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Abstract 

An accurate determination of variably saturated seepage 

flow through earth embankments is an important 

engineering task. Numerous approaches exist solving the 

highly non-linear Richard's equation for this task, typically 

based on Finite-Element or Finite-Difference formulations. 

Recently, a modeling approach using the Lattice-

Boltzmann method (LBM) for the Richards equation was 

presented and validated on simple test cases. Models based 

on the LBM have advantageous characteristics concerning 

simplicity, complex geometries, parallel efficiency and the 

possibility to easily extend the model framework to other 

flow processes, making it suitable for coupled simulations. 

In this work the LBM is applied for the Richard's equation 

in 2D and 3D on structured meshes. Different formulations 

of the Richard's equation based on the moisture content and 

the pore pressure are used. Two types of retention models 

after Brooks-Corey and Van Genuchten are implemented. 

The applicability of the approach is investigated using 

idealized test cases and scenarios concerning small-scale 

and large-scale embankments. The results are compared to 

selected analytical, experimental and numerical results. 

 

Introduction 

Seepage analysis is an important part of geotechnical 

engineering and is required for design and stability 

evaluations of earth embankment structures. It is well 

known that slope stabilities of river dikes or earth dams 

depend on the pore pressure distributions within the 

saturated and unsaturated zones of the embankment body. 

Often seepage analysis is performed solving the 

groundwater equations for subsurface flow with a free 

surface. However, in such approaches flow in the 

unsaturated zones is neglected and it is difficult to model 

water infiltration into the embankment body. 

In contrast, solving the Richard's equation accounts for the 

unsaturated zone and allows an accurate modeling of water 

infiltration. Constitutive models consisting of a retention 

curve and a relative hydraulic conductivity function allow 

approximating the multi-phase flow in the unsaturated zone 

with a single differential equation. Thereby the assumption 

is made that the air phase is always continuous and at 

atmospheric pressure, which is often said to be accurate 

enough for most practical applications (e.g. Lam et al. 

1987). 

The numerical solution of the Richard's equation is a 

challenging task due to strong non-linearities introduced by 

the constitutive models. Additionally, at the interfaces 

between different soils in heterogeneous embankments, 

steep jumps and abrupt changes in the variables may occur. 

Many models were presented in the past solving the 

Richard's equation based on Finite-Difference or Finite-

Element methods and showed good results. A novel 

application of the Lattice-Boltzmann method on the 

Richard's equation was recently presented by Ginzburg et 

al. (2004) and Ginzburg (2006), basing on a LBM approach 

for generic anisotropic advection-dispersion equations. The 

application of the LBM has some advantages which can 

make it an interesting alternative choice compared to 

classical continuum approaches. The method is simple and 

easy to implement and it allows the modeling of complex 

geometries using bounce-back boundaries. Also, the 

method is local and therefore suited well for parallelization. 

Furthermore, it can be applied to a variety of other flow 

equations with rather small modifications in the modeling 

framework. 

Ginzburg adapted solution strategies for advection-

diffusion problems to different formulations of the 

Richard's equation, like the moisture  formulation and 

mixed moisture-pressure head -h  formulation. The 

method was validated on idealized test cases with simple 

geometries. Since no other applications of this method are 

known to the author up to now, there is need for additional 

tests and applications on realistic scenarios with more 

complex geometries. The applicability of the method on 

variably saturated flow is investigated here with a focus on 

flow through earth embankments. The applications concern 

small-scale and large-scale geometries as well as 

homogeneous and heterogeneous embankments. The model 

results are compared against analytical solutions, 

experimental measurements and other numerical results. 



Physical description 

Richard's equation 

The Richard's equation is a non-linear partial differential 

equation, which can be formulated in form of an advection-

diffusion equation. The soil moisture content  [-] in the 

equation is defined as the effective water saturation 

0( ) / ( )R S R , with 0  = water content, R  

= residual water content and S  = saturated water content 

(=porosity). The other main variable is the pore pressure of 

the water within the embankment body which is described 

in a pressure head formulation as / ( )h p g  [L]. 

 

The Richard's equation is applied in a moisture formulation 

for  as primary variable as 

( )

.
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It is used in a mixed moisture and pressure head 

formulation for  and h  as 

( )

,
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where D  is a diffusivity and K  is the conductivity which 

is calculated as ( )r fK k k , being the product of the 

dimensionless relative conductivity rk  [-] and the hydraulic 

soil conductivity fk  [L/T]. These formulations of the 

Richard's equation are made dimensionless for the 

computations using the cell size x  as length scale and 

/x t  as velocity scale, leading to a "mesh speed" of 

1c  in the LBM. 

Following Ginzburg, the primary variable  is used for the 

unsaturated zone as well as for the saturated zone. 

Therefore the retention curve ( )h f , which is defined 

for the unsaturated zone only, is extrapolated linearly into 

the saturated zone as 

1

( ) ( 1) 1.0,s
h

h h  (3) 

with /h  being the gradient of the retention curve at the 

transition to the saturated zone ( 1.0 ) and sh [L] being 

the air entry pressure head, at which air can enter the pores 

when the soil is drained. This approach has the advantage 

that no special treatment and no change of variables 

regarding the saturated/unsaturated zones are necessary. 

However, it leads to an artificial compressibility error in 

unsteady simulations. This error is neglected here, but can 

be reduced using sub-iterations (Ginzburg et al. 2004). 

Retention curves 

Empirical closures for the retention curve ( )h f  and the 

relative permeability function ( )rk f  are required to 

solve the equation. The retention function in soil sciences 

describes how much water is retained in the soil by the 

capillary pressure and can be seen as a description of the 

pore distributions of the soil. The relative conductivity 

function describes the water mobility within the unsaturated 

zone depending on the moisture contents and equals 1.0 in 

the saturated zone. Two different empirical relationships 

are employed here, the approach after Brooks-Corey and 

Mualem (1976, BCM) and a modified version of the Van 

Genuchten and Mualem model (1980, VGM). 

For the BCM model the following relations are used 
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with  [-] being a soil parameter. For the modified VGM 

model the functions and derivate are as follows 
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with 1/( ) 1 mx x  and   1 1 /m n . The 

constants  [1/L] and n [-] describe the soil properties. 

The modified Version of the VGM model is used instead of 

the VGM model in order to prevent infinite slopes /h  

at the transition to the saturated zone. 

 

Lattice-Boltzmann Method 

Introduction 

The LBM is a mesoscopic modeling approach which is 

positioned in between microscopic, particle-based 

dynamics and macroscopic continuum approaches. The 

Boltzmann equation is formulated for a probability 

distribution function ( , )f r t  of particles in the phase-space 

r(x, v) . It represents the distribution of particles at time t  

with locations and velocities in between r  and r r . 

The LBM solves the Boltzmann equation in a discrete form 

on a uniform mesh. Mainly three computational steps are 

applied, whereas the first two steps are similar to particle-

based approaches: 



 propagation of f  from cell to cell, 

 collision operator of f  within the cells, and 

 update of the macroscopic variables. 

The collision operator is approximated using the BGK 

(Bathnagar, Gross & Krook) approach which assumes a 

relaxation of f  towards an equilibrium distribution 

function eqf . The macroscopic variables of interest can 

finally can be derived from the distribution function f . 

The LBM can be applied for the solution of different types 

of macroscopic governing equations by using different 

equilibrium functions. Important application fields are e.g. 

the Navier-Stokes or shallow water equations. Also, several 

approaches solving the advection-diffusion equation were 

proposed in the past (e.g. Flekkoy 1993, van der Sman & 

Ernst 1999, Ginzburg 2005). The present work bases on a 

recent adaptation of such an advection-diffusion LB scheme 

to the Richard's equation. 

The discrete Boltzmann equation for the spatial mesh 

directions q  reads 

( , )

          ( , ) ( ,, ) ( , )
q q

eq
q q q q

f r tc t t

f r t f r t f r t Q
 (6) 

with a single time relaxation parameter  for the collision 

operator, being determined as a function of the diffusivity 

D  as 1.0 / ( / 0.5)sD c . The diffusivity is 

determined for the  formulation as ( /)r sD k k h  

and for the mixed -h  formulation as ( )r sD k k . The 

variable qQ  on the right hand side is an external source for 

modeling water infiltration into the embankment. 

The uniform mesh is constructed with quadratic cells in 2D 

or cubic cells in 3D using a set of q  discrete velocities qc  

which connect the grid cells with each other. In 2D 

simulations a mesh with 9 different directions is used 

(2DQ9) and in 3D simulations 15 different directions are 

used (3DQ15). The directions of the q  discrete velocities 

(see Figure 1) are set in 2D and 3D as 

(0, 0), ( 1, 0), ( 1, 1), (0, 1)                          ( 2 9)

(0, 0, 0), ( 1, 0, 0), (0, 1, 0), (0, 0, 1), ( 1, 1, 1) ( 3 15)

D Q

D Q
e  (7) 

 
Figure 1: 2D lattice with 9 and 3D lattice with 15 directions 

Equilibrium functions 

The equilibrium function for the  formulation is given in 

first order accuracy by 

2
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where 2 /sc c  with  being a free constant. The 

constant  is 5/3 for 2D simulations and 7/3 for 3D 

simulations. The method is local because the equilibrium 

function needs no information from neighboring cells. This 

is an advantageous property especially regarding the 

parallelization of the code. 

Accordingly, the equilibrium function for the mixed -h  

formulation is 

2
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In contrast to the  formulation, the mixed -h  

formulation is able to reproduce the continuous transition of 

the pressure head at the interface of different soils. 

Therefore, the mixed -h  formulation should be applied 

in cases of heterogeneous embankments with core and filter 

zones. The  formulation, however, has advantageous 

stability conditions for imbibition problems (Ginzburg 

2006) and as such is recommended for use in case of 

homogeneous embankments. 

The weighting factors qt  for the lattice directions q  can be 

derived for the chosen lattice configuration. The values for 

the 2DQ9 and 3DQ15 models are given in Table 1. 

Table 1: Lattice weighting coefficients for directions q  

q  qt  (D2Q9) q  qt  (D3Q15) 

1-4 1/3 1-6 1/3 

5-8 1/12 7-14 1/24 

 

To calculate the equilibrium functions given above, the 

advective, gravitational term I , which acts in vertical 

downward direction, is needed and can be evaluated as 

( ) .r s zI k k e  (10) 

Derivation of macroscopic values 

Using these relationships and the retention curves, the 

Boltzmann equation is solved by applying the propagation 

and collision steps mentioned above. The update step, i.e. 

the derivation of the macroscopic variables , h  and the 



Darcy velocity fv  from the distribution functions qf , can 

finally be done with following relations: 
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Boundary and initial conditions 

At the mesh boundaries the values of the distribution 

function qf  in the incoming directions are unknown and 

must be provided. 

 For solid walls standard bounce-back boundaries are 

used. The unknown incoming distribution functions qf  

thereby are set equal to the outgoing values to simulate 

wall reflection. Using this type of boundary condition 

allows incorporating even complex boundaries. It is 

thus possible to easily integrate piling walls or 

impervious zones and it seems suitable for embankment 

breach simulations with complex and dynamically 

changing geometries. 

 A water column above the embankment is modeled 

using a pressure boundary, thereby presuming a 

hydrostatic pressure distribution. Equilibrium 

conditions are assumed at the boundary which allows 

calculating the values for the incoming directions ( qf  = 
eq
qf ). 

 The seepage flow out of the embankment is modeled 

with a combined approach. In the saturated zone 

( 1.0 ) a constant saturation of 1.0 is set at the 

boundary cells. In the unsaturated zone ( 1.0 ) a 

bounce-back or zero gradient boundary is used. The 

zero gradient boundary sets the incoming values of qf  

to the values of the corresponding neighboring cell. 

The exact treatment of sloped or curved boundaries may 

become difficult, especially in 3D. Here, for simplicity, the 

sloped embankment faces are approximated using a series 

of steps using reflection angles of 0°, 45° or 90°. These 

simplifications can reduce the numerical accuracy in the 

vicinity of the embankment faces. More accurate boundary 

treatment schemes can be implemented alternatively (e.g. 

Ginzburg & d'Humières 1996, Mei et al. 1999) if higher 

accuracies are needed. 

As initial conditions, the pore pressures or saturations in the 

domain can be given. The initial distribution functions are 

then set equal to the corresponding equilibrium values ( qf  

= eq
qf ) assuming equilibrium conditions. 

Tests & Applications 

Confined, saturated flow 

As a first test case a steady-state subsurface flow on a 

quadratic mesh of 1x1 m is selected with a cell size of x  

= 0.01 m. The soil's hydraulic conductivity is set to ,f wk  = 

0.001 m/s in the west part of the domain and to ,efk  = 5E−4 

m/s in the east part of the domain. At the west boundary a 

hydrostatic pressure head of wh  = 5 m is set and at the east 

boundary eh  = 2 m. The other boundary cells are treated as 

bounce-back boundaries. The constant  is set to 3. This 

configuration results in a confined subsurface flow with 

constant pressure gradients and velocity field. The obtained 

results are illustrated in Figure 2 (left). 

 
Figure 2: Saturated flow through layered domain (left). 

Using the mixed -h  formulation the model is able to 

correctly reproduce the continuous transition of the 

pressure at the interface of the two soils. The pressure 

gradients as well as the velocities are constant and equal the 

analytical solutions ( fv  = 0.002 m/s, / wh x  = −2.0, 

/ eh x = −4.0). 

Soil infiltration 

The second test case investigates unsteady flow within the 

unsaturated zone. In this example the downward infiltration 

of water into a clay soil is considered using a 1x1 m domain 

with x  = 0.01 m and t  = 1.0 s. This example was 

investigated with a FE-model (HYDRUS) in the work of 

Vogel et al. (2001) and was already used by Ginzburg et al. 

(2004) as validation example for the LBM approach. 

Therefore this test case is not described in detail here. 

The propagation of the infiltration front is reproduced well 

using this approach. Comparisons with the results obtained 

by the FE-model show negligible differences and confirm 

the results previously obtained by Ginzburg. 

Flow through small-scale embankment 

In this setup the 3D unsteady seepage flow through a 

laboratory dike is modeled. The experimental investigations 

were made at the TU Berlin (see Pham Van (2009) for 

details). The homogeneous dike is 0.6 m high, 4.0 m long 



and 0.4 m wide. The sand dike material has a hydraulic 

conductivity of fk  = 9.5E−4 m/s1, a saturation moisture 

content of S  = 0.49 and a residual water content of R  = 

0.01. As initial state the measured water content of 0  = 

0.115 is applied and the air entry pressure is set to sh  = 

−0.035 m. The computational time step is set to t  = 0.5 s 

and x  = 0.01 m. At the upstream embankment slope a 

time dependent pressure boundary is applied, according to 

the rising water level in the experiment. At the downstream 

embankment slope a seepage boundary is set. The VGM-

model is used with  = 14.5 1/m and n  = 2.68 for sand 

material. This and the following VGM parameters were 

chosen with respect to the listed values in Vogel et al. 

(2001). In this case the VGM model shows to be more 

stable than the BCM model. Since the dike is 

homogeneous, the  formulation is used with  = 30. 

Figure 3: Cross sectional view of measured (dashed) and 

simulated (bold) temporal development of seepage front. 

Measured and simulated results are depicted in Figure 3. 

The temporal development of the saturation front is in good 

accordance between measurement and simulation 

throughout time and the model runs stable. 

Flow through large-scale embankments 

To test the model on large-scale scenarios, two model 

configurations are chosen from Bowles (1994). These test 

cases concern steady state conditions in a homogeneous and 

a heterogeneous embankment and were recommended as 

tests for variably saturated seepage modeling in Chapuis et 

al. (2001). 

Homogeneous embankment 

The first test in Bowles (9-5a) regards an embankment of 

100 m length, 20 m height and a crest length of 10 m 

ranging from x  = 50-60 m (Fig. 4). The embankment is 

made of homogeneous material with a hydraulic soil 

conductivity of fk  = 6.67E−6 m/s and x  = 0.25 m. A 

constant water level is set at the upstream embankment 

slope of h  = 18.5 m and a seepage boundary condition at 

                                                  

1The value given in the reference of fk  = 0.95E−4 m/s is 

supposed to be a typo. 

the downstream embankment slope. The VGM model is 

applied (  = 5.14 1/m, n  = 1.69), which shows again a 

more stable behavior than the BCM model. The air entry 

pressure is sh  = −0.05 m and the  formulation is used 

with a value of  = 100. 

Figure 4: Steady seepage flow through homogeneous, 

large-scale embankment (9-5a in Bowles). 

The total specific seepage rate per unit width at the 

downstream embankment slope was estimated by Bowles 

to Q  = 2.13E−5 m2/s, neglecting flow in the unsaturated 

zone. Numerical simulations with FE models led to values 

of Q  = 2.35E−5 m2/s (Crespo et al. 1993) and Q  = 

2.28E−5 m2/s (Chapuis & Aubertin 2001). Using the LBM, 

a specific discharge of Q  = 2.34E−5 m2/s is obtained 

which compares well to the previous investigations. The 

water table reaches the air side of the embankment at an 

elevation of about 8.0 m which lies in between the 6.5 m of 

Bowles (1994) and the 9.0 m of Chapuis & Aubertin 

(2001). 

Heterogeneous embankment 

The second test in Bowles (9-5b) regards a heterogeneous 

embankment of 190 m length, 45 m height and a crest 

length of 10 m ranging from x  = 90-100 m. The dam 

material has a hydraulic conductivity of fk  = 2E−7 m/s and 

a filter zone is installed at the right embankment toe with a 

hydraulic conductivity of fk  = 1E−4 m/s. The cell size is 

set to x  = 0.5 m and sh  = −0.03 m. A pressure boundary 

with a constant water level is set at the upstream 

embankment slope of h  = 40 m and a seepage boundary 

condition at the downstream embankment slope. The other 

boundary cells are treated as bounce-back boundaries. 

Again the VGM retention model is applied (embankment 

material:  = 2.0 1/m, n  = 1.41; filter material:  = 14.5 

1/m, n  = 2.68). Here, the mixed -h  formulation is 

chosen since the embankment is heterogeneous and a 

constant  = 1000 is used. 

 

The pressure continuity at the interface between the 

different soil materials is correctly reproduced (Figure 5). 



 
Figure 5: Steady seepage flow through heterogeneous 

large-scale embankment with toe filter (9-5b in Bowles). 

Further, the seepage line and the pressure distribution 

qualitatively fit the results obtained in the references. The 

modeled specific leakage flow rate per unit width is Q  = 

3.4E−6 m2/s, which is in a reasonable range compared to 

the flow rates of Q  = 3.8E−6 m2/s (Bowles 1994), Q  = 

5.1E−6 m2/s (Crespo et al. 1993) and Q  = 4.23E−6 m2/s 

(Chapuis et al. 20012). 

 

Conclusions and outlook 

In this work a LBM for the Richard's equation was 

implemented and investigated. Ginzburg's derivations and 

approaches using  and -h  formulations were applied in 

2D / 3D in combination with retention models of BCM and 

VGM type. The model was successfully validated against 

several test cases confirming the approach and the 

assumptions made. Model applications on scenarios of 

small-scale and large-scale embankments led to good 

results and were stable over a wide range of parameters. 

The  formulation for homogeneous embankments and the 

VGM retention model thereby showed a more stable 

behavior than the mixed -h  formulation and the BCM 

model. The method is able to deal with realistic geometries 

and seems suitable also for practical engineering 

applications. However, additional tests of the approach 

should be made for realistic scenarios to further investigate 

possible strengths and limitations. 

Enhancements of the model could be a consideration of 

higher order accuracies, sub-iterations, anisotropic 

conditions and more accurate representations of sloped or 

curved boundaries. To further improve the stability for 

heterogeneous embankments, the implementation of a 

variable switching procedure could be an option, whereas 

the -h  formulation is applied in areas with changing soil 

properties and the  formulation otherwise. 

As further steps, the coupling with an embankment breach 

model and the integration into the software BASEMENT 

(Faeh et al. 2011) are planned. An advantageous property 

of the method thereby is its suitability for complex and 

dynamically changing geometries due to the use of bounce-

                                                  

2 The unit given in the reference of m2/min should read m2/s. 

back boundaries. Furthermore, the applied LBM framework 

can in principle be extended to solve also surface water 

flow around or over the embankment structure. This 

provides a promising methodology for coupled subsurface-

surface flow simulations. 

Acknowledgments 

The author thanks the Competence Center Environment & 

Sustainability (CCES) of the ETH Domain for funding the 

research on simulations of embankment breach processes. 

References 

Bowles, J. E. (1984). Physical and geotechnical properties of soils. 2nd 

Edition, McGraw-Hill, New York. 

Brooks, R. H., & Corey, A. T. (1964). Hydraulic properties of porous 

media. Hydraulic paper, 3, Colorado State University. 

Chapuis, R. P, & Aubertin, M. (2001). A simplified method to estimate 

saturated and unsaturated seepage through dikes under steady-state 

conditions. Canadian Geotechnical Journal, 38, pp. 1321-1328. 

Chapuis, R. P., Chenaf, D., Brussière, B., Aubertin, M. & Crespo, R. 

(2001). A user's approach to assess numerical codes for saturated and 

unsaturated seepage conditions. Canadian Geotechnical Journal, 38, pp. 

1113-1126. 

Crespo, R (1993). Modélisation des écoulements à travers les ouvrages de 

retenue et de confinement des résidus miniers par un logiciel d'éléments 

finis. Masters thesis, École Polytechnique de Montréal. 

Faeh, R., Mueller, R., Rousselot, P., Vetsch, D., Vonwiller, L., & Volz, C. 

(2011). BASEMENT – Basic Simulation Environment for Computation of 

Environmental Flow and Natural Hazard Simulation, online program 

manual, VAW, ETH Zurich, www.basement.ethz.ch. 

Flekkoy, E. G. (1993). Lattice Bhatnagar-Gross-Krook models for 

miscible fluids. Physical Review E, 47, pp. 4247-4257. 

Ginzburg, I. (2005). Equilibrium type and link-type lattice Boltzmann 

models for generic advection and anisotropic-dispersion equation. 

Advances in Water Resources, 28, pp. 1171-1195. 

Ginzburg, I. (2006). Variably saturated flow described with the 

anisotropic Lattice Boltzmann methods. Computers & Fluids, 35, pp. 831-

848. 

Ginzburg, I., Carlier, J., & Kao, C. (2004). Lattice Boltzmann approach to 

Richard's equation. Proceedings of the CMWR XV, CT Miller, pp. 583-

597, Chapel Hill, NC, USA. 

Ginzburg, I., & d'Humières, D. (1996). Local Second-Order Boundary 

Methods for Lattice Boitzmann Model. Journal of Statistical Physics, 84, 

pp. 927-971. 

Lam, L., Fredlund, D. G.,  & Barbour, S. (1987). Transient seepage model 

for saturated-unsaturated soil systems: a geotechnical engineering 

approach. Canadian Geotechnical Journal, 24, pp. 565-580. 

Mei, R., Luo, L. & Shyy, W. (1999). An Accurate Curved Boundary 

Treatment in the Lattice Boltzmann Method. Journal of Computational 

Physics, 155, pp. 307-330. 

Mualem, Y. (1976). A new model for predicting the hydraulic conductivity 

of unsaturated soils. Water Resources Research, 12(3), pp. 513-52. 

Pham Van, S. (2009). Application of different model concepts for 

simulation of two-phase flow processes in porous media with fault zones. 

Ph.D Thesis, Book Series Volume 3, TU Berlin. 

van Genuchten, M. T. (1980). A closed-form equation for predicting the 

hydraulic conductivity of unsaturated soils. Soil Science Society of 

America Journal, 44, pp. 892-898. 

van der Sman, R. G. M., & Ernst, M. H. (1999). Convection-diffusion 

lattice Boltzmann scheme on a orthorhombic lattice. Journal of 

Computational Physics, 160, pp. 766-782. 

Vogel, T., van Genuchten, M. T., & Cislerova, M. (2001). Effect of the 

shape of the soil hydraulic functions near saturation on variably saturated 

flow predictions. Advances in Water Resources, 24, pp. 133-144. 

http://www.basement.ethz.ch/

