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Abstract 

We show applications of a new unified family of arbitrary 

high order accurate path-conservative one--step schemes on 

unstructured triangular and adaptively refined Cartesian 

meshes for the solution of hyperbolic PDE with non-

conservative products and stiff source terms. The fully 

discrete one-step schemes are within the general framework 

of PNPM schemes first proposed in [6].  

In this general framework, classical high order finite 

volume and discontinuous Galerkin schemes are only 

special cases. The one-step time discretization of high order 

of accuracy is obtained using a new local space-time 

Galerkin predictor that is also able to deal with stiff source 

terms [5]. The centered  treatment of the non-conservative 

products is done using a multi-dimensional generalization 

of the FORCE scheme, see [2;6].  We show applications of 

our new method to shallow water equations. 

 

Introduction 

Most state of the art of free surface flow models commonly 

used in environmental engineering and geophysics are 

based on some kind of depth–averaged shallow water type 

flow model. The most basic two–dimensional shallow 

water model with fixed bed, without friction and with only 

one single layer of liquid is given by the following 

nonlinear PDE system: 
 ��
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        (1) 

 

where W is the state vector, ���� is system matrix and 

S(W) is the source term, which may also be stiff. In the 

special case where �(W) is the Jacobian of a flux F(W), 

then equation (1) reduces to a classical conservation law 
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       (2) 

Up to now, the principle of conservation is the most 

powerful tool available to give insight into physical 

processes observed in nature. However, many physical 

processes, in particular multi-fluid or multi-phase flows, 

cannot be written as conservation laws, but important non--

conservative terms that model the phase interactions 

remain. So, one is obliged to use the more general PDE (1).  

In this presentation we follow a centered philosophy, i.e. 

our schemes will not use any upwinding and hence will not 

need any wave--propagation information. Such schemes 

have been recently published in [1;2;3;6;10], where all the 

details can be found. Here, we only give the final 

formulation of the scheme and show some applications to 

standard test cases.  

 

FORCE scheme 

In the present paper the computational domain Ω  is 

discretized by, non--overlapping elements Ti. In the case of 

adaptive mesh-refinement, there may also be overlapping 

nodes. We introduce the following operators,  
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which denote the scalar products of two functions f and g 

over the space-time element Ti x [t
n
; t

n+1
], the spatial 

element Ti, and the space-time boundary element ∂Ti× 

[t
n
;t

n+1\
] respectively.  

Taking PDE (1) and multiplying it with a space-only 

dependent test function Φk, we obtain the following one-

step PNPM scheme:  



�Φ%, &'��(
�)�� − �Φ%, &'��(

�)+〈Φ%, ��+,�. ∇+,〉�(\#�(+  /0, 12�+'2,+'3, 4�!567= 〈/0, 8�+,�〉67 
 (4) 

Here, uh are piecewise polynomials of degree N, +, is the 

numerical solution of the space-time Galerkin predictor 

method introduced in [4,5,6], +'2,+'3 are the boundary 

extrapolated values of the element Ti and its neighbor, 

respectively, and 12�+'2,+'3, 4� denotes the jump term, 

which for our central schemes is simply defined as  

12 = 1
2 ;<=>? − βABCD<=>? EF−βABGHI �+'3 − +'2� 

   (5) 

where I is the identity matrix and the two constants 

JKL�	M4N	JKL
 contain only information on the geometry 

and the time step ∆t, as derived in detail in [11;7]: 
 

OPQR = 2
Δ�"P

�P2�P3�P2 + �P3 ,							OPQT = 1
2

Δ�"P�P2 + �P3. 
         (6) 

Here, UK± denote the sub-volumes defined at each edge/face 

j, where UK2 is the sub-volume inside the considered 

element and UK3 is the corresponding sub-volume in the 

neighbor adjacent to edge j. Throughout this paper, we 

define the path W by the family of segments  

 > = >�+,2,+,3, X� = +,2 + X�+,3 − +,2� 

 (7) 

The matrix <=>?  is defined by the following path integral, 

which is computed numerically using an appropriate high 

order Gaussian quadrature rule: 
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                                                                             (8) 

Osher-type schemes 

Instead of using the FORCE scheme presented above, 

another option is to use the extension of the well-known 

Riemann solver of Osher, [8;11], to a certain class of 

hyperbolic systems in non-conservative form, in particular 

to shallow-water-type and multi--phase flow models, as 

developed in [8]. In the case of Osher-type schemes, the 

jump terms 1[3\/^± 	are defined as follows 

1[3\/^± = 1
2� �Y

Z
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                                                                             (9) 

The first term in equation (9) is the centered part of the 

numerical flux and the second term is the numerical 

viscosity, which is given in terms of a path-integral. Here, 

the path >D�[3\/^2 ,�[3\/^3 , bE with c ≤ b ≤ \ that 

connects the left state �[3\/^2  with the right state �[3\/^3 , in 

phase-space is a Lipschitz continuous function.  

Following the same choice of paths as in (7) the jump term 

(9) will read 

1[3\/^± = 1
2e� ���>� ± |��>�|��XY

Z
g D�_3Y/F3 − �_3Y/F2 E 

                                                                             (10) 

The integrals appearing in (10) may again be evaluated by 

means of any numerical quadrature formula. 

 

Adaptative mesh refinement 

A useful technique when coding the numerical scheme is to 

refine locally wherever it is needed. The technique used in 

this work is the so-called Adaptive Mesh Refinement 

(AMR). It allows to automatically refine the mesh during 

the calculation progress, when a more accurate resolution in 

certain parts of the domain is needed. The algorithm 

developed here is dynamic, in the sense that the refinement 

process tracks the solution, refining and de-refining when 

necessary. This process saves CPU time and also allows to 

obtain a more accurate solution compared to a uniform 

mesh approach.   

 

Computational Results 

Well-balanced property 

The first test problem is used to verify that the proposed 

numerical algorithm is well-balanced. The well-balanced or 

so-called C-property requires that water at rest should 

remain at rest also on the discrete level, independent of the 

particular bottom geometry. Here, we solve a two 

dimensional problem that consists of a small perturbation of 

the free surface of a lake at rest. The bottom of the lake 

contains a bump. The results are depicted in Figure 1 and 

correspond well with the reference solutions found in 

literature [1]. Without perturbation, the steady state is 

maintained up to machine precision, see Table 1, where the 

error norms L1 and L∞  for both the water height (H) and 

the water flow rate (q) are depicted. 

 

 
Table 1: Discrete well-balanced property for smooth and 

non-smooth irregular bottom geometry.  



 

 
 

Figure 1: Small perturbation of a two-dimensional steady 

state water travelling over a bottom bump.  

  

Internal Dam-Break for a Two-Layer Shallow Water 

System 
 

The next test problem consists in an internal dam-break 

problem for the two-layer shallow water equations, see [12] 

for details, over a flat and variable bottom. There is no 

exact solution available, but we can compare with the 

results of the path-conservative Roe-type schemes proposed 

by Castro and Parés in [12]. As we can deduce from the 

results depicted in Figures 2 and 3 we obtain an excellent 

agreement. The numerical scheme used is based on the 

ADER (Arbitrary order DErivative Riemann problem) 

approach [11; 5]. 

 

Circular Dam Break on Adaptively Refined Mesh  

In this last section we present some preliminary results of 

our new high order one-step path-conservative WENO 

finite volume schemes on adaptively refined Cartesian 

meshes. The method uses time-accurate local time stepping 

[13], in order to increase computational efficiency. This 

means that the smallest elements of the computational 

domain run on a small time step that is given by a local 

Courant stability criterion, while the large cells are allowed 

to run large time steps according to their local CFL 

condition. The use of our particular one-step time 

discretization based on a local space-time Galerkin 

predictor scheme allows us to compute the interface fluxes 

without needing any time-interpolation and without any 

complicated bookkeeping. The computational overhead 

needed for the AMR compared to a fixed mesh approach is 

therefore quite minimal. Here we show the AMR mesh 

(Figure 4) and the results (Figure 5) for a two-dimensional 

circular dam break problem.  

 

 
Figure 2: Two-layer shallow water dambreak problem over 

a flat bottom. 3D visualization of the results (left) and 

comparison with the reference solution of Castro and Parés 

[12] (right).  

 

 
Figure 3: Two-layer shallow water dambreak problem over 

a smooth bottom bump. 3D visualization of the results (left) 

and comparison with the reference solution of Castro and 

Parés [12] (right).  

 

 

 
Figure 4: AMR mesh for a two-dimensional circular dam-

break problem of the one-layer shallow water equations.  
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Figure 5: Three-dimensional visualization of the results 

obtained for the water depth in the two-dimensional circular 

dam-break problem.  
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