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Abstract 

The multi-layer shallow water approach can be regarded as 
a development of De Saint Venant equations in the 
direction of a more accurate description of the physical 
problem, keeping as far as possible the efficiency of 
classical De Saint Venant numerical models. From this 
point of view, in the present paper, the one dimensional 
multi-layer De Saint Venant equations are briefly 
developed, marking the fact that the stresses due to the 
presence of neighboring layers can be treated as the effect 
of a virtual topography. In this way, continuity and 
momentum equation on each layer furnish a system of 
equations that is very similar to classic single-layer De 
Saint Venant equations. 
This similitude suggests the possibility to solve the 
resulting differential equations by means of the techniques 
originally developed for the solution of De Saint Venant 
equations. Following this idea, the 1D multi-layer De Saint 
Venant equations are solved numerically by means of a 
shock-capturing finite volume technique applied to each 
layer separately. 
The resulting numerical scheme is applied to some 
benchmark test, and the results are presented and discussed. 

Introduction 

The field of numerical modeling, finalized to hydraulic 
problems is very wide and it presents growing difficulties. 
The first difference among numerical models is due to the 
choice of the system of equations used to describe the 
physics of the natural phenomenon. Numerical models 
based on 3D Navier-Stokes equations are very heavy from 
a computational point of view and can be only applied to 
small computational domains, even if computers are always 
improving their performances. Due to this drawback, 
simpler versions of Navier-Stokes equations are still very 
useful, such as shallow water equations (SWE). To SWE 

belong dispersive equations (Boussinesq family) and non-
dispersive equations (De Saint Venant family), that are 
easier to deal with. 
The hydrostatic pressure distribution hypothesis seems to 
be not too strong in river hydraulics problems, so De Saint 
Venant equations have been widely applied in numerical 
schemes, particularly in combination with finite volume 
methods (FVM) for the numerical solution of the 
differential equations. The valuable results obtained, show 
that these schemes are a good compromise between 
accuracy and simplicity (e.g., Hervouet, 2000, Valiani et 
al., 2002, Begnudelli and Sanders, 2007, Liao et al., 2007, 
Shi and Nyugen, 2008, Gallegos et al., 2009, Bosa and 
Petti, 2011). 
SWE are based on constant horizontal velocity distribution 
over the water depth. Thus, a further effort in the 
development of numerical models could be the introduction 
of a variable velocity distribution over the water depth. One 
way to deal in this direction is to consider a multi-layer 
distribution: the pressure distribution is still hydrostatic, but 
each layer is characterized by its own velocity, constant 
over the layer itself (e.g. Audusse, 2005, Bouchut and 
Zeitlin, 2010, Spinewine et al., 2011). 
The paper is organized in the following manner. The 
governing equations are deduced in the following section 
and the adopted numerical scheme is presented. After that, 
the model is applied to some benchmark problems, divided 
between static tests and dam break tests. Finally, the results 
are discussed and compared with exact solution or with 
reference solution proposed in the literature. 

Numerical model 

Governing equations 

With reference to a generic multi-layer problem, as 
depicted in Figure 1, the one-dimensional multi-layer 
shallow water equations can be derived applying the 
physical principles of mass and momentum conservation to 



a control volume that include an infinitesimal stretch of 
generic layer l. 

In this paper, the equations are developed for inviscid flow, 
thus all flow resistances are neglected. Moreover the fluid 
is considered to be the incompressible and the layers are 
non-miscible. The usual approximation is adopted of mild 
bottom slope and gradually varying layer water depth. 
Under these assumptions, continuity equation for layer l is: 
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being (t, x) temporal and horizontal spatial coordinate, hl 
water depth of layer l and Ul mean flow velocity of layer l 
in x- direction. 

 

Figure 1. Subdivision of water depth in m layers and a 
detail of momentum equation on a generic control volume. 

Momentum equation along x- direction can be written on 
the considered control volume (Figure 1) as: 
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being dI, M, and Π the component in x direction of the local 
inertia, the momentum and the hydrostatic force on the face 

orthogonal to x axis; dΠL and dΠH are the hydrostatic 
forces acting on the lower and higher faces of the control 
volume; zb is the bottom height. 

The forces Π, dΠL and dΠH are evaluated by means of the 
hydrostatic pressure; thus, with some algebraic 
manipulation (Bouchut and Zeitlin, 2010), momentum 
equation becomes: 
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being g the gravity acceleration and ρj the density of layer j 

and m the total number of layers. 

Finally the system of equations that describes the motion of 
the fluid is: 
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(4) 

The structure of equation (4) is very similar to the one of a 
single layer system: 
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with h water depth and U mean velocity of the flow in x- 
direction. This fact suggests to introduce a new variable 
associated to layer l, zvl, that acts as a virtual topography 
(Bouchut and Zeitlin, 2010): 
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As underlined in equation (6) the virtual topography 
depends on the layer l, and on (x, t) coordinates. It takes 
into account the bottom height and the pressure-driven 

terms arising from dΠL and dΠH. Hence, with the 
introduction of zvl, equation (4) becomes: 

( )2 2

0

1,...,
/ 2

l l l

l l ll l vl
l

h U h

t x
l m

U h ghU h z
gh

t x x

∂ ∂ + = ∂ ∂ = ∂ +∂ ∂
+ = − ∂ ∂ ∂

 

(7) 

Using the chain rule, it is possible to derive other versions 
of multi-layer SWE, with different level of coupling of the 
pressure-driven terms (Spinewine et al., 2011). Equation (7) 
is characterized by a complete decoupling, with all 
pressure-driven terms on the right hand side of the 
equation. 

This form is particularly attractive, because each layer can 
be solved separately, following the same strategies used in 
the numerical integration of equation (5) and presented in a 
wide literature (e.g. Alcrudo et al., 1993, Toro, 2001, Zhou 
et al., 2001, Liang and Borthwick, 2009). 

Numerical scheme 

Equation (7) is here expressed in a matrix form for a two – 
layer scheme: 
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being χ = ρ2/ρ1. 
The numerical integration is carried out by means of a 
scheme that solves equation (8) for each layer at each time 
step. In this way the pressure-driven term that represents 
the influence of layer 2 on layer 1 (and vice versa) is 
computed in the virtual topography zv1 (zv2), that is 
evaluated at the previous time step. 
The spatial integration domain is discretized in a number of 

cells, being ∆xi = xi+1/2 – xi-1/2 the length of generic cell i. In 
this context, the discretized variable is referred to the cell 
centre, so as an example hl,i

n is the water depth of layer l in 
cell i at the time step tn. 
The time marching formula adopted is first order accurate 
and it can be written in compact form as: 
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The advective fluxes in equation (10) are calculated 
applying the LHLL Riemann solver (Fraccarollo et al., 
2003), that introduces the effect of the bottom slope as a 
correction of the numerical flux, instead of treating it as a 
source term. Here the scheme is extended to incorporate the 
effect of the whole virtual topography in the fluxes. 
The idea behind this solver can be easily explained writing 
the momentum equation for layer l on a control volume that 
includes the discontinuity at i+1/2 (Figure 2). In discretized 
form, the surface elevation and virtual topography are 
actually constant throughout each cell. It can be shown that 
the difference between the dynamic forces acting on the left 
and right hand side of the discontinuity must be equal to the 
thrust term on the step, named D and assumed as: 
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Following Fraccarollo et al. (2003) this can be reached first 
applying a classical HLL solver (Harten et al., 1983): 
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and then computing a correction: 
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Figure 2. Idea behind LHLL solver: momentum equation 
on a control volume across the discontinuity. 

In this way the first component of the flux evaluated 
through LHLL and HLL does not change, as expected, 
being the continuity equation conservative. On the other 
hand side the jump of the second component of the flux 
across the intercell i+1/2 is consistent with equation (11). 
In the original formulation of HLL, SL and SR are the wave 
speed of the left and right wave in the solution of the local 
Riemann problem and can be evaluated using several 
approaches (Toro, 2001). One have to keep in mind that the 
original formulation gives rise to only two waves. 
To keep the bottom height on the left hand side instead of 
in the source term, Fraccarollo et al. (2003) analyze a 
generalized eigenvalue problem that gives origin to three 
waves. So, they consider the eigenvalues associated to the 
leftmost wave evaluated on cell i and i+1 and the minimum 
is chosen to be SL; on the other hand side SR is the 
maximum eigenvalue associated to the rightmost wave 
evaluated on cell i and i+1. 
 
In the same way, in the present formulation, to keep the 
virtual topography term on the left hand side instead of in 
the source term, the characteristic wave speeds should be 
evaluated seeking the eigenvalues on the Jacobian matrix of 



the full coupled equation system. Unfortunately, exact 
eigenvalues of this matrix in the general case cannot be 
found using simple algebraic expression; moreover, they 
may become complex under certain conditions. 
Nevertheless, Spinewine et al. (2011) provide a lower and 
upper bounds of their modulus: 
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Thus, following values are adopted: 

{ }
{ }

min, min, 1

max, max, 1

min 0, ,
.

max 0, ,

n n
L i i

n n
R i i

S

S

λ λ

λ λ

+

+

 =


=


 (17) 

To ensure the C-property to be satisfied, when the local 

velocities approach zero value, the water level (ηl = zvl+hl) 
is used instead of water depth (hl) as the first component of 
Ul in (9). 
Moreover, the method proposed by Liang and Borthwick 
(2009) is used to modify flow variables so as not to induce 
spurious flow in dry areas. 
The resulting numerical scheme is first order accurate both 
in space and time. As the adopted scheme is explicit, the 
usual Courant condition must hold, i.e. 
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with ∆xmin the minimum cell size over the mesh, Smax the 
maximum characteristic wave speed estimated as: 
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For the Courant number Cr, value Cr = 0.5 is adopted in all 
the computations reported hereafter. 

Numerical applications 

The numerical scheme is validated against some benchmark 
tests originally proposed by Spinewine et al. (2011) and 
Bouchut and Zeitlin (2010). 

Static tests 

The first test (ST1) consists of two layers having the same 
density at rest in a 1000 m long horizontal channel. The 
initial conditions are characterized by a free surface located 
10 m over the bottom height and a discontinuity in the 
layers depth at x = 500 m. In this test the exact solution is 
the same as the initial condition, due to the constancy of 

fluid density. The cell size is ∆x = 1 m; the results after 500 
s are shown in Figure 3. 
In the second static test (ST2) two layers of the same 
density are at rest over a 1000 m long piecewise horizontal 
channel, with a bottom discontinuity at x = 500 m. Initially, 
the free surface and the interface between the layers are 

horizontal. The cell size is ∆x = 1 m; the results after 500 s 

are shown in Figure 4. Also in this test the exact solution is 
the same as the initial condition, nevertheless, unlike ST1, 
here the numerical results manifest a spurious oscillation at 
the discontinuity. 

 

 
Figure 3. Numerical solution of ST1 after 500s. 

 
Figure 4. Numerical and exact solution of ST2 after 500s. 

Dam break tests 

In the following, six dam break tests are presented (DB1 to 
DB6). All of them are characterized by a horizontal bed 
with height zb and length L; the initial discontinuity is 
located at x = x0. The initial depth of the layers is h1L and 
h2L on the left hand side of the channel and h1R and h2R on 
the right hand side. The initial velocities are equal in both 
layers and are zero everywhere with the only exception of 

test DB5. The ratio of the fluid densities is χ. The grid size 

is ∆x and the duration of the simulations is tmax. The data 
used in all dam break tests are summarized in Tables 1 and 
2 and in Figure 5. 
The results of DB1 and DB2 (Figures 6 and 7) show a very 
good agreement with exact solution in the free surface, 
while the sharp discontinuity at the interface between layer 
1 and 2 is slightly smoothed in both tests. This could be 



ascribed to the fact that the numerical scheme adopted is 
still first order accurate in space. 

Table 1. Setup data of dam break tests. 

test zb (m) L (m) x0 (m) χ (-) tmax (s) ∆x (m) 
DB1  0.000 1000 500 1 25 0.1 
DB2 -0.357 10000 5000 1 800 1 
DB3 -0.357 10000 5000 0.05 800 1 
DB4 -0.357 10000 5000 0.2 800 1 
DB5  0.000 1 0.5 0.98 0.05 0.01 
DB6  0.000 10 5 0.7 1 0.02 

Table 2. Initial conditions of dam break tests. 

test h1L 
(m) 

h1R 
(m) 

h2L 
(m) 

h2R 
(m) 

U1L = U1R = U2L 
= U2R (m/s) 

DB1 0 1 10 0 0.0 
DB2, 

DB3, DB4 
0.357 0.357 1 0 0.0 

DB5 0.5 0.45 0.5 0.55 2.5 
DB6 0.2 1.8 1.8 0.2 0.0 

 
Figure 5. Symbols used to describe the initial conditions of 
dam break tests. 

 
Figure 6. Numerical and exact solution of DB1. 

DB3 does not have an exact solution, thus as a reference 

solution the exact solution for χ = 0 has been chosen 
(Figure 8). From a engineering point of view, this means 

that ρ1 » ρ2, i.e. layer 1 can be considered at rest and layer 2 
moves on it, thus this represents a dam break of layer 2 
over a fixed bed made by zb + h1. The numerical result 

obtained with χ = 0.05 approaches the reference solution, 

with a deviation probably due to the fact that χ ≠ 0. 
 

 
Figure 7. Numerical and exact solution of DB2. 

 
Figure 8. Numerical and reference solution of DB3. 

Test DB4 represent a middle ground between test DB2 and 

test DB3, with χ = 0.2. Thus, in Figure 9 the numerical 
results are depicted together with both reference solutions 

(χ = 1 and χ = 0). As expected, numerical results fall in 
between the results of DB2 and DB3, according with 
Spinewine et al. (2011). 

The results of tests DB5 and DB6 are depicted in Figures 
10 and 11 as the interfaces between layer 1 and 2, together 
with the reference solutions proposed by Bouchut and 
Zeitlin (2010). Again the sharp discontinuity of the 
reference solution is smoothed by the first order numerical 
scheme, nevertheless, the trend of the solution in its 
substance is well represented, with no sensible spurious 
oscillations. 

 



 

Figure 9. Numerical and reference solutions of DB4. 

 

Figure 10. Numerical and exact solution of DB5. 

 

Figure 11. Numerical and exact solution of DB6. 

Conclusions 

In the present paper the multi-layer De Saint Venant 
equations were developed. Their particular structure is very 
similar to single-layer De Saint Venant equations, with a 

virtual topography to account not only for the bottom 
height, but also for the pressure due to the above and below 
layers. 
This suggested the possibility to approach the numerical 
integration of multi-layer De Saint Venant equations with 
techniques, similar to those applied to single layer 
problems, that have been widely tested in the reference 
literature. In this way a numerical scheme was developed 
for the two-layer case, with particular care to the treatment 
of the source term due to the virtual topography. 
The derived numerical model was applied to some 
benchmark tests and the results show a good representation 
of physical problems, with some difficulties reproducing 
sharp discontinuities, probably due to the fact that the 
scheme is still first order accurate. 
Thus, further developments can be addressed to the 
implementation of second order accuracy both in space and 
time. 
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