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Abstract 

The Lattice Boltzmann Method (LBM) is a powerful 
method which has been introduced recently in numerical 
hydraulics. Since then, many important results have been 
obtained. The main advantage of the LBM with respect to 
other numerical methods, based on the classical governing 
equations (Navier-Stokes or shallow water), is its intrinsic 
linearity and versatility.  
The aim of this work is to present the formulation and the 
application of the LBM to the advection-diffusion of a 
contaminant in a porous medium. After having stated the 
advection diffusion problem in a porous medium and 
having presented the correspondent LBM formulation, 
some numerical results are presented.  

Introduction 

The Lattice Boltzmann Method (hereinafter LBM) is a 
powerful method which has been introduced in the 
Computational Fluid Dynamics field a couple of decades 
ago. The development of the LBM has been tremendous 
and many interesting and excellent results have been 
obtained in several fields of the Fluid Dynamics. The 
review of Aidun and Clausen (2010) gives a perspective of 
cutting-edge applications of the LBM, while the books of 
Succi (2001) and Wolf-Gladrow (2005) are good 
introductions into the method, with particular regard to its 
historical development. The book of Zhou (2004) presents 
the extension of the method to the shallow water flows. The 
reason of this rapid development is the intrinsic simplicity 
of the LBM with respect to any classical CFD method, 
based on the mass, momentum and energy balance 
equations. This simplicity comes from the fact that the 
LBM is based on a mesoscopic representation of the fluid, 
instead of a macroscopic representation, from which the 
well known mass, momentum and energy balance equations 
are obtained. In other words, the fluid is seen as a set of 
particles, which can travel undisturbed for a while and then 
collide with each other. The distance covered by a fluid 
particle between two subsequent collisions has a meaning 

analogous to the mean free path of a perfect gas molecule 
and has an order of magnitude much smaller than that of 
the characteristic length-scale of the fluid domain. The 
description of the state of the fluid is made by means of 
probability distribution functions (hereinafter PDF), which 
give the probability, at a given instant of time, of finding a 
particle in a given position and with a given velocity. The 
evolution of these PDF is governed by a number of linear 
kinetic equations equal to the number of PDF. The linearity 
of the evolution equations is the main advantage of the 
LBM with respect to methods based on the macroscopic 
balance equations (Navier-Stokes or shallow water 
equations). 
The aim of this work is to present a LBM being able to 
simulate the advection-diffusion of a contaminant in a 
porous medium. The starting point is the mathematical 
model developed by Nithiarasu et al. (1997) and adopted by 
Guo and Zhao (2002). This mathematical model is obtained 
by averaging the continuity and Navier-Stokes equations 
over a small volume partially occupied by the liquid and 
partially by the solid. The presence of the porous medium is 
accounted for by means of additional forces at right hand 
side (hereinafter RHS) of the momentum equation. This 
approach has been given recently a solid formal framework 
by Lasseux et al. (2008). 
The structure of this paper is as follows: firstly, the 
mathematical model is presented; secondly, the LBM 
equivalent to the mathematical model is formulated; thirdly 
some numerical results are presented. 

The mathematical model 

In the following we will consider a 2D, homogeneous and 
isotropic aquifer, inside of which the flow of a 
contaminated fluid occurs. The flow is represented by 
equations obtained (Nithiarasu et al., 1997) by averaging 
the mass and momentum equations over a small volume 
containing both the liquid and the solid phase. The presence 
of the contaminant affects the fluid density ρ and is 
accounted for by the concentration C. The local fluid 
density ρ  is given by: 
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ρs is the density of the contaminant, ρ0 the density of the 
ambient fluid (freshwater). If the condition: 
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is fulfilled, the effect of the varying density is felt only in 
the gravity force term of the momentum equation. 
Following Nithiarasu et al. (1997), the latter assume the 
form: 
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ε is the porosity, k is the permeability of the porous 
medium, μ is the dynamic viscosity, cd is the dimensionless 
drag coefficient and u is the filter velocity. cd and k can be 
expressed in terms of the porosity and of the sediment’s 
diameter, as in Guo and Zhao (2002).  
In the considered case, the pressure p can be expressed as 
the sum of the hydrostatic pressure distribution and of the 
dynamic pressure distribution:  

( )zHgpp d −+= ρ                                                           (4) 

H is the constant reference hydrostatic head. Substituting 
the expression (4) for p in (3) and accounting for the 
expression of the density (1), the following equation is 
obtained: 
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According to Nithiarasu et al. (1997), the time evolution of 
the concentration C is governed by the following 
convection-diffusion equation: 
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D is the molecular diffusivity of the contaminant. The 
mathematical model of the flow, consists then of the 
continuity equation (3), the modified Navier-Stokes (5) and 
advection-diffusion (6) equations.  

The LBM formulation of the problem 

An alternative formulation of the mathematical model is 
given by the Lattice Boltzmann Method (LBM). The main 

idea of the LBM is to represent the flow as a set of particles 
which, in analogy to a perfect gas, travel undisturbed for a 
while and then interact with each other by means of 
collisions.  
The duration Δt and the distance Δx of the fluid particle’s 
undisturbed travelling are small with respect to 
macroscopic time- and length-scales, i.e. the scales of the 
fluid domain as a whole. Moreover, define the ratio e as: 
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The latter is the velocity with which the fluid particle 
travels. Consider, at a given spatial position x, a finite 
number N of velocities, each with a different direction. 
Each velocity is directed toward another spatial point, with 
a distance Δx from the previous point. The set of spatial 
points endowed with the set of velocities is the lattice. In 
two spatial dimensions it is usual to assume the so-called 
2DQ9 lattice reproduced in Fig. 1. 
The nine velocities (represented as vectors numbered from 
0 to 8 in Fig. 1) have different directions but the same 
intensity e, except for the vector numbered with 0, which 
represents the zero velocity. 

 
Figure 1: The 2DQ9 lattice. 

For the 2DQ9 lattice, these vectors can be defined as: 
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The state of the fluid is described by means of N+1 
probability density functions fi (i=0,…,N) each giving the 
probability of finding a fluid particle, at a given instant of 
time, at a given position, travelling with the velocity ei. The 
evolution of the probability density functions is governed 
by the following set of N+1 kinetic equations: 
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The meaning of the symbols is the following: Ωi is the 
collision operator, i.e. the term which describes the 
interaction between the particles, the vector F represents the 
external forces, per unit volume, acting on the flow, Nc a 
constant integer, defined by (Liu et al., 2010): 
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The vector of the external forces is defined as: 
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The macroscopic quantities, which in the considered case 
are the liquid density and the velocity field, are obtained 
from the probability density functions by means of the 
simple operations (Succi, 2001): 
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The latter can be seen as the zeroth and first order statistical 
moments of the probability density functions with respect 
to the velocity ei. Once the collision operator is defined, the 
formulation of the LBM is complete. Although the original 
structure of this operator, defined by Ludwig Boltzmann to 
describe the interactions among the molecules of a perfect 
gas, was very complicated and highly nonlinear, it has been 
found that a linear approximation (Chen and Doolen, 1998) 
is good enough to obtain reliable results. 
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Mij are the elements of the collision matrix and fj
eq is the 

equilibrium probability density function, which is assigned. 
In this work we assume for the collision matrix the simple 
isotropic form of Bhatnagar, Krook and Gross (Succi, 
2001). 

ijij *
M δ

τ
1
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δij is the Kronecker delta and τ∗ the relaxation time. The 
latter is an indication of the rapidity with which the system 
goes toward to the instantaneous equilibrium, represented 
by the equilibrium probability density function fj

eq. The 
difference fj -fj

eq is the deviation from the equilibrium. 
Despite of its simplicity, the Bhatnagar, Krook and Gross 
form of the collision operator (14) is very often and 
successfully used also for complex flows (Succi, 2001; 
Aidun and Clausen, 2010). Finally, adopting the following 

definition of the equilibrium probability density functions 
(Guo and Zhao, 2002): 
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it is possible to show that, following the Chapman-Enskog 
procedure (Chen and Doolen, 1998), the LBM consisting of 
the equations (9), with definitions (10), (11), (12), (13) and 
(14) is “approximately” equivalent to the Navier-Stokes 
equation (5) with a kinematic viscosity defined by (Liu et 
al. 2010): 
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In literature, the dimensionless ratio τ∗/Δt is often defined 
as the relaxation time τ. The error of approximation of the 
equivalence between the LBM and the Navier Stokes 
equation (5) is proportional to a small parameter, which can 
be identified with the Mach number of the flow (Succi, 
2001; Wolf-Gladrow, 2005).  
Accordingly to Zhou (2009), the LBM can be extended to 
the advection-diffusion equation (6). In other words, it can 
be shown that the kinetic equations: 
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together with the following definition of the equilibrium 
distribution functions for the concentration fi

ceq: 
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are equivalent to the advection-diffusion equation (6) with a 
diffusivity D defined by (Zhou, 2009): 
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The concentration C is obtained by means of the simple 
operation: 
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The coefficient λ is a dimensionless dispersion coefficient, 
while the vector u in (18) is the velocity field. It is 
important to observe that the kinetic equations (17) are 
relative only to five velocities out of the nine defined by the 
2DQ9 lattice. In other words the lattice of the concentration 
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C has a structure simpler than that of the velocity lattice. 
This fact is due to the intrinsic scalar nature of the 
concentration C (Zhou, 2009). 

Results and discussion 

Description of the considered flow 
The two dimensional fluid domain under consideration is a 
rectangle, basis L, height H. At the left vertical boundary 
(x=0) the concentration of a contaminant is imposed: 
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At the horizontal boundaries and at the right vertical 
boundary, the directional derivative of the concentration 
along the normal to the boundary vanishes. 
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The velocity field u is imposed at the left vertical boundary. 
The horizontal boundaries are assumed as impermeable, i.e. 
the scalar product u·n (being n the unit vector normal to the 
boundary) vanishes there and a free-slip condition is 
adopted, while at the right vertical boundary, supposed far 
enough from the left vertical boundary, the velocity field is 
imposed, in order to conserve mass. 

Validation of the model  
The correctness of the model has been verified by 
comparing the numerical results with analytical results. The 
validation has been made separately with respect to the 
LBM formulation of the molecular diffusion process, 
represented by equation (6) with imposed and constant flow 
velocity, and to the LBM formulation of the Navier-Stokes 
equation (5). 
The analytical solution of the advection-diffusion equation 
(6) correspondent to the boundary condition (21) in 
presence of a constant velocity field directed along the x 
axis has been compared to the numerical solution of the 
kinetic equations (17). If y1=0 and y2=H, the analytical 
solution is given by: 
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Figure 2. Concentration profiles.1) D=2×10-3 m2s-1, u=0. 
ms-1, t=44000s; 2) D=2×10-2 m2s-1, u=0. ms-1, t=44000s; 3) 
D=2×10-1 m2s-1, u=0. ms-1, t=11000s; 4) D=2×10-3 m2s-1, 
u=0.001 ms-1, t=15400s; 5) D=2×10-2 m2s-1, u=0.005 ms-1, 
t=6600s; 6) D=2×10-1 m2s-1, u=0.01 ms-1, t=6600s; 

In (23) the symbol Erf stands for error function. In this case 
the analytical solution (23) depends only on x and t and the 
behavior of the concentration is 1D. u is the constant x 
velocity component. In Fig. 2 analytical (solid and dashed 
curves) and numerical concentration curves (dots) are 
plotted. They have been obtained assuming different values 
for the diffusivity and the x velocity component (see the 
figure caption for the details). The agreement between 
numerical and analytical results is very good, even if the 
number of computational points was relatively low. Indeed 
only 30 points have been defined along L and H which 
were assumed equal to 200m, with a resulting Δx equal to 
6.67m. Moreover, the effect of the advection is clearly 
shown in Fig. 2, mostly by the curves 5 and 6, relative to a 
diffusivity of 0.2m2s-1 and a velocity of 0.0 and 0.01 ms-1 
respectively. 
If the length of the segment through which the 
concentration c0 is imposed at x=0 is less than H, the 
distribution of the concentration becomes fully 2D and the 
analytical solution is given by the series (Wexler, 1992): 
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In (24) the symbol Erfc stands for the complementary error 
function. As highlighted in Wexler (1992), the terms in the 
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infinite series (24) oscillate, and the series converges 
slowly for small values of x. A suitable number of terms 
may be necessary to ensure convergence. 

 
Figure 3. Iso-lines of the concentration. Starting from the 
external 1% curve, the internal curves increase the 
concentration regularly of 1%. D=2×10-3 m2s-1, u=10-5 ms-1, 
t=528000s; y1=86.7m (y/Δy=13) and y2=113.3m (y/Δy=17). 

Figure 3 shows the fully 2D distribution of the iso-
concentration curves at t=528000 s. Analytical (solid lines) 
and numerical (dashed lines) results plotted in Fig. 4 have 
been obtained assuming D=2×10-3 m2s-1, u=10-5 ms-1, 
y1=86.7m (y/Δy=13) m and y2=113.3m (y/Δy=17). The 
agreement is quite good. Small differences appear in the 
neighborhood of the zone where the contaminant is entered. 
This is probably due to the fact that in this region the 
gradients of the concentration are much larger than 
elsewhere.  
Being concerned with the LBM formulation of the Navier-
Stokes equation (5), the 1D Poiseuille flow has been 
considered for the validation. In this case the analytical 
solution is given by: 

⎟
⎠
⎞

⎜
⎝
⎛ −=

H
yygJHu 1

2ν
                                                          

(26) 

J is the pressure gradient in x direction and ν the kinematic 
viscosity, determined by means of definition (16). The 
numerical Poiseuille flow has been obtained in the 
rectangular domain (H=50m, L=10m) imposing the 
analytical velocity profile (26) as initial condition and 
letting the computation run.  

 

Figure 4. The Poiseuille velocity profile. J=0.01, ν=6.25 
m2s-1, t=25000 s. 
 
In Fig. 4 the numerical and analytical Poiseuille velocity 
profiles are shown. Also in this case the agreement is very 
good, despite of the low number (ny=40) of computational 
points adopted in y direction. Moreover, the numerical 
solution remains stable for the whole duration of the 
simulation (25000s). 

Advection-diffusion of a contaminant in a porous 
medium  
The contaminant affects the velocity fields, due to the 
presence of the gravity term at the RHS of equation (5). 
This term forces the motion in the opposite direction of the 
concentration gradients. In other words, the forcing is 
directed towards the direction of diminishing concentration. 
The other forcing terms at RHS of equation (5) are 
respectively a viscous and a drag term. Their relative 
importance is given by the product of the dimensionless 
numbers of Darcy and Reynolds: 

ReDa
                                                                          

(27) 

being the Darcy number and the Reynolds number defined 
as: 

ν
UHRe,
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H is a characteristic length scale. If the dimensionless 
product (27) is smaller with respect to the unity, the drag 
term can be neglected in comparison with the viscous term.  
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Figure 5. Modification of the concentration field due to the 
velocity field. a) Absence of viscous and drag forces (ε=1); 
b) Absence of viscous and drag forces (ε=0.1); c) presence 
of both viscous and drag forces (ε=0.1); d) presence of both 
viscous and drag forces (ε=0.5). Analytical results: solid 
line. Numerical results: dashed line. 

In Fig. 5 four different cases are presented. They show the 
influence of the different forces and the porosity ε in a 
rectangular fluid domain L=2m, H=1m, with an initial 
uniform and constant velocity field, directed towards x 
direction. The x component of the initial velocity field is 
equal to 0.0001 m/s. The molecular diffusivity is equal to 
0.002m2s-1. The inlet of contaminant occurs through a 
segment 0.35m long, starting at y=0.35m. The analytical 
solution (24) is also plotted in figure 5 (the solid line). All 
of the cases considered in Figure 5 are relative to the instant 
of time t=123s. 
The case with porosity ε=1 and neither viscous nor drag 
forces is considered in Fig. 5a. The presence of the 

contaminant, which in this case acts only in the gravity 
force, modifies sensibly the numerical curves of constant 
concentration (dashed lines) with respect to the analytical 
lines (solid lines). A y velocity component is evidently 
developed, from the initial constant and uniform velocity 
field. A smaller porosity does not cause evident 
modification of the concentration field (Fig. 5b), while the 
presence of the viscous force damps the velocity field and 
makes the concentration curves of the case shown in Figure 
5c more similar to the analytical solution, with respect to 
the cases shown in the other figures. An increase in 
porosity (Fig. 5d) affects the gravity force and the result is 
again similar to those of Figg. 5a, 5b. 
In all of the considered cases (except for Fig. 5a where 
neither viscous nor drag force was considered) the product 
(27) had an order of magnitude not larger than 10-3, so the 
influence of the drag force was negligible. 

Conclusion 
In this paper a Lattice Boltzmann Method approach has 
been used to model the problem of the advection-diffusion 
of a contaminant in a porous medium. 
The LBM formulation has been validated comparing 
numerical results with analytical results.  
A case of advection-diffusion has been considered in order 
to show the influence of the several force terms and the 
porosity. It has been found that for a small porosity (ε=0.1) 
the influence of the viscous term is such to counterbalance 
the effect of the gravity force on the concentration field. 
This influence is vanishing with the increase of porosity. 
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