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Abstract 

This work deals with gravity currents moving on upsloping 

beds investigated by both experimental and numerical 

simulations. Laboratory experiments were realized by the 

lock exchange release technique in a Perspex tank of 

rectangular cross section, divided into two reservoirs by a 

vertical removable gate, one filled with colored salty water 

and the other one filled with clear fresh water with a lower 

density. When the gate is removed, the dense fluid 

collapses developing a gravity current under the 

surrounding fluid. Different values of the bed’s slope were 

tested. Each experiment was recorded by a CCD camera 

and an image analysis technique, based on the threshold 

method, was applied to measure the space-time evolution of 

the current’s profile and the time history of the front’s 

position. Numerical simulations were carried out using a 

two-layer shallow water model, which accounts for both the 

free surface and the mixing between the two fluids. Two 

different relations are used to model the entrainment: the 

formula suggested by Adduce et al. (2012) and the formula 

of Cenedese & Adduce (2010). A comparison between 

numerical and experimental results was performed. 

Numerical simulations performed with Adduce et al. (2012) 

formula show a better agreement with the experimental 

results, if compared with the simulations using Cenedese 

and Adduce (2010) relation. In addition numerical 

simulations show, near the lock, an area in which the 

gravity current’s velocity is negative, i.e. the dense fluid is 

moving downslope.  

Introduction 

Gravity currents are caused by a density gradient between 

two fluids and occur both in natural and in industrial flows. 

The driving force can be due to a dissolved solute (i.e. salt 

in the sea), to a difference of temperature, or to the presence 

of suspended sediments. Examples of gravity currents are 

given by avalanches, turbidity currents, pyroclastic flows, 

lava flows, sea-breeze and salt wedge propagation 

(Simpson, 1997).  

Gravity currents were investigated by both laboratory 

experiments and numerical simulations. Models based on 

the shallow-water theory (Rottmann & Simpson, 1983; 

Shin et al., 2004; La Rocca et al., 2008; Adduce et al., 

2012) were often used to simulate gravity currents. 

Rottmann & Simpson (1983) studied gravity currents by 

laboratory experiments and compared measurements with 

numerical solutions of the shallow water equations for a 

two-layer fluid bounded at top and bottom by rigid 

horizontal planes and at one end by a vertical wall, 

neglecting mixing effects between the two fluids. Benjamin 

(1968) developed a theory for the propagation of a steadily 

advancing current and focused the attention on the 

importance of dissipation in gravity current dynamics. Shin 

et al. (2004) provided a theory based on the energy-

conserving flow that is in agreement with their 

experiments, and showed that dissipation is not important at 

high Reynolds numbers. La Rocca et al. (2008) studied the 

dynamics of 3D gravity currents on smooth and rough beds 

by lock exchange experiments and numerical simulations, 

performed by a shallow water model with immiscible 

liquids. Adduce et al. (2012) performed lock exchange 

experiments on a flat bed and compared experimental 

results with numerical simulations obtained by a two-layer, 

shallow water model accounting for both the free surface 

and entrainment. Turner (1986) entrainment relation, was 

modified by Adduce et al. (2012) in order to activate the 

mixing for the simulated gravity currents. 

The aim of this paper is the investigation of gravity currents 

moving on upsloping beds by both laboratory experiments 

and numerical simulations. Four different bed’s slopes were 

investigated by laboratory experiments and two different 

entrainment relations were tested in the numerical 

simulations.  

Experimental apparatus 

The experiments were conducted at the Hydraulics 

Laboratory of the University of Rome “Roma Tre”, in a 

Perspex tank of rectangular cross-section, 3.0 m long, 0.3 m 

deep and 0.2 wide. The tank was divided in two parts by a 

vertical sliding gate placed at the distance x0 from the left 

end wall of the tank, as shown in Figure 1. The left part of 

the tank was filled with salty water with an initial density 

ρ01, while the right part was filled with tap water with 



density ρ2 and ρ01>ρ2. The depth of the two fluids at the 

gate was h0. The experiment starts when the gate is 

removed, the salty water flows under the lighter fluid and 

the gravity current develops. The experiment stops when 

the gravity current reaches the right end wall of the tank. 

Such experimental technique is called “lock exchange 

release”. Density measurements were performed by a 

pycnometer and a small quantity of dye was dissolved into 

the salty water to allow the visualization of the gravity 

current during the experiments.  

Each experiment was recorded by a CCD camera, with a 

frequency of 25 Hz, and an image analysis technique, based 

on a threshold method,  was applied to measure the space-

time evolution of the gravity current’s profile. The 

conversion factor pixel/cm was obtained using a rule placed 

along both the horizontal and vertical walls of the channel.  

Four experiments were performed keeping constant 

ρ011060 kg/m
3
, ρ2=1000 kg/m

3
, h0=0.15 m, x0=0.1 m and 

by varying the angle θ between the bed and the horizontal, 

as it is shown in Table 1, where negative values of θ are 

referred to upsloping beds. The values of θ investigated 

were: +0.00°, -1.14°, -1.39° and -1.52°. θ=-1.39° is the 

“critical angle” for ρ011060 kg/m
3
 (Run 3), i.e. the angle 

for which the gravity current reaches the right end wall of 

the tank with a front’s speed close to zero. The subcritical 

angle is defined as the angle for which the gravity current 

reaches the right end wall with a front’s speed higher than 

zero (as in Run 2), while the supercritical angle is defined 

as the angle for which the current doesn’t reach at all the 

right end wall of the tank (as in Run 4).  

Table 1: Experimental parameters 

RUN ρ01[kg/m
3
] θ [°] Angle 

1 1059.56 +0.00 0 

2 1059.72 -1.14 subcritical 

3 1059.75 -1.39 critical 

4 1059.72 -1.52 supercritical 

 
Figure 1: Sketch of the tank used to perform lock release 

gravity currents. 

 

 

 

Mathematical model 

A two-layer, 1D, shallow-water model was used to simulate 

gravity currents. Gravity currents frequently develop along 

the longitudinal direction, so that the ratio between the 

depth and the length of the current is small enough to allow 

the application of the shallow water theory. Previous papers  

investigating gravity currents by shallow water equations 

(Rottman & Simspon, 1983; Sparks et al., 1993; Hogg et 

al., 1999) assumed a steady free surface, while in the 

present work this hypothesis has been removed in order to 

have a more realistic solution, by modeling the space-time 

evolution of the free surface. 

The mathematical model takes also into account the mixing 

between the two fluids. The entrainment at the interface, 

due to a mass transport from the lighter fluid to the heavier 

one, causes a decrease of the density of the gravity current. 
The entrainment between the two fluids was modeled by 

both a modified Turner’s formula (1986), as in Adduce et 

al. (2012), and Cenedese & Adduce (2010) formula. Figure 

2 shows the frame of reference used in the model. 

 

Figure 2: Frame of reference used in the mathematical 

model. 

A 1D gravity current moving on a bed with a sloping angle 

θ is considered. For the mathematical model, negative 

values of θ are referred to upsloping beds. The heavier 

current of height h1 and density ρ1 flows below the lighter 

one of height h2 and density ρ2. Applying the principle of 

mass conservation and projecting along the x-axis the 

momentum equations, the following hyperbolic system of 

four partial differential equations is obtained: 

 
 
 
 
 
 

 
 
 
 
 
       

  
   

         

  
     

       

  
 

         

  
       

   

  
       

 
  

      
         

  
 

  
 

 
  

       
    

   

  
       

 
  

              
  

 

 
  

       
    

  
(1) 

where the unknown quantities h1, h2, V1 and V2 are the 

depth and the velocity of the lower and the upper layer, 

respectively. Ve is the entrainment velocity, 1b is the shear 

stress caused by the bottom and side walls for the lower 

layer, 2b is the shear stress caused by the side walls for the 

upper layer and 12 is the shear stress at the interface 

between the two fluids. 1b and 2b are modeled by Darcy-



Weisbach’s formula as in La Rocca et al. (2008) and 

Adduce et al. (2012): 

 
        

      

 

     

 

        

      

 

   

 
   

  
(2) 

 

where B is the width of tank; 1 and 2 are the friction 

factors for the lower and upper layer, respectively. The 

definition of i, i.e. the friction factor for the i
th

 layer, was 

given by Colebrook (1939) for the transition between 

laminar and turbulent flow: 

         
   

    
 
 

       
   

    
  

(3) 

where i, Rei and /hi are the friction factor for turbulent 

rough flows, the Reynolds number and the relative 

roughness of the ith layer, respectively. The value of 

=2∙10
-5 

m for both the bottom and sidewalls’ roughness 

was used. i and Rei are defined as: 
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where i is the kinematic viscosity of the i
th

 layer. Equation 

(3) shows that the term  iih Re8  adapts the friction 

factor for turbulent rough flows to turbulent transition 

flows. In the performed experiments turbulent transition 

flows develops. 

The shear stress at the interface between the two fluids is 

defined as: 

       

     

 

              

 
 

(6) 

where λ12 is the friction factor at the interface between two 

different fluids. Adduce et al. (2012) used a constant value 

λ12 = 0.24 for their simulations, while in this study the 

definition of λ12 is improved and expressed as a function of 

Rei and given by: 

       
      

             
 

(7) 

where λ
”
<λ

’
. All the parameters of relation (7) were 

calibrated and the following values were obtained: λ
’
=0.24, 

λ
”
=0.19, Re0=6000.  

In this paper two different entrainment relations were 

tested: Adduce et al. (2012) relation and Cenedese and 

Adduce (2010) relation. As discussed in Adduce et al. 

(2012), Turner (1986) formula, widely used to parametrize 

mixing, cannot be used to model entrainment for gravity 

currents produced by a lock exchange, then some 

modifications to Turner (1986) relation were adopted. 

Following Adduce et al. (2012) the entrainment parameter 

is modeled by: 

  
  

       
 

     
 

   
   

 
(8) 

where Ve is the entrainment velocity, k is a dimensionless 

coefficient. The entrainment velocity increases as k 

increases. The calibration value k=0.95 supplies a correct 

evaluation of the gravity current’s depth and a good 

simulation of the front’s speed of the gravity current. Fr1 is 

the Froude number of the gravity current, defined as: 
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The numerical simulations obtained using the entrainment 

formula (8) are compared to those obtained by Cenedese & 

Adduce (2010) entrainment formula, given by: 

  
  

       
 

         
 

                  
 

 
(10) 

where: 

     
 

   
  

 

   
 
  

(11) 

The dimensionless coefficients obtained by Cenedese & 

Adduce (2010) are: Min=410
-5

, A=3.410
-3

, Fr0=0.51, 

α=7.18, Max=1, B=243.52 and β=0.5. Such parameters are 

based on both experimental data and oceanic 

measurements, as discussed in details in Cenedese and 

Adduce (2010).  

The mathematical model was numerically solved by an 

explicit Mac-Cormack’s finite difference scheme with a  

predictor-corrector scheme, that assures a high scheme’s 

stability by using modest computing resources

  



Results and discussion 

Figure 3 and Figure 4 show the comparison between the 

images acquired by the camera and numerical profiles at 

four different time steps after release for Run1 and Run2, 

respectively. Dashed-dotted lines indicate numerical 

simulations performed with Equation (10) suggested by 

Cenedese & Adduce (2010); white lines stand for the 

simulations carried out by Adduce et al. (2012) relation 

(with k=0.95); dashed lines are the simulations obtained 

neglecting the entrainment, i.e. k=0.0 in Equation (8). The 

effect of mixing is to produce a mass flow from the lighter 

fluid to the heavier one, causing an increase of the height of 

the gravity current and therefore a decrease of both the 

density and velocity of the dense flow. The current’s profile 

simulated with formula (10) is substantially overlapped to 

the simulated current’s profile without entrainment. The 

entrainment relation suggested in Cenedese and Adduce 

(2010) provides very low values of the entrainment 

coefficient (EMin) for the range of Froude numbers 

investigated in the performed experiments (i.e. Fr<1). 

Therefore, as Figure 3 and Figure 4 show, both the 

numerical simulations obtained by neglecting the 

entrainment and the simulations performed with Cenedese 

& Adduce (2010) formula provide a gravity current thinner 

if compared with the simulations with the entrainment 

formula (8). 

Figures 5a-d show a comparison between experimental 

front’s position and numerical simulations performed with 

three different entrainment formulas: Cenedese and Adduce 

(2010); Adduce et al. (2012), i.e. equation (8); no 

entrainment. The length scale is the gate position x0, while 

the time scale t0 is defined as: 
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Where g0' is the initial reduced gravity given by: 

 

 

Figure 3: Comparison between the images acquired by the camera at different time steps for Run 1 and numerical simulations 

with three different entrainment relations: Cenedese and Adduce (2010) (dashed-dotted lines); Adduce et al. (2012) (solid 

lines); no entrainment (dashed lines). 

 

 
Figure 4: Comparison between the images acquired by the camera at different time steps for Run 2 and numerical simulations 

with three different entrainment relations: Cenedese and Adduce (2010) (dashed-dotted lines); Adduce et al. (2012) (solid 

lines); no entrainment (dashed lines).
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A good agreement between experimental data and the 

numerical front’s position, predicted with the Adduce et al. 

(2012) formula, can be observed in Figures 5a-d. For the 

runs performed on upsloping beds, the simulations without 

entrainment agree with laboratory data only for a first 

stage of gravity current’s development. The curve obtained 

by the simulations performed with Cenedese & Adduce 

(2010) formula is again overlapped to the simulations 

without entrainment. 

In order to define the ability of the model in simulating 

gravity currents, a Mean Percentage Error (MPE) was 

computed as: 

    
   

 
  

             

     

 

 

   

 
(14) 

where xnf,j and xef,j are the numerical and experimental 

front position, respectively and N is the total number of 

experimental data. Table 2 shows the evaluated MPE for 

each run. The general trend is that numerical simulations 

with formula (8) are in better agreement if compared to 

both the simulations using formula (10) and the 

simulations without entrainment. When the bed is 

horizontal, the MPE for the three tested entrainment 

relations is low. When the bed is upsloping, the MPE for 

all the simulations with formula (8) is an order of 

magnitude lower than the MPE of the simulations with 

both formula (10) and without mixing. Therefore the 

Adduce et al. (2012) entrainment relation gives good 

results also for the simulation of gravity currents moving 

on upsloping beds.  

Figures 6a-d show the lower layer velocity, i.e. the 

velocity of the dense layer, V1 along x-axis at four different 

time steps after release for Run 2. The simulated velocity 

using  formula (10), i.e. Cenedese & Adduce (2010), are 

again overlapped to the simulated velocity without 

entrainment. Although in Figures 6a-b the three different 

simulations show a similar general trend for V1, in a 

second stage of development (Figures 6c-d), V1 predicted 

by formula (8) is different from both the simulations with 

formula (10) and without entrainment. As it was observed 

in Figures 5a-d, a low entrainment affects numerical 

results only after a first stage of the gravity current’s 

development. Furthermore, numerical simulations 

performed by formula (8), show near the lock an area in 

which the gravity current’s velocity is negative, i.e. the 

dense fluid is moving downslope. Further laboratory 

experiments and measurements of instantaneous velocity 

field will be performed in order to verify the reliability of 

such a backflow visible in numerical results.   

 

 

Figure 5a-d: Dimensionless plots of front position versus 

time for all the performed runs: laboratory measurements 

(circles), simulations with the Cenedese and Adduce 

(2010) formula (dash-dotted lines), Adduce et al. (2012) 

(black lines), no mixing (grey lines). 

 



Table 2: Mean Percentage Error (MPE) for each run 

computed on the basis of Equation (14). 

RUN 

MPE [%] 

Adduce et 

al. (2012) 

No 

mixing 

Cenedese & 

Adduce (2010) 

1 4.30 6.53 6.43 

2 2.91 27.80 27.34 

3 3.21 37.34 36.83 

4 3.48 37.35 36.84 

 

 

Figure 6a-d: Dense layer velocity V1 along x-axis, at four 

different time steps for Run 2, numerical simulations with 

the formula by: Cenedese and Adduce (2010) (dash-dotted 

lines); Adduce et al. (2012) (black lines), no mixing (grey 

lines). 

 

Conclusions 

In this work gravity currents moving on both horizontal 

and upsloping beds are investigated by laboratory 

experiments and numerical simulations. Experimental 

gravity currents are realized by full-depth lock exchange 

release, by changing the bed’s slope. All the experiments 

are recorded by a camera and an image analysis technique 

is applied to measure the space-time evolution of the 

gravity currents. Numerical simulations are performed 

using a two-layer, 1D, shallow-water model, taking into 

account the free-surface and the mixing occurring at the 

interface between the two fluids. The entrainment at the 

interface between the gravity current and the surrounding 

fluid is modeled by two different formulas: Adduce et al. 

(2012) entrainment formula, and Cenedese & Adduce 

(2010) entrainment relation. The comparison between 

numerical and experimental results shows that the model 

using Adduce et al. (2012) formula is a valid tool to 

reproduce the dynamics of lock release gravity currents 

moving on both horizontal and upsloping beds. The 

calibration parameter k used in Adduce et al. (2012), for 

gravity currents moving on horizontal beds, is lower than 

value of k proposed in the present work. This behavior 

could be due to the empirical nature of the entrainment 

relation used, which needs a higher value of k to have 

good simulations of gravity currents moving on upsloping 

beds. 
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