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Abstract 

We investigate explicit local RKDG2 (second-order Runge-
Kutta Discontinuous Galerkin) solutions with the 
inhomogeneous SWEs (Shallow Water Equations) on non-
uniform meshes with local time steps. The incorporated 
LTS (Local Time Step) algorithm was recently designed 
and tested for homogenous hyperbolic PDE(s) and was 
featured by its locality and second-order accuracy Two 
LTS-RKDG2 schemes that adapt three and four levels of 
LTSs are configured based on two adaptive meshes that, 
respectively, adapt two and three levels of refinement. 
Hydraulic tests are used to verify the LTS-RKDG2 schemes 
by comparing their performance with their conventional 
Global Time Step RKDG2 alternatives (GTS-RKDG2). 
Our results show that the LTS-RKDG2 models produce 
similar predictions as the GTS-RKDG2 models but with 
less computational effort reduced by a factor of 1.3 to 2.3 
times depending on the test case. 

Introduction 

Explicit finite volume (FV) Godunov-type numerical 
methods that solve hyperbolic conservation laws of the 
unsteady SWEs (Toro, 2001; Guinot, 2003) are widely 
relevant to water flow simulations and have been receiving 
numerous developments (Delis & Kampanis, 2009). To 
summarize, a ‘robust’ Godunov-type SWEs numerical 
solver should be able to maintain its stability and 
consistency when a flow discontinuity develops, steep 
topographic gradients are present, a wet/dry front occurs, 
and high roughness values are combined with very small 
water depths. However all these advances, it is still 
imperative to enhance the runtime of these explicit FV 
models, which may be done by using a non-uniform 
adapted mesh and increasing the time step. 
From this perspective, it is expected that the efficiency of 
an explicit numerical scheme may suffer as the size of their 
time steps is restricted by the CFL stability condition. This 
criterion provides the maximum allowable Global Time 
Step (GTS) permitted, which actually reduces as a result of 
a local increase in the velocity magnitude or a local 

decrease in the cell size, or both; see Eq. (5). Particularly 
when using non-uniform grids, few smallest cells may 
impose a restrictive time step on the whole mesh and 
therefore improvements in accuracy, gained by local mesh 
refinement, are compensated by longer runtimes. In such a 
circumstance, a local time step method (LTS) whereby the 
solution within different cells is advanced by different time 
steps seems complementary to increase the computational 
efficiency of an explicit numerical model that uses non-
uniform meshes. 
Very few published papers dealt with the design and 
implementation of LTS algorithms with Godunov-type 
water wave models. Crossley & Wright (2005) first 
transplanted the concept of LTS into the field of 1D 
hydrodynamic modelling showing a merit not only in 
reducing runtimes but also in augmenting the quality of the 
numerical solution. Sanders (2008) later investigated this 
topic with a robust 2D Godunov-type SWEs solver based 
on applications involving frictional flows over irregular 
topographies with wetting and drying. Moreover, the 
implicit friction term discretization (IFTD), which is a 
commonly used practice to stabilize water flow simulations 
with wetting and drying, was reported conflicting when it is 
activated with a LTS algorithm. In both investigations, LTS 
algorithms were integrated with first-order FV water 
models and the use of five, or more, levels of LTS was 
discouraged. 
This work extends a LTS algorithm into RKDG2 Godunov-
type SWEs solutions (LTS-RKDG2) on non-uniform 
meshes. The considered LTS algorithm was recently 
established, by Krivodonova (2010), and found to be well-
fit with the RKDG2 scheme (Kesserwani & Liang, 2012). It 
preserves second-order accuracy, conserves locality, applies 
straightforwardly to the coefficients of the local finite 
element solution and adapts the time step on each cell 
according to the cell size (i.e., it takes a LTS of Δt on cells 
of size Δx, Δt/2 on cells of size Δx/2, etc). In Krivodonova 
(2010) the LTS algorithm was verified theoretically in 
combination with an RKDG2 scheme (LTS-RKDG2). 
However, simulation results were only presented for 
homogenous conservation laws, excluding the SWEs. 



Further, no information was provided on the relative gain in 
terms of efficiency. Herein, the Krivodonova LTS 
algorithm is reformulated and improved in the framework 
of the 1D RKDG2 scheme solving the SWEs with complex 
source terms and involving wetting and drying (Kesserwani 
& Liang, 2012). Using steady and transient tests, the 
implementation of two LTS-RKDG2 shallow water solvers, 
that respectively employ three and four LTSs, is verified 
and the potential improvement in efficiency relative to the 
associated conventional GTS-RKDG2 is quantified. 

Shallow Water Equations (SWEs) 

The mathematical model of the SWEs can be written in a 
conservative matrix form 

∂௧܃ ൅ ∂௧۴ሺ܃ሻ ൌ  ሻ                           (1)܃ሺ܁
In which, x is the longitudinal coordinate and t is the time. 
܃ ൌ ሾߟ, ௫ሿ୘; ۴ݍ ൌ ሾݍ௫, ௫ଶ݄ିଵݍ ൅ 0.5ሺߟଶ െ  is ܁ ሻሿ୘ andݖߟ2
transposed vector containing the source terms. The source 
term vector ܁ can be further partitioned into ܁ ൌ ܊܁	 ൅  ܎܁
where ܊܁ ൌ ሾ0, െ߲݃ߟ௫ݖሿ୘ and ܎܁ ൌ ሾ0, െܥ୤ݑ|ݑ|ሿ୘ are, 
respectively, the topography and friction source terms (g is 
the acceleration due to gravity, ݖ is the topography, 
݄ ൌ ߟ െ ݑ ,is the water depth ݖ ൌ  ௫/݄ the mean velocityݍ
and ܥ୤ ൌ ݃݊ெ

ଶ ݄ିଵ/ଷ; ݊ெ being the Manning coefficient). 

Non-uniform structured mesh 

Firstly, a problem domain [xmin; xmax] is discretized using a 
coarse uniform mesh consisting of N cells of size Δx. This 
is called “background mesh”, on which a cell is termed 
“background cell” and is assigned the minimum level of 
subdivision, i.e., equal to ‘0’. Secondly, background cells in 
those user-selected local zone(s) where mesh refinement is 
desired are further refined by specifying higher levels of 
subdivisions up to a user-specified maximum subdivision 
level ‘levmax’ (݈݁ݒ௠௔௫ ∈ Գ). The refinement is performed in 
a fractal manner, i.e. the cell size reduces by a factor of two 
whenever the refinement level increases ‘1’. Finally, the 
mesh is regularized so that it does not contain adjacent cells 
with sizes differing by more than a factor of two. 
Overall, mesh will consist of cells with levels varying 
between ‘0’ and ‘levmax’. Cells with level ‘0’ are the largest 
whereas cells with level ‘levmax’ are the smallest. An 
arbitrary cell Iic can be classified through an assigned level 
denoted by ‘lev(ic)’ (where 0 ≤ lev(ic) ≤ levmax) and thereby 
has a size length of ∆ݔ௜௖ ൌ 2௟௘௩೘ೌೣ/ݔ∆ 2௟௘௩ሺ௜௖ሻ (with/ݔ∆ ൑

௜௖ݔ∆ ൑  Cell Iic is centered at xic with the boundary .(ݔ∆
points ݔ௜௖േଵ/ଶ ൌ ௜௖ݔ ൅ ௜௖ܫ .௜௖/2, i.eݔ∆ ൌ ௜௖ିଵݔൣ ଶ⁄ ; ௜௖ାଵݔ ଶ⁄ ൧. 

Review of the GTS-RKDG2 scheme 

Over a cell ‘Iic ’, the RKDG2 method solves for a local 
approximate (piecewise linear) solution to (1), denoted by 
Uh = [ηh, (qx)h]

T. The solution is locally spanned by the 

average and slope coefficients (see within Kesserwani & 
Liang (2012) for explicit details), i.e. ࢎ܃ሺݔ, ሻ|ூ೔೎ݐ ൌ

ሼ܃௜௖
଴ ሺݐሻ, ௜௖܃

ଵ ሺݐሻሽ 

,ݔሺࢎ܃ ሻ|ூ೔೎ݐ ൌ ௜௖܃
଴ ሺݐሻ ൅ ௜௖܃

ଵ ሺݐሻ ቀ
௫ି௫೔೎
∆௫೔೎ ଶ⁄

ቁ		,				ሺ∀ݔ ∈  (2)	௜௖ሻܫ
 

Given the initial conditions U(x,0), the local coefficients, 
௜௖܃
଴ ሺ0ሻ and ܃௜௖

ଵ ሺ0ሻ, can be initialized. The topography 
function is approximated similarly, and therefore becomes 
z௛ሺݔሻ|ூ೔೎, which is spanned by local topography-associated 

coefficient, z௜௖
଴  and z௜௖

ଵ . The bed gradient thus writes 
߲௫ൣ	z௛ሺݔሻ|ூ೔೎൧ ൌ 2	z௜௖

ଵ  .௜௖ݔ∆/

Two stages Runge-Kutta Time-stepping 

The time updating from ‘t’ to ‘t + Δt’ is performed by 
employing a two-stage RK time stepping method (Shu & 

Osher, 1988). Denoting by ൫܃௜௖
଴,ଵ൯

௡
 and ൫܃௜௖

଴,ଵ൯
௡ାଵ

 to be the 
solution coefficients at time ‘t’, and ‘t + Δt’, respectively, 
the two-stage RK time integration process can be written as 

൫܃௜௖
଴,ଵ൯

௡ାଵ/ଶ
ൌ ൫܃௜௖

଴,ଵ൯
௡
൅ ௜௖ۺ൫ݐ∆

଴,ଵ൯
௡                                  (3) 

൫܃௜௖
଴,ଵ൯

௡ାଵ
ൌ

ଵ

ଶ
ቂ൫܃௜௖

଴,ଵ൯
௡
൅ ൫܃௜௖

଴,ଵ൯
௡ାଵ/ଶ

൅ ௜௖ۺ൫ݐ∆
଴,ଵ൯

௡ାଵ/ଶ
ቃ        (4) 

At the first RK stage (3), referred to as RK1, the local 
solution ൫܃௜௖

଴,ଵ൯
௡ is advanced to an intermediate state 

൫܃௜௖
଴,ଵ൯

௡ାଵ/ଶ relative to ‘ݐ∗ ൌ ݐ ൅  Then at the second RK .’2/ݐ∆
stage (4), denoted as RK2, the solution is marched from the 
intermediate state at ‘t*’ to the next time level ‘t + Δt’. The 

DG2 space operators ൫ۺ௜௖
଴,ଵ൯

௡ and ൫ۺ௜௖
଴,ଵ൯

௡ାଵ/ଶ are evaluated 
from the solution coefficients at t and t*, respectively, as we 
describe in the following. The global time step (GTS) Δt is 
restricted by the CFL condition with a Courant number of 
0.3 (Cockburn & Shu, 2001). 

ݐ∆ ൌ ݉݅݊ ൥
∆௫೔೎

ቚ൫௨೔೎
బ,భ൯

೙
ቚାට௚൫௛೔೎

బ,భ൯
೙
൩   (5) 

It is obvious from (5) that ∆ݐ → 0 when ݈݁ݒ௠௔௫ → ∞). 

Local DG2 space operators 

The update of the approximate solution ࢎ܃ሺݔ, ሻ|ூ೔೎ݐ ൌ

ሼ܃௜௖
଴ ሺݐሻ, ௜௖܃

ଵ ሺݐሻሽ performs via a detached set of ODEs: 
∂௧܃௜௖

଴ ሺݐሻ ൌ ௜௖ۺ
଴ ൫܃௜௖

଴,ଵ, ௜௡܃
଴,ଵ൯                                      (6) 

∂௧܃௜௖
଴ ሺݐሻ ൌ ௜௖ۺ

ଵ ൫܃௜௖
଴,ଵ, ௜௡܃

଴,ଵ൯                                      (6) 
in which, ۺ௜௖

଴  and ۺ௜௖
ଵ  are nonlinear vectors of space-

functions. The approximating coefficients with subscripts 
‘in’ refers to data relative to the neighbor cells Iin 
surrounding cell Iic. These operators can be manipulated to 

௜௖ۺ
଴ ൌ െ

۴෨೔೎శభ మ⁄ ି۴෨೔೎షభ మ⁄

∆௫೔೎
൅ ௜௖܃ሺ܁

଴ , z௜௖
଴ , z௜௖

ଵ ሻ                               (7) 

௜௖ۺ
ଵ ൌ െ

ଷ

∆௫೔೎
ቄ۴෨௜௖ାଵ ଶ⁄ ൅ ۴෨௜௖ିଵ ଶ⁄ െ ۴ ቀ܃௜௖

଴ ൅
෡೔೎܃
భ

√ଷ
, ௜௖ݖ

଴ , ௜௖ݖ
ଵ ቁ െ ۴ ቀ܃௜௖

଴ െ

෡೔೎܃
భ

√ଷ
, ௜௖ݖ

଴ , ௜௖ݖ
ଵ ቁ െ ௜௖ݔ∆

√ଷ

଺
ቂ܁ ቀ܃௜௖

଴ ൅
෡೔೎܃
భ

√ଷ
, ௜௖ݖ

଴ , ௜௖ݖ
ଵ ቁ െ ܁ ቀ܃௜௖

଴ െ
෡೔೎܃
భ

√ଷ
, ௜௖ݖ

଴ , ௜௖ݖ
ଵ ቁቃቅ  (8) 

When evaluating (7)-(8), a number of essential spatial 
ingredients should be implemented to maintain the stability 
of the numerical method and grant its practicability to 
shallow flow modelling. Firstly, local slope coefficients 
that likely cause numerical instability should be detected 



and locally limited by the minmod function. The “hat” 
symbol above ܃௜௖

ଵ  refers to the controlled slope coefficient 

(i.e., ܃෡௜௖
ଵ ). Secondly, the flux ۴෨௜௖ାଵ ଶ⁄  across an interface 

xic+1/2 (shared by adjacent cells Iic and Iin with in = ic+1) is 
obtained via the HLL Riemann problem solution of the two 
states Thirdly, before the final evaluation of (7) and (8), it 
is important to further implement a conservative “wetting 
and drying condition” to ensure the positivity of the water 
height with time evolution. Lastly, the friction source term 
 should be separately discretized (i.e. not within (7) and 	܎܁
(8)) by implicit discretization technique to avoid numerical 
instabilities that may arise when modelling water flow over 
dry zone with high roughness Details on how these spatial 
ingredients are implemented can be found in Kesserwani & 
Liang (2012). To ease presentation in what follows, the 
approximating coefficients with subscripts ‘in’ will refer to 
the data relative to the eastern neighbor (i.e., cell Iin) of cell 
Iic and so {xic+1/2} = Iic ∩ Iin represents the edge separating 
cells Iic and Iin. 

New LTS-RKDG2 flow model 

The second-order LTS approach of Krivodonova (2010) is 
integrated with the (GTS-)RKDG2 flow model (Kesserwani 
& Liang 2012) to from the so-called LTS-RKDG2 water 
wave model. Further to this, special treatments are 
implemented to retain conservation and the applicability of 
the LTS-RKDG2 model to shallow flow simulations over 
frictional topographies with wetting and drying. 

 
Fig. 1: LTS-RKDG2 calculation of the solution coefficients from ‘t’ to ‘t + 
Δt’ on a mesh with multiple levels of refinement ‘0’, ...., ‘levmax’, where a 
‘thick arrow’ = one iteration of LTS-RKDG2 calculation. 

Basic concept 

To simplify presentation, it is assumed that the maximum 
wave speed does not significantly influence the local CFL 
number and therefore the LTS relative to each cell ‘Iic’ is 
solely dependent on its level of refinement lev(ic) (or cell 
size ∆ݔ௜௖ ൌ

∆௫

ଶ೗೐ೡሺ೔೎ሻ
) so that ∆ݐ௜௖ ൌ

∆௧

ଶ೗೐ೡሺ೔೎ሻ
. Δt is the GTS relative to 

the coarse “background mesh” and can be simply defined as 

ݐ∆ ൌ ݉݅݊ ൥
ଶ೗೐ೡሺ೔೎ሻ∆௫೔೎

ቚ൫௨೔೎
బ,భ൯

೙
ቚାට௚൫௛೔೎

బ,భ൯
೙
൩   (9) 

As illustrates in Fig. 1, the RKDG2 calculation is locally 
performed with the LTS Δt, Δt/2, Δt/22, ..., Δt/2௟௘௩೘ೌೣ for 

cells with level ‘0’, ‘1’, ‘2’, ..., ‘levmax’ to recursively 
advance their solution coefficients 1 LTS, 2 LTSs, 4 
LTSs,…, 2௟௘௩೘ೌೣ LTSs. Herein, this iterative calculation 
process is referred to as “LTS-RKDG2 calculation”. In the 
first iteration, the LTS-RKDG2 calculation achieves at cells 
with level ‘0’ to allow the corresponding solution 
coefficients to reach time level ‘t + Δt’. In the second 
iteration, the LTS-RKDG2 calculation is undertaken at cells 
with level ‘1’, and so on, until the finest cells with level 
‘levmax’ are fully updated after 2௟௘௩೘ೌೣ iterations of LTS-
RKDG2 calculation. During a simulation, computational 
cells are grouped according to their level of refinements and 
the associated mesh may be classified as “inner cells” and 
“interface cells”. Cells neighbored by cells ‘Iin’ with similar 
level of refinement are called Inner cells ‘Iic’; otherwise, 
they are termed as Interface cells. 
At an inner cell ‘Iic’, an LTS-RKDG2 calculation is 
straightforward. Since ‘Iic’ and ‘Iin’ have the same level of 
refinement, they thus have the same LTS, i.e. ∆ݐ௜௡ ൌ  .௜௖ݐ∆
One step of LTS-RKDG2 (i.e., (3) and (4) with ∆ݐ௜௖) 
calculation performs in a regular manner as for the GTS-
RKDG2 scheme and no special treatment is needed. 
An interface cell ‘Iic’ has at least one of its adjacent 
neighbors of different size e.g., ∆ݔ௜௡ ്  ௜௖, and thusݔ∆
௜௡ݐ∆ ്  ௜௖. This indicates that the LTS-RKDG2 calculationݐ∆
at ‘Iic’ is different from the one at ‘Iin’. For that reason, it is 
essential for LTS-RKDG2 algorithm to impose 
synchronized ‘ghost’ solution coefficients across the cells 
with different time step(s), or stage(s), to enable Riemann 
flux calculation within the DG2 operators and allow the 
RKDG2 calculation to proceed in a classical way as 
described in the following Subsection. 

LTS-RKDG2 calculation at interface cells 

Since the mesh is regularized and the LTS-RKDG2 
calculation simply applies recurrently, as shown Fig. 1, it 
suffices to explain one elementary LTS-RKDG2 calculation 
at interface cells relative to a mesh configuration that 
involves two levels of refinement denoted by ‘lev0’ and 
‘lev0+1’ (lev0 is a fixed integer between 0 and levmax – 1). 
Without loss of generality, we assume cell ‘Iic’ has a ‘lev0’ 
and is defined as a “large interface cell” (LIC). Similarly, 
cell ‘Iin’ has a level of ‘lev0+1’ and is referred to as a 
“small interface cell” (SIC). Therefore the solution 
coefficients at ‘Iic’ are indicated by a subscript ‘L’ and those 
at ‘Iin’ by ‘S’.  
Firstly, LTS-RKDG2 calculation handles the coefficients at 
the LIC ‘Iic’ (i.e., the ‘actual’ coefficients) facilitated by 
artificially reconstructed synchronized coefficients (i.e., 
‘ghost’ coefficients) at the SIC ‘Iin’. Then, it is necessary to 
apply the LTS-RKDG2 calculation to deal with the case 
where the ‘actual’ coefficients are at the SIC ‘Iin’ and the 
‘ghost’ coefficients are at the LIC ‘Iic’. 



Coefficients update at the LIC ‘Iic’ 

First, the LTS-RKDG2 calculation starts at the LIC cell ‘Iic’ 
where the LTS is ∆ݐ௅ ൌ ∆t 2௟௘௩଴⁄  and the initial coefficients at 
time ‘t’ are ൫܃௜௖

଴,ଵ൯
௅

௡. At its SIC neighbour ‘Iin’, the initial 

coefficients ൫܃௜௡
଴,ଵ൯

ௌ

௡ are also available. Therefore, the DG2 

space operators ൫ۺ௜௖
଴,ଵ൯

௅

௡
 can be evaluated directly and then 

plugged into (3) to complete the RK1 stage and produce the 

‘actual’ coefficients ൫܃௜௖
଴,ଵ൯

௅

௡ାଵ/ଶ relative to the intermediate 

time state ‘t*’. Similarly, time-matching ‘ghost’ coefficients 

൫܃௜௡
଴,ଵ൯

ௌ,௚௛௢௦௧

௡ାଵ/ଶ  relative to t* are constructed at Iin by advancing 

its coefficients using (3) with LTS ΔtL, i.e. 

൫܃௜௡
଴,ଵ൯

ௌ,௚௛௢௦௧

௡ାଵ/ଶ
ൌ ൫܃௜௡

଴,ଵ൯
ௌ

௡
൅ ௜௡ۺ௅൫ݐ∆

଴,ଵ൯
ௌ

௡   (10) 

After (10), the coefficients are synchronized at ‘t*’. The 

space operators ൫ۺ௜௖
଴,ଵ൯

௅

௡ାଵ/ଶ can then be evaluated and used to 

achieve the RK2 stage in (4) to finally produce the 

coefficients ൫܃௜௖
଴,ଵ൯

௅

௡ାଵ associated to ‘ݐ ൅  .’௅ݐ∆

Coefficients update at the SIC ‘Iin’ 

After obtaining the ‘actual’ coefficients at ‘ݐ ൅  ௅’ over cellݐ∆
‘Iic’, the SIC ‘Iin’ is now reconsidered to obtain its ‘actual’ 
coefficients at ‘ݐ ൅  ௅’. However, since the LTS over a SICݐ∆
is halved (i.e., ∆ݐௌ ൌ  ௅/2), LTS-RKDG2 calculation overݐ∆
‘Iin’ has to be carried out in two consecutive iterations, 
starting from the available initial coefficients, ൫܃௜௡

଴,ଵ൯
ௌ

௡ and 

൫܃௜௖
଴,ଵ൯

௅

௡, at time ‘t’ at both SIC ‘Iin’ and its neighbor LIC ‘Iic’. 

It should be noted that the ‘ghost’ coefficients at SIC ‘Iin’ 
produced (previously—refer to the previous subsection) 
using (10) are here inappropriate for the current step and 
will therefore be ignored. In contrast, at the LIC ‘Iic’, 
certain preceding information created by the previous LTS-
RKDG2 update for the ‘actual’ coefficients over ‘Iic’ may 
be saved and reused. In particular, the previously calculated 

DG2 space operators ൫ۺ௜௖
଴,ଵ൯

௅

௡ and ൫ۺ௜௖
଴,ଵ൯

௅

௡ାଵ/ଶ at time ‘t’ and 

time ‘t*’ are used to define the following quadratic function 

∅௜௖
଴,ଵሺ߬ሻ ൌ ൫܃௜௖

଴,ଵ൯
௅

௡
൅ ൫ۺ௜௖

଴,ଵ൯
௅

௡
ሺ߬ െ ሻݐ ൅

൫ۺ೔೎
బ,భ൯

ಽ

೙శభ మ⁄
ି	൫ۺ೔೎

బ,భ൯
ಽ

೙

ଶ∆௧ಽ
ሺ߬ െ  ሻଶ (11)ݐ

which will serve to reconstruct ‘ghost’ coefficients over the 
neighbor LIC ‘Iic’ at an inner fractional-time-step ‘߬’ and its 
associated time-stage ‘߬∗’, namely: 

௜௖܃ൣ
଴,ଵሺ߬ሻ൧

௅,௚௛௢௦௧

௡
ൌ ∅௜௖

଴,ଵሺ߬ሻ; 		߬ ∈ ሾݐ; ݐ ൅  ௅ሾ                        (12)ݐ∆

௜௖܃ൣ
଴,ଵሺ߬∗ሻ൧

௅,௚௛௢௦௧

௡ାଵ/ଶ
ൌ ௜௖܃ൣ

଴,ଵሺ߬ሻ൧
௅,௚௛௢௦௧

௡
൅

ௗ

ௗఛ
∅௜௖
଴,ଵሺ߬ሻ; ߬∗ ∈ ሾ߬; ݐ ൅  ௅ሾ (13)ݐ∆

Eqs. (11)-(13) give a second-order accurate data 
interpolation as confirmed by the theoretical work in [13]. 
At the first iteration, the coefficients over ‘Iin’ are advanced 
one LTS from time ‘t’ to time ‘ݐଶ ൌ ݐ ൅  ௌ’. Initially at timeݐ∆
‘t’, using ൫܃௜௡

଴,ଵ൯
ௌ

௡ and ൫܃௜௖
଴,ଵ൯

௅

௡, the space operators ൫ۺ௜௡
଴,ଵ൯

ௌ

௡ can 

be evaluated and then inserted into (3) to achieve the 
calculation at the RK1 stage and produce ൫܃௜௡

଴,ଵ൯
ௌ

௡, which are 

the ‘actual’ coefficients at the intermediate time stage 
ଵݐ
∗ ൌ ݐ ൅  ௌ/2. Meanwhile, over ‘Iic’, the ‘ghost’ coefficientsݐ∆

relative to ݐଵ∗, i.e. ൫܃௜௖
଴,ଵ൯

௅,௚௛௢௦௧

௡ାଵ/ଶ , should be constructed at 

߬ ൌ  .ଵ∗ by means of (11)-(13)ݐ

After this, the DG2 space operators ൫ۺ௜௡
଴,ଵ൯

ௌ

௡ାଵ/ଶ at time ݐଵ∗ can 

be evaluated and put in (4) to finalize the RK2 stage and 

produce ൫܃௜௡
଴,ଵ൯

ௌ

௡ାଵ, which are the ‘actual’ coefficients over Iin 

at time ݐଶ. Meanwhile, the time-matching ‘ghost’ 

coefficients over ‘Iic’ at ݐଶ, i.e. ൫܃௜௖
଴,ଵ൯

௅,௚௛௢௦௧

௡ାଵ , should be 

constructed using (11) and (12) evaluated at ߬ ൌ  .ଶݐ
At the second iteration, the coefficients are reinitialized at 
 ௌݐ∆ ଶ’ and another RKDG2 calculation step with the LTSݐ‘
is performed to further elevate the coefficients over Iin to 
time level ‘ݐ ൅  ’௅’. That is, both ‘actual’ and ‘ghostݐ∆
coefficients at Iic and Iin, respectively, are reinitialized at 

௜௡܃ଶ’ (i.e. ൫ݐ‘
଴,ଵ൯

ௌ

௡
← ൫܃௜௡

଴,ଵ൯
ௌ

௡ାଵ and ൫܃௜௖
଴,ଵ൯

௅

௡
← ൫܃௜௖

଴,ଵ൯
௅,௚௛௢௦௧

௡ାଵ ). The 

previously employed ‘actual’ and ‘ghost’ coefficients and 
their associated DG2 space operators at the inner time 
stages can be reused (i.e., herein overwritten). Initially at 
time level ‘t2’, ൫܃௜௖

଴,ଵ൯
௅

௡ and ൫܃௜௡
଴,ଵ൯

ௌ

௡ are synchronized and so 

the operators ൫ۺ௜௡
଴,ଵ൯

ௌ

௡ can be evaluated and then put into (3) 

to achieve the RK1 stage and produce ‘actual’ coefficients 

൫܃௜௡
଴,ଵ൯

ௌ

௡ାଵ/ଶ, which now represent the coefficients at the time 

stage ݐଶ∗ ൌ ଶݐ ൅  ௌ/2. Meanwhile, over ‘Iic’, time-matchingݐ∆
(i.e., relative to ݐଶ∗) ‘ghost’ coefficients are reconstructed 

using (11)-(13) evaluated at ߬ ൌ ଶݐ
∗ to produce ൫܃௜௖

଴,ଵ൯
௅,௚௛௢௦௧

௡ାଵ/ଶ . 

Now, ൫܃௜௖
଴,ଵ൯

௅,௚௛௢௦௧

௡ାଵ/ଶ  and ൫܃௜௡
଴,ଵ൯

ௌ

௡ାଵ/ଶ
 are synchronized and can be 

used to calculate the DG2 operators ൫ۺ௜௡
଴,ଵ൯

ௌ

௡ାଵ/ଶ and then 

inserted into the RK2 stage (4) to finally produce ൫܃௜௡
଴,ଵ൯

ௌ

௡ାଵ
, 

which now represent the coefficients over ‘Iin’ at time 
ݐ‘ ൅  .’௅ݐ∆

 
Fig. 2: History of the actual stages of LTS-RKDG2 calculations at a LIC 
Iic adjacent to a SIC Iin and the associated Riemann fluxes. Particular case 
(when ΔtL = Δt). 

Friction term issue and conservation enforcement 

Due to the LTS dependence within the IFTD, its expected 
side effect on well-balanced property (Murillo et al., 2009), 
may increasingly magnify at those inner cells. Further, this 
aspect complicates the integration of the IFTD with the 
LTS-RKDG2 calculation at interface cells because extra 
phases of ‘ghost’ friction advancement, and removal, need 



to be entailed in line with the ‘ghost’ coefficients 
advancement. Therefore, herein, the usability of the IFTD is 
restricted to those cells where the water height may 
potentially become infinitesimal. At the other (flood) cells, 
the friction source term is discretized explicitly in the DG2 
space operators, in a straightforward manner, as it is now 
free from any LTS dependence. 
After the LTS-RKDG2 calculations at the LIC ‘Iic’ and the 
SIC ‘Iin’, the sum of Riemann flux quantities cumulated 
between time ‘t’ and time ‘t + ΔtL’ at the edge ‘xic+1/2’ may 
not be equal. For instance, following the notations in Fig. 2, 
it may happen that the sum of Riemann flux evaluations at 
‘xic+1/2’ accumulated from the LTS-RKDG2 calculation at 
the LIC ‘Iic’ (i.e., Fig. 2, sum of fluxes with superscript 
‘1/1’) is different than the sum of Riemann flux evaluations 
at ‘xic+1/2’ accumulated during the LTS-RKDG2 
calculations at the SIC ‘Iin’ (i.e., Fig. 2, sum of fluxes with 
superscript ‘1/2’ and ‘2/2’). 
To overcome this effect, flux conservation (in time) is 
artificially enforced at the SIC ‘Iin’ during the final iteration 
of LTS-RKDG2 calculation and, more particularly, at its 
final time stage–namely when the coefficients are awaiting 
one last step prior to reaching ‘t + Δt’. For example, we 
assume that the mesh only involves two cell’s sizes: large 
cells with the level ‘0’ and small cells with the level ‘1’ 
(i.e., lev0 = 0). In this case, ΔtL = Δt and ΔtS = Δt/2 and flux 
conservation (in time) is imposed at the SIC ‘Iin’ during the 
RK2 stage and at the second round (i.e., Fig. 2—right 
highlighted portion of the thick arrow). This can be done by 

exceptionally choosing the flux ൫۴෨௜௖ାଵ/ଶ
௡ାଵ/ଶ൯

ௌ

ଶ/ଶ
 as: 

൫۴෨௜௖ାଵ/ଶ
௡ାଵ/ଶ൯

ௌ

ଶ/ଶ
ൌ ቂ൫۴෨௜௖ାଵ/ଶ

௡ ൅ ۴෨௜௖ାଵ/ଶ
௡ାଵ/ଶ൯

௅

ଵ/ଵ
െ ൫۴෨௜௖ାଵ/ଶ

௡ ൅ ۴෨௜௖ାଵ/ଶ
௡ାଵ/ଶ൯

ௌ

ଵ/ଶ
െ

൫۴෨௜௖ାଵ/ଶ
௡ ൯

ௌ

ଶ/ଶ
ቃ                               (14) 

instead of estimating it from the Riemann problem solution. 

LTS-RKDG2 model’s verification 

LTS-RKDG2 and GTS-RKDG2 schemes simulations are 
run on two non-uniform meshes, referred to as ‘mesh 2’ and 
‘mesh 3’, which have been configured to allow up to ‘2’ 
and ‘3’ levels of refinement, respectively, while retaining 
the same total number of computational cell for both 
meshes. Over these meshes, LTS-RKDG2 local solutions 
coordinates LTSs of {Δt, Δt/2, Δt/4} and {Δt, Δt/2, Δt/4, 
Δt/8}, respectively. The level of refinement relative to each 
cell will be indicated by a gray ‘diamond’ marker within 
the sub-figures that illustrate the free-surface elevations. 
Two tests are considered to investigate the performance of 
LTS-RKDG2 scheme with respect to the GTS-RKDG2 
scheme, while quantifying the relative runtime saving. 

Steady flow over a hump with shock 

The academic test case involving moving steady 
transcritical flow over topography, with a shock, is 

investigated. This test is to simultaneously demonstrate the 
capability of a numerical method to: converge towards a 
steady state, accurately balance the flux gradient with the 
topography gradient, and inherently capture flow transitions 
and discontinuities. The channel is 1000m length with a 
hump-shape topography located between x = 125m and x = 
875m. An upstream subcritical inflow is imposed through a 
unit discharge of 20m2/s and the outflow depth is fixed to 
7m. A simulation starts from an initial water height of 9.7m 
and is desired to stop after a relatively long time evolution 
(i.e. t = 2000s). Each simulation is performed on a ‘mesh 2’ 
and a ‘mesh 3’ type that both consisted of 100 cells. 
At first, the channel’s bed is assumed frictionless and the 
GTS-RKDG2 and LTS-RKDG2 schemes are run on the 
two non-uniform meshes. Fig. 3 present the corresponding 
profiles acquired by the RKDG2 solvers, respectively. It 
can be seen that the numerical water depths produced by 
both solvers match well the analytical solutions and no 
visual difference is detected among the schemes. On the 
other hand, both numerical models reached the expected 
conservative state for the steady discharge solution; this 
indicates that the current LTS algorithm do not affect the 
well-balanced property. On ‘mesh 2’ and ‘mesh 3’, 
respectively, the runtime saving is about 1.9 and 2.3 times 
with respect to the GTS-RKDG2 scheme. This shows that 
the usefulness of the transient LTS-RKDG2 shallow water 
solver in accelerating the convergence of steady-state 
problems. 

 

Fig. 3: Steady flow (t = 2000s). Lower: ‘mesh 2’and Upper: ‘mesh 3’. 
 

Secondly, we use this test case to further point up the 
inconvenience of the IFTD when implemented in 
conjunction with the LTS-RKDG2 scheme. Therefore, the 
LTS-RKDG2 method is reconsidered with nM = 0.033 
s/m1/3; the simulations are remade on the same meshes but 
with a focus on comparing the IFTD discretization (i.e., 
time-dependent) vs. the explicit friction term discretization 
(i.e., independent of the time-step). The solution to the 



momentum equation, in terms of steady discharge 
numerical result, is appended within the discharge plots in 
Fig. 3. As expected, the use of the IFTD with the LTS-
RKDG2 is found to magnify the side effect of the IFTD. 
This justifies our motivation in using the aforementioned 
hybrid implicit-explicit friction discretization. 

Dam-break wave interacting with a triangular obstacle 

The length of the domain is 38m; the initial condition is a 
still water state (i.e. 0.75 m) held by a dam and the 
downstream floodplain is dry. For this problem, measured 
time histories of the water depth are available at point G11 
and G13 that are respectively located 11 m, and 13 m 
downstream of the dam. nM = 0.0125 and the upstream 
boundary is a solid wall. A total of 100 cells is used to form 
meshes of type ‘mesh 2’ and ‘mesh 3’ and the simulation 
time is t = 35s. Snapshots of the longitudinal profiles of the 
free-surface elevations at t = 10s are available in Fig. 4. 

  

Fig. 4: Transient flow (t = 10s). Left: ‘mesh 2’ and Right: ‘mesh 3’. 
 

 

 
Fig. 5: Transient flow. Depth histories; Lower: ‘mesh 2’; Upper: ‘mesh 3’. 
 

Fig. 5 contains the predicted time histories that are seen to 
favorably agree with the measured data. Both RKDG2 
schemes survived this challenging benchmark for the two 
considered meshes. In contrast to the previous test, 
difference between the LTS-RKDG2 and GTS-RKDG2 
predictions is detected; this may be attributed to 
dependence of the IFTD on the LTS and the involvement of 
relatively high local velocities in this test. However, these 
differences are little and have inconsequential effects on the 

usability of the LTS-RKDG2 model. For this case, the use 
of the non-uniform mesh LTS-RKDG2 scheme with three- 
and four- levels of LTSs enhanced, respectively, the time 
efficiency by 1.32 times and 1.36 times over the GTS-
RKDG2 scheme. 

Conclusions 

A second-order LTS algorithm has been integrated with a 
robust RKDG2 water model on structured non-uniform 
meshes (LTS-RKDG2). Stabilizing features that enable the 
practical utility of shallow water numerical models were 
genuinely retained. Further considerations were given to 
maintain the flux conservation across cells of different 
sizes, and to also diminish the adverse effects of the IFTD 
(i.e. due to the involvement of the LTS within). Two LTS-
RKDG2 models, which adapts LTSs of {Δt, Δt/2, Δt/4} and 
{Δt, Δt/2, Δt/4, Δt/8}, were set, tested and compared with 
the associated GTS-RKDG2 with a particular focus on the 
relative runtime saving. Our numerical experiments show 
that the use of LTS algorithm in an RKDG2 SWEs 
numerical solver is able to generically produce similar 
prediction as the GTS-RKDG2 counterparts. For the 
considered tests, the use of an LTS-RKDG2 scheme 
boosted the computational efficiency, referring to the GTS-
RKDG2, by 1.32-to-1.99 times when adapting three LTSs; 
and by 1.36-to-2.3 times with a ‘four’ levels LTS-RKDG2 
model. Research is currently underway to extend the LTS-
RKDG2 model to 2D on dynamically adaptive meshes. 
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