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Abstract 

Morphodynamic processes in estuaries and subordinated 
tidal marsh-watercourses result from natural processes and 
anthropogenic changes in developed coastal zones. As a 
consequence of human activity, the complex natural system 
of tidal tributaries has been modified to enhance navigation, 
farming and settlement through flood defense structures, 
river regulation, land reclamation, and water management, 
however neglecting the ecosystem functions of estuaries. 
This paper combines significant processes in tidal marsh-
watercourses based on a research study, which were 
integrated into a specified long-term approach with special 
requirements according to anthropogenic stresses like 
barrier management and stagnant water. This long-term 
approach includes synthetic long-term boundary conditions 
for inland runoff, tides and anthropogenic stresses. By 
using a 2d-hydrodynamic and morphodynamic numerical 
model, which includes a sensitive morphological speed-up 
factor with respect to cohesive sediment properties, the 
ranges of uncertainty for different natural and 
anthropogenic impacts were considered. The resulting long-
term riverbed evolution is compared with the measured 
morphological developments. 
The unsteady behavior of hydrodynamics and sediment 
retention are the key indicators for changes in the 
morphology. Therefore hydro- and morphodynamic 
indicators, like changes in flood dominance, net sediment 
flux and the shift of turbidity maximum are taken into 
account. These indicators represent changes in dynamic 
behavior due to different anthropogenic stresses on meso- 
and macro-scale and also provided an instrument for further 
planning measures. 

Introduction 

Large estuaries are affected by natural influences, 
anthropogenic deformations and interacting processes with 
tidal tributaries and marsh-watercourses. These tidal marsh-
watercourses form a significant link between marine and 
fluvial environment. As consequence bi-directional forces 
due to asymmetric tides and inland runoff deform 

morphodynamic processes with presence of cohesive and 
organic sediment. In combination with the high inter-tidal 
area proportion and anthropogenic deformations special 
requirements for morphodynamic long-term approaches 
restrict existing methods. 

Processes and anthropogenic stress 
Today marshlands in Northern Europe are the most 
anthropogenic reduced ones with remaining 15% natural 
marshes (Greenberg et al., 2004). This was caused inter alia 
by drained marshlands, diked watercourses and 
construction of storm surge barriers. By additional 
deformations like the cut-off of natural tidal creeks and 
river regulation due to navigation, two central 
consequences appeared: During low tide more than 70% of 
the riverbed is falling dry and high tides run-up further into 
backwater than in former times.  
Due to the narrowed flow corridor between the dikes big 
sedimentation areas on the marshland are separated from 
the watercourse. As consequence high suspended sediment 
concentrations are not retained by natural intertidal shallow 
water zones on the forelands or in tidal creek systems, but 
amplifying the siltation at the banks and bays. On the other 
hand this separation of the marshland was carried out 
decades ago, and caused marshland subsidence. This 
development intensifies drainage management of cut-off 
tributaries in the hinterland by sluice (ARGE WRRL, 
2006): Maximum storage water levels are maintained in 
order to avoid drying-out of these tributaries during 
summer in the vegetation period. During winter storage 
water levels are minimized in order to avoid permanent 
flood irrigation.  
But also storm surge barriers at the mouth influence 
sediment transport and morphological changes (Figure 1). 
Recent studies (Gönnert, 1996) and practical experiences as 
in Lower Saxony (NLWKN, 2007) indicated siltation in the 
backwater, which requires a monthly up to weekly flushing 
of storm surge barriers. As consequence first changes in 
barrier management are realized by later closing and earlier 
opening against high tide (NLWKN, 2007). 



All these anthropogenic impacts (Figure 1) causes severe 
problems for water management affairs as well as negative 
impacts on water ecology, which underlines the need for a 
sustainable water management, as postulated by WFD (EC 
2006/60) and the EU Flood Directive (EC 2007/60). Apart 
from these legal requirements, climate change and the 
request for an optimum economic use of estuaries, force a 
rethinking on planning and realization of protection and 
compensation measures. Therefore, tidal marsh-
watercourses should be taken into account in prospective 
holistic approaches. 

 

Figure 1: Anthropogenic stresses and their hydro- and 
morphodynamic impacts for tidal marsh-water courses 

Field measurements and derived process zones 
Representative for anthropogenic deformed marsh-
watercourses is the meso-tidal, oligihaline river Krückau, 
which is a tidal tributary of the Elbe estuary in Northern 
Germany. Based on field-measurements of hydrodynamics, 
suspended particle matter (SPM) concentrations, sediment 
mixture and bathymetric evolution, hydro- and 
morphodynamic processes were divided into three process-
zones for tidal marsh-watercourses: a tidal, a backwater and 
a runoff zone (Donner et al., 2010). 
• In the tidal zone bi-directional, asymmetric tidal flow 

and sediment transport are dominating. Bed material 
consists of cohesive sediments, thus non-linear 
flocculation and consolidation occur.  

• In the backwater zone flow is not bi-directional. 
Currents are forced by inland runoff, but during high 
tide the water level is still increasing. Sediment 
mixture, originated from fluvial sediments, consists of 
fine-sand, clay and high portions of organic matter (up 
to 30 %), caused by wash loads and fen grounds. 

• In the runoff zone hydrodynamic and morphodynamic 
regime are purely forced by gravity. Due to changes 
from marshland to moraines (called Geest), suspended 
sediment mixture consists of fine and middle sand with 
decreasing organic fractions (10 - 5 %). 

Consequently tides and inland runoff, as well as selected 
anthropogenic stresses are relevant for the long-term 
approach. 

Methodology for long-term approach 

Estimating techniques for long-term morphodynamic 
changes for marine or fluvial environments already exist: 
Approaches for estuaries for instance strongly simplify the 
inland runoff by neglecting discharge variability and flood 
events. This assumption is not sufficient for marsh-
watercourses, where inland runoffs and tides act in a mutual 
dominance on hydrodynamics, sediment transport and river 
morphology. Due to hydraulic structures like storm surge 
barriers, additional hydro- and morphodynamic processes 
occur. Thus the approach of morphological tides (Latteux 
1995, Steijn 1992) failed, due to the complexity of impact 
parameterization. For transitional waters between fluvial 
and marine environment with a temporally interrupted 
dynamic no holistic approach is available. For this long-
term approach, special requirements due to asymmetric 
tides, anthropogenic impacts, cohesive sediments and high 
inter-tidal area portion are taken into account. 

Process-based long-term approach 
The concept of the process-based long-term approach for 
morphodynamic processes in tidal marsh-watercourses is 
subdivided into three components (Figure 2): long-term 
boundary, numerical methods incl. acceleration of 
simulation and data analysis. 
The long-term boundary conditions describe water and 
suspended sediment inflow at open boundaries: For inflow 
boundaries in the runoff zone measured hydrographs were 
fragmented into classes by month-wise maximum. For each 
class the frequency distribution and the sequence of 
discharge events per hydrological year were determined and 
synthetic flood events were included. The discharge classes 
were re-distributed to significant seasonal occurrence into 
three basic NQ-MQ-, NQ-MHQ- and MQ-HQ-scenarios. 
These scenarios were modified in duration integrating the 
annual frequency variability of discharge. 
For tidal boundaries a time-lag method superposes tidal 
cycles to mean neap-spring-tides. Due to preliminary 
filtering of barrier closure, the two management strategies 
(closure against low and high tide) were reconstructed. 
Both strategies were analyzed by using measured data. The 
impact on suspended sediment and hydrodynamics (Donner 
et al., 2009) due to gate closure and opening cause 
significant forms of down- and up-surges including 

Deformation 

Impact 

Deformation 

Impact 

Deformation Deformation Source/ Loss of 
Sediment

Source of Sediment tidal
marsh-

watercoursessurface runoff/ 
wash load

sewer inflow/
grey water, 

sewage
Deposition,
Erosion, 

Re-Suspension,
Consolidation,

etc.
inundation area, 

foreland

tidal 
tributaries

harbours, 
retention basins

natural inflow, 
tributaries

backflow trap

extensive
land use

sewer

dredging
dumping

sewer, 
diking

sealing 
diking

Impact 

acceleration 
& increase of

sediment influx

deformation of
natural inflow

deformation of
natural inflow

Impact 

isolation of 
hydro- /

morphodyn.
processes

reallocation of
deposition 

zones

reduction of
natural 

retention

Marine environment,
(e.g. Estuary)

weirs, sluices, 
storm surge barriers

isolation & deceleration of
hydro-/morphodyn. processes

cut-off morphodynamic
effective events

reduced dynamic &
sedimentation at backwater

Fluvial environment,
inland runoff  

control structures, (e.g. weirs)regulation, straightening

acceleration of hydro- &
morphodynamic processes

isolation & deceleration of 
hydro-/morphodyn. processes



sediment re-suspension depending on flow direction and 
gate operation. These operational processes were included 
with a fine numerical time resolution, while the open tidal 
boundary is closed or opened stepwise. During the stagnant 
period, numerical time steps were also reduced, considering 
the non-linear settling behavior of cohesive sediments. 
Based on seasonal characteristics and statistical analysis, 
duration and frequency of closure were included into the 
tidal boundaries. For closure against high tide selected 
spring tides were superposed with a simplified surge curve 
ΔH for integration into the basic neap-spring-tide. 
Depending on duration of closure, the increase ΔH cover 
20, 50 and 100 cm for closure over 1.5, 3.0 h and 4.5 h. For 
closure against low tide the stagnant water level is fixed by 
operation rules (here +1.6 m.a.s.l.). 
Discharge and tide-dependent suspended sediment influx at 
the boundaries was based on SPM field measurements. A 
regression analysis of SPM concentrations and inflow at the 
inflow boundaries results in logarithmic regression 
functions. Correlation of SPM concentrations with the tidal 
water level results in hysteretic functions, which differ 
between an ebb and flood phase (Donner et al., 2010). 

 

Figure 2: Concept for the long-term approach 

Hydrodynamics, suspended sediment transport and a 
reduced bed evolution are solved two-dimensional, depth-
integrated in a coupled scheme by FE-method (KALYPSO 
RMA): Hydrodynamics are solved by shallow water 
equations including flow resistance by Colebrook-White, 
drying and wetting as well as an eddy viscosity approach, 
which is superposing of a Smagorinsky enclosure with a 
bed shear stress induced approach. Suspended sediment 
transport is described with the 2d-advection-diffusion 
equation with erosion rates according to Partheniades 
(1965) and deposition rates according to Krone (1962) and 
Partheniades (1965). Based on laboratory studies settling 
velocities were derived for cohesive (0.025 to 0.35 mm/s 
for 100 to 1000 mg/l) and organic sediments (0.175 to 0.34 
mm/s for 10 to 900 mg/l). A reduced Exner-equation by 

neglecting bed load transport is applied for bed evolution. 
Erosion or deposition initiates an evolution of the multi-
layer soil model based on the Lagrange method including 
two layer-types: soft “suspended layers”, which describes 
the non-linear behavior over a small bed depth, and 
consolidated “bed layers”, which represent an almost linear 
behavior over the depth. All these layers include discrete 
characteristic soil properties like porosity, bulk density, 
critical shear stress and erodibility based on grain size 
distributions of bed material. 
A reduction of simulation time is possible by integrating a 
variable morphological factors (MF) according to Latteux 
(1995, “lengthening”), which accumulates bed evolution for 
longer periods. Thus hydrodynamics and sediment transport 
are modeled for one numerical time step, while bed 
evolution and its underlying soil-model change MF-times 
faster. This accelerated evolution provides a direct feedback 
to hydrodynamics for the next numerical time step. As one 
restriction for this approach, bed evolution over the 
accelerated time-scale must be so small, that no significant 
errors for hydro- and morphodynamic processes arise.  
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Calibration and validation on meso-scale 
For the calibration and validation of hydrodynamics and 
sediment transport on meso-scale, short simulated time 
spans over a few days are compared to measured time 
series (water level, currents and suspended sediment 
concentrations). For quantifying the model performance the 
Adjusted Relative Mean Absolute Error ARMAE according 
to Van Rijn et al. (2002) was used. For water level the 
ARMAE was excellent in the tidal zone with less than 0.05 
and good with less than 0.3 in the backwater zone. For the 
currents an excellent range was achieved with an ARMAE 
less than 0.06. Also the suspended sediment concentration 
results in good accuracy.  

Validation on macro-scale 
The validation on macro-scale of the developed long-term 
approach is carried out in three steps by a comparison of 
final bed evolution for different approaches, morphological 
factors and boundary conditions. For evaluation of the 
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results statistic key parameters are applied: covariance R, 
mean error ME, mean square error MSE, Brier Score BS, 
and Brier Skill Score BSS according to Casati et al. (2007). 
The first validation step (A) analyses how far an accelerated 
simulation is feasible by different morphological factors 
(MF) with 1, 3, 6, 12 and 24 for NQ-MQ to HQ-events. All 
morphological factors achieved good statistic parameters (R 
≤ 0.99, BSS ≤ 0.98), but also showed some shortcomings: 
For HQ-events especially erosion in the backwater and 
runoff zone is overestimated, if MF was greater than 4. For 
NQ-MQ-events the bed evolution in the runoff zone is well 
performed with all factors, but at the riverbanks of the 
backwater and tidal zone deposition is overestimated for 
MF over 12. As consequence acceleration should be limited 
to MF 4 for flood events and to MF 12 for mean or low 
discharges, in order to reduce overestimation of 
morphological processes at the banks in shallow water 
zones. 
The second validation-step (B) analyses, whether the 
synthetic discharge hydrograph including morphological 
factors cope with an equivalent, natural discharge 
hydrograph based on the duration curve. Therefore the 
measured discharge hydrograph was simulated without MF 
over 1 year and was compared to synthetic discharge 
hydrograph (long-term boundary conditions) accelerated by 
MF 1.2 to 5.9. The deltas at the riverbed are in the range of 
±0.6 cm/a (R = 0.98, BSS = 0.96). The deviations are 
similar to the statistic key parameters from (A), so only a 
small error can be assumed for the application of synthetic 
discharge hydrographs in combination with morphological 
factors. 

 

Figure 3: Simulated (based on the long-term approach, see 
“sim”) and measured (via Multibeam-Echo Sounder, see 

“mess”) river bed in selected cross-sections in the lower 
tidal zone (top) and in the upper tidal zone (bottom).  

The final validation (C) applies the full long-term approach 
incl. morphological factors bed evolution. Simulated bed 
evolution from 2006 till 2010 is compared to measured 
evolution (Figure 5). This comparison gives the final and 
overall uncertainty of the long-term approach. The 
hydrological years are assigned to synthetic hydrographs, 
based on the natural range and their characteristics. The 
comparison between measured and simulated bed evolution 
by statistic key parameters results in quite good to adequate 
ranges with a mean error of -1.6 cm/a for 2006 till 2007 
(BSS 0.91), -1.4 cm/2a for 2006 till 2008 (BSS 0.91), +0.03 
cm/3a for 2006 till 2009 (BSS 0.68) and +1.87 cm/4a for 
2006 till 2010 (BSS 0.72). 

Results and discussion 

The described and validated long-term approach is applied 
for an estimation of bed evolution by including sensitivity 
analysis concerning event sequence, boundary and initial 
conditions over 10 years. Bed evolution represented therein 
following characteristics for the river Krückau: In the 
middle reach of the tidal zone the riverbed is slightly 
eroded, while deposition occurs at the banks. In the 
backwater of the storm surge barrier (near the mouth) the 
riverbed slightly tends to deposition. Also at the upper end 
of the tidal zone (near the harbor of Elmshorn) depositions 
at the riverbed and at the banks occur. The tidal marsh-
watercourse indicates an importing system with a net 
sediment flux pointing upstream in the lower tidal zone and 
downstream in the central and upper tidal zone. In the lower 
tidal zone low flood dominance appears, this characteristic 
changes in the central and upper tidal zone to ebb 
dominance. The flood dominance is given here by ratio of 
more than one, derived by the ratio between maximum 
flood and ebb flow currents. The turbidity maximum is 
located in the lower tidal zone. 
For further analysis of anthropogenic stresses the impact of 
barrier management and the cut-off tidal tributaries is 
considered on meso- and macro-scale. Therefore the change 
of indicators is examined by flood dominance, turbidity 
maximum and net sediment flux on meso-scale and shift of 
this behavior based on bed evolution on macro-scale.  

Effect of storm-surges barriers management 
The barrier management is included into the long-term 
approach and represents some slight trends and behaviour 
characteristics in time series of bed evolution. The 
oscillating water level of the synthetic neap-spring-tides 
induces also a periodically oscillating bed evolution in the 
main channel of the tidal zone.  
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For summer periods, with low inland runoff and moderate 
high tides, closure against low tides due to irrigation is a 
typical event (Figure 5): During spring tides a slight trend 
of erosion appears, while neap tides evoke a trend of 
deposition phase. Barrier management against low tide 
initiates for an early evolution state (3 years) a short 
deposition, which is remobilised in the main channel soon 
afterwards. Consequently morphology is oscillating on a 
dynamic equilibrium (Wieprecht, 2007) with a slight 
erosion trend for the main channel. Regarding the long-
term reaction of the riverbed morphology (10 years) not 
only the trend in the main channel changed from slight 
erosion to deposition, but also the impact of barrier 
operation against low tide caused a meta-stabile 
equilibrium with a long lasting increase of sedimentation 
after barrier management. 
For winter periods higher inland runoffs and higher 
frequency of closure against high tides is usual (Figure 5): 
closure against high tide also initiates for an early evolution 
state (3 years) and also for the long-term morphology 
(10 years) a short deposition, which is remobilised soon 
afterwards. Thus morphology is oscillating on a dynamic 
equilibrium, which is not sustainably affected by barrier 
managing against high tides. 
These deposition and remobilisation characteristics in the 
main channel change at the riverbanks and in shallow water 
sections, where a sustainable deposition appears during 
both barrier closures. These aggradations are not 
remobilised under tidal velocities. 

 

Figure 4: Bed evolution in the backwater of the storm surge 
barrier (main channel) with impact of barrier-closure after 3 
and 10 years during summer neap-spring-tides with closure 
against low tides 

 

Figure 5: Bed evolution in the backwater of the storm surge 
barrier (main channel) with impact of barrier-closure after 3 
and 10 years during winter neap-spring-tides with closure 
against high tides 

The long-term impact of barrier management was examined 
in scenarios with sequenced closed and open tidal boundary 
for the initial state of the riverbed (2006) and for the 
morphological developed riverbed (10 a later). Constant 
inland runoffs (NQ, MQ and HQ) were combined with an 
open tidal boundary over several tides as well as sequenced 
closure against high and low tide: 
• Depositional trend increased on the long-term 

morphology for depth water sections, but it is reduced 
at the banks and in shallow waters due to fast 
deposition during the initial time span. 

• Turbidity maximum is reduced by 5 to 15 % and 
moved about 3 flow kilometers downstream due to 
morphological changes. 

Due to morphological changes flood dominance is reduced 
slightly, which is forced by sedimentation. 

Effect of cut-off and reactivated tributaries 
As example for including restoration measures based on the 
developed long-term approach, the influence of cut-off and 
reactivated tidal tributaries was investigated here. The 
impact of cut-off tidal creeks was derived by processes, 
which appear in open tidal tributaries near the mouth of the 
river Krückau, based on the long-term approach. Therefore 
simulated sediment concentration, in- and outflow at the 
mouth of these tributaries were correlated with the tidal 
water level in the main water channel. In the lower tidal 
zone high concentrations of suspended sediment are flushed 
into the tidal tributary during flood flow (Figure 6, bottom) 
and settle during a longer phase of slack water and high 
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