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Abstract 

Computation of sediment transport rates in natural rivers is 

necessary for successful implementation of sustainable 

projects in hydraulic engineering. There are many equations 

available which are derived based on probabilistic, 

deterministic and regression approaches. Prediction errors 

of the existing equations are usually very high for practical 

applications, and show significant discrepancy from 

observed transport rates. There is a very large degree of 

uncertainty and fuzziness associated with the prediction of 

sediment transport. A data-driven fuzzy logic approach is a 

powerful alternative to model complicated processes, where 

computation of sediment transport is a focus area. 

 

This paper focuses on assessing the applicability of data-

driven adaptive neuro-fuzzy modelling technique for 

predicting total sediment transport rate in the Elbe river. 

Flow depth, velocity, energy slope and median size of 

sediment particles are selected as dominant parameters 

influencing the amount of sediment transport. After data 

analysis and exclusion of extreme values, a total of 320 

datasets are selected for the final model development. Two 

thirds of the datasets are used for training and one third for 

testing. The initial fuzzy model is obtained by grid 

partitioning of the input variables and a neuro-fuzzy system 

is used for optimizing the model. A sensitivity analysis for 

the combination of input parameters as well as number and 

type of membership functions is performed to determine the 

significance of the parameters on model performance. 

 

The accuracy of the ANFIS model is compared with the 

results computed by the equations of Yang (1973), Ackers 

and White (1973), Engelund and Hansen (1972), Bagnold 

(1966), and van Rijn (1984). From the results of the 

investigation it can be concluded that the ANFIS model 

performs significantly better than the selected transport 

equations. The values predicted by the equations show a 

large deviation from measured transport rate. 

 

Introduction 

In natural rivers, flow is able to transport sediment particles 

when it exceeds the critical condition required for the 

initiation of motion. This critical condition is called 

incipient motion and its criteria can be expressed using 

critical bed shear stress (Shields, 1936), critical velocity, or 

stream power as characteristic parameters. If this condition 

is satisfied and the flow is able to exert enough force or 

energy, sediment particles start moving. The motion of 

sediment particles can be as bed load or suspended load. 

Different factors determine whether a sediment particle is 

transported as bed load or suspended load including particle 

size, flow velocity, flow depth. Understanding the process 

of sediment transport in rivers and prediction of the amount 

of transported sediment is essential for the design of 

hydraulic structures and a sustainable management of water 

resources. Sediment transport plays a key role in channel 

morphology changes, reservoir sedimentation, maintenance 

of navigation channels, design of intake structures for 

hydropower, habitat modelling, river aesthetic, and 

environmental impact assessment. One, two, or three 

dimensional numerical hydraulic models are usually used to 

simulate the process of sediment transport and the resulting 

short and long term river morphology changes so that 

appropriate mitigation measures can be implemented based 

on the results of the simulation. The sum of the amount of 

bed load and suspended load is called total load. Wash load 

is usually fine and mainly moves in suspension (Xiaoqing, 

2003). The wash load does not play an active role for river 

morphology changes, thus the portion of wash load should 

be subtracted from the total sediment load to determine the 

morphologically active bed-material load (Yang, 1996).  

 

Sediment transport modelling and river morphology change 

analysis are fields which are in the main focus of research 

in hydraulic engineering, and different approaches are 

utilized for deriving sediment transport equations. This 

paper presents the application of a data-driven adaptive 

neuro-fuzzy modelling approach for computing sediment 
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transport for the Elbe river. The estimation accuracy of the 

adaptive neuro-fuzzy model is compared to that of other 

well known sediment transport equations. 

Sediment Transport Modelling Approaches 

The basic approaches used in the derivation of sediment 

transport functions are: regression, probabilistic, and 

deterministic approaches (Yang, 2006). 

Regression approaches  

The regression approach uses a non-linear multiple 

regression analysis to derive the relationship between 

sediment transport and input variables. Equations of Shen 

and Hung (1972), Karim and Kennedy (1990), Rottner 

(1959) are derived by regression. Sediment transport 

equations derived by regression analysis should be applied 

to conditions within the range of datasets used for the 

formulation of the equations.  

Probabilistic approaches 

Einstein (1950) introduced the derivation of sediment 

transport equations from a probabilistic approach. He 

observed the stochastic nature of sediment transport and 

combined probability and statistics with modern fluid 

mechanics to derive his sediment transport equation. 

Detailed analysis of Einstein’s probabilistic approach can 

be found in Yang (1996), and Chien and Wan (1999). 

Equations of Colby (1964) and Toffaleti (1969) are based 

on Einstein’s probabilistic approach.   

Deterministic approaches 

The deterministic approach is based on the assumption that 

sediment transport can be estimated by using one or more 

dominant hydraulic parameters (Yang, 2006). The most 

commonly used parameters are flow velocity, sediment 

particle diameter, slope, water depth, shear stress, stream 

power, unit stream power, etc. Equations of Meyer-Peter 

and Müller (1948), and Laursen (1958) are based on the 

assumption that the amount of sediment transport is 

proportional to the excess of bed shear stress. Bagnold 

(1966) introduced the stream power approach for 

estimating sediment transport based on general physics. He 

assumed that the rate of dissipation of energy is 

proportional to the amount of material transported. Bagnold 

defined stream power as the power per unit bed area which 

can be used to transport sediment. Stream power is 

considered to be the product of shear stress (τ) and flow 

velocity (V). Sediment transport equations of Engelund and 

Hansen (1972), and Ackers and White (1973) are derived 

based on Bagnold’s concept of stream power. Yang (1973) 

derived his sediment transport equation based on the unit 

stream power approach. He defined unit stream power as 

the product of velocity and slope.  

There are many equations provided by different authors for 

computing the amount of sediment under transport. Most of 

the equations are derived using data from laboratory flumes 

or limited field data, and the calculated results of the 

equations show considerable discrepancies from the 

measured transport rate (Yang, 2006). Estimation of the 

amount and composition of sediment transport is one of the 

challenging tasks facing engineers up to date and there is 

not any equation which is universally acceptable under 

varying site condition. The existence of so many governing 

variables creates uncertainty and makes the formulation of 

a single equation for accurately predicting sediment 

transport quite challenging. For such complicated 

processes, data-driven fuzzy logic is an alternative 

modelling approach. Fuzzy logic which is introduced by 

Zadeh (1965) is capable of incorporating uncertainty and 

imprecision in the modelling process. 

Application of ANFIS for Sediment Transport  

Adaptive Neuro-Fuzzy Inference System (ANFIS), first 

introduced by Jang (1993), is usually utilized for 

optimizing data-driven fuzzy models. ANFIS is a network 

structure consisting of a number of nodes and layers 

connected through directional links. The ANFIS-based 

technique is used for predicting the desired parameters of a 

fuzzy system when measured training data is provided. The 

data for training should include enough historical data 

representing the process. ANFIS has been successfully 

applied to solve a number of problems in water resources. 

Some of the applications include: estimation of suspended 

sediment transport (Kisi, 2005; Kisi et al., 2008), long 

shore sediment transport (Bakhtyar et al., 2008), modelling 

of hydrological time series (Nayak et al., 2004), and stream 

flow reconstruction (Chang et al., 2001).  

 

In this study, the ANFIS-based modelling for sediment 

transport computation is accomplished by following three 

general steps. The first step is the identification of input and 

output variables and data preparation which includes: 

selection of input and output variables, collection of 

sufficient data, data analysis and filtering, and preparation 

of training and test datasets. The second step is the 

generation of initial membership functions, model 

optimization using ANFIS and performing a sensitivity 

analysis for the different parameters of the model. The final 

step is the model validation and testing using additional 

datasets. Model validation can also be performed by 

comparing the results of the ANFIS model with results of 

other commonly applied models.  

Input variables 

The main parameters needed to estimate sediment transport 

rate are related to the properties of flow conditions and 
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sediment mixture (Chien & Wan, 1999). There are several 

flow variables which are relevant for the motion of 

sediment and the three important variables describing the 

flow condition are depth, velocity, and slope. These 

variables are important factors needed for the computation 

of shear stress, unit stream power or stream power which 

are used as dominant parameters in many sediment 

transport equations. For initiation of motion of sediment 

particles, resistance force should be balanced by drag force. 

The drag force is the shear stress which is exerted on the 

sediment particle and it is a function of slope and depth. 

The resistance to movement depends on the physical 

properties of the particle of which size is the most 

important. Particle size determines the criteria for incipient 

motion whether it is based on critical shear stress or critical 

stream power, or critical unit stream power. Most of the 

parameters used in many sediment transport equations are 

functions of four fundamental parameters: bed or energy 

slope (S), mean flow velocity (V), water depth (D), and the 

median particle diameter (d50). These parameters are 

selected as the main important variables governing the 

process of sediment transport to develop the ANFIS model. 

Additionally, the four basic variables are selected because 

they can be measured as primary data and their physical 

meaning is obvious for practical applications.  

Study area: the Elbe river 

The Elbe river is the third largest river of Central Europe. It 

flows from the Krkonose Mountains (Czech Republic) to 

the North Sea covering a total distance of 1091 km and a 

catchment area of 148,268  km
2
. The Elbe river basin spans 

four countries: two third of the basin lies in Germany, one 

third in the Czech Republic, and less than 1% in Austria 

and Poland. The mean annual discharge into the North Sea 

is 877 m
3
/s. A comprehensive dataset for the Elbe river is 

provided by the German Federal Institute of Hydrology 

(BfG). Measured values of mean velocity, water surface 

slope, river bed width, median particle size (d50), water 

depth, and total bed-material transport are available. The 

data obtained from the BfG covers the German part of the 

river. Measured parameters are available for 20 stations, on 

a total length of more than 500 km. The Elbe is a sandy 

river where most sediment particles are transported as 

suspended load. The data is analysed in detail where 

extreme values are removed and wash load is excluded. 

This results in a total of 321 datasets for final analysis. The 

data is categorized into two groups: training and testing. 

The training datasets are used to train the model and obtain 

best fitting parameters by implementing optimization 

algorithms (Solomatine & Ostfeld, 2008). The test datasets 

are utilized to validate the model and avoid overtraining. In 

this study, two third of the available datasets are selected 

for training and one third for testing.  The ranges of input 

and output parameters applied to develop total bed-material 

load ANFIS models are indicated in Table 1. 

Table 1: Ranges of parameters implemented to develop 

total bed-material ANFIS models for the Elbe river. 

Parameters Range 

velocity (m/s) 0.08 – 3.89 

depth (m) 0.38 – 5.07 

bed slope (mm/m) 0.13 – 0.35 

d50 (mm) 0.50 – 8.53 

total bed-material transport (g/s.m) 20 – 600 

 

Optimization and sensitivity analysis 

The initial Takagi-Sugeno fuzzy model (Takagi & Sugeno, 

1985) is generated by grid partitioning and equally shaped 

and equally spaced membership functions are defined for 

each of the input variables based on the ranges of measured 

data. The adaptive neuro-fuzzy inference system which 

implements neural network learning algorithms to optimize 

fuzzy models is implemented for optimizing the parameters 

of the fuzzy model. The hybrid learning algorithm in 

ANFIS is the combination of the gradient descent and least-

squares methods. The gradient descent method is employed 

to tune premise non-linear parameters, while the least-

squares method is applied to identify consequent linear 

parameters. A detailed analysis of ANFIS and the hybrid 

optimization algorithm can be found in (Jang, 1993; Jang et 

al., 1997). During the optimization process, great care 

should be taken to ensure that the model will not be over-

trained.  

 

A sensitivity analysis for the combination of input 

parameters, and number and type of membership functions 

for each input parameter is also performed. In order to 

determine the relative importance of each of the four 

primary input parameters (D, S, V, and d50) on the accuracy 

of the model results, a sensitivity analysis is performed with 

one of the parameters removed at a time. The different 

architectures of the models tried are ANFIS (D V S d50), 

ANFIS (V S d50), ANFIS (D S d50), ANFIS (D V d50), and 

ANFIS (D V S).  Other possible combinations of the 

variables including dimensionless parameters as used in 

some sediment transport equations can be defined as 

alternative inputs. Furthermore, a sensitivity analysis is 

performed for the number (2 to 5) and type (triangular, 

trapezoidal, generalized bell-shaped, Gaussian) of 

membership functions to achieve an optimized model. 

Finally three generalized bell-shaped membership functions 

are selected for each input variable based on the results of 

the sensitivity analysis. 
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The selection of an appropriate statistical model 

performance evaluation criterion is necessary during model 

optimization and for comparison of the accuracy of 

different models. Correlation coefficient (r), root mean 

squared error (RMSE), average absolute relative error 

(AARE) and discrepancy ratio (Dr = computed/measured) 

are selected as model performance evaluation criteria. The 

absolute relative error (ARE) is the prediction error 

expressed in percentage of the observed transport rate. 

Model results 

Table 2 shows the accuracy of different total load ANFIS 

models developed for the Elbe river. The ANFIS model 

with four input parameters (D, V, S, d50) is found to be 

having the best performance with AARE values of 52.3% 

and 50.4%, average discrepancy of 1.29 and 1.22 for the 

training and test datasets respectively. Around 70% of the 

total data lie in the discrepancy ratio range of 0.5 - 1.5 and 

less than 15% of the total data have a computational error 

greater than 100%. This is a good performance for 

estimating sediment transport in large rivers like the Elbe. 

From the results of the sensitivity analysis, depth and flow 

velocity are found to be the most important parameters 

influencing the model performance. As most of the 

sediment load in the Elbe river contains relatively uniform 

sand and is transported as suspended load (the Elbe is a 

sandy bed river), the effect of excluding the sediment 

particle size from the input parameters is not quite 

significant. The fuzzy model with three input parameters D, 

V, and S shows a comparable accuracy as that with four 

input parameters, with AARE 54.1% for the training 

datasets and 45.5% for the test datasets. Additionally, 

average discrepancy ratios of 1.30 and 1.20, correlation 

coefficients 0.8 and 0.6 are obtained for the training and 

test datasets respectively. Around 80% of the total data lie 

within discrepancy ratio of 0.25 - 1.75. The RMSE values 

are 57.4 and 82.9 g/s.m, and the percent of data with ARE 

> 100% are 13.6% and 15.2% for the training and test 

datasets respectively.  

 

Table 2: Performances of different total load ANFIS models for the Elbe river. 

 

Combination 

of inputs  

Training data Test data 

Avg. 

Dr 

AARE 

(%) 

RMSE 

(g/s.m) 

 

r 

Percent of ARE 

>100% 

Avg. 

Dr 

AARE 

(%) 

RMSE 

(g/s.m) 

 

r 

Percent of 

ARE>100% 

D  V  S  d50 1.29 52.3 56.7 0.80 14.1 1.22 50.4 80.7 0.56 13.9 

V   S  d50 1.37 62.5 67.8 0.69 18.6 1.19 53.2 76.2 0.53 13.9 

D  S  d50 1.38 61.2 67.5 0.69 19.5 1.22 48.6 82.5 0.62 10.9 

D  V  d50 1.33 55.8 60.0 0.78 17.7 1.29 54.8 84.3 0.54 13.9 

D  V  S 1.30 54.1 57.4 0.79 13.6 1.20 45.5 82.9 0.59 15.2 

 

Model Comparison  

Comparison of accuracy of the total load ANFIS model 

with four input parameters, ANFIS (D V S d50), on the 

training and test datasets with the results computed by the 

total load equations of Yang (1973), Ackers and White 

(1973), Engelund and Hansen (1972), Bagnold (1966), and 

van Rijn (1984a,b) is shown in Figure 1 below. The range 

of datasets chosen for the use in developing the equations 

and the corresponding application guidelines recommended 

by the authors are considered while selecting the equations 

for comparison.  

 

From the scatter plots of measured total load transport rate 

per width (g/s.m) versus computed total load transport 

rates, it can be clearly observed that the data-driven  

 

 

 

adaptive neuro-fuzzy model performs significantly better 

than the selected sediment transport equations. The 

transport equations result in large scatter form the observed 

values. The ANFIS model is selected as the best model 

with the lowest AARE of 51.7%, RMSE of 65 g/s.m, and 

the highest correlation coefficient of r = 0.72. The average 

discrepancy ratio of the data-driven model is 1.27 and 

68.7% of the computed values lie within the discrepancy 

range of 0.5 - 1.5. The AARE values for Yang (1973), 

Engelund and Hanson (1967), Ackers and White (1973), 

Bagnold (1966) and van Rijn (1984) are 121.6%, 116.8%, 

85.9%, 167.2%, and 165.1% respectively. 
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Figure 1: Scatter plots of measured versus computed total load transport rates per width by using ANFIS model and selected 

sediment transport equations for the Elbe river.  

 

The results of AARE of all equations, except the Ackers 

and White, is greater than 100% and the deviations from 

the line of perfect agreement are significant. Bagnold’s 

equation is the least accurate with 56.1% of the computed 

values having absolute relative error greater than 100%. 

The Ackers and White equation performs relatively better 

than the other equations with average discrepancy ratio of 

1.46 and 40.8% of the values lying between 0.5 - 1.5 times 

the observed transport rate.  

 

These results strengthen the complexity of computing 

sediment transport rate in large rivers like the Elbe where a 

great deal of factors plays a significant role and the 

uncertainty is very high. The results from the data-driven 

model are fairly accurate and provide better estimation of 

the total load. The ANFIS model is quite simple to apply 

and results are promising. But like any regression and data-

driven model, the ANFIS model developed for estimating 

total load in the Elbe captures the hidden relationship 

between the input variables and the total load transport rate 

for the river. This relationship can be different for other 

rivers and the model developed for the Elbe cannot be 

directly applied to river reaches with different 

characteristics. But the sediment transport equations are 

supposed to be generally applicable. 
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Conclusions 

The results of this research are promising and prove the 

potential applicability of a data-driven adaptive neuro-fuzzy 

modelling for estimation of total load transport rate for the 

Elbe river. The model results show that the data-driven 

adaptive neuro-fuzzy modelling approach can be used for 

reasonably accurate estimation of sediment transport rates. 

The ANFIS model is found to be performing better than 

selected sediment transport equations. Furthermore, the 

results of the sensitivity analysis show which parameters 

are more important in influencing the amount of sediment 

transport depending on the ranges of input data and river 

characteristics. The relatively simple ANFIS model is a 

powerful tool where the physical processes are too 

complicated to be expressed mathematically. Sediment 

transport is definitely one of the focus areas in this regard 

as proved in this study. However, it needs to be pointed out 

that data-driven models do not consider mathematical 

expressions describing the physical processes, and they are 

developed and optimized based on the analysis of available 

measured data. The models developed are usually data 

specific. They require collection of sufficient data with 

good quality capturing the process under consideration. To 

assess the general ability of the ANFIS model in 

successfully estimating sediment transport for different 

rivers under varying conditions accurately, more training 

datasets from additional rivers should be included in the 

analysis.  
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