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Abstract 

In this article we propose a simple and efficient diffuse 

interface (interface–capturing) two–phase algorithm for the 

simulation of complex non–hydrostatic free surface flows 

in general geometries [1]. The physical model is given by a 

special case of the more general Baer–Nunziato model for 

compressible multi–phase flows. In the applications 

considered here, the relative pressure of the gas phase with 

respect to atmospheric reference conditions is assumed to 

be zero everywhere and the momentum of the gas phase 

can be neglected compared to the one of the liquid. The 

reduced system is closed by the Tait equation of state, 

which is a widespread model for water. The resulting PDE 

system is solved by a high order path–conservative WENO 

finite volume scheme on unstructured triangular meshes, to 

be applicable also in complex geometries. To assure low 

numerical dissipation at the free surface, which actually is 

crucial for the applications under consideration here, we use 

the new generalized Osher–type scheme of Dumbser and 

Toro [2], which resolves steady shear and contact waves 

exactly, in contrast to the simpler centered path–

conservative FORCE schemes presented in [3]. The model 

derives directly from first principles, namely the 

conservation of mass and momentum, hence it does not 

make any of the classical simplifications inherent in the 

commonly used shallow water models, which are based on 

depth-averaging, neglecting accelerations in gravity 

directions and on the resulting hydrostatic pressure 

distribution. We validate the new two–phase model against 

available analytical, numerical and experimental reference 

solutions and we also show some comparisons with the 

classical shallow water model for typical dambreak–type 

problems. 

 

Introduction 

Most state of the art free surface flow models commonly 

used in environmental engineering and geophysics are 

based on some kind of depth–averaged shallow water type 

flow model. The most basic two–dimensional shallow 

water model with fixed bed, without friction and with only 

one single layer of liquid is given 

 

by the following nonlinear PDE system: 
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Here, h denotes the total water depth, v is the velocity 

vector, b = b(x) is the known, fixed, bottom elevation, I is 

the identity matrix and g is the gravity acceleration. The 

location of the free surface is given by the above model as η 

= h + b. 

The Full Baer-Nunziato Model of 

Compressible Multi-Phase Flows 

The original Baer–Nunziato system [4] with gravity effects 

reads for a mixture of two inviscid fluids as  
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where αj is the volume fraction of phase number j with the 

constraint α1 + α2 = 1, ρj is the fluid mass density, vj the 

velocity vector, pj is the pressure and ρjEj is the total energy 

per unit mass of phase number j, respectively. Furthermore, 

g is the vector of gravity acceleration. The model (2) must 

be closed by the equations of state for each phase that link 

the pressures pj to the density and the internal energy and 

furthermore the model requires a proper choice of the 



interface velocity vI and the interface pressure pI . Baer and 

Nunziato proposed the following choice  
 

  �� = ��,   and  �� = ��,         (3) 
 

which we will also use in the present paper, since, as we 

show later, it is perfectly well suited for free–surface flow 

applications. We emphasize that model (2) is not written in 

conservative form. It contains the conservation equations of 

mass, momentum and energy for each phase, but the mutual 

interactions between the two phases are given by non–

conservative terms on the right hand side. Furthermore, the 

volume fraction function α1 is also governed by a 

convection equation written in non–conservative form. In 

this presentation viscous terms are not considered since the 

derived model is compared with the ideal Saint-Venant 

equations without friction. The discretization of viscous 

terms does not pose any particular difficulty and has been 

shown in [11] for the Navier-Stokes equations.  
 

Simplified Three-Equation Model 

The reduced model obtained in the next section is based on 

the following simplifications. The first assumption is that 

all pressures are relative pressures with respect to the 

atmospheric reference pressure p0=0. Second, the gas 

surrounding the liquid is supposed to remain always at 

atmospheric reference conditions, i.e. the gas pressure is 

constant p2 = p0 = 0, which is a standard assumption for 

free surface flows in fluid mechanics. We therefore can 

neglect all evolution equations related to the gas phase j = 2 

in the Baer–Nunziato model (2). Furthermore, according to 

the choice of Baer–Nunziato for the interface pressure 

given by eqn. (3), the interface pressure automatically 

results as pI = p2 = p0 = 0. This is consistent with the usual 

standard assumption for free surface flows, where at the 

free surface of the liquid atmospheric reference pressure 

boundary conditions are imposed. Also the choice of the 

interface velocity vI = v1 according to (3) is consistent, 

since the interface will obviously propagate with the speed 

of the liquid phase. Third, the pressure of the liquid is 

computed by the Tait equation of state, see eqn. (4) below, 

which is in good agreement with the real behaviour of 

water in typical environmental flow conditions, i.e. close to 

atmospheric pressure and typical ambient temperatures. 

This equation of state is also very commonly used in 

weakly compressible smooth particle hydrodynamics (SPH) 

schemes for the simulation of free surface flows, see e.g. 

[4,5]. The key idea in the particular formulation of the Tait 

equation of state (EOS) is that according to the first 

assumption it yields a relative pressure with respect to the 

atmospheric reference pressure (p0 = 0). We therefore have  
 

                              �� = "# $$%&
%'

() − 1(   (4) 

where k0 is a constant that governs the compressibility of 

the fluid and hence the speed of sound, ρ1 is the liquid 

density, ρ0 is the liquid reference density at atmospheric 

standard conditions and γ is a parameter that is used to fit 

the EOS with experimental data. Since the EOS (4) does 

not depend explicitly on the internal energy, also the liquid 

energy equation in (2) can be dropped.  

With the above simplifications, the final reduced three–

equation model for free surface flows reads as follows:  
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The above system can shown to be hyperbolic and the first 

two equations are written also in conservation form, i.e. the 

model conserves total mass and momentum.  

 

Computational Results 

The numerical method is based on the framework of PNPM 

schemes of Dumbser et al. and has been described in great 

detail in [1,3,6]. Here, we present some computational 

examples to show the ability of the proposed model. For the 

numerical flux at the interface we use an Osher-type 

scheme [2], which in the conservative case [10] reads  
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where Q is the vector of state, or the vector of conserved 

variables, f  is the flux vector, A is the Jacobian of the flux f 

with respect to Q and ψ(s) with 0 ≤ 2 ≤ 1 is a straight-line 

segment path that connects the two states adjacent to the 

element-interface with each other in phase-space.  
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The integral in (6) is evaluated numerically using Gaussian 

quadrature formulae of appropriate accuracy.  

 

A water jet impinging on an inclined plate  

The test problem without gravity presented in this section 

consists of a water jet that impinges on a flat plate at an 

angle of α = 30 degrees. The computational domain Ω can 

be seen in Fig. 1. The jet has a thickness of H = 1 and the 

initial density is set to ρ = ρ0. The initial velocity is v = 

(5,0). In order to obtain a Mach number of M = 0.3 based 

on the known velocity, the constant k0 is set to k0 = 2.78E5. 

At the inclined wall we use reflective wall boundary 

conditions, at x = 2 in the interval 0 < y < 1 we assume an 



inflow boundary condition and all other boundaries are 

transmissive. The jet impinges on the wall and gets 

reflected asymmetrically due to the incidence angle h. After 

t = 5 a steady state is reached for the free surface. The 

results are depicted in Fig. 1, together with the exact 

solution given in [1].  

 

Figure 1: Exact (dashed line) and numerical solution (red 

area) for the jet impinging on the inclined flat plate.  

Dambreak Problems  

A very typical application for shallow water-type models is 

the so-called dambreak. It consists of the sudden 

collapse/removal of a vertical wall that separates two 

different piecewise constant states of water from each other. 

Since in the initial stages of dambreak flow, the classical 

shallow water assumption of small vertical velocities and 

accelerations does not hold, it is of interest to apply a more 

complete model to this well-studied phenomenon. In this 

section, we will compare the three-equation two-phase 

model against exact or numerical solutions of the shallow 

water equations. In particular, it is of great interest to 

compare the behaviour at small times (shortly after the 

dambreak) and at large times with each other. For a 

thorough study of the initial stages of three-dimensional 

dambreak flow see [6,7] together with a critical assessment 

of fully threedimensional hydrodynamic models and 

shallow water equations. For exact solutions of the 

dambreak problem in the shallow water context see [9] for 

the case with bottom step. For comparison purposes, we 

show together with the results of the new diffuse interface 

method also the free surface profile as computed by the 

SPH scheme of Ferrari et al. [6,7] using 224,282 SPH 

particles with a characteristic particle distance of h = 0.03. 

In all the test problems shown below, we can note an 

excellent agreement between the new two-phase flow 

model and the 2D SPH simulations, whereas there are  

 
 

Figure 2: Shallow water solution (dashed line), multiphase 

method (red area in the top row) and SPH scheme (blue 

area in the bottom row) for a dambreak into dry bed.   
 

 

Figure 3: Shallow water solution (dashed line), multiphase 

method (red area in the top row) and SPH scheme (blue 

area in the bottom row) for a dambreak into dry bed with 

bottom step.   
 

 

Figure 4: Shallow water solution (dashed line), multiphase 

method (red area in the top row) and SPH scheme (blue 

area in the bottom row) for a dambreak into wet bed.   
 

 

Figure 5: Shallow water solution (dashed line), multiphase 

method (red area in the top row) and SPH scheme (blue 

area in the bottom row) for a dambreak into wet bed with 

bottom step.  Note the breaking waves on the free surface.  
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significant discrepancies between the full 2D models and 

the 1D shallow water model at short times. At large times, 

however, both weakly compressible 2D models agree very 

well with the shallow water theory, see Figures 2 and 3, 

respectively.  

For the finite volume solution of the multi-phase flow 

model (3) we use a very fine mesh with 1,550,256 triangles 

of characteristic mesh spacing h = 0.01. The boundary 

conditions are reflective wall on the left, bottom and right 

border of the computational domain and transmissive 

boundaries on the top. The results obtained with the three-

equation two-phase model at the early time t = 0.5 and at 

the late time t = 5.0 are presented in Figs. 2-5 and are 

compared against the exact solution of the shallow water 

equations [9]. We clearly see that at early times, the free 

surface profile predicted by the shallow water model does 

not agree with the two-phase model nor with the SPH 

solution. This is due to the fact that the shallow water 

model neglects vertical accelerations, which are very 

important in the initial phase of the dambreak. However, at 

large times (see Figs. 2-5 on the right), the shallow water 

assumptions are valid and hence a very good agreement 

between the shallow water solution and the solution 

obtained with the two-phase flow model and the SPH 

method is obtained. This result is particularly interesting 

because both solutions agree almost perfectly well despite 

the fact that two completely different models have been 

solved, namely in one case the one-dimensional version of 

the shallow water equations (1) and in the other case a 

three-equation two-phase flow model (3). However, since 

both PDE systems (1) and (3) are based on the first 

principles of conservation of mass and momentum, the 

overall wave propagation velocities are expected to be 

reproduced correctly by both physical models. 
 

Flow over a sharp-crested weir 

In this last section we study the flow over a sharp-crested 

weir. The setup of the test problem has been taken from [9]. 

The rectangular computational domain Ω = [0;15] x [0;2] 

contains an infinitely thin, sharp-crested weir of height h = 

0.7 in the middle of the domain at x = 7.5, modeled as a 

reflective wall boundary. The initial domain containing 

liquid is Ωl = [0; 7.5] x [0; 1.5], which leads to an 

overtopping of the water over the weir. The empirical 

formula for the lower streamline according to experiments  

of Scimemi is documented in [9] and which is shown in 

Figs. 6-7 as thick solid line. The density contour colours 

represent the numerical solution obtained by the three-

equation two-phase flow model. We can note an excellent 

agreement between the numerical simulation and the 

experiments. 

 

 
Figure 6: Flow over a sharp-crested weir at time t = 1.0. 

Density contours (top) and pressure contours (bottom) as 

obtained with the three-equation two-phase model. The 

experimental reference solution found by Scimemi and 

given in [9] is also shown (solid line). 

 

 
Figure 7: Zoom into the weir flow. Density contours (top) 

and pressure contours (bottom). The velocity vectors are 

also shown, together with the experimental profile found by 

Scimemi (solid line). 

 

Conclusions 

In this article it has been shown that free surface flows can 

also be accurately modeled using a compressible multi-

phase flow model. The advantage over the usually 

incompressible volume of fluid (VOF) method is the fact 

that no elliptic pressure Poisson equation has to be solved 

and that hence all physical quantities can be directly 

evolved in time with an explicit scheme, which makes the 

method very simple and well suited for parallel 

implementation on modern supercomputers.  
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