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Abstract

Reliability analysis was used as an effective metho
calculate the uncertainties in the results of a -two
dimensional morphodynamic numerical model of river
Rhine. For a 60 km long stretch from Iffezheim fweger a
historical hydrograph of 10 years was simulatedatiiorate
the model, including artificial bed load supply aredging
activities. The simulation package of Telemac
(www.opentelemac.org) was used with the modules
Telemac2D, Sisyphe and DredgeSim. Such long term
simulations incorporate a large scope of naturatl an
numerical uncertainties. Three different relialilihethods
were used to calculate the sensitivity of the nucaér
results according to variances in 9 input paranseter

The reliability analysis presents confidence indds\of the
results based on the calculated sensitivities &ithiven
probability for every point in time and space. Rbe
Iffezheim-Speyer model the most sensitive parametere
found and their effect on the bottom evolution was
quantified. From this the simulation results candbaded
into zones with different levels of uncertaintytime and
space.

Introduction

Morphodynamic modeling incorporates a lot of
uncertainties due to unknown initial and boundary
conditions, the natural variability or the imprégis of
model parameters and the deficient description tef t
complex physical processes. Large scale and long te
modeling is often needed to answer morphodynansiksta
Therefore the demand for calibration and validatard
also the uncertainty of prediction increases. Eatidn and
interpretation of numerical results becomes vergartant.
Here reliability analysis can be helpful as it qtif@@s the
uncertainties in time and space and accordingtsaitirce.
Beside the sources of uncertainties named above tbal
influence of uncertain input parameters to the ltesare
considered here. The aim of this article is to shiwe
advantage of using even a quite simple reliabitigthod. It

is well known that the bottom evolution cannot bedicted

very precisely with a morphodynamic model. This mea
that the calculated value, hopefully the most pbidacan
vary inside a certain range. Mathematically expgdsshe
calculated value is the mean value and the cergaige is
equivalent to the confidence interval.

Description of used reliability methods

Three methods were applied for analyzing the réiigtof

the model of river Rhine in time and space. Thst farder
Scatter Analysis (SA) was used for a simple seuiitsiti
analysis. A wide range of model parameters carheeled
with this method. The relatively broad results wesed for
comparing the influence of the different parametens
their chosen range. The two other methods are basdige
Monte Carlo principle and therefore need much more
computation time. These methods can be used even fo
strong nonlinearities.

Scatter Analysis

The Scatter Analysis belongs to the first orderhods. So

it is only adequate for linear or slightly non-lare
problems. From the root mean square (rms) the tien&@a
are assumed. The rms can be calculated from tise fir
derivation multiplied by the standard deviation Rbe
confidence limits only the first order terms ar&eta into
account. The confidence interval of the evolution & 68

% probability is two times the rms and for a 95 %
probability 4 times the rms. For the reliabilityeadysis
shown here the 95 % confidence limits and the edlat
tolerance range were used. For a detailed desuoriptease
refer to (Kopmann, Schmidt, 2010).

The rms of the state variable evolution E, whickalibes
the bed level changes e.g. in a river, influencgdthe
friction coefficient ks, can be calculated as imaipn (1).

msE) = 2[Eks +0) Bk -]

E(ksgt+/-0) are results from simulation runs withyksa.
The calculations of the deviations or the toleradioés for
n uncertain parameters need only n*2 + 1 simulatiors.
(Nikitina, 2008).



The distortion for the evolution E
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can be calculated with the second derivative ofEE) (
concerning an uncertain parameter (in this casekd)the
standard deviation of this parameter. In case dhear
function of E, the second derivative would be z€efbe
distortion can be used as an indicator for lingatttshould
be much smaller than the rms, otherwise the fundsmot
slightly non-linear and the method is not adeqdetehis
special problem. However, the distortion can ordyused
as an indicator for slight non-linearity in casesgimmetric
distributions.

Monte Carlo CL

The MC-CL method is a specialized Monte Carlo mdtho
which focuses on the confidence limits. It is riatited to
linear problems and determines the confidence dimit
approximatively while using as few as possible dations.

In case of strong non-linearities the confidencaitl
cannot be deduced from the root mean square (rms) a
more. Moreover it is not possible to calculate tims from
the deviations. A connection between the confiddimois
and the root mean square only exists in case of non
distorted gaussian distribution as in linear fumcs. For
strong non-linear functions the root mean squa tae
confidence limits are not equivalent, not proparéiband
furthermore there is no functional connection betve
them. A more detailed description of this method te
found in Kopmann & Schmidt (2010), Nikitina & Clees
(2009).

M etamodel

All Monte Carlo methods require a large sample neimb
for precise determination of the confidence lingital need
even more samples for the probability density fiomctin
order to reduce the number of required samples/amd
increase the precision, a computationally efficient
interpolation (metamodel) can be used. Such a moaiel
be constructed using a moderate number of simulatio
Afterwards a huge number of model results can bated
by the metamodel. With these results the confiddinciés
and the probability density functions (PDF) canfbend
with a higher precision. The metamodel is usingaiduhsis
functions. For details refer to Buhmann (2003) hlikitina

et al (2010). The used simulations for constructthg
metamodel should be chosen in such a way, thawtiode
parameter space is covered as even as possibler Ase
MC-CL method the DoE generator is used to create th
parameter set. In order to guarantee an optimatagstion

of the metamodel a uniform distribution of eachgmagter
must be assumed.

Application of River Rhine model

For a 60 km long stretch of river Rhine from Iffezin to
Speyer a two-dimensional morphodynamic numerical
model was applied. A historical hydrograph of 1@ngewas
simulated to calibrate the model including artdicbed
load supply and dredging activities. The simulafiackage

of Telemac ywww.opentelemac.org(Villaret et al 2010))
was used with the modules Telemac2D calculating the
depth averaged hydrodynamics, Sisyphe calculatiadéed
load transport and DredgeSim calculating the dregigind
disposal activities. Such long term simulationsonporate

a large scope of natural and numerical uncertaintie

From the experiences gained during the calibraton
parameters were declared as uncertain:

The active layer thickness, the pre-factor of theybt-
Peter Mueller formula, the parameter of the sloffece of
Koch & Flokstra (1981), the parameter for the seleon
current approach of Engelund (1974), the sieve line
including the mean grain size of the transportederia
and of the artificial bed load supply and the Nédse
roughness coefficient of three different zones efriv
channel, bank area, groynes). The chosen meansviira

the calibration and the approximated minimum and
maximum values are shown in table 1. The correspgnd
formulas for all parameters can be found in Vitg&011).

Table 1: Mean, minimum and maximum values of the
chosen uncertain parameters

Uncertain Min M ean M ax
parameter value value value
Active layer 0.0833 0.1 1.0
thickness [m]
Pre-factor of Meyer 4 6 8
Peter Mueller
formula [-]
Parameter for slope 0.8667 1.3 1.7333
effect [-]
Parameter for 0.7 1 1.3
secondary current [{]
Mean grain size of| -10% 0.0205| +10%
bed load material (0.013-
[m] 0.024)
Mean grain size of| -10% 0.019 +10%
supply material [m]
Nikuradse friction | 0.016 0.02 0.024
coefficient at river
channel [m]
Nikuradse friction | 0.0233 0.03 0.0367
coefficient at bank
areas [m]
Nikuradse friction | 0.2333 0.3 0.3667]
coefficient for
groynes [m]




Results of the Scatter Analysis

Through the SA method timely and spatially disttéal
deviations were calculated over two years. For riest
sensitive parameters also calculations over 10syesre
done in order to see the evolution of the deviationer
time. Altogether 19 two-year simulations and thi@eyear
simulations were done. The time requirement fav@year
simulation on a parallel compute server at BAW ligw
30.5 h using 64 parallel processors (64 cores)eriyear
simulation takes about 9 days.

First the validity of this method is checked. Agplexned
above the method gives only quantitative reliatdkies if
the problem is slightly linear. The distortion da@ used as
an indicator. In Figure 1 the deviation and distartof the
bottom evolution according to the mean grain siae &
representative node in the river channel is showme
assumption of linearity seems to be valid just tfo first
months. Afterwards the distortion is not only musrhaller
than the deviation but for some periods even biggeom
this follows, that the SA method can merely givenso
trends or estimations. Quantitative reliable reswaln be
produced by non-linear methods like MC-CL. Nevedhke

qualitatively analysis can be done with the SA rodth
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Figure 1. 68% deviation and distortion of the bptto
evolution according to the mean grain size at a
representative point in the river channel

To identify the most sensitive parameters the dinia of
the bottom evolution according to all nine uncertai
parameters after one year are compared in Figuakriy
the middle of the fairway. For a better comparisbe
highly scattered values were displayed using a snimogm
function. The three most sensitive parameterstaattive
layer thickness (ALT), the friction coefficient difie river
channel (KS RIVER CHANNEL) and the parameter fa th
slope effect (BETA). The two next sensitive pararetare
the mean grain size of the bed load material (DN the
parameter for secondary currents (ALPHA). Not dt al
points the order of sensitivity is the same. Fobeiter

differentiation a representative river stretch losen to
show the spatial distribution of the deviation.
Systematically the deviation is higher in the sheane
between groyne field and river channel. This can be
explained by the very coarse resolution of the .gfile
complex sediment and flow processes in groyne dield
cannot be reproduced by the coarse 2D model. lbe¢hes
the river channel has less deviation than the baak parts.
From this follows, that the mean bottom level cam b
predicted quite well whereas the slope due to s#sgn
currents effect is more uncertain. Figure 3 exenipla
shows a river stretch with higher deviation in greyields
and in bends.

ALPHA
BETA
KS RIVER CHANNEL
KS GROYNES
[ KS BANKS
DM

DM SUPPLY

1
IS

o
N

deviation of bottom evolution [m]

i i £33
e 9

8l e

i. et o
(A R TR e

360
Rh-km

0 340

Figure 2: Comparison of bottom evolution deviations
according to all 9 uncertain parameters after T géeng
the river channel midway (lines: using a smoothing
function, dotted: original data)
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Figure 3: Bottom evolution deviation according tbrine
parameters for a representative river stretch afteryears

The comparison of the deviation after one and teary in
Figure 4 shows a strong increase at around Rh-kén 38
This can be ascribed to dredging and disposal iietiv
The first dredging and disposal activities tookcplaafter
one year. The dredging was steered by a given irgdg



horizon, in a way that these parts were artifigiddirced to
a certain level. As expected the deviations atethearts
were quite small. The dredged material was disposéite
disposal areas. As the amount of dredged mateaaéd/
due to different parameters, the deviations ingh#isposal
areas were very high. The river parts with stasiian were
completely unaffected by the variation of the clhehg
parameters and the bed
influenced by the grain size distribution of theppgly
material.

From this first analysis it can be reasoned thamuodels
with automatic dredging and disposal the bottomlugian

of the disposal areas are more uncertain than ef th
dredging areas.
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Figure 4: Comparison of deviations of bottom eviolut
according the parameter for slope effect afterd agears

The analysis over time along the river fairway dr a
representative locations was quite scattered.

That's why an averaged value for all model nodeth \ai
deviation greater than zero was built. The higheutainties
due to the disposal areas have a big influence him t
averaged value. Due to this these river parts wegtected
for some analysis. After 2 years the mean valuetlier
bottom deviation was calculated to be 5 cm (28 @a)ek as
if the whole area would be considered.

load supply area was only The behaviour of the 68% deviation in time is shown

Figure 5 and Figure 6. Generally the averaged vaiwer
the whole model area increases over the time (Eiguand
green line Figure 6). Only in some rare occasions i
decreases (e.g. flood event 18 months in FigureThg
qualitatively behaviour of the deviation for allrpeneters is
the same. But for the most sensitive ones the aser@ver
time is stronger. From Figure 6 can be derived{ the
increase of uncertainty is higher during smallescharges
(e.g. low water conditions during th& $ear). It seems that
declines mostly occur during high water conditions.
Contrarily to the assumption that the uncertaing/ i
proportional to the amount of sediment transpdrtgast in
this example) high water conditions lead to a stdt¢he
system which is more independent of the parametdnis.
has to be verified further. Unfortunately the ageh 68%
deviation didn’t reach a maximum level even ovethsa
long period, but follows a trend. On the other hénellocal
deviation at some point in the river channel ad aslthe
averaged value over the fairway excluding the diapo
areas has indeed a maximum level and no trend.

As expected, the overall uncertainty increases tiitke and
long term simulation should be analysed very cdlsefu
Nevertheless for some parts the local deviatiorshea
maximum and level around a mean value (e.g. irrither
channel).
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Figure 6: 68% deviation of the bottom evolutionacing

to the river channel friction coefficient calculdteith the

Scatter Analysis for 10 years (green: mean valugi®

whole model area, red: representative point irritrex
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disposal areas)

Results of the M C-CL method

A quantitative interpretation can be done usingNt@-CL
method. With the SA only small differences in the
sensitivity of the different parameters were foutitht is
why all 9 uncertain parameters were taken into aeto
again. With 150 simulation runs a small estimagoror of
0.002 could be reached. In order to reduce the atimp
time only 17 months were simulated. On a paratehgute
server at BAW one simulation needed round abouh21
using 64 parallel processors (64 cores). The prodoa the
statistical analysisCLcomp from SCAI (Nikitina et al,
2010) needs 20 min. The MC-CL method needed aleget
64 cores for approx. 130 days. This is nearly &$&more
than the SA for the same modeling time period.
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Figure 7: Comparison of the 95 % deviation of bwitto
evolution calculated with the Scatter Analysis &@-CL

In Figure 7 the results of the 95 % deviationo{2for the
bottom evolution from the SA and MC-CL are compated
the mean values over the model area. It can bethaethe
Scatter Analysis gives very good results over ftingt 6

months. This matches the prognosticated validitthefSA

by comparing distortion to deviation as shown above
(Figure 1). After the first 5 months the SA ovenmsttes
the deviation. Nevertheless the qualitative resudte
satisfying. For the MC-CL method the two 95% deuias

are calculated to represent the minimum and maximum
confidence limits. In our case both values are atnmhbe
same. This means that the probability distributainthe
bottom evolution is nearly symmetric, at leasttfog mean
value over the model area.

The MC-CL results can be analyzed quantitativelsont
this method the confidence interval can be derifeda
95% probability. For the application the averagestt9
confidence interval of the bottom evolution for tiwaole
model area increases up to 35 cm after 17 montigsirg-
7). Along the fairway the 95% confidence intervalries
between 0.2 and 0.5 m unaffected by the time. Qimdy
disposal areas and the parts upstream (Rh-km 3382}
differ, here the values rise up to 6 m (Figure 8Fég).
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Figure 8: 95 % confidence interval of bottom evinnt
calculated with the MC-CL after 17 months (red) afigr
1 year before the dredging activities (black)

Results of the metamodeling

For the metamodeling another 150 simulations were
needed. The calculations of the MC-CL method cowdt

be used, as for this method the chosen probability
distribution functions (PDF) of all parameters ndedbe
equally distributed. This guarantees a good detsonipof

the whole parameter field. For the MC-CL method tiyos
Gaussian distributions of the parameters were asgum
Exemplarily three representative locations weresehoto
present a PDF of the calculated bottom evolutione O
point was located in the river channel, anotheidmsa
groyne field and the last one was in the dispossd.aAs
explained above the disposal area has the mosttairce
and therefore wide and flat PDF. The most distoced is

at the groyne field, which might originate from th@mplex
flow situation and therefore non-linear behaviott the



river channel the uncertainty is the lowest and oglim
Gaussian distributed. Here a nearly linear behas#or be
stated.
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Figure 9: Probability density function of bottomoawion
for representative points in the river channel éplinside a
groyne field (green) and in the disposal area (bjow

Conclusion

With help of reliability methods the influence ohasen
distributions of input parameters can be analyiat.only

can the influence of each parameter be estimatgdalbo
areas of higher and lower uncertainty. These uaitgigs
can be quantified with confidence intervals anditiatthlly

a probability density function for the calculatabults can

be specified.

For the shown application the three most sensitive
parameters are the active layer thickness, theidiic
coefficient of the river channel and the paraméterthe
slope effect. This is not surprising as all thrdetteem
belong to the so called “soft parameters”, which aidely
used for calibration.

The disposal areas have the highest uncertairdies,to
accumulation of varying dredging amounts at a nedgt
small location. Additionally the lack of not consithg the
complex processes in groyne fields and bends shows
significantly higher confidence intervals in theaeeas.
While the mean level of the bottom is not so stipng
affected, the approximation of slopes in bends w@rem
uncertain. The three dimensional effects of secgnda
currents were only estimated with a formulationaireD
approach.

The averaged confidence interval for the whole rhadea
usually increases in time, even for a long periodral0
years. The theory that high waters induce a deergathe
local deviations, which can lead to a decrease hef t
averaged confidence interval, has to be provedtiéumiore.
Locally the confidence intervals vary a lot in timaed can
even go down to zero again. An averaged confidence

interval for the river channel reaches a maximunsahe
point and is not accompanied by a trend.

The Scatter Analysis, even though it is a methadofdy
slightly non-linear systems, gives qualitativelyogaesults.
The better suited non-linear method of Monte CaClo
needs at least 8 times more computing time. Witk th
method quantitative analyses can be done. For the
application the mean 95% confidence interval oftthtom
evolution for the whole model area increases up3am
after 17 months. The local confidence intervalshia river
channel are mostly about 30 cm. This matches thigoesi
experiences, who assess such model results net bhetber
than +/- 10 - 15 cm. The advantage of reliabilitgthods is
the quantification and spatial and timely diffefation of

the uncertainty.

The metamodel can be applied after a Monte Carlo CL
method in order to show a probability density fimrct
(PDF) at a certain point. In the shown example the
Gaussian shaped PDF in the river channel reflduts t
nearly linear model behavior. An analysis of theF8[at
different locations can give further insights iretimodel
results.
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