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Abstract

The multi-layer shallow water approach can be mgaras

a development of De Saint Venant equations in the
direction of a more accurate description of the gital
problem, keeping as far as possible the efficienty
classical De Saint Venant numerical models. From th
point of view, in the present paper, the one dintarzd
multi-layer De Saint Venant equations are briefly
developed, marking the fact that the stresses duthe
presence of neighboring layers can be treated eagfthct

of a virtual topography. In this way, continuity dan
momentum equation on each layer furnish a system of
equations that is very similar to classic singlgelaDe
Saint Venant equations.

This similitude suggests the possibility to solvee t
resulting differential equations by means of thehteques
originally developed for the solution of De Sainenant
equations. Following this idea, the 1D multi-lay®e Saint
Venant equations are solved numerically by meansa of
shock-capturing finite volume technique applied etach
layer separately.

The resulting numerical scheme is applied to some
benchmark test, and the results are presentediscsded.

I ntroduction

The field of numerical modeling, finalized to hydlia
problems is very wide and it presents growing diffiies.
The first difference among numerical models is thu¢he
choice of the system of equations used to desdtiee
physics of the natural phenomenon. Numerical models
based on 3D Navier-Stokes equations are very hany

a computational point of view and can be only agplio
small computational domains, even if computersaarays
improving their performances. Due to this drawback,
simpler versions of Navier-Stokes equations aré \&try
useful, such as shallow water equations (SWE). WES

belong dispersive equations (Boussinesq family) aox-
dispersive equations (De Saint Venant family), thes
easier to deal with.

The hydrostatic pressure distribution hypothesesrse to
be not too strong in river hydraulics problems[Dso Saint
Venant equations have been widely applied in nuakri
schemes, particularly in combination with finite lwme
methods (FVM) for the numerical solution of the
differential equations. The valuable results olgdinshow
that these schemes are a good compromise between
accuracy and simplicity (e.g., Hervouet, 2000, #failiet
al., 2002, Begnudelli and Sanders, 2007, Liao et28i07,
Shi and Nyugen, 2008, Gallegos et al., 2009, Bowh a
Petti, 2011).

SWE are based on constant horizontal velocity itistion
over the water depth. Thus, a further effort in the
development of numerical models could be the intotidn

of a variable velocity distribution over the watlpth. One
way to deal in this direction is to consider a rialalyer
distribution: the pressure distribution is stilldmgstatic, but
each layer is characterized by its own velocitynstant
over the layer itself (e.g. Audusse, 2005, Bouchnd
Zeitlin, 2010, Spinewine et al., 2011).

The paper is organized in the following manner. The
governing equations are deduced in the followingtise
and the adopted numerical scheme is presented. #dg

the model is applied to some benchmark problenvigletil
between static tests and dam break tests. Firia#iyresults
are discussed and compared with exact solution itr w
reference solution proposed in the literature.

Numerical model

Governing equations

With reference to a generic multi-layer problem, as
depicted in Figure 1, the one-dimensional multelay
shallow water equations can be derived applying the
physical principles of mass and momentum conseméat



a control volume that include an infinitesimal sthe of
generic layet.

In this paper, the equations are developed fosaidiflow,
thus all flow resistances are neglected. Moreokerfluid
is considered to be the incompressible and therdagee
non-miscible. The usual approximation is adoptedndél
bottom slope and gradually varying layer water Hept
Under these assumptions, continuity equation fgerlais:
U _ "
ot 0X
being €, X) temporal and horizontal spatial coordindte,
water depth of layek andU, mean flow velocity of layefr
in x- direction.
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Figure 1. Subdivision of water depth m layers and a
detail of momentum equation on a generic contradme.

Momentum equation along direction can be written on
the considered control volume (Figure 1) as:
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beingdl, M, andll the component ir direction of the local
inertia, the momentum and the hydrostatic forcéhenface
orthogonal tox axis; drf, and dify are the hydrostatic
forces acting on the lower and higher faces ofdbetrol
volume;z, is the bottom height.

The forced, dri_ anddr, are evaluated by means of the
hydrostatic  pressure; thus, with some
manipulation (Bouchut and Zeitlin, 2010), momentum
equation becomes:

aui  2(Uh+ah’r2)
ot 0x

-1 m (3)
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beingg the gravity acceleration anglthe density of layey

algebraic

andm the total number of layers.

Finally the system of equations that describesitbtion of
the fluid is:

m+—aulh =0
ot 0x
2 2
auih , 9" +n?/2)
ot 0X
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The structure of equation (4) is very similar te tine of a
single layer system:

dh auh _

—+—=0

ot 0x ®)
2 2

aUh+0(U h+gh /2)=—gha—zb

ot ox ox

with h water depth antl mean velocity of the flow irx-
direction. This fact suggests to introduce a neviabde
associated to laydr z,, that acts as a virtual topography
(Bouchut and Zeitlin, 2010):
1-1 m
Pi

h, + —h, .
=i ,;m '
As underlined in equation (6) the virtual topognaph
depends on the laydy and on X, t) coordinates. It takes
into account the bottom height and the pressunedri
terms arising fromdrn, and dfy. Hence, with the
introduction ofz,, equation (4) becomes:

2y =2+ (6)

ﬂ+—au'h =0
ot o0X =1
=1,..m
aU,h +0(U|2h +gh?/2) - )
ot 0X )4

Using the chain rule, it is possible to derive othersions
of multi-layer SWE, with different level of couptinof the
pressure-driven terms (Spinewine et al., 2011)afqn (7)
is characterized by a complete decoupling, with all
pressure-driven terms on the right hand side of the
equation.

This form is particularly attractive, because ebmfer can
be solved separately, following the same strategsesl in
the numerical integration of equation (5) and pmése: in a
wide literature (e.g. Alcrudo et al., 1993, Tor@02, Zhou
et al., 2001, Liang and Borthwick, 2009).

Numerical scheme

Equation (7) is here expressed in a matrix formafawo —
layer scheme:
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beingx = p2/p1.

The numerical integration is carried out by meafsao
scheme that solves equation (8) for each layeacth me
step. In this way the pressure-driven term thatasgnts
the influence of layer 2 on layer 1 (and vice vgrsa
computed in the virtual topographg,: (z,), that is
evaluated at the previous time step.

The spatial integration domain is discretized muanber of
cells, beingAx = .12 — X172 the length of generic cdll In
this context, the discretized variable is refertedhe cell
centre, so as an examig" is the water depth of layéiin
celli at the time step'.

The time marching formula adopted is first ordecuaate
and it can be written in compact form as:

1_ At ' ‘
U,;" =" +A—Xi[':||,4ilili/§ + Fl'?llli/l_z] : (10)

The advective fluxes in equation (10) are calcdate

applying the LHLL Riemann solver (Fraccarollo et, al
2003), that introduces the effect of the bottonpslas a
correction of the numerical flux, instead of tregtit as a
source term. Here the scheme is extended to incatethe
effect of the whole virtual topography in the flgxe

The idea behind this solver can be easily explaimgting
the momentum equation for layleon a control volume that
includes the discontinuity &t1/2 (Figure 2). In discretized
form, the surface elevation and virtual topograpdme
actually constant throughout each cell. It canlieg that
the difference between the dynamic forces actintherleft
and right hand side of the discontinuity must beatdo the

thrust term on the step, namBdand assumed as:

HLLL _ mHLLR —  —
Fiaz ~Rjs2=D=

ZQL;’HF(Z\A,HF‘Z\MH)- (11)

Following Fraccarollo et al. (2003) this can bectesd first
applying a classical HLL solver (Harten et al., 398

HLL :SRFL_S_FR"_S_SR(UR_UL) (12)
Ji+1/2 SR_S_

with
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and then computing a correction:
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Figure 2. Idea behind LHLL solver: momentum equatio
on a control volume across the discontinuity.

In this way the first component of the flux evaktt
through LHLL and HLL does not change, as expected,
being the continuity equation conservative. On titleer
hand side the jump of the second component of lilne f
across the intercel1/2 is consistent with equation (11).
In the original formulation of HLLS and$; are the wave
speed of the left and right wave in the solutiorthaf local

Riemann problem and can be evaluated using several

approaches (Toro, 2001). One have to keep in nmatthe
original formulation gives rise to only two waves.

To keep the bottom height on the left hand sidéeard of
in the source term, Fraccarollo et al. (2003) armla
generalized eigenvalue problem that gives origirthi@e
waves. So, they consider the eigenvalues assodiatdte
leftmost wave evaluated on celindi+1 and the minimum
is chosen to beS; on the other hand sid&; is the

maximum eigenvalue associated to the rightmost wave

evaluated on cellandi+1.

In the same way, in the present formulation, topkéee
virtual topography term on the left hand side iadt®f in
the source term, the characteristic wave speedsldstoe
evaluated seeking the eigenvalues on the Jacoka#ixrof



the full coupled equation system. Unfortunatelyaax
eigenvalues of this matrix in the general case catme
found using simple algebraic expression; moreottesy
may become complex under certain
Nevertheless, Spinewine et al. (2011) provide aeloand
upper bounds of their modulus:

/]r?win,izmin(u?j, gi)_ g(hrﬁ‘*hnzi,)

(16)
maxj = max(U 1 gi)ﬂ[ 9 (hr}l + hnz,)
Thus, following values are adopted:
3_ = min{ol/]nqinj ’ Pninj+1} (17)

Sk = max{ 0 maxi Amai+ }
To ensure theC-property to be satisfied, when the local
velocities approach zero value, the water leyek(z,+h)
is used instead of water depth) (@s the first component of
U in (9).
Moreover, the method proposed by Liang and Borthwic
(2009) is used to modify flow variables so as moinduce
spurious flow in dry areas.
The resulting numerical scheme is first order aamuboth
in space and time. As the adopted scheme is expie
usual Courant condition must hold, i.e.

ax
with AXyin the minimum cell size over the mesh,., the
maximum characteristic wave speed estimated as:

Simax =n1|?x(U|j")+\/g n}a><hli“+h2l“) ‘ (19)

For the Courant numb&r, valueCr = 0.5 is adopted in all
the computations reported hereafter.

Numerical applications

The numerical scheme is validated against somehinegud
tests originally proposed by Spinewine et al. (204ad
Bouchut and Zeitlin (2010).

Static tests

The first test (ST1) consists of two layers having same
density at rest in a 1000 m long horizontal chaniéle
initial conditions are characterized by a free a@ceflocated
10 m over the bottom height and a discontinuitythe
layers depth at x = 500 m. In this test the exatit®n is
the same as the initial condition, due to the cmst of
fluid density. The cell size &x = 1 m; the results after 500
s are shown in Figure 3.

In the second static test (ST2) two layers of thenes
density are at rest over a 1000 m long piecewiszdmtal
channel, with a bottom discontinuity at x = 500Initially,
the free surface and the interface between therdagee
horizontal. The cell size i&x = 1 m; the results after 500 s

conditions.

are shown in Figure 4. Also in this test the exsdttion is
the same as the initial condition, neverthelestkensT1,
here the numerical results manifest a spurioudlaton at
the discontinuity.
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Figure 3. Numerical solution of ST1 after 500s.
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Figure 4. Numerical and exact solution of ST2 a5@0s.
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Dam break tests

In the following, six dam break tests are presef8l to
DB6). All of them are characterized by a horizored
with height z, and lengthL; the initial discontinuity is
located atx = x,. The initial depth of the layers kg, and
h,. on the left hand side of the channel dmg andh,g on
the right hand side. The initial velocities are &gqm both
layers and are zero everywhere with the only excepif
test DB5. The ratio of the fluid densitiesyisThe grid size
is Ax and the duration of the simulationstis, The data
used in all dam break tests are summarized in $ablend
2 and in Figure 5.

The results of DB1 and DB2 (Figures 6 and 7) showerg
good agreement with exact solution in the free aaf
while the sharp discontinuity at the interface ledw layer
1 and 2 is slightly smoothed in both tests. Thisldde



ascribed to the fact that the numerical scheme tadois
still first order accurate in space.

Table 1. Setup data of dam break tests.

test |z (M) | L(M) | X% (M) | X () |tmax(S)[AX(m)
DB1 | 0.000| 1000 | 500 1 25 0.1
DB2 | -0.357| 10000| 5000 1 800 1
DB3 | -0.357| 10000| 5000 | 0.05 800 1
DB4 | -0.357| 10000| 5000 0.2 800 1
DB5 | 0.000 1 0.5 0.98| 0.05| 0.01
DB6 | 0.000| 10 5 0.7 1 0.02
Table 2. Initial conditions of dam break tests.
test hi | hir | hot | her | Uy = Uir=Uy
(m) [ (m) | (m) | (M) | =Ux(mis)
DB1 0 1 10 0 0.0
DB2, [0.357/0.357| 1 0 0.0
DB3, DB4
DB5 0.5 | 0.45 05| 0.5% 25
DB6 02| 18| 18| 0.2 0.0
by,
_>
5 |

0 X, X

Figure 5. Symbols used to describe the initial dioms of
dam break tests.
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DB3 does not have an exact solution, thus as aermde
solution the exact solution fox = 0 has been chosen
(Figure 8). From a engineering point of view, thigans
thatpy » p,, i.e. layer 1 can be considered at rest and 2yer
moves on it, thus this represents a dam break yar 12
over a fixed bed made bg + h;. The numerical result

obtained withx = 0.05 approaches the reference solution,
with a deviation probably due to the fact tlat O.
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Figure 8. Numerical and reference solution of DB3.

Test DB4 represent a middle ground between test 8P
test DB3, withx = 0.2. Thus, in Figure 9 the numerical
results are depicted together with both referertetisns

(x = 1 andx = 0). As expected, numerical results fall in
between the results of DB2 and DB3, according with
Spinewine et al. (2011).

The results of tests DB5 and DB6 are depicted guiis
10 and 11 as the interfaces between layer 1 atsh@ther
with the reference solutions proposed by Bouchul an
Zeitlin (2010). Again the sharp discontinuity of eth
reference solution is smoothed by the first ordemerical
scheme, nevertheless, the trend of the solutionitdn
substance is well represented, with no sensibleicymi
oscillations.
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Figure 9. Numerical and reference solutions of DB4.
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