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This paper presents an efficient semi-implicitnumerical 

scheme for the solution of the three-dimensional 

incompressible Navier-Stokes equations, assuming a 

hydrostatic pressure distribution. For this equation system, 

in a series of papers, Casulli et al. (1992, 2000, 2011) have 

proposed a set of particularly efficient semi-implicit 

schemes both on structured and unstructured meshes. The 

method has subsequently been extended also to non-

hydrostatic free surface flows, see Casulli et al. (2002). The 

most recent developments concern a rigorous, nonlinear 

and mass-conservative treatment of wetting and drying, 

presented by Casulli (2009), and an efficient use of subgrid 

resolution, see Casulli and Stelling (2011). In the above-

mentioned articles, a semi-implicit approach is chosen in 

order to get stable schemes with large time steps at 

reasonable computational cost. 

The semi-implicit method presented in this paper is 

implemented on general polygonal Voronoi meshes and 

follows the ideas of Casulli et al., i.e. the pressure terms are 

discretized implicitly, while the nonlinear convective terms 

are discretized explicitly using a semi-Lagrangian method, 

which is the only explicit method for the discretization of 

convective terms that allows for large time steps without 

imposing a CFL-type stability condition.The scheme uses a 

staggered mesh approach, i.e. the pressure is defined in the 

cell center, while the normal velocity componentsare saved 

on the element edges.This is common practice for the 

simulation of incompressible flows. The semi-Lagrangian 

method used for the nonlinear convective terms needs the 

integration backward in time along the trajectories of the 

fluid in order to find the foot of the characteristics.For that 

purpose, the vector velocity field has to be reconstructed 

from the known scalar normal velocity components at the 

element interfaces. Here, a third order polynomial 

reconstruction is used for the velocity. The reconstruction 

operator is based on integral conservation on element edges 

within a stencil, surrounding the control volume under 

consideration. To solve the resulting over-determined linear 

system of algebraic equations,a constrained least-squares 

formulation is used. The linear constraints may also contain 

a condition that the velocity field is divergence-free also on 

the discrete level. The concept of polynomial recovery from 

known cell averages has been introduced already by Barth 

and Frederickson (1990) and has been continuously 

developed since then in the context of high order nonlinear 

finite volume methods for systems of hyperbolic 

conservation laws. 

Several academic test problems are presented to validate 

the proposed new scheme, however,even one realistic 

application is also considered, concerning a water supply 

channel of a small hydro-electric power plant, in order to 

show the potential of the algorithm for realistic 3D free 

surface flow applications with secondary flows. 

The outline of this paper is as follows: first the governing 

PDE system is described, then the numerical method is 

analyzed, by presenting with more details the new high 

order velocity field reconstruction. Some academic test 

problems are performed, such as Blasius boundary layer 

theory and a stationary vortex flow. At the end of the paper 

it is shown an application of the new algorithm to an open 

channel flow, put to hydroelectric use. 

 

Most state of the art free surface flow models commonly 

used in environmental engineering and geophysics are 

based on some kind of depth–averaged shallow water type 

flow model. The main drawback of this kind of model is the 

fact that the genuinely three-dimensional secondary 

circulations of flows in curved channels cannot be resolved. 

However, the flow may often be still considered 

hydrostatic. For this case, a new semi-implicit scheme is 

developed, which works on general unstructured polygonal 

meshes to resolve this kind of problem. The governing 

partial differential equations (PDE) are the three-

dimensional incompressible Navier-Stokes equations with 

variable free surface η. Assuming a hydrostatic pressure, 

the governing PDE read as follows:  
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In the above system, the first two equations 

momentum equations in the horizontal plane

equation is the divergence-free constraint on 

field and the last equation is the governing PDE for the free 

surface η.  

The numerical scheme is based on a staggered

approach, which is illustrated for the purpose of simplicity 

on a regular two-dimensionalCartesian grid in Figure 1 

below. The horizontal velocity components 

as the vertical velocity component w are defined on the 

faces of a control volume [xi-1/2; xi+1/2]x[y

1/2;zk+1/2], while the free surface η, equivalent t

pressure, is defined in the cell center (xi,yj,z

 

Figure 1:Staggered mesh on x-y plane with the free surface 

defined in the cell center and the velocities at the element 

boundaries. 

 

An extension to general meshes is possible, however, in 

this case the grid must be constructed in such a way that it 

is at least orthogonal, i.e. the straight line connecting t

pressure points across an element edge must be 

perpendicular to that edge. Such a mesh can be constructed 

using an underlying primary Delaunay triangulation and 

constructing successively the corresponding Voronoi mesh, 

whose control volumes are obtained by connecting for each 

node on the Delaunay mesh the incircle 

primary triangle adjacent to it. 

 

Figure 2:Primary triangular mesh and corresponding dual 

Voronoi mesh (left). Notation and zoom for an isolated 

polygonal Voronoi element (right).   
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Primary triangular mesh and corresponding dual 

Notation and zoom for an isolated 

A sketch of a primary mesh and the corresponding Voronoi 

mesh is given in Figure 2 on the left, while on the right of 

Figure 2 it is introduced the general notations used for the 

numerical scheme, hence P

(control volume), and λj denotes the edge

2D control volume. In vertical 

are extruded, hence obtaining 

3D.  

The discrete momentum equation reads
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where ∆��,��%&��� =��,������ − ��,����
normal velocity component at edge 

at time level n on layer number  ��,�� is defined in explicitly as 

foot of the characteristics, i.e. at the footpoint of the 

Lagrangian trajectory. The second term on the right hand 

side if (2) denotes the pressure 

L and R denote the left and right polygon adjacent to edge 

lj is the distance between the left and right polygon, 

last term is the implicit discretization of the vertical 

viscosity. The discrete free surface equation reads
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Here si,j is the sign, which is +1 if the normal vector defined 

on edge j is outward-pointing with respect to polygon 

and the sign is -1 if the normal vector is inward

w.r.t. polygon Pi. Equation (2) can be formally substituted 

into eqn. (3), which then 

definite linear algebraic equation system for the unknown 

free surface η. The system can be solved very efficiently 

with the conjugate gradient method. Once the new free 

surface location is known the normal velocities can be 

obtained from eqn. (2) and the vertical velocities 

obtained a posteriori from the following equation 
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A sketch of a primary mesh and the corresponding Voronoi 

in Figure 2 on the left, while on the right of 

Figure 2 it is introduced the general notations used for the 

Pi denotes the i-th polygon 

denotes the edge-length of each 

2D control volume. In vertical z direction, the 2D elements 

are extruded, hence obtaining prismatic control volumes in 

The discrete momentum equation reads 
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��� . Here, ��,��  denotes the 

normal velocity component at edge j of the control volume 

on layer number k in vertical direction.  

in explicitly as the normal velocity at the 

of the characteristics, i.e. at the footpoint of the 

The second term on the right hand 

side if (2) denotes the pressure gradient, where the indices 

denote the left and right polygon adjacent to edge j, 

distance between the left and right polygon, and the 

discretization of the vertical 

rete free surface equation reads 
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is the sign, which is +1 if the normal vector defined 

pointing with respect to polygon Pi 

1 if the normal vector is inward-pointing 

Equation (2) can be formally substituted 

 yields a symmetric positive 

definite linear algebraic equation system for the unknown 

The system can be solved very efficiently 

with the conjugate gradient method. Once the new free 

surface location is known the normal velocities can be 

tained from eqn. (2) and the vertical velocities w are 

from the following equation  

():3(,�4�Δ$�,�� u�,����;
*9
�+�  

(4)  



The main novelty of this paper consists in a high order 

polynomial velocity field reconstruction in order to 

compute the operator  ��,�� , which is given by 

  ��,�� = �
��/� ∙ <� 
(5) 

where <�is thenormal vector of edge number j,and��/isthe 

foot of the Lagrangian trajectory, emerging in the center of 

edge j�� .The foot of the trajectory is given by the solution ��/ = �
∆��of the following system of ordinary differential 

equations:  >�>� = −�
�� 
(6) 

with the initial condition  �
0� = �� 
(7) 

The trajectory is integrated using an explicit Taylor 

method, which up to second order reads as follows:  

�7�� = �7 − ∆?�
�7� + ∆?2 ���� �
�7� 
(8) 

where ∆? is a local time step that must obey a local Courant 

stability criterion. In equations (6) and (8) it has to be 

determined a continuous interpolation of the velocity field 

from the given normal velocity components at the element 

edges. For this purpose the yet unknown velocity field 

v(x)for each polygon Pican be written as a high order 

polynomial using the Taylor series expanded about the 

polygon center xi as  
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The unknown expansion coefficients in eqn. (9) are the 

derivatives of the velocity field. For a third degree 

polynomial, a total of 20 unknown coefficients are required, 

10 for the u velocity component and 10 for the vvelocity 

component. An equation system has to be assembled in 

order to determine them. The guideline here is integral 

conservation on all element edges j within a stencil Si, 

which is an appropriate set of element edges surrounding 

polygon number i. For each vertical layer kis required that 

the integral average of the normal velocity of the 

polynomial (9) is identical to the known face normal 

velocity ��,�� . 

 14�� ��
�� ∙ <�>3GHIJ = ��,�� 						∀�M(� 	 ∈ O( 
(10) 

 

Here, �M(�  denotes the edge j of polygon Pi. Equation (10) 

constitutes a linear algebraic equation system which is over 

determined, since more elements are needed than the 

necessary 20 elements, according to the findings of Barth 

and Frederickson (1990), who were the first authors to 

propose a better than second order accurate finite volume 

scheme on general unstructured triangular meshes. Relation 

(10) must hold exactly at least for all edges of polygon Pi 

itself, hence the system (10) is solved using a constrained 

least-squares method, where the linear constraint is 

enforced using a Lagrangian multiplier method, see 

Dumbser et al. (2007) for details. A similar approach is also 

used for the vertical velocity component w. In vertical z 

direction, the resulting polynomial is obtained via classical 

Lagrange interpolation. This completes the description of 

the numerical method. 

 

 

Now some computational results on academic tests are 

presented and finally an application to a realistic world 

problem is also performed. All measurements and 

quantities are expressed by adopting the International 

System of Units. 

1. Circular Planar Trajectories 

The first test considers the reconstruction of a circular 

trajectory from a velocity field given by a rigid body 

rotation as  �
�� = Ω × � 

(11) 

The trajectories are closed circles and the period of rotation 

is given by the angular frequency Ω = (0,0,1) for a rotation 

in the x-y plane and by Ω    = (0,1,0) for a rotation in the x-z 

plane, respectively. The solutions of the integrated 

trajectories starting in one representative point are depicted 

for both cases in Figure 3. It can be noticed an excellent 

agreement between the exact and the numerical solution.   

 

 
Figure 3: Circular planar trajectory in the x-y plane (left) 

and circular planar trajectory in the x-z plane (right). The 

symbols represent the numerical solution, the solid line is 

the exact solution for the trajectory.  

 

 



2. Laminar Boundary Layer Flow 

In this section a laminar stationary boundary layer flow 

problem over a flat plate is solved. The plate has length 

L=1, the inflow velocity is v = (1,0,0), and the kinematic 

viscosity of the fluid is ν =10
-4

. Although the resulting 

Reynolds number is unphysically high for a laminar 

boundary layer, it is nevertheless a very useful test problem 

to validate numerical algorithms. The comparison between 

the exact Blasius solution, see Schlichting and Gersten 

(2005), and the numerical results depicted in Figure 4 is 

very satisfactory.  

 

Figure 4: Numerical and exact solution for the laminar 

Blasius boundary layer developing on a flat plate. The 

velocity profile u(y) is taken at ξ=0.9 and the results are 

depicted in dimensionless coordinates, see Schlichting and 

Gersten (2005). 

 

3. Stationary vortex 

In this test problem a stationary vortex flow with variable 

free surface is considered. The viscous terms are neglected 

here so that the motion of the fluid is governed by a perfect 

balance between the pressure gradient and 

thecentrifugalforce. Theradialmomentumbalancereads

 ���R = �ST
R 

where r is the radial coordinate and uφ

velocity. Here, the following choice is madefor the angular 

velocity: 

�S = RU�V W− 12 
RT − 1�X

a laminar stationary boundary layer flow 

. The plate has length 

and the kinematic 

. Although the resulting 

high for a laminar 

boundary layer, it is nevertheless a very useful test problem 

to validate numerical algorithms. The comparison between 

Schlichting and Gersten 

numerical results depicted in Figure 4 is 

 
Numerical and exact solution for the laminar 

Blasius boundary layer developing on a flat plate. The 

=0.9 and the results are 

see Schlichting and 

flow with variable 

free surface is considered. The viscous terms are neglected 

fluid is governed by a perfect 

pressure gradient and 

centrifugalforce. Theradialmomentumbalancereads 

(12) 

where r is the radial coordinate and uφ is the angular 

velocity. Here, the following choice is madefor the angular 

X 

(13) 

The primary horizontal domain

diameter d=10 and the free surface is given by

of eqn(12) using eqn.(13) 

 

�
R� = ��ST
R >R = �
with the integration constant 

chosen initial condition for the angular 

free surface. 

Figure 5: Initial condition for the free surface, on the left, 

and for the angular velocity, on the right.

 

Equations (13) and (14) describe the exact solution of a 

steady flow, where pressure force and centrifugal fo

in perfect balance. The result are depicted in Figure 6 at an 

output time t=0.5. It can be noticed that the choice of the 

time step has an important influence on the accuracy of the 

results, which is due to the use of an 

scheme for the discretization

terms. 

 

Figure 6: Results for the vortex test: difference results are 

obtained by performing different choices on either space 

step or time step. 

 

The primary horizontal domain ΩYZ[  is a circle with 

and the free surface is given by integration 

�\ − 12
 exp	
1 − RT� 
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with the integration constant �\ ≔ 1. Figure 5 shows the 

osen initial condition for the angular velocity and for the 

 

 
Initial condition for the free surface, on the left, 

and for the angular velocity, on the right. 

Equations (13) and (14) describe the exact solution of a 

steady flow, where pressure force and centrifugal force are 

in perfect balance. The result are depicted in Figure 6 at an 

be noticed that the choice of the 

time step has an important influence on the accuracy of the 

results, which is due to the use of an Eulerian-Lagrangian 

discretization of the nonlinear convective 

 
Results for the vortex test: difference results are 

obtained by performing different choices on either space 



4. Application to a realistic case 

The algorithm has also applied to a realistic open flow 

channel: the channel of Maleo, which starts from its main 

river called Adda and is an open flow channel in the 

Lombardia region in Italy, closed to the town of Maleo. 

Figure 7: The curved channel of Maleo with the bridge 

 

It’s a derivation channel used to supply a small 

hydroelectric power plant. The engine room is equipped 

with two Kaplan turbines and is located at the end of the 

channel. At the beginning of the channel there is a bridge 

pier, which dissipates energy by creating a hydraulic jump. 

The main problem is given by a left bend in the channel’s 

geometry, which causes three-dimensional secondary 

circulations, so that there is a different flow rate between 

the external and the internal turbine. This problem prevents 

to achieve optimal efficiency, thus wasting hydroelectric 

energy and decreasing profits. The operator of the power 

plant requested some numerical simulations to understand 

the flow physics and to propose some possible solut

strategies. For that purpose, it is possible to use the 

hydrostatic three-dimensional semi-implicit model 

presented in this paper. 

Figure 8: Unstructured polygonal Voronoi mesh used to 

discretize the x-y plane of the Maleo channel.  On the left 

the bridge pier can be noted.  

The algorithm has also applied to a realistic open flow 

starts from its main 

and is an open flow channel in the 

Lombardia region in Italy, closed to the town of Maleo.  
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plant requested some numerical simulations to understand 

the flow physics and to propose some possible solution 

strategies. For that purpose, it is possible to use the 

implicit model 

 

Unstructured polygonal Voronoi mesh used to 

channel.  On the left 

A photograph of the channel under consideration is shown 

in Figure 7 and  a two

unstructured Voronoi mesh used is depicted in Figure 

has to be consider that the real mesh

due to the use of prismatic elements, simply obtained by 

extruding the 2D element in vertical direction.

The computational results are depicted in the following. 

Figure 9 shows the depth-averaged velocity distribution in 

the x-y plane and Figure 10 

plane, visualizing the secondary flows. With 

numerical simulations it was possible to confirm that the 

interior turbine gets about 20% less mass flow than the 

exterior turbine, which was also found in fiel

measurements. 

 

Figure 9: Depth-averaged velocity distribution

 

Figure 10: Secondary flows in the 

 

Conclusions 

In this article an efficient semi

simulation of three-dimensional hydrostatic free surface 

flows has been implemented on staggered polygonal 

Voronoi meshes. The pressure terms are discretized 

implicitly while the convective terms are discretized wi

an explicit semi-Lagrangian schemes, which needs the 

integration of Lagrangian trajectories. For that purpose a 

high order velocity field reconstruction operator has been 

presented. The resulting scheme has been carefully 

validated on a suite of test problems with exact solution and 

finally on a realistic channel. Future work may concern the 

A photograph of the channel under consideration is shown 

and  a two-dimensional sketch of the 

unstructured Voronoi mesh used is depicted in Figure 8. It 

has to be consider that the real mesh is three dimensional 

due to the use of prismatic elements, simply obtained by 

element in vertical direction. 

computational results are depicted in the following. 

averaged velocity distribution in 

 shows a cut through the y-z 

plane, visualizing the secondary flows. With the new 

numerical simulations it was possible to confirm that the 

interior turbine gets about 20% less mass flow than the 

exterior turbine, which was also found in field 

 

averaged velocity distribution in m/s.  

 

ondary flows in the y-z plane at x = -25. 

an efficient semi-implicit scheme for the 

dimensional hydrostatic free surface 

flows has been implemented on staggered polygonal 

Voronoi meshes. The pressure terms are discretized 

implicitly while the convective terms are discretized with 

Lagrangian schemes, which needs the 

integration of Lagrangian trajectories. For that purpose a 

high order velocity field reconstruction operator has been 

presented. The resulting scheme has been carefully 

oblems with exact solution and 

finally on a realistic channel. Future work may concern the 



extension to realistic turbulence models and bed-load 

transport. 
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