A GENERAL CLOSURE ROE SOLVER FOR HYPER-CONCENTRATED SHALLOW FLows
OVER MOBILE BED

L orenzo Begnudelli* & Giorgio Rosatti*

'CUDAM (Centro Universitario per la Difesa Idrogegica dell Ambiente Montano),
University of Trento, Italy, Via Mesiano 77, 381Z8nto
E-mail: lorenzo.begnudelli@unitn.it, giorgio.ros@unitn.it

Abstract

In this paper we present a novel general formutatibthe
Generalized Roe solver for hyper-concentrated Halewv
flows over a mobile bed.

Hyper-concentrated flows are mathematically defibgda
hyperbolic system of three partial differential atjons.
The system shows non-conservative terms, is highly
nonlinear, and its whole structure depends on tbsuce
relationship used to define the concentration.

In earlier works, a well-balanced Generalized Rokes
has been derived for 1D and 2D flows. In these @gghes,
the solution of the Riemann Problem (RP) is obiifiem
the exact solution of a locally linearized probletyy
writing a Jacobian matrix of the system as a fuamctf
proper averages of the primitive variables. Thenidation
of the scheme is not unique and depends on theedigpt
of averages. Based on the closure, not only diftere
formulations of the solver are obtained, but morgeéneral
the derivation can be quite easy or extremely caated.
In any case, so far only Roe schemes relative tzifp
closures have been derived.

In this paper, we write a general formulation oé tRoe
scheme, valid for any possible closure. In fact,trgat the
concentration as a function of the other variabled write
the Jacobian in terms of its partial derivativese Tnethod
is completely general, easy to implement, and asrate as
the standard Roe approach.

I ntroduction

In mountain regions, water flows are often assediatith
heavy sediment movements that can generate sigmnific
erosion or deposition. Examples of hyper-conceatrat
flows are debris flows and dam-breaks over mobéd.b
More in general, in mountain environment river floare
often connected with important sediment movements.
Clearly, the capability of modeling and forecastithgse
events is therefore a key issue for the safety ofimtain
regions. However, the mathematical description tefse
phenomena is particularly challenging due to trepprties
of the system of governing equations. The problem i

mathematically defined by a hyperbolic system ake¢h
partial differential equations system that showsn no
conservative terms and highly nonlinear relatioesMeen
primitive and conserved variables. The concentnatid
solid phase c not only is present in the continaijyations

of solid and mixture mass, but also plays a roletha
momentum equations, because in the case of hyper-
concentrated  flows its contribution to the mixture
momentum is not negligible. Thus, the structuretlus
entire system is highly dependent on the closure
relationship used to define the concentration, ticethe
chosen rheological model.

Among the several recent contributions on this aoto
particularly relevant to this paper is the workRijsatti et

al. (2008), where a new Generalized Roe (GR) scheame
been introduced in the numerical modelling of 1@p+
phase shallow flows. More recently, Rosatti andrizeiglli
(2011) have extended the GR scheme to the 2D cabe a
applied it to the numerical model Trent2D (Armargtial.
(2009). Also, Murillo & Garcia-Navarro (2010) haused
the Roe scheme within an Exner-based coupled nfodel
two-dimensional transient flow over erodible bed.

The Roe scheme has been proven to be very accbrdte,
his main drawback is that the formulation of théesoe
depends strongly on the closure relationships @dbjpt the
model, e.g. the sediment transport formula. Sodialy Roe
schemes relative to specific closures have bedneadlr

In this paper, this problem is overcome by intradgca
general formulation of the Roe scheme, valid foy an
possible closure.

The paper is structured as follows: first we préesthe
mathematical model, then we describe the classical
Generalized Roe approach and the new general elédug
solver, lastly we compare the results of the twprapches
both analytically and numerically.

The mathematical modél

The mathematical model is constituted by the depth-
integrated, shallow-water conservation equationssalfd
mass, mixture mass and mixture momentum for a two-
phase flow over a mobile-bed. To derive the equatithe



following assumptions are introduced: inter-phasecds
due to differences between solid and liquid phase
velocities are negligible; the pressure distribmitie linear
along the vertical direction; the concentrationcestant
through the flow depth; tangential stresses areegmteonly

at the bed (see Armanini et al. (2009) for moraitkt

The resulting mathematical model for the 1D case is
described by the following system:
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where the vector of conserved variablé and the
conservative fluxes andG are defined as:

h+z, uh
U=| ch+g,z, F= cuh 2)
c’uh ¢ (uh+gh?/2)

whereh is the mixture deptty, is the bed elevatiom,is the
mixture concentrationg, is the sediment concentration in
the bed (constant) is the depth-averaged mixture velocity
andc? = (1+AL), whereAs=(ps puw)/pw, beingps andp,, the
densities of the liquid and solid phase respedgtivel

H oW/ox is the non conservative term deriving from the
pressure exerted by the bed on the control volumieere
W=(h,z,u)" is the vector of the primitive variables and:

0
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whereHg; = c’gh andg is the gravitational acceleration.

As for the concentration, we consider a generic closure,
which can be written in the following form:

c=c(u,h) (4)
Finally, the source terni is a vector of the type: [0,0,-
t/pw], Wheret is the tangential bed stress whose expression
of the depends on the closure used for the phenmmen

under investigation. Here, we will focus on the
homogeneous part of the system only.

The Riemann Problem

We recall here the general formulation of the Roethod.
We look for the general solution of the followingpplem:

a_U+a_F+HM:O
0x 0x
{UL if x<0

Ug if x20

()

U(x,0)

The Generalized Roe Solver (Rosatti et. al.,

approximates (5) with the following linear RP:

2008)

ou = ouU
E+J(UL,UR)&:O

U if x<0 (6)

U(x,0)= _
Ug if x20

where J (UL, UR) is a suitable matrix whose value depends

on the left and right initial conditions and can digtained

by imposing the following constraints:

J(U ,Ug)=(A+H)B ™ (7)
where:

B(W, -Wg)=U, -Ug (&a)
A(W_ -Wg) =F_ -Fq (8h)

A andB can be determined as Jacobian matrices with
respect to the primitive variable, (z,, u), evaluated for
proper averagesh(, ,, i) of the left and right variables.

The Generalized Roe numerical flIER" is found as:

4 4
FGR:FL+z(/‘—luR)m:FR_Z(A‘*‘IuR)m (9)
m=L mel

A Specific Closure Riemann Solver (SCRYS)

We consider now the case of the 1D two-phase floves
mobile bed presented earlier and described by @}g4).
Clearly, the system depends strongly on the closhosen
for the concentration, asis present both in the second and
third equations. Following Rosatti (2008) and Arnmani
(2009) we assume the following closure relationship

2
c=c(u,h)=,800uF (20)
wheref is a dimensionless transport parameter.

Such a closure has also been implemented in then@dkel
TRENT2D (Armanini 2009) and widely applied to praati
cases with good results. It has a physically basedtture,

and (also quite important for practical applicasiprit is
particularly advantageous from the computationahtpof
view because, when plugged into the model equations
makes the resulting system of equations quite neaizg.

In fact, plugging Eqg.(10) into Egs. (1)-(3), we aibt the
following vectorsU andE (underline will be always used
with reference to SCRS method):



h+zb uh
U= 'BCDUZ"'CoZb F= o AP (11)
uh+g, ,8A3u3 (1+6,80U%)(UPh+gh?/2)

The resulting Jacobiadt)/0W anddF/0W become:

o 1 o 1
w0 2Aeu G (12)
lu h+3Au® 0
u 0 0
oF
W 0 3,407 0 (@3
|gh+u?+Agu/2  2uh+Au(gh+4®) 0

whereA=c, fAs
In order to find the solution of the RP, we needind the
matricesA andB that fulfill conditions (8a-b). We obtain:

1 0 1
B=0 20Bg, ¢ (14)
i h+3Au®> 0
{ h 0
A= 0 36q, U 0 (15)
gh+u+gu?/2  20R+AG(gh+4i%) 0
where
~ 1 .1
A= +hy) 0= (U +ug) (16)
~>_1 5 —S_1 5 o
u _E(UL+UR) u _§(UL+UR+ULUR) (17)

The derivation of the matrices\ and B has been made
possible by the simple structure of the matritksnd E
resulting from the chosen closure (10). Using dedént
closure would make the task extremely complicatat
often impossible. Examples of different closureat tbne

may want to adopt are sediment transport formulae a

Meyer-Peter & Muller (1948) or Ashida & Michiue (19),
characterized by a threshold under which there as n
sediment transport, which makes them even moréculitff
to be handled. Also, dealing with debris flows feliént a
rheological closure have been proposed in thealibee
(Armanini 2011).

Using any of these closures, the derivation ofrifarices

E and E would not be possible. For this reason, a different

and more general approach has been developedi ald i
be described in the next paragraph.

A General Closure Riemann Solver (GCRYS)

Here, a new method for the derivation of the Riemann
matricesA andB for any generic closure, will be presented.
This approach has been named General Closure Riemann
Solver (GCRS), as opposed to the Specific one (SCRS)
already described, and allows to compute the nesric
A and B and thus evaluate the numerical fluxes using any
generic closure given by an explicit relationay(u,h) or
even by an implicit relatiol(c,u,h)=0.

We simply assume that or ¥ is continuous, smooth, and
thaty or ¥ relatesc to values oflf,u) at the same time and
position (immediate adaptation hypotesis). Undees¢h
assumptions, we can wrig&J/OW andoF/o0W as:

_ 1 0 1_
:—VL:/: c+h§—ﬁ hg—ﬁ % (18)
uc5+Ang—ﬁ hc"+Asqg—E 0_
u h 0
;_VEV: u(c+hg—ﬁj h(c+u%) G| (19)
_(gh+u2)c"+Asq>g—E 2huc5+AS¢% 0]
where:
g=uh ; ¢=%gh2+hu2 (20)

Now, we must find two matriceA and B that satisfy Eq.
(8a-b) for any left and right values &%, U andF. It is
important to note that there is not, in generaly ame way
to derive the Jacobians, and that the derivatigredds on
how the averages are defined. Therefore, we fiefind a
set of averages and then derive the matrices amattrer
averages as a consequence.

Jacobian Matrix B

*  First, we defineh andGas in Eq. (16)

¢ Regarding the concentration c, we consider the value
corresponding to the averagﬁsand a (with must not
be confused witl€ , defined later):

c. =c(hd) =[whu);, i =@1+ac) 1)
As for the partial derivatives of ¢, we define:
k) & -
ah [ons, ' ou |oulgy (22)



Having introduced these averages, we can deBinas:

i ]
1 0 1
~ ~dC ~dC
B=| c.+h— h—
oh T (23)
5. . A0C =5 . A0C
ac? +A heZ+A.g— O
i Sqa_h Sqau |

where the values ofi, § are unknowns to be defined
based on Eq. (10a). In particular, considering2fieand &
equations of system (8a), we have two unknowms q)
and two equations, and the problem is thus welegos
Solving for h, § we get:

H_Ah (6-c.)+hA° . AY(E-c.)+GA°
A%, puoC A%, pudC (24)
oh ~ du oh ~ au

where the average®, € are:

.1 21
q= E(qL +0R) c= E(CL +CRr) (25)

and the differences”, AY, A% A° are generally defined as:

A% =ag-a (26)

Jacobian Matrix A

. Averagesﬁ, G are defined in Eq. (16);7E in Eq.
(19);4, €in Eq. (25); partial derivatives af in Eq.
(22). The term® is defined as:

1
CD=§(CDL +®p) (27)
Now, we can defineA as:
{ h 0
~ .0C - .dc
= dc.+g— hc_+g— 0
qah qau (28)
- 2|6 20C o ) - dc
gh+u®|cC +AP— 2hGcl+AP— O
L oh ou |

Whered,&)are found based on Eq. (8b). Solving the 2nd
and 3rd equations of the system (8b), we get:

A® (E-c_)+®A°
h@_'_ u&
oh ou

q(a— SAC .
61=A (ch~)+9VA b=
h(lC_'_ u@

oh ou

(29)

A A

where A® = DOr- D,.

Note that g has the same value previously found (which
was not obvious) and that the expressionshof§ and

® have the same structure. In particular we havetHer
three terms the following singularity condition (8C

sc1 an%innd g

30
oh  du 30)

Non conservative Matrix H

As for the non conservative terrhl, we will use the
following relation for the componeniss, proposed in
Rosatti and Fraccarollo (2006) (used also in Rosatal,
2008, Rosatti and Begnudelli, 2010) on the basis of
physical considerations:

Ha=-g+e ) h 54 ze-2)

L ifz <z
R otherwise

(31)
where k={

Comparison between SCRS and GCRS

As discussed before, the advantage of the Genédwalife
Riemann Solver is its generality, because it allawsmg
any closure relationship and because it is verypkinto
implement in any numerical scheme, making it
straightforward to switch from a closure to anotloee,
simply changing the subroutines that compute c¢ i#snd
derivativesoc/oh andoc/ou. This makes it possible to use
different closures depending on the specific nedds,
instance depending on the phenomenon, on the fypailp
and so on.

To compare the two approaches, we solve the same
problem by adopting the same closure (for exantpig]0)
and using the two methods. In particular, in SCR& w

obtain the Roe matriced and B from the matricet) and
E where the closure (10) has been plugged in. @mther

hand, in GCRS the Roe matricksaind B are derived from
the matricedJ andE where the concentration is expressed
as a generic function ofuf). Therefore, SCRS the
linearization is performedefore plugging in the closure,
while in GCRS it is performedfter. As a consequence,

A and B are in general slightly different fromk and B .

However, as a fundamental constraint of the Roemseh
when Ug — U, , the two matrices must tend to converge to
the same value, and the differences between the two
approaches tend to vanish.

In this section we compare the two approaches ihestr
above (SCRS and GCRS) in terms of the componems of
and B, of the system eigenvalues, and of the results of



simulations performed using a numerical model simib

interface, we assunmg-z=0.1m (but the results show very

the one described by Rosatti (2008) where SCRS and jittle variations using different values of the betep

GCRS are implemented.

Jacobians A and B
Given the left and right statd$ andUg, we consider the

average$ =(h.+hg)/2 and 0 =(u_+ug)/2. We introduce now
the quantities;,, andg, defined as:

h =h@-g,) [u =l(-¢,)
- _ 32
hg=h(l+&,) |Ur=0Q+&,) (32)
We can now express the differences:
Re=B-B ; Ra=A-A (33)

in terms of the averaged variables defined abodeddithe
deviations, , g, We obtain:

0 0 O 0 0O O
Re= 0 0 0 ; Ra=[R} Ry O (34)
b b
R31 RSZ 0 Rgl Rgz 0
Where:
Ro=p GO & | pbp GO EE | o
VTSR lg-2g,| T % T a |8 -2, (35)
and:
a CO| & || Ra,=-9- ~EnEi
YR lg-2e, | T G |82,
(36)

h |&—-2¢, 0 |&-25,

F| & F| -
e S| e S Al
Note that the non zero components become singiianw

(SC2) §-2%,-C (37)

Eigenvalues

Recalling Egs.(6)-(7), and in consistency with tiwation
used so far, the eigenvalues corresponding to two
approaches are:

~—1

I
@

SCRS:deff-Al ¥ 0.1 wherdl = A+

_ N L (7)
GCRS:deff-Al F 0. 1 wherel = A+

HB
where k=1,2,3, with the eigenvalues in ascendingioiWVe
consider a set of left and right statés, Ug such ash =1,
=1 and the deviations, and g, range in the interval
[-0.25;+0.25]. As for the height of the bed steptla

height). The differences between the values'ofomputed
with SCRS and GCRS normalized by the exact valege ar
shown in Figure 1.

du/u

IlERR (2 ) 1l
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Figure 1: Differences between the valuedofith SCRS
and GCRS, normalized by the exact valueldf

-0.10

Singular Terms

We have seen that the terrhs g and ® become singular
under the condition (30), whileRaand Rsbecome
singular under the condition (37). Using Eqgs. (22B) and
(32) we obtain that the two conditions are equivale

Aha_C+A“a—3_. o UHEEE g-2¢-0

oh d (38)

Moreover considering the variablee(u,h) and the
differential dc = du(oc/ou) + dh(oc/oh), a discretization
gives the expression that appears in Eq.(30), soS@
becomes: A°>0. Using the closure (10) we obtain,
neglecting the terms of order £)

(SC3) A°=c¢ -cr=2,-¢§,- C (39)

As a conclusion, we have that the Roe matrices rbeco
singular whenc,=cg. In order to avoid instabilities when
singular conditions are approached, we use theviiilg

fix: for |c.—cgrl<10°®, we substitute the averages that become
singular with arithmetic averages. Since left amghtr
conditions are almost coincident, the error is lyezgro.

Application to a dam break problem

Lastly, to compare the two approaches, we considany-

bed dam break problem over movable bed. We run the
model for different cell-sizes and using the twpr@ches
(SCRS and GCRS), always adopting the closure (9.
channel is 100m long, and the initial position leé dam is
x=50m . Initial conditions aréh=5m ,u,=0m /s upstream

of the dam and dry bed downstream. With regardh® t
other parameters, we hawg=9.806ms? A=1.65 and



p=0.9806m?s". The computational grid is composed by
1600 cells. Numerical results are shown in Figural@ng
with the analytical solution. As it can be seeng th
numerical solutions corresponding to the two salvare

nearly undistinguishable. The non dimensional eobh
andc are reported in Figure 3., whdrés scaled by,and ¢
by the maximum concentratiay.

6 i
S ey & z, - GCRS
4k T ez, - SCRS
- S o n - GCRS
. | - 1 - SCRS
£ i N | Exact Solution
—_ 2 - B R
= o
N L
0 R =
-2 ; 1 L L n 1 1 n L J
0 20 40 60 80 100
x [m]
Figure 2: Dry-bed dam break test: numerical resugtag SCRS and GCRS, along with exact solution.
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Figure 3: Dry-bed dam break test: non-dimensioealations of the values dfandc between SCRS and GCRS.

Conclusions

A new general formulation of the Generalized Rdsegte
for hyper-concentrated 1D shallow flows over a rnebed
has been shown. The proposed approach allows tanyse
possible closure relationships without the needirafing
proper Roe matrices (being such a task prohibititen
the closure is not particularly simple). It is showo be
completely general, easy to implement, and as atewrs
the standard Roe approach. Due to these chardicteribe
method is suitable for application in a wide ran§enodels
for sediment transport and debris flow.
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