stillwasserkanalen und staugeregelten Flissen, 1998
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Herbrand Karl: Schiffahrtstechnische Untersuchungen der Versuchsanstalt Obernach; Ein
Ruckblick auf ein traditionelles Untersuchungsgebiet der VAO, 1998

Hartlieb Arnd: Offene Deckwerke — Eine naturnahe Methode zur Sohlstabilisierung
eintiefungsgeféhrdeter FluRabschnitte, 1999

Spannring Michael: Die Wirkung von Buhnen auf Strémung und Sohle eines FlieRgewassers:
Parameterstudie an einem numerischen Modell, 1999

Kleist Frank: Die Systemdurchlassigkeit von Schmalwénden. Ein Beitrag zur Herstellung von
Schmalwanden und zur Prognose der Systemdurchlassigkeit, 1999

Lang Tobias: Geometrische Kriterien zur Gestaltung von Kraftwerkseinlaufen. Experimentelle
Untersuchungen an Rohr-S-Turbine und Durchstrémturbine, 1999

Aufleger Markus: Verteilte faseroptische Temperaturmessungen im Wasserbau, 2000

Knauss Jost: Spathelladische Wasserbauten. Erkundungen zu wasserwirtschaftlichen
Infrastrukturen der mykenischen Welt, 2001

Festschrift aus Anlass des 75-jahrigen Bestehens der Versuchsanstalt fir Wasserbau und
Wasserwirtschaft der Technischen Universitat Minchen in Obernach;
Oskar v. Miller-Institut, 2001

Wildner Harald: Injektion von por6ésem Massenbeton mit hydraulischen Bindemitteln, 2002

Wildbach Naturversuche

Loipersberger Anton und Sadgorski Constantin: Schwemmholz in Wildbachen:
Problematik und Abhilfema3nahmen; Geschiebeuntersuchungen; 1D und 2D Abflussmodelle
in einem Wildbach

Rimbdck Andreas: Naturversuch Seilnetzsperren zum Schwemmholzriickhalt in Wildb&chen:
Planung, Aufbau, Versuchsdurchfiihrung und Ergebnisse

Hubl Johannes und Pichler Andreas: Zur beriihrungslosen Erfassung der Flief3tiefe und
FlieRgeschwindigkeit in einem Wildbachgerinne zum Zeitpunkt des Durchganges der
Hochwasserwelle, 2002

Rimbéck Andreas: Schwemmholzriickhalt in Wildbachen — Grundlagen zu Planung und
Berechnung von Seilnetzsperren, 2003

Nothhaft Sabine: Die hydrodynamische Belastung von Stérkorpern, 2003

Schmautz Markus: Eigendynamische Aufweitung in einer geraden Gewasserstrecke:
Entwicklung und Untersuchungen an einem numerischen Modell, 2003

Neuner Johann: Ein Beitrag zur Bestimmung der horizontalen Sicherheitsabstande und
Fahrrinnenbreiten fir WasserstralRen, 2004

Go6hl Christian: Bypasseinrichtungen zum Abstieg von Aalen an Wasserkraftanlagen, 2004

Haimerl Gerhard: Groundwater Recharge in Wadi Channels Downstream of Dams:
Efficiency and Management Strategies, 2004

Symposium: Lebensraum Fluss — Hochwasserschutz, Wasserkraft, Okologie.
Band 1; Wallgau, Oberbayern, 16. bis 19. Juni 2004

Symposium: Lebensraum Fluss — Hochwasserschutz, Wasserkraft, Okologie.
Band 2; Wallgau, Oberbayern, 16. bis 19. Juni 2004

Huber Richard: GeschwindigkeitsmaRstabseffekte bei der Kavitationserosion in der
Scherschicht nach prismatischen Kavitatoren, 2004

Exposed Thermoplastic Geomembranes for Sealing of Water Conveyance Canals,
Guidelines for Design, Supply, Installation, 2005

Workshop ,,Anwendung und Grenzen physikalischer und numerischer Modelle im
Wasserbau“. Wallgau, Oberbayern, 29. und 30. September 2005

Conrad Marco: A contribution to the thermal stress behaviour of Roller-Compacted-Concrete
(RCC) gravity dams — Field and numerical investigations, 2006

Schaéfer Patrick: Basic Research on Rehabilitation of Aged Free Flow Canals with
Geomembranes, 2006

Deichertlichtigung und Deichverteidigung in Bayern. Beitrage zur Fachtagung am
13. und 14. Juli 2006 in Wallgau, Oberbayern, 2006

Porras Pablo: Fiber optic temperature measurements — Further Development of the
Gradient Method for Leakage Detection and Localization in Earthen Structures, 2007

Perzimaier Sebastian: Verteilte Filtergeschwindigkeitsmessung in Staudammen, 2007
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Wasserbau an der TU Miinchen — Symposium zu Ehren von Prof. Theodor Strobl am
16. Mérz 2007 in Wallgau, Oberbayern, 2007

Haselsteiner Ronald: Hochwasserschutzdeiche an Fliel3gewassern und ihre
Durchsickerung, 2007

Schwarz Peter und Strobl Theodor: Wasserbaukunst - Oskar von Miller und die bewegte
Geschichte des Forschungsinstituts fir Wasserbau und Wasserwirtschaft in Obernach am
Walchensee (1926-1951). 120 Seiten, Preis: 9,80 €, 2007

Flutpolder: Hochwasserriickhaltebecken im Nebenschluss. Beitrage zur Fachtagung
am 19. und 20. Juli 2007 in Wallgau, Oberbayern. ISBN 978-3-940476-03-6, 240 Seiten,
durchgehend farbige Abbildungen, Preis: 34,80 €, 2007

Assessment of the Risk of Internal Erosion of Water Retaining Structures:
Dams, Dykes and Levees. Intermediate Report of the European Working Group of ICOLD.
ISBN 978-3-940476-04-3, 220 Seiten, Preis: 29,80 €, 2007

14. Deutsches Talsperrensymposium (14th German Dam Symposium) and 7th ICOLD
European Club Dam Symposium. Beitrdge zur Tagung am 17. bis 19. September 2007 in
Freising (Contributions to the Symposium on 17 - 19 September 2007 in Freising, Germany).
ISBN 978-3-940476-05-0, 570 Seiten, Preis: 49,80 €, 2007

Niedermayr Andreas: V-Rampen — Okologisch weitgehend durchgéngige Querbauwerke.
ISBN 978-3-940476-06-7, 240 Seiten, Preis: 29,80 €, 2008

Hafner Tobias: Uferrlickbau und eigendynamische Gewasserentwicklung — Aspekte der
Modellierung und Abschatzungsmoglichkeiten in der Praxis. ISBN 978-3-940476-07-4,
206 Seiten, Preis: 29,80 €, 2008

Wang Ruey-wen: Aspects of Design and Monitoring of Nature-Like Fish Passes and
Bottom Ramps. ISBN 978-3-940476-10-4, 280 Seiten, Preis: 29,80 €, 2008

Fischer Markus: Ungesteuerte und gesteuerte Retention entlang von FlieRgewassern:
Beurteilung der Wirksamkeit méglicher MaBnahmen unter Verwendung hydrodynamisch-
numerischer Modellierung. ISBN 978-3-940476-11-1, 220 Seiten, Preis: 29,80 €, 2008

Fiedler Katharina: Erfassung hydromorphologischer Vorgange in FlieRgewassern mit Hilfe
von ADCP-Messungen. ISBN 978-3-940476-12-8, Preis: 29,80 €, 2008

Hoepffner Roland: Distributed Fiber Optic Strain Sensing in Hydraulic Engineering.
ISBN 978-3-940476-13-5, Preis: 29,80 €, 2008

Gewassermorphologie und EU-WRRL: Beitrage zur Fachtagung am 24. und 25. Juli 2008
in Wallgau, Oberbayern. ISBN 978-3-940476-15-9, 230 Seiten, durchgehend farbige
Abbildungen, Preis: 34,80 €, 2008

Zukunftsfahiger(s) Wasserbau und Flussgebietsmanagement — Wasser- und Feststoff-
transport in Flache und Fluss. Beitrage zur Fachtagung am 30. und 31. Juli 2009 in Wallgau,
Oberbayern. ISBN 978-3-940476-19-7, 104 Seiten, durchgehend farbige Abbildungen,

Preis: 9,80 €, 2009

Peter Rutschmann (Hrsg.): Wasserbau in Bewegung ... von der Statik zur Dynamik.
Beitrage zum 15. Gemeinschafts-Symposium der Wasserbau-Institute TU Miinchen,

TU Graz und ETH Zurich vom 1. bis 3. Juli 2010 in Wallgau, Oberbayern.

ISBN 978-3-940476-22-7, 624 Seiten, teils farbige Abbildungen, Preis: 59,00 €, 2010

14. Treffen junger Wissenschaftlerinnen an Wasserbauinstituten. Beitrdge zum
JuWi-Treffen am 25. und 26. Juni 2012 an der Technischen Universitat Minchen.
ISBN 978-3-940476-23-4, ca. 220 Seiten, Preis: 14,80 €, 2012

Efthymiou Nikolaos: Transient Bedload Transport of Sediment Mixtures under Disequilibrium
Conditions - An Experimental Study and the Development of a New Dynamic Hiding Function.
ISBN 978-3-940476-24-1, ca. 300 Seiten, Preis: 29,80 €, 2012..

Die Berichtsbande kénnen beim Lehrstuhl fir Wasserbau und Wasserwirtschaft bestellt werden:
E-Mail: s.machauer@bv.tum.de
Telefon: +49.89.289.23174
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