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Abstract the time and space evolution of the consequences beu
known for these potential failures. The geomorphic
consequences of a dam-break induced wave on a anobil
bed are governed by bed and bank erosion. To cmsid
both erosion mechanisms, a bank-failure operator is
inserted into a two-dimensional (2D) two-layer $&hat
water model. This model has the advantage to a¢coun
explicitly for the inertia of the bed-load transpand, doing

S0, to be able to treat intense sediment transhartto fast
transient flows.

To consider both bed and bank erosion due to aluaaik
induced wave, a bank-failure operator is inserteid ia
two-dimensional (2D) two-layer shallow-water modghis
model accounts explicitly for the inertia of theddead
transport, considering an upper layer made of clester
and a lower layer, called the bed-load transpgdriamade
of a mixture of water and moving grains. These ligylw
on a motionless bed and are assumed to preseirictlist
depth-averaged velocities. The model accountshimigtain
entrainment across the bed interface and for thesraad
momentum exchanges between the flowing layers themk Two-layer model with bank-failure operator
the definition of an erosion rate. This shallow-evatnodel

is solved by a first-order finite-volume scheme an
unstructured triangular mesh. The bank-failure afmer
consists in comparing locally for each computatiorell

the bed inclination to the sediment stability asgle
considering the impact of a water-level rise as
destabilizing phenomenon. After an erosion or ditjoos
update due to the bed-load transport, the unsthbkk
elements are tilted around an appropriate axisotation,
ensuring mass conservation of the assumed homoggneo

The two-layer description considers an upper layade of
clear water and a lower layer, called the bed-lwadsport
layer, made of a mixture of water and moving grdifech
et al. 2009). These layers flow on a motionless hed
present distinct depth-averaged velocitigsandus. It is
also assumed that the transport layer and the mesis bed
present distinct sediment concentrati@sand C,, which
are kept constant all along the flow (Figure 1).

material. The numerical model is tested for a gsilag 4 A
circular hole and against laboratory tests of a -thagak
flow; firstly in a prismatic channel made of coarsand, h, water u,
and then over an initial bed step. Tups
h  transport layer tstsw Uy C,
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The dam breaks constitute a danger for the suringnd  Figure 1: The two-layer model, whezgis the bed leveh,
inhabitants and infrastructures. To design appabgri the transport layer thickneds, the clear-water layer
emergency plans and reduce the risk posed by thass, thicknessTws Tsw Ts, Tp the shear stresses.



Governing equations of the 2D two-layer model

The model accounts for the grain entrainment adrass
bed interface and for the mass and momentum exelsang
between the flowing layers thanks to the definitidan
erosion rate:
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This erosion rate is positive in case of erosiot aegative
in case of deposition. It depends on the sheasssse; and

Ty on both sides of the bed interface (Zech et 20920
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These shear stresses are driven by Chezy-like aoiir-M
Coulomb closure equations, respectively:
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wherepy, ps andpp’ are the densities of the clear water, of
the bed-load transport layer and of the bed, ressdy

= (1-Cy pw *+ Csps, Po = (1-Cp) pw + Gy ps, where
ps is the granular densityC,, and C;,, are the friction
coefficients;u, = uy, - Us is the relative velocityiy; is the
critical shear stres#, the angle of repose amdthe gravity
acceleration.
In a same way, the raggis defined and related to the time
evolution -9Z4/0t of the interface between the two layers.
Distinct depth-averaged granular concentrations are
assumed in the bed-load layer and in the motiontess
(Figure 1). This assumption allows the requiredaggion
of sediments leaving the bed layer to be mobilidadng
erosion and the compaction of deposed sediments. Th
sediment transfer from the motionless bed to thasport
layer does not affect the water lexglbut well the top level
Z of the bed-load transport layer and the bed layeThe
continuity of these vertical exchanges leads teelation
between both erosion ratesandes of opposite signs (Zech
et al. 2009):
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Equation (1) is considered as the first equation tho
system. To complete this system, the continuityagiqus
(7) and (8) and the 2D momentum conservation egsti

(9-12) are written for each layer:
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where Qux = Undw, Owy = Uaylw, Osx = UsDs, Osy = Ugyhs are
the unit discharges in the clear-water and thesfrart
layer, respectively, in the directicrandy (for instance, the
main-streamwise and transverse directions), resebgt
(TWSX, Tusys (Tsw Tsy), @nd fox Tny) are the shear stresses on

both sides of the interfaces and the rgtiopw / ps .

This shallow-water model is solved by a first-ordieite-
volume scheme on an unstructured triangular mesino(T
2001). A Riemann solver derived from the Harten-\Man
Leer formalism is used (Swartenbroekx et al. 2010a,
Spinewine et al. 2011).

Bank-failure operator

The bank-failure operator consists in comparingllycfor
each computational cell the bed inclinatian to the
sediment critical anglesi,, considering the impact of a



water-level rise as a destabilizing phenomenonerAén
erosion or deposition update due to the bed-loadstrort
(equations 11-12), the unstable bed elemeats ¢.) are
tited around an appropriate axis of rotation, emgumass
conservation of the assumed homogeneous material
(Swartenbroekx et al. 2010b). The new inclinatian i
imposed to a residual angle= a,. The critical and residual
angles are distinct in submerged (subsa)jnd emerged
areas (subscrig).

As the set of equations (1) and (7-12) is solvadgua first-
order finite-volume model, each cell is assumedhdve a
unique sediment level. It is thus necessary tondethe
sediment level in each node in order to determivgecell
slope, by preserving at the same time the sedinmess
balance. The bank-failure algorithm can be sumredris
follow:

Step 1: Update of the bed lewglin the finite volume cells
by the shallow-water model.

Step 2: Determination of the mean bed level in eguEx of
the cells to recover the continuity of the bed leviehis
process restores a continuous surface but affeetscell
volume and thus the mass conservation that haseto b
recovered in turn.

Step 3: Subdivision of each main cell (with distired
levels at nodes) in three sub-cells, by adding dditianal
node at the centroid of the cell. The bed levethis new
node is shifted vertically in order to ensure tleeisent
mass conservation between this main cell and
corresponding finite-volume cell. The main cellnew a
pyramid whose three upper faces define three slib-ce
Step 4: Stability check in each main cell.

Step 5: Application of the bank-failure operator @éach
sub-cells of the unstable main cells. If a sub-chtipe
overcomes the critical slope, the sub-cell uppee fa tilted
around an appropriate axis to allow the sub-celetmver
the residual angle, without affecting the mass eoration
of all the cells and sub-cells affected by thetsidf of the
nodes implied in the tilting.

These Steps 4-5 are iterated until every cellablet

Step 6: Computation of the mean bed legéh each finite-
volume cells in order to apply again the shallowtera
model (Step 1).

Validation

To check the two-dimensional abilities of the nuicedr
model, this is tested for a collapsing circularehainder a
constant water level at rest, but presenting utestbbnk
slopes. Then, the model is validated against laboraests
of a dam-break flow; firstly in a prismatic chanmefde of
coarse sand, and then over an initial bed step. The
following parameters are used:p, = 1000 kg/mg3,

ps = 1369.6 kg/m3, C;=0.22, C,=0.53, 14:=0 and
¢ = 30°.

Circular hole

A sand bed featuring a circular hole with a coristope
angle initially at 45° is submerged by 40 cm of evat rest
(Figure 2a, grey line). The following parameterse ar
imposed: Ci, =0.005, C=0.04, ac,=35° 0ac,=87°
o, =30° o, = 85°. An average edge length of 5 mm is
chosen for the triangular mesh.

In Figure 2b, where only a quarter of the holerisspnted,

it can be noticed that the model preserves thel axia
symmetry of the topography despite the unstructured
triangular mesh.
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Figure 2: Circular hole topography: (a). Meridiatson
(grey) att = 0 s and (black) att = 60 s (b). Rlew at
t=60s.

Dam-break wave in a prismatic channel

The model is tested for a dam-break flow in aniaHit
half-channel of trapezoidal cross-section, whose
dimensions are depicted in Figure 3 (Soares-Frataal.
2007). In this laboratory case, collapses of blosksand
were observed. The following parameters are chosen:



Cw=0.02, C=0.01, 0c=35° 0e=87° oas=30°

Table 2: RMSE for the levels associated with Figure

0, = 85°. The average grid size is 1 cm.
In Figure 4, the agreement between the simulatedtiaa

measured topographies can be observed at two distin

cross-sections and three distinct times after #ma dreaks.

Too much deposition is predicted vt O m at later time

(t =10 s, Figures 4e and 4f). However, except far time,

the profiles are in good accordance with the messdata.
The root-mean-square-error (RMSE) of the predicted
profiles compared to the measured one is giverad 1.

h=0.15 Z4

e
0.15 0.134 0.211

Figure 3: Initial conditions for the prismatic ctmeh case.

Table 1: RMSE for bed levels associated with Figlure

Figure 4| x (m)|t (m) | RMSE (m)
a 0.5 3 0.0106
b 1.5 3 0.0087
c 0.5 5 0.0135
d 1.5 5 0.0065
e 05| 10 0.0138
f 15| 10 0.0086

Dam-break wave over a movable bed step

The propagation of a dam-break wave over an initial
downward sand bed step of 10 cm was simulated en th
laboratory by Spinewine & Zech (2007). Figure 5 id&p
the initial conditions. The following parameter® dested:
Ciw=0.025, C;s=0.02, 0cs=15° 0ae,=87° a,=10°

O, = 85°. The average grid size is 1 cm.

Figure 6 and Figure 7 show the importance of thekba
failure operator to reproduce the dam-break wawe:step

is almost not eroded without this operator (Fighirehick
black lines) while the results are better with thperator
(Figure 7, thick black lines). Except at first tirhe 0.25 s
(Figure 7a), when the shallow-water assumptionois yet
valid, the wave front propagation and the transpayer
thickness are rather well predicted. The root-m&gumare-
error (RMSE) of these profiles is given in Table 2.

Figure 7| Timet RMSE z, RMSE z RMSEz,
(s) (m) (m) (m)
a 0.25 0.0078 0.0055 0.0096
b 0.50 0.0056 0.0058 0.0074
c 0.75 0.0049 0.0055 0.0057
d 1.25 0.0048 0.0049 0.0089
Conclusions

A bank-failure operator is coupled to a 2D two-laye
shallow-water model and tested against theoretiasé and
small-scale dam-break events on movable sand [éus.
numerical model is solved on unstructured triangula
meshes whose size could be locally adapted in empl
geometries. The circular-hole test case has shtanro
spurious directional effects are introduced bynheerical
scheme. The model is able to simulate the banlapsd
and the transverse slope evolution of a laboratiayn
break in a prismatic channel. The capability of thadel to
treat also longitudinal unstable slope is alscetkstith the
example of a dam-break wave on an initial bed sty
proposed model is able to predict both the progress
failure of the step and the bed-load wave.
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Figure 4: Water surface and bed cross-sectionsthie

dam break, occurring at tinte= 0 s. Measured data: grey

crosses. Numerical model: black lines.
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Figure 5: Initial conditions for the bed step: (dgrey)
motionless bed, (light grey) clear water.
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Figure 6: Longitudinal profiles for bed step. Expezntal Figure 7: Longitudinal profiles for bed step. Expeental
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transport, (light grey) clear water. Numerical miodeick transport, (light grey) clear water. Numerical modeick

black lines) without bank-failure operator. black lines) with bank-failure operator.



