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Abstract

In unsteady flows, the uniform sediment transpat i
commonly described by solving the conservation gqoa
of mass and momentum both for solid and liquid pha#
the non-uniformity of the sediment becomes relevant

new set of equations, regarding the time and space

evolution of the grain size distribution of the idophase,

must be considered. Two approaches are presented in

literature. The bed material fraction (BMF) model
discretizes the grain size distribution curve infigite
number of classes while the statistical moment (SM)
approach, proposed by Armanini, (1992) and (1995),
describes the distribution curve by means of itanmiats
(commonly means and variance). Herein a rigorous
analytical derivation of the SM equations is pragmbsThe
two models are implemented in the case of 1D rectan
channel with unitary width and compared. Advantages
limits of the two approaches and some preliminary
numerical results are herein presented.

I ntroduction

Rivers-beds are usually composed of non-uniforninseat
mixtures and the prediction of natural river pr@essis,
consequently, more complex with respect to a umifor
approach.

In order to model the dynamic of the non-uniforrdiseent
transport, in the most used mathematical and nwaleri
models, the concept of mixing layer (or active Ryis
introduced. This concept was proposed by Hirand’1)19
and it assumes that in this mixing layer all grawish
different diameters are instantaneously and fullixemh.
Indeed the bed river results subdivided in two tay¢he
mixing layer and the substrate, with two differgrain size
distributions. In order to study how these disttibuos
evolve in time and space in function of the hydmaiyics
and of the sediment, conservation equations forsthiel
phase in the mixing layer must be written.

In the bed material fraction (BMF) models the graine
distributions curve are divided in several clasaes as
many mass conservation equations computed (Wu,)2007

(Brunner, 2010) (Lee & Hsieh, 2003) (Yang & Simoes,
2002). Indeed the number of unknowns are equahé¢o t
number of classes in which the grain size distidvuturve

is divided.

In the model statistical moment (SM) approach, tistgr
from the conservation equation of the solid phaséhie
mixing layer a set of equations for the statistiv@ments is
derived (Armanini, 1992) and (Armanini, 1995). The
advantage of this formulation is the reduction bf t
unknowns from the number of classes necessarysitride
the grain-size distribution to the number of statéd
moments with a consequent reduction of the comiouizit
cost.

Mathematical modeling of non-uniform
sediment transport

In this work a 1D rectangular channel with unit thids
considered. Mathematical modeling of river mobit bis
usually based on the vertically averaged Saint-YiEna
equations, which express the conservation lawsasfsnand
momentum for water, and on the Exner equation tiegul
from the conservation of the solid phase. Theseatious
can be also derived from a two phase approach uheéer
assumption of low sediment concentration and isetién
model (Garegnani, Rosatti, & Bonaventura, 2011).

The momentum equation thus reduces to the equédion
the clear water:

dq d (q°
E+a<7>+gh

where g is the mixture discharge that coincides with the
liquid discharge whilex and t are the longitudinal
coordinate and the time variable respectively. kegeis
the gravity acceleratiorh the water depthp,, the water
density andr,, the average bottom friction. In equation (1)
the friction term is calculated through the Gauckle
Strickler relation:

an Ty,

a__w 1)
dx Pw



2nd IAHR Europe Congress

Tw

g
o ennt @

wherek; is the Strickler roughness coefficient. Besides, th
momentum equation (1) can be rewritten in a quasi-
lagrangian formulation:

Dq d‘f] _ (3)
Dt I T T
where using equation (2) yields
__9 o 4
¢ =ens T ox @
with u = q/h velocity of the mixture.
The conservation of the total mass is:
dn_ da_, (5)
dt dx

wheren is the free surface elevation (see Figure 1) .
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Figure 1: Sketch of the main model variable in¢dhse of
non-uniform sediment.

Finally, under the hypothesis of low sediment
concentration, the time variation of the sedimenotes! in

the water column is neglected and the conservation
equation for the sold phase is:

(6)

Herec, is the concentration of the sediment in the betl an
it is assumed to be constant whilg is the solid discharge.
Notice thatc is indeed defined as the ratio of solid
discharge to the total dischargg,/q. Indeed, it is not the
volumetric concentration of sediment in the columsater
that can be calculated from by means of a corrective
coefficient taking into account the vertical distriion of
the velocity and of the concentration.

The free surface elevatiap the mixture discharggq and
the bed levelz, are the unknowns of the system of

equations (3), (5) and (6). In the equation (6) gbdiment
concentrationc is, in the case of uniform transport,
calculated through a sediment transport formulahasvn

in (Garegnani, Rosatti, & Bonaventura, 2011) whifethe
case of non-uniformity of the sedimewtdepends on the
grain size distribution as shown in the followirecton. In
this case, a new set of equation has to be addeHbeto
system (3), (5) and (6) in order to calculate the
concentratiorc and to study the evolution of the grain-size
distribution curve.

Thegrain-sizedistribution curve

Sieve analyses allow to estimate the distributibgranular
material on the bed. In Figure 2 the typically logmal
distribution of the grains is reported. Grain-siigtribution
is a continuous concept. The sample space is theespf
the diametergp. The grain-size distribution functidi{¢)
gives the probability that a random diameter is laoger
than a given value.

1r-

08f
T o06f
=
T o4f
0.2f
L . 1N . .
% 0.5 15 2

1
¢ [mm]

Figure 2: Grain-size distribution functidif (¢) in the
mixing layerd.
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Figure 3: Density functiofi®(¢) in the micing layer.

Indeed, we introduce the concept of density fumctio
f(p) = dF/d¢p where f(¢p)d¢ is the probability that a
random value of diameter lies betwegnand ¢ + d¢,
Figure 3.

In order to study the dynamic of the non-uniforemgport,
the bed river is subdivided in two layers: the mgilayer
with thicknessé and the substrate with depth — 4§ as
shown in Figure 1. Generally the grain size derfsitction
f9(¢) in the mixing layer differs from the density curve
fubst(¢) in the substrate while the concentration in the
two layers is considered constant and equal, tBesides,
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the density curvet(¢) of the material transported by the
flow changes from either the mixing layer and thbsirate.
If the sediment distribution in the mixing layer keown,
the Einstein assumption allow to calculate the reedi
concentration. This hypothesis affirms that int&oas

among the moving sediment particles are negligible.

Indeed, the density of the solid concentratiaepends on
the grain-size distribution present in the mixiagdr:

(@) = fO(P)ce(d) ()

wherec, is the solid concentration evaluated in the cdse o

uniform flow and grain size material equal ¢ip i.e.
through a sediment transport formula. In this wak
monomial formula is used:

k-1

u
c(¢) = me g (8)
Notice that the density functioffi‘(¢) of the material

transported by the flow differs from the curf&(¢) in the
mixing layer and it is equal to:
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Figure 4: Concentration density¢) of the material
transported by the flow. The total solid concerrats
calculated as the area of the region bounded bgrtqeh.

The total solid concentratianis the integral over the grain-
size interval of equation (7), Figure 4:

c= | FP@e@)ds. (10)
0

M ass conservation in the mixing layer

The conservation equation for sediments with diamgtin
the mixing layess is then

2 (fPc0) + = (focca) + frer (- 6) =0 (1)

where the first term is the time variation of thelume
occupied by the sediment with diamegerthe second term
is the spatial variation of the solid discharge #mllast is
the flux of sediment from the substrate to the ngxiayer.
The flux between mixing layer and substrate depesds
the grain size density functigff in the mixing layer in the
case of bed aggradations and f0¥?st of the substrate in
the case of bed degradations.

The thickness of the mixing layer is calculated through a
closure formula, it is usually related to the sadghes
height as (Armanini, 1999) and (Wu, 2007) or to the
specific diametetp,, (Armanini & Di Silvio, 1988) as:

6 = (2 + 3) oo (12)

The substrate is assumed to be unbounded and, ttre=n,
grain size distribution curve of the sediment iesid
doesn’t change anff“?st(¢) is constant in time.

The BFM modd

The space of diameterg is divided inm intervalsj =
[¢j-1/2) Bj+1/2])- If the mixing layer is considered, in the
discrete case, the probability thatis included within the
intervalj = [@;_1/2, $j41/2]. IS:

Pj-1/2
= | ri@ae. (13)
Pjt+1/2
Equation (11) is integrated on thej-interval
[¢j—1/2:¢j+1/2]:
Pjt+1/2 s
d a(f°c
[ [a(f%bm )
Pj-1/2 (14)

d
+f*Cb§(Zb—5) d¢=0

From equation (13), we obtain the equation of mass
conservation for thgclass on the interval

d d
cb 5 (P;8) + 52 [piec(#;)al (15)
3]
+cbp]’f§(zb -6)=0

with j = 1...m where the unknowns are the probabijity
in the mixing layer. Notice thap; is also called availability
factor because it represents the fraction of malteri
available in the mixing layer. The availability tacsp; are
equal to the valup; in the mixing layer in the case of bed
aggradations and to the value of the availabilégtdr
pf”b“ of the substrate in the case of bed degradations.
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The system ofn equations (15) can be numerically solved
in order to model the river processes.

The solid discharge in equation (6) is the sumlbtlass
contributions and it is calculated by the disciagian of
equation (10):

m
¢ = pedy
=1

An analytical derivation of the SM model

(16)

This novel approach was proposed by Armanini (1281)
(1995). The objective of this formulation is thelwetion of
the number of unknowns from the numimerof classes in
which the distribution curve is discretized to thember of
statistical moments necessary to describe the sbifee
distribution curve. The averag@(x,t), the variance

o?(x,t) and all the statistical moments considered can

change in time and space and, consequently, aésshifipe
of the density functiofi.

In this work we consider only changes in the mealue
but the following procedure for deriving the moment
equation for the mean is suitable for higher moment

The definition of mean value and variance respettiare:

=+
first moment = u = f ¢do;
¢=0
second central moment = 0% = (17)
¢p=+0c0
- | ©@-we.
$=0

Similarly to the BFM model, the conservation eqoatfor
the sediment with diametef, equation (11), is multiplied

by ¢ and integrated over all the sample space:
+00

d a(f‘gccq)
f ¢ [& (rPed) + 0x

0

(18)
a
+f*cb&(zb —5) d¢ =0.

By remembering that the diametéx is an independent
variable, the first and the last term of the equra(il8) are:

+oo

d d
| 5 e6c0)dp =, 7 ),
(19

+00 °

* a * a
[ orasG-0d =we, 5 -0
0

whereu™ is equal to the mean diameter of the substrate in

the case of bed degradations and to the case of bed

aggradations. The second term of the equation (18)

represents the flux of sediment that determinesahiation
of the mean value:

+00

0 0
| 5P 0cca)do =~ (Ra).

0

(20)

The flux FH=f0+°°(f5¢cc)d¢ can be expressed in

function of the statistical moments by expendifpg. in
Taylor series around the mean diameter:

ac ud?c,
Fy = pe.(w) + <—C = )02 21
0Plyo, 2002, (21)

+ o(¢?).
The equation (18) becomes:
a d a

. _ 22
¢y 57 (U8) + == (Fua) + cou” 5 (2, = 8) = 0. (22)

Finally, in the conservation equation for the sqgblase,
equation (6), the sediment concentrationshould be
expressed in function of the statistical momentsorder to
calculate the integral (10), the capacity conceiatnac, (¢)
is expanded in Taylor series around the mean valustil
second-order partial derivatives:

dac

(@) =c)+—| (P—p
a¢a o 23)
+WC5 (@ —)? + 0(9?).

P=p
The capacity concentration is substituted into &qug10)
to calculate the total concentration ¢ and rememfgehat

f0+mf(¢)d¢> = 1 yields:

19%c,

C:Cc(#)+56¢2

(24)

o2 + o(¢?).
¢=u

The procedure can be extend to all the statistizahents
in order to better describe the time evolution le# grain-
size distribution curve. In this preliminary workhet
variances? is considered constant and only changes in the
mean value are studied.

Thenumerical scheme

In the case of BFM approach the resulting system is
composed by equations (3), (5), (6) and (15) whbaee
sediment concentratior in equation (6) is calculated
through equation (16). The unknowns of the systesrtize
free surface elevation, the mixture dischargg, the bed
level z, and them availability factorsp;. Instead, the SM
approach includes equation (3), (5), (6) and (ZR)e
concentrationc in equation (6) is calculated by means of
equation (24). The unknowns of the system are #tél
same of the BFM approach except for the availagbilit
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factorsp; that are substituted by the mearof the grain
size distribution.

The computational domain is discretized by a stegje
computational grid where the bed lewg] and the free
surface elevation are defined at the integer nodeswith

i =1..N while the dischargey is defined at the half
integer nodesxy 1/, = (x; + X;41/2)/2. The values of
water depth at the nodes+ 1/2 are computed by an
upwind interpolation. The node distribution isitndry and
the node spacing is defined &8 = x;.1/2 — Xi—1/2-

The solution procedures for both the systems arglasi
Equations (3), (5) and (6) are discretized follogvithe
procedure proposed in (Garegnani, Rosatti, & Bonawra,
2011).

The discretization of equation (3) is substitutecequation
(5) and we obtain a system where the only unknoanes
the values of the free surface elevatigit® at the integer
nodesi and at the time step+ 1. The system obtained is
linear and can easily solved with a direct methdte
calculated values of free surface are used in aquéd) to

n+1

obtain the discharggl; ;.
The continuity equation (6) for the solid massnitegrated
in both the cases ove;,q, Xi—1,2]- The fluxes are
discretized in time in a semi-implicit fashion withe
concentratiort is explicit:

Az}t = ¢, (Zn+1 - Zb)

(Cl 1/2611 1/2
- L+1/2ql+1/2) (25)
(1 - 19)At
( Ci— 1/2611 1/2
- i+1/2qi+1/2)
where ¢, , is calculated through equation (16) for the
BFM method and equation (22) for the SM method as
reported in the following sections.

The BFM scheme

The availability factors are defined at the integedes.
Under the assumption @ constant in time, the equation
(15) is integrated over the control voluag, 2, X;_1,2]:

Xi+1/2

i}
f [ch%—i-

Xi-1/2

0
a(PiCc(d’j)q) (26)

. 6Zb
+ ¢pp; E] dx = 0.

The first term of the previous equation is disaedi by a
forward-in-time finite difference method while, tisecond
term, the gradient of solid discharge, is discestim space
by a centered finite difference and in time by anise
implicit time-averaging:

n+l _ on _ YAt | n n n+1
bij = Pij cpSAx [pi+%,] C)L+1]ql+
n n+1 (1-9)At p" 1 n— 1
Pl e | - FHCONY (27)
J i3 cpbAx l.+

n 1 n-—
Pl _]<cc>

*\ 1M AZb —
1] + (@MY TV

The vaIues of the availability factors at the nodes1/2
are computed by an upwind interpolation W), , ;
is calculated through equation (8). After evalugtithe
availability factors pfyy},;, the concentrationcfyy), is

computed by means of equation (16).

TheSM method

Similarly equation (26) is integrated over the coht

volume|[x;41/2, X;—1 /2| and discretized in time by a forward

finite difference method while in space by a cestdefinite

difference:

_ VAL [( ) n+1
chAx # l+-

—9)At
T cp6Ax [( ”)

n-1_, AZ
- (Fu)i_% qi— ] + (# )l] SAx

n+l _

Hij

= ul} - (5! 1612”_1]
(28)

n+1

=0
Herein the values at the nodies 1/2 are computed with

an upwind interpolation While(F#)Zrl/2 is calculated

through equation (21). In this preliminary work thedue of
the variance is considered constant in time and the

concentratlonc[fll/2 is evaluated by means of equation

(24).

The advantages of this method is the decrease en th
number of variables. On the other hands, no other
information regarding the kind of grain-size distrion are
given by the model and only the evolution of theamand
eventually of the other moments is computed. Inribgt
section some initial results are reported.

Results

A channel of 1km with an excavation is considemdhis
test case. The initial condition is the stationfioyv in the
case of fixed bed with discharge &%/s as shown in
Figure 5.

The boundary conditions at the upstream are condtaa
liguid discharge (3:&3/s) and the concentration at the
equilibrium. At the downstream boundary the frezvation
is imposed equal to 66 The mixing layer thickness is
constant in space and time and equaldo. IThe diameters
are log-normally distributed with meanequal to2.78mm
and variancer? to 0.25mm in either the mixing layer and
the substrate.



2nd IAHR Europe Congress

1000 1200 1400

x[m]

600 800

Figure 5: Initial condition: bed profile and freerface
elevation.

Firstly, the test is performed with the BFM methaoe the
distribution curve is discretized with 15 classeshown in
Figure 6.

Secondly, in the SM model the same distribution is
considered Figure 7. Notice that the variance iptke
constant and only the mean changes during the aiionl
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Figure 6: Probability or available fraction alomg tchannel
in the mixing layer and in the substrate at theahi
condition.
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Figure 7: Density functionu(= 2.78mm, 0% = 0.25mm)
in the mixing layer and in the substrate at theahi
condition.
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Figure 8: Comparison between the two model at 20800

The profile of the mean diameter in the mixing laye
resulting from the SM model is compared with theame
diameter calculated &§7%, p;d; for the BFM approach as

shown in Figure 8.
Conclusion

The numerical results show a good agreement ofriban
diameter profiles. In conclusion, the advantagdéhef SM
approach is the lower computational cost. On theerot
hand more information about the grain-size distidouis
given with the BFM approach. In fact, the limit thie SM
model is the loss of information about the shapehef
distribution curve. Better results could be obtdiney
adding the equation for the evolution of the vaceand of
the others statistical moments. In fact, the future
development of this work will be derivation of thquation
for the variance and its discretization in orderhtave a
model suitable for the study of non-uniform sedimen
transport.
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