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Abstract 

In unsteady flows, the uniform sediment transport is 
commonly described by solving the conservation equations 
of mass and momentum both for solid and liquid phases. If 
the non-uniformity of the sediment becomes relevant, a 
new set of equations, regarding the time and space 
evolution of the grain size distribution of the solid phase, 
must be considered. Two approaches are presented in 
literature. The bed material fraction (BMF) model 
discretizes the grain size distribution curve in a finite 
number of classes while the statistical moment (SM) 
approach, proposed by Armanini, (1992) and (1995), 
describes the distribution curve by means of its moments 
(commonly means and variance). Herein a rigorous 
analytical derivation of the SM equations is proposed. The 
two models are implemented in the case of 1D rectangular 
channel with unitary width and compared. Advantages, 
limits of the two approaches and some preliminary 
numerical results are herein presented. 

Introduction 

Rivers-beds are usually composed of non-uniform sediment 
mixtures and the prediction of natural river processes is, 
consequently, more complex with respect to a uniform 
approach. 
In order to model the dynamic of the non-uniform sediment 
transport, in the most used mathematical and numerical 
models, the concept of mixing layer (or active layer) is 
introduced. This concept was proposed by Hirano (1971) 
and it assumes that in this mixing layer all grains with 
different diameters are instantaneously and fully mixed. 
Indeed the bed river results subdivided in two layers, the 
mixing layer and the substrate, with two different grain size 
distributions. In order to study how these distributions 
evolve in time and space in function of the hydrodynamics 
and of the sediment, conservation equations for the solid 
phase in the mixing layer must be written.  
In the bed material fraction (BMF) models the grain size 
distributions curve are divided in several classes and as 
many mass conservation equations computed (Wu, 2007) 

(Brunner, 2010) (Lee & Hsieh, 2003) (Yang & Simoes, 
2002). Indeed the number of unknowns are equal to the 
number of classes in which the grain size distribution curve 
is divided. 
In the model statistical moment (SM) approach, starting 
from the conservation equation of the solid phase in the 
mixing layer a set of equations for the statistical moments is 
derived (Armanini, 1992) and (Armanini, 1995). The 
advantage of this formulation is the reduction of the 
unknowns from the number of classes necessary to describe 
the grain-size distribution to the number of statistical 
moments with a consequent reduction of the computational 
cost.  

Mathematical modeling of non-uniform 
sediment transport 

In this work a 1D rectangular channel with unit width is 
considered. Mathematical modeling of river mobile bed is 
usually based on the vertically averaged Saint-Venant 
equations, which express the conservation laws of mass and 
momentum for water, and on the Exner equation resulting 
from the conservation of the solid phase. These equations 
can be also derived from a two phase approach under the 
assumption of low sediment concentration and isokinetic 
model (Garegnani, Rosatti, & Bonaventura, 2011). 
The momentum equation thus reduces to the equation for 
the clear water: 

���� � ��� ���
� 	 � 
� ���� � 
 ��̅�� (1) 

where q is the mixture discharge that coincides with the 
liquid discharge while x and t are the longitudinal 
coordinate and the time variable respectively. Herein g is 
the gravity acceleration, h the water depth, �� the water 
density and ��̅ the average bottom friction. In equation (1) 
the friction term is calculated through the Gauckler-
Strickler relation: 
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��̅� � 
�����/� � (2) 

where ��	is the Strickler roughness coefficient. Besides, the 
momentum equation (1) can be rewritten in a quasi-
lagrangian formulation: 

���� � 
� ���� � 
�� (3) 

where using equation (2) yields  

� � 
�����/� � ���� (4) 

with � � �/� velocity of the mixture. 
The conservation of the total mass is: 

���� � ���� � 0 (5) 

where � is the free surface elevation (see Figure 1) . 

 

Figure 1: Sketch of the main model variable in the case of 
non-uniform sediment. 

Finally, under the hypothesis of low sediment 
concentration, the time variation of the sediment stored in 
the water column is neglected and the conservation 
equation for the sold phase is:  

�� ����� � ���  ��! � 0. (6) 

Here �� is the concentration of the sediment in the bed and 
it is assumed to be constant while �� is the solid discharge. 
Notice that c is indeed defined as the ratio of solid 
discharge to the total discharge,		�� �⁄ . Indeed, it is not the 
volumetric concentration of sediment in the column water 
that can be calculated from c by means of a corrective 
coefficient taking into account the vertical distribution of 
the velocity and of the concentration. 
The free surface elevation �, the mixture discharge q and 
the bed level �� are the unknowns of the system of 

equations (3), (5) and (6). In the equation (6) the sediment 
concentration c is, in the case of uniform transport, 
calculated through a sediment transport formula as shown 
in (Garegnani, Rosatti, & Bonaventura, 2011) while, in the 
case of non-uniformity of the sediment, c depends on the 
grain size distribution as shown in the following section. In 
this case, a new set of equation has to be added to the 
system (3), (5) and (6) in order to calculate the 
concentration c and to study the evolution of the grain-size 
distribution curve. 

The grain-size distribution curve  

Sieve analyses allow to estimate the distribution of granular 
material on the bed. In Figure 2 the typically lognormal 
distribution of the grains is reported. Grain-size distribution 
is a continuous concept. The sample space is the space of 
the diameters $. The grain-size distribution function	F ϕ! 
gives the probability that a random diameter is not larger 
than a given value $.  

 
Figure 2: Grain-size distribution function '( $! in the 
mixing layer ). 

 
Figure 3: Density function *( $! in the micing layer. 

Indeed, we introduce the concept of density function * $! � �'/�$ where * $!�$	is the probability that a 
random value of diameter lies between $ and $ � �$, 
Figure 3.  
In order to study the dynamic of the non-uniform transport, 
the bed river is subdivided in two layers: the mixing layer 
with thickness ) and the substrate with depth �� 
 ) as 
shown in Figure 1. Generally the grain size density function *( $! in the mixing layer differs from the density curve *�,��- $! in the substrate while the concentration in the 
two layers is considered constant and equal to ��. Besides, 
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the density curve *- $!	of the material transported by the 
flow changes from either the mixing layer and the substrate. 
If the sediment distribution in the mixing layer is known, 
the Einstein assumption allow to calculate the sediment 
concentration. This hypothesis affirms that interactions 
among the moving sediment particles are negligible. 
Indeed, the density of  the solid concentration c depends on 
the grain-size distribution present in the mixing layer: 

� $! � *( $!�. $! (7) 

where �. is the solid concentration evaluated in the case of 
uniform flow and grain size material equal to	$, i.e. 
through a sediment transport formula. In this work a 
monomial formula is used: 

�. $! � /�012
$3 . (8) 

Notice that the density function *- $! of the material 

transported by the flow differs from the curve	*( $! in the 
mixing layer and it is equal to: 

*- $! � *( $!�. $!
�  (9) 

 
Figure 4: Concentration density � $!	of the material 
transported by the flow. The total solid concentration is 
calculated as the area of the region bounded by the graph. 

The total solid concentration � is the integral over the grain-
size interval of equation (7), Figure 4: 

� � 4 *( $!�. $!�$.
56

7
 (10) 

Mass conservation in the mixing layer 

The conservation equation for sediments with diameter ϕ in 
the mixing layer δ is then 

9
9- :*(c�)< � 9

9= :*(�.�< � *∗c� 9
9-  �� 
 )! � 0  (11) 

where the first term is the time variation of the volume 
occupied by the sediment with diameter $, the second term 
is the spatial variation of the solid discharge and the last is 
the flux of sediment from the substrate to the mixing layer. 
The flux between mixing layer and substrate depends on 

the grain size density function *( in the mixing layer in the 
case of bed aggradations and on *�,��- 	of the substrate in 
the case of bed degradations.  
The thickness ) of the mixing layer is calculated through a 
closure formula, it is usually related to the sand dunes 
height as (Armanini, 1999) and (Wu, 2007) or to the 
specific diameter $?7 (Armanini & Di Silvio, 1988) as: 

) @  2 B 3!$?7. (12) 

The substrate is assumed to be unbounded and, then, the 
grain size distribution curve of the sediment inside it 
doesn’t change and *�,��- $! is constant in time. 

The BFM model 

The space of diameters $ is divided in / intervals D �E$F12/�, $F52/�G. If the mixing layer is considered, in the 

discrete case, the probability that $ is included within the 

interval D � E$F12/�, $F52/�G. is: 

HF � 4 *( $′!�$J.
KLMN/O

KLPN/O
 (13) 

Equation (11) is integrated on the j-interval E$F12/�, $F52/�G: 
4 Q ��� :*(c�)< � �:*(�.�<��

KLPN/O

KLMN/O
� *∗c� ���  �� 
 )!R �$ � 0. 

(14) 

From equation (13), we obtain the equation of mass 
conservation for the j-class on the interval D: 

c� ��� :HF)< � ��� EHF�.:$F<�G
� ��HF∗ ���  �� 
 )! � 0 

(15) 

with D � 1…/	where the unknowns are the probability HF 
in the mixing layer. Notice that  HF is also called availability 

factor because it represents the fraction of materials 
available in the mixing layer. The availability factors HF∗	are 

equal to the value HF in the mixing layer in the case of bed 

aggradations and to the value of the availability factor HF�,��- 	of the substrate in the case of bed degradations. 
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The system of m equations (15) can be numerically solved 
in order to model the river processes. 
The solid discharge in equation (6) is the sum of all class 
contributions and it is calculated by the discretization of 
equation (10): 

� � UHF �.!F
V

FW2
. (16) 

An analytical derivation of the SM model 

This novel approach was proposed by Armanini (1992) and 
(1995). The objective of this formulation is the reduction of 
the number of unknowns from the number m of classes in 
which the distribution curve is discretized to the number of 
statistical moments necessary to describe the shape of the 
distribution curve. The average X �, �!, the variance Y� �, �! and all the statistical moments considered can 
change in time and space and, consequently, also the shape 
of the density function f . 
In this work we consider only changes in the mean value 
but the following procedure for deriving the moment 
equation for the mean is suitable for higher moments.   
The definition of mean value and variance respectively are: 

*Z[\�	/]/^_� � X � 4 $�$;
KW56

KW7
	

\^�]_�	�^_�[ab	/]/^_� � Y� �
� 4  $ 
 X!2�$.

KW56

KW7
 

(17) 

Similarly to the BFM model, the conservation equation for 
the sediment with diameter $, equation (11), is multiplied 
by	$ and integrated over all the sample space: 

4 $ Q ��� :*(c�)< � �:*(�.�<��
56

7
� *∗c� ���  �� 
 )!R �$ � 0. 

(18) 

By remembering that the diameter $ is an independent 
variable, the first and the last term of the equation (18) are: 

4 ��� :*($��)<
56

7
�$ � �� ���  X)!, 

4 $*∗�� ���  �� 
 )!
56

7
�$ � X∗�� ���  �� 
 )! 

(19) 

where X∗ is equal to the mean diameter of the substrate in 
the case of bed degradations and to X in the case of bed 
aggradations. The second term of the equation (18) 
represents the flux of sediment that determines the variation 
of the mean value: 

4 ��� :*($�.�<
56

7
�$ � ��� :'c�<. (20) 

The flux 'c � d :*($�.<567 �$ can be expressed in 

function of the statistical moments by expending $�. in 
Taylor series around the mean diameter: 

'c � X�. X! � e��.�$f
KWc

� X2 ���.�$� gKWc
hY�

� ] $�!. 
(21) 

The equation (18) becomes: 

c� ���  X)! � ��� :'c�< � ��X∗ ���  �� 
 )! � 0. (22) 

Finally, in the conservation equation for the solid phase, 
equation (6), the sediment concentration c should be 
expressed in function of the statistical moments. In order to 
calculate the integral (10), the capacity concentration �. $! 
is expanded in Taylor series around the mean value X until 
second-order partial derivatives: 

�. $! � �. X! � ��.�$f
KWc

 $ 
 X!
� ���.�$� gKWc

 $ 
 X!� � ] $�!. 
(23) 

The capacity concentration is substituted into equation (10) 
to calculate the total concentration c and remembering that 

d * $!�$ � 1567  yields: 

� � �. X! � 12 ���.�$� gKWc
Y� � ] $�!. (24) 

The procedure can be extend to all the statistical moments 
in order to better describe the time evolution of the grain-
size distribution curve. In this preliminary work the 
variance Y� is considered constant and only changes in the 
mean value are studied. 

The numerical scheme 

In the case of BFM approach the resulting system is 
composed by equations (3), (5), (6) and (15) where the 
sediment concentration c in equation (6) is calculated 
through equation (16). The unknowns of the system are the 
free surface elevation �, the mixture discharge q, the bed 
level �� and the m availability factors HF. Instead, the SM 

approach includes equation (3), (5), (6) and (22). The 
concentration c in equation (6) is calculated by means of 
equation (24). The unknowns of the system are still the 
same of the BFM approach except for the availability 

2nd IAHR Europe Congress   4



factors HF that are substituted by the mean X of the grain 

size distribution.  
The computational domain is discretized by a staggered 
computational grid where the bed level �� and the free 
surface elevation � are defined at the integer nodes �i with Z � 1…j while the discharge q is defined at the half 

integer nodes �252/� � :�i � �i52/�</2. The values of 

water depth at the nodes Z � 1/2 are computed by an 
upwind  interpolation. The node distribution is arbitrary and 
the node spacing is defined as Δ�i � �i52/� 
 �i12/�. 

The solution procedures for both the systems are similar. 
Equations (3), (5) and (6) are discretized following the 
procedure proposed in (Garegnani, Rosatti, & Bonaventura, 
2011).  
The discretization of equation (3) is substituted in equation 
(5) and we obtain a system where the only unknowns are 

the values of the free surface elevation �il52 at the integer 
nodes i and at the time step _ � 1. The system obtained is 
linear and can easily solved with a direct method. The 
calculated values of free surface are used in equation (3) to 
obtain the discharge �i52/�l52 .  

The continuity equation (6) for the solid mass is integrated 

in both the cases over E�i52/�, �i12/�G. The fluxes are 

discretized in time in a semi-implicit fashion while the 
concentration c is explicit: c�Δ��l52 � c� ��l52 
 ��l!

� m∆�∆� :�i12/�l �i12/�l52

 �i52/�l �i52/�l52 <
�  1 
 m!∆�∆� :�i12/�l12 �i12/�l

 �i52/�l12 �i52/�l < 

(25) 

where �i52/�l  is calculated through equation (16) for the 

BFM method and equation (22) for the SM method as 
reported in the following sections.  

The BFM scheme 

The availability factors are defined at the integer nodes i. 
Under the assumption of )	constant in time, the equation 

(15) is integrated over the control volume E�i52/�, �i12/�G: 
4 oc�) �HF�� � ��� :HF�.:$F<�<

=pPN/O

=pMN/O
� ��HF∗ ����� q �� � 0. 

(26) 

The first term of the previous equation is discretized by a 
forward-in-time finite difference method while, the second 
term, the gradient of solid discharge, is discretized in space 
by a centered finite difference and in time by a semi-
implicit time-averaging: 

Hi,Fl52 � Hi,Fl 
 r∆-
.s(∆= oHi5NO,F

l  �.!i5NO,F
l �i5NO

l52 

Hi1NO,F
l  �.!i1NO,F

l �i1NO
l52q 
  21r!∆-

.s(∆= oHi5NO,F
l12  �.!i5NO,F

l12 �i5NO
l 


Hi1NO,F
l12  �.!i1NO,F

l12 �i1NO
l q �  H∗!i,Fl tusvPN

(∆= � 0.  
(27) 

The values of the availability factors at the nodes Z � 1/2 
are computed by an upwind interpolation while  �.!i52/�,Fl  

is calculated through equation (8). After evaluating the 
availability factors Hi52/�,Fl52 , the concentration �i52/�l52  is 

computed by means of equation (16). 

The SM  method 

Similarly equation (26) is integrated over the control 

volume E�i52/�, �i12/�G and discretized in time by a forward 

finite difference method while  in space by a centered finite 
difference: 

Xi,Fl52 � Xi,Fl 
 m∆���)∆� o:'c<i52�
l �i52�

l52 
 :'c<i12�
l �i12�

l52q

  1 
 m!∆���)∆� o:'c<i52�

l12�i52�
l


 :'c<i12�
l12�i12�

l q �  X∗!i,Fl Δ��l52
)∆�� 0 

(28) 

Herein the values at the nodes Z � 1/2 are computed with 

an upwind interpolation while :'c<i52/�
l

 is calculated 

through equation (21). In this preliminary work the value of 
the variance is considered constant in time and the 
concentration �i52/�l52   is evaluated by means of equation 

(24).  
The advantages of this method is the decrease in the 
number of variables. On the other hands, no other 
information regarding the kind of grain-size distribution are 
given by the model and only the evolution of the mean and 
eventually of the other moments is computed. In the next 
section some initial results are reported. 

Results 

A channel of 1km with an excavation is considered in this 
test case. The initial condition is the stationary flow in the 
case of fixed bed with discharge 3.3/�/\ as shown in 
Figure 5. 
The boundary conditions at the upstream are constant: the 
liquid discharge (3.3/�/\) and the concentration c at the 
equilibrium. At the downstream boundary the free elevation 
is imposed equal to 66.4m. The mixing layer thickness is 
constant in space and time and equal to 1cm. The diameters 
are log-normally distributed with mean X	equal to 2.78// 
and variance Y� to 0.25// in either the mixing layer and 
the substrate. 
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Figure 5: Initial condition: bed profile and free surface 
elevation. 

Firstly, the test is performed with the BFM method and the 
distribution curve is discretized with 15 classes as shown in 
Figure 6. 
Secondly, in the SM model the same distribution is 
considered Figure 7. Notice that the variance is kept 
constant and only the mean changes during the simulation. 

 
Figure 6: Probability or available fraction along the channel 
in the mixing layer and in the substrate at the initial 
condition. 

 
Figure 7: Density function (X � 2.78//, Y� � 0.25//! 
in the mixing layer and in the substrate at the initial 
condition. 

 

Figure 8: Comparison between the two model at 200000 s. 

The profile of the mean diameter in the mixing layer 
resulting from the SM model is compared with the mean 
diameter calculated as ∑ HF�FVFW2  for the BFM approach as 

shown in Figure 8.  

Conclusion 

The numerical results show a good agreement of the mean 
diameter profiles. In conclusion, the advantage of the SM 
approach is the lower computational cost. On the other 
hand more information about the grain-size distribution is 
given with the BFM approach. In fact, the limit of the SM 
model is the loss of information about the shape of the 
distribution curve. Better results could be obtained by 
adding the equation for the evolution of the variance and of 
the others statistical moments. In fact, the future 
development of this work will be derivation of the equation 
for the variance and its discretization in order to have a 
model suitable for the study of non-uniform sediment 
transport. 
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