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Abstract 

To consider both bed and bank erosion due to a dam-break 
induced wave, a bank-failure operator is inserted into a 
two-dimensional (2D) two-layer shallow-water model. This 
model accounts explicitly for the inertia of the bed-load 
transport, considering an upper layer made of clear water 
and a lower layer, called the bed-load transport layer, made 
of a mixture of water and moving grains. These layers flow 
on a motionless bed and are assumed to present distinct 
depth-averaged velocities. The model accounts for the grain 
entrainment across the bed interface and for the mass and 
momentum exchanges between the flowing layers thanks to 
the definition of an erosion rate. This shallow-water model 
is solved by a first-order finite-volume scheme on an 
unstructured triangular mesh. The bank-failure operator 
consists in comparing locally for each computational cell 
the bed inclination to the sediment stability angles, 
considering the impact of a water-level rise as a 
destabilizing phenomenon. After an erosion or deposition 
update due to the bed-load transport, the unstable bed 
elements are tilted around an appropriate axis of rotation, 
ensuring mass conservation of the assumed homogeneous 
material. The numerical model is tested for a collapsing 
circular hole and against laboratory tests of a dam-break 
flow; firstly in a prismatic channel made of coarse sand, 
and then over an initial bed step. 
 

Introduction 

The dam breaks constitute a danger for the surrounding 
inhabitants and infrastructures. To design appropriate 
emergency plans and reduce the risk posed by these dams, 

the time and space evolution of the consequences must be 
known for these potential failures. The geomorphic 
consequences of a dam-break induced wave on a mobile 
bed are governed by bed and bank erosion. To consider 
both erosion mechanisms, a bank-failure operator is 
inserted into a two-dimensional (2D) two-layer shallow-
water model. This model has the advantage to account 
explicitly for the inertia of the bed-load transport and, doing 
so, to be able to treat intense sediment transport due to fast 
transient flows.  
 

Two-layer model with bank-failure operator 

The two-layer description considers an upper layer made of 
clear water and a lower layer, called the bed-load transport 
layer, made of a mixture of water and moving grains (Zech 
et al. 2009). These layers flow on a motionless bed and 
present distinct depth-averaged velocities u w and u s. It is 
also assumed that the transport layer and the motionless bed 
present distinct sediment concentrations Cs and Cb, which 
are kept constant all along the flow (Figure 1). 
 

 
Figure 1: The two-layer model, where zb is the bed level, hs 
the transport layer thickness, hw the clear-water layer 

thickness, τws, τsw, τs, τb the shear stresses.  



Governing equations of the 2D two-layer model 

The model accounts for the grain entrainment across the 
bed interface and for the mass and momentum exchanges 
between the flowing layers thanks to the definition of an 
erosion rate:  
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This erosion rate is positive in case of erosion and negative 

in case of deposition. It depends on the shear stresses τs and 

τb on both sides of the bed interface (Zech et al. 2009):  
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These shear stresses are driven by Chezy-like and Mohr-
Coulomb closure equations, respectively: 
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where ρw, ρs’  and ρb’  are the densities of the clear water, of 

the bed-load transport layer and of the bed, respectively; 

ρs’  = (1-Cs) ρw + Cs ρs , ρb’ =  (1-Cb) ρw + Cb ρs , where 

ρs is the granular density; Cf,w and Cf,w are the friction 

coefficients; ur = uw - us is the relative velocity; τcrit is the 

critical shear stress, ϕ the angle of repose and g the gravity 
acceleration. 
In a same way, the rate es is defined and related to the time 

evolution –∂zs/∂t of the interface between the two layers. 

Distinct depth-averaged granular concentrations are 
assumed in the bed-load layer and in the motionless bed 
(Figure 1). This assumption allows the required expansion 
of sediments leaving the bed layer to be mobilized during 
erosion and the compaction of deposed sediments. The 
sediment transfer from the motionless bed to the transport 
layer does not affect the water level zw but well the top level 
zs of the bed-load transport layer and the bed level zb. The 
continuity of these vertical exchanges leads to a relation 
between both erosion rates eb and es of opposite signs (Zech 
et al. 2009):  
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Equation (1) is considered as the first equation of the 
system. To complete this system, the continuity equations 
(7) and (8) and the 2D momentum conservation equations 
(9-12) are written for each layer: 
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where qwx = uwxhw , qwy = uwyhw , qsx = usxhs , qsy = usyhs are 
the unit discharges in the clear-water and the transport 
layer, respectively, in the direction x and y (for instance, the 
main-streamwise and transverse directions), respectively; 
(τwsx, τwsy), (τsx, τsy), and (τbx, τby) are the shear stresses on 

both sides of the interfaces and the ratio χ = ρw / ρs’ . 
This shallow-water model is solved by a first-order finite-
volume scheme on an unstructured triangular mesh (Toro 
2001). A Riemann solver derived from the Harten-Lax-Van 
Leer formalism is used (Swartenbroekx et al. 2010a, 
Spinewine et al. 2011). 
 

Bank-failure operator 

The bank-failure operator consists in comparing locally for 

each computational cell the bed inclination α to the 

sediment critical angles αc, considering the impact of a 



water-level rise as a destabilizing phenomenon. After an 
erosion or deposition update due to the bed-load transport 

(equations 11-12), the unstable bed elements (α > αc) are 
tilted around an appropriate axis of rotation, ensuring mass 
conservation of the assumed homogeneous material 
(Swartenbroekx et al. 2010b). The new inclination is 

imposed to a residual angle α = αr. The critical and residual 
angles are distinct in submerged (subscript s) and emerged 
areas (subscript e).  
As the set of equations (1) and (7-12) is solved using a first-
order finite-volume model, each cell is assumed to have a 
unique sediment level. It is thus necessary to define the 
sediment level in each node in order to determine the cell 
slope, by preserving at the same time the sediment mass 
balance. The bank-failure algorithm can be summarised as 
follow: 
Step 1: Update of the bed level zb in the finite volume cells 
by the shallow-water model. 
Step 2: Determination of the mean bed level in each apex of 
the cells to recover the continuity of the bed level. This 
process restores a continuous surface but affects the cell 
volume and thus the mass conservation that has to be 
recovered in turn. 
Step 3: Subdivision of each main cell (with distinct bed 
levels at nodes) in three sub-cells, by adding an additional 
node at the centroid of the cell. The bed level in this new 
node is shifted vertically in order to ensure the sediment 
mass conservation between this main cell and the 
corresponding finite-volume cell. The main cell is now a 
pyramid whose three upper faces define three sub-cells  
Step 4: Stability check in each main cell. 
Step 5: Application of the bank-failure operator in each 
sub-cells of the unstable main cells. If a sub-cell slope 
overcomes the critical slope, the sub-cell upper face is tilted 
around an appropriate axis to allow the sub-cell to recover 
the residual angle, without affecting the mass conservation 
of all the cells and sub-cells affected by the shifting of the 
nodes implied in the tilting. 
These Steps 4-5 are iterated until every cell is stable. 
Step 6: Computation of the mean bed level zb in each finite-
volume cells in order to apply again the shallow-water 
model (Step 1).  
 

Validation  

To check the two-dimensional abilities of the numerical 
model, this is tested for a collapsing circular hole, under a 
constant water level at rest, but presenting unstable bank 
slopes. Then, the model is validated against laboratory tests 
of a dam-break flow; firstly in a prismatic channel made of 
coarse sand, and then over an initial bed step. The 

following parameters are used: ρw = 1000 kg/m³, 

ρs' = 1369.6 kg/m³, Cs = 0.22, Cb = 0.53, τcrit = 0 and 

ϕ = 30°. 

Circular hole 

A sand bed featuring a circular hole with a constant slope 
angle initially at 45° is submerged by 40 cm of water at rest 
(Figure 2a, grey line). The following parameters are 

imposed: Cfw = 0.005, Cfs = 0.04, αcs = 35°, αce = 87°, 

αrs = 30°, αre = 85°. An average edge length of 5 mm is 
chosen for the triangular mesh.  
In Figure 2b, where only a quarter of the hole is presented, 
it can be noticed that the model preserves the axial 
symmetry of the topography despite the unstructured 
triangular mesh.  
 

(a)  

(b)  
Figure 2: Circular hole topography: (a). Meridian section 
(grey) at t = 0 s and (black) at t = 60 s (b). Plan view at 
t = 60 s. 

 

Dam-break wave in a prismatic channel 

The model is tested for a dam-break flow in an initially 
half-channel of trapezoidal cross-section, whose 
dimensions are depicted in Figure 3 (Soares-Frazão et al. 
2007). In this laboratory case, collapses of blocks of sand 
were observed. The following parameters are chosen: 



Cfw = 0.02, Cfs = 0.01, αcs = 35°, αce = 87°, αrs = 30°, 

αre = 85°. The average grid size is 1 cm. 
In Figure 4, the agreement between the simulated and the 
measured topographies can be observed at two distinct 
cross-sections and three distinct times after the dam breaks. 
Too much deposition is predicted at y = 0 m at later time 
(t = 10 s, Figures 4e and 4f). However, except for this time, 
the profiles are in good accordance with the measured data. 
The root-mean-square-error (RMSE) of the predicted 
profiles compared to the measured one is given in Table 1.  
 

 

Figure 3: Initial conditions for the prismatic channel case. 

 

Table 1: RMSE for bed levels associated with Figure 4 

Figure 4 x (m) t (m) RMSE (m) 
a 0.5   3 0.0106 
b 1.5   3 0.0087 
c 0.5   5 0.0135 
d 1.5   5 0.0065 
e 0.5 10 0.0138 
f 1.5 10 0.0086 

 

Dam-break wave over a movable bed step 

The propagation of a dam-break wave over an initial 
downward sand bed step of 10 cm was simulated in the 
laboratory by Spinewine & Zech (2007). Figure 5 depicts 
the initial conditions. The following parameters are tested: 

Cfw = 0.025, Cfs = 0.02, αcs = 15°, αce = 87°, αrs = 10°, 

αre = 85°. The average grid size is 1 cm.  
Figure 6 and Figure 7 show the importance of the bank-
failure operator to reproduce the dam-break wave: the step 
is almost not eroded without this operator (Figure 6, thick 
black lines) while the results are better with the operator 
(Figure 7, thick black lines). Except at first time t = 0.25 s 
(Figure 7a), when the shallow-water assumption is not yet 
valid, the wave front propagation and the transport layer 
thickness are rather well predicted. The root-mean-square-
error (RMSE) of these profiles is given in Table 2. 
 
 
 
 
 
 

Table 2: RMSE for the levels associated with Figure 7 

Figure 7 Time t 
(s) 

RMSE zb 
(m) 

RMSE zs 
(m) 

RMSE zw 
(m) 

a 0.25 0.0078 0.0055 0.0096 
b 0.50 0.0056 0.0058 0.0074 
c 0.75 0.0049 0.0055 0.0057 
d 1.25 0.0048 0.0049 0.0089 

 

Conclusions 

A bank-failure operator is coupled to a 2D two-layer 
shallow-water model and tested against theoretical case and 
small-scale dam-break events on movable sand beds. The 
numerical model is solved on unstructured triangular 
meshes whose size could be locally adapted in complex 
geometries. The circular-hole test case has shown that no 
spurious directional effects are introduced by the numerical 
scheme. The model is able to simulate the bank collapse 
and the transverse slope evolution of a laboratory dam 
break in a prismatic channel. The capability of the model to 
treat also longitudinal unstable slope is also tested with the 
example of a dam-break wave on an initial bed step. The 
proposed model is able to predict both the progressive 
failure of the step and the bed-load wave. 
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Figure 4: Water surface and bed cross-sections after the 
dam break, occurring at time t = 0 s. Measured data: grey 
crosses. Numerical model: black lines. 

 

 

  
Figure 5: Initial conditions for the bed step: (dark grey) 
motionless bed, (light grey) clear water.  



 

 
Figure 6: Longitudinal profiles for bed step. Experimental 
data: (dark grey) motionless bed, (medium grey) bed-load 
transport, (light grey) clear water. Numerical model: (thick 
black lines) without bank-failure operator. 

 
Figure 7: Longitudinal profiles for bed step. Experimental 
data: (dark grey) motionless bed, (medium grey) bed-load 
transport, (light grey) clear water. Numerical model: (thick 
black lines) with bank-failure operator. 


