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Abstract 

In this paper we present a novel general formulation of the 
Generalized  Roe solver for hyper-concentrated 1D shallow 
flows over a mobile bed. 
Hyper-concentrated flows are mathematically defined by a 
hyperbolic system of three partial differential equations. 
The system shows non-conservative terms, is highly 
nonlinear, and its whole structure depends on the closure 
relationship used to define the concentration. 
In earlier works, a well-balanced Generalized Roe solver 
has been derived for 1D and 2D flows. In these approaches, 
the solution of the Riemann Problem (RP) is obtained from 
the exact solution of a locally linearized problem, by 
writing a Jacobian matrix of the system as a function of 
proper averages of the primitive variables. The formulation 
of the scheme is not unique and depends on the adopted set 
of averages. Based on the closure, not only different  
formulations of the solver are obtained, but more in general 
the derivation can be quite easy or extremely complicated. 
In any case, so far only Roe schemes relative to specific 
closures have been derived. 
In this paper, we write a general formulation of the Roe 
scheme, valid for any possible closure. In fact, we treat the 
concentration as a function of the other variables and write 
the Jacobian in terms of its partial derivatives. The method 
is completely general, easy to implement, and as accurate as 
the standard Roe approach.   

Introduction 

In mountain regions, water flows are often associated with 
heavy sediment movements that can generate significant 
erosion or deposition. Examples of hyper-concentrated 
flows are debris flows and dam-breaks over mobile bed. 
More in general, in mountain environment river flows are 
often connected with important sediment movements.  
Clearly, the capability of modeling and forecasting these 
events is therefore a key issue for the safety of mountain 
regions. However, the mathematical description of these 
phenomena is particularly challenging due to the properties 
of the system of governing equations. The problem is 

mathematically defined by a hyperbolic system of three 
partial differential equations system that shows non 
conservative terms and highly nonlinear relations between 
primitive and conserved variables. The concentration of 
solid phase c not only is present in the continuity equations 
of solid and mixture mass, but also plays a role in the 
momentum equations, because in the case of hyper-
concentrated  flows its contribution to the mixture 
momentum is not negligible. Thus, the structure of the 
entire system is highly dependent on the closure 
relationship used to define the concentration, i.e. to the 
chosen rheological model.  
Among the several recent contributions on this account, 
particularly relevant to this paper is the work of Rosatti et 
al. (2008), where a new Generalized Roe (GR) scheme has 
been introduced in the numerical modelling of 1D, two-
phase shallow flows. More recently, Rosatti and Begnudelli 
(2011) have extended the GR scheme to the 2D case and 
applied it to the numerical model Trent2D (Armanini et al. 
(2009). Also, Murillo & García-Navarro (2010) have used 
the Roe scheme within an Exner-based coupled model for 
two-dimensional transient flow over erodible bed. 
The Roe scheme has been proven to be very accurate, but 
his main drawback is that the formulation of the scheme 
depends strongly on the closure relationships adopted in the 
model, e.g. the sediment transport formula. So far, only Roe 
schemes relative to specific closures have been derived.  
In this paper, this problem is overcome by introducing a 
general formulation of the Roe scheme, valid for any 
possible closure.  
The paper is structured as follows: first we present the 
mathematical model, then we describe the classical 
Generalized Roe approach and the new general closure Roe 
solver, lastly we compare the results of the two approaches 
both analytically and numerically. 

The mathematical model 

The mathematical model is constituted by the depth-
integrated, shallow-water conservation equations of solid 
mass, mixture mass and mixture momentum for a two-
phase flow over a mobile-bed. To derive the equations, the 



following assumptions are introduced: inter-phase forces 
due to differences  between solid and liquid phase 
velocities are negligible; the pressure distribution is linear 
along the vertical direction; the concentration is constant 
through the flow depth; tangential stresses are present only 
at the bed (see Armanini et al. (2009) for more details).  
The resulting mathematical model for the 1D case is 
described by the following system:  
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where the vector of conserved variable U and the 
conservative fluxes F and G are defined as:  
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where h is the mixture depth, zb is the bed elevation, c is the 
mixture concentration, cb is the sediment concentration in 
the bed (constant), u is the depth-averaged mixture velocity 

and cδ = (1+∆sc), where ∆s=(ρs- ρw)/ρw, being ρs and ρw the 
densities of the liquid and solid phase respectively.  
H ∂W/∂x is the non conservative term deriving from the 
pressure exerted by the bed on the control volume, where 
W=(h,zb,u)T is the vector of the primitive variables and: 
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where H33 = cδgh and g is the gravitational acceleration.   
As for the concentration c, we consider a generic closure, 
which can be written in the following form:  

( , )c c u h=  (4) 

Finally, the source term T is a vector of the type: [0,0,-
τ/ρw], where τ is the  tangential bed stress whose expression 
of the depends on the closure used for the phenomenon 
under investigation. Here, we will focus on the 
homogeneous part of the system only. 

The Riemann Problem 

We recall here the general formulation of the Roe's method. 
We look for the general solution of the following problem: 
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The Generalized Roe Solver (Rosatti et. al., 2008) 
approximates (5) with the following linear RP:  
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where ɶJ  (UL,UR) is a suitable matrix whose value depends 

on the left and right initial conditions and can be obtained 
by imposing the following constraints: 
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where:  
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�( )- -L R L R=A W W F F
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�A and�B can be determined as Jacobian matrices with 
respect to the primitive variables (h, zb, u), evaluated for 
proper averages (hɶ , bzɶ , uɶ ) of the left and right variables. 
The Generalized Roe numerical flux FGR is found as:  
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A Specific Closure Riemann Solver (SCRS) 

We consider now the case of the 1D two-phase flows over 
mobile bed presented earlier and described by Eqs. (1)-(4). 
Clearly, the system depends strongly on the closure chosen 
for the concentration, as c is present both in the second and 
third equations. Following Rosatti (2008) and Armanini 
(2009) we assume the following closure relationship: 
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where β is a dimensionless transport parameter. 
Such a closure has also been implemented in the 2D model 
TRENT2D (Armanini 2009) and widely applied to practical 
cases with good results. It has a physically based structure, 
and (also quite important for practical applications) it is 
particularly advantageous from the computational point of 
view because, when plugged into the model equations 
makes the resulting system of equations quite manageable. 
In fact, plugging Eq.(10) into Eqs. (1)-(3), we obtain the 
following vectors U and F (underline will be always used 
with reference to SCRS method): 
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The resulting Jacobians∂ ∂U/ W and∂ ∂F/ W become:  
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where Λ=cb β∆s 

In order to find the solution of the RP, we need to find the 
matrices A and B that fulfill conditions (8a-b). We obtain: 
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where:  
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The derivation of the matrices �A and �B has been made 
possible by the simple structure of the matrices U and F 
resulting from the chosen closure (10). Using a different 
closure would make the task extremely complicated, and 
often impossible. Examples of different closures that one 
may want to adopt are sediment transport formulae as 
Meyer-Peter & Müller (1948) or Ashida & Michiue (1972),  
characterized by a threshold under which there is no 
sediment transport, which makes them even more difficult 
to be handled. Also, dealing with debris flows, different a 
rheological closure have been proposed in the literature 
(Armanini 2011).  
Using any of these closures, the derivation of the matrices 
�A and �B would not be possible. For this reason, a different 
and more general approach has been developed, and it will 
be described in the next paragraph. 

A General Closure Riemann Solver (GCRS) 

Here, a new method for the derivation of the Riemann 
matrices�A and�B for any generic closure, will be presented. 
This approach has been named General Closure Riemann 
Solver (GCRS), as opposed to the Specific one (SCRS) 
already described, and allows to compute the matrices 
�A and �B and thus evaluate the numerical fluxes using any 
generic closure given by an explicit relation c=ψ(u,h) or 
even by an implicit relation Ψ(c,u,h)=0. 
We simply assume that ψ or Ψ is continuous, smooth, and 
that ψ or Ψ relates c to values of (h,u) at the same time and 
position (immediate adaptation hypotesis). Under these 
assumptions, we can write ∂U/∂W and ∂F/∂W as: 
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Now, we must find two matrices �A and �B  that satisfy Eq. 
(8a-b) for any left and right values of W, U and F. It is 
important to note that there is not, in general, only one way 
to derive the Jacobians, and that the derivation depends on 
how the averages are defined. Therefore, we first define a 
set of averages and then derive the matrices and the other 
averages as a consequence. 

Jacobian Matrix �B   

• First, we define hɶ  and uɶ as in Eq. (16) 

• Regarding the concentration c, we consider the value 
corresponding to the averages hɶ  and uɶ  (with must not 
be confused with cɶ , defined later): 
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• As for the partial derivatives of c, we define:  
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Having introduced these averages, we can define �B  as:  
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where the values of ̂h , q̂  are unknowns to be defined 
based on Eq. (10a). In particular, considering the 2nd and 3rd 
equations of system (8a), we have two unknowns (ĥ , q̂ ) 
and two equations, and the problem is thus well-posed. 
Solving for ĥ , q̂  we get: 
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where the averages qɶ , cɶ are: 
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and the differences ∆h, ∆u, ∆q, ∆c  are generally defined as:  

a
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Jacobian Matrix �A   

• Averages hɶ , uɶ  are defined in Eq. (16); �2u  in Eq. 

(19);qɶ , cɶ in Eq. (25); partial derivatives of c in Eq. 

(22). The term �Φ is defined as: 
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Now, we can define �A as:  
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where q̂ , Φ̂ are found based on Eq. (8b). Solving the 2nd 

and 3rd equations of the system (8b), we get: 
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where Φ∆ = ΦR - ΦL.  

Note that q̂  has the same value previously found (which 

was not obvious) and that the expressions of ĥ , q̂  and 

Φ̂ have the same structure. In particular we have for the 
three terms the following singularity condition (SC):  
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Non conservative Matrix �H   

As for the non conservative term �H , we will use the 
following relation for the component H33, proposed in 
Rosatti and Fraccarollo (2006) (used also in Rosatti et al, 
2008, Rosatti and Begnudelli, 2010) on the basis of 
physical considerations: 
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Comparison between SCRS and GCRS 

As discussed before, the advantage of the General-Closure 
Riemann Solver is its generality, because it allows using 
any closure relationship and because it is very simple to 
implement in any numerical scheme, making it 
straightforward to switch from a closure to another one, 
simply changing the subroutines that compute c and its 
derivatives ∂c/∂h and ∂c/∂u. This makes it possible to use 
different closures depending on the specific needs, for 
instance depending on the phenomenon, on the type of soil, 
and so on. 
To compare the two approaches, we solve the same 
problem by adopting the same closure (for example, Eq.10) 
and using the two methods. In particular, in SCRS we 

obtain the Roe matrices �A and �B  from the matrices U and 

F  where the closure (10) has been plugged in. On the other 

hand, in GCRS the Roe matrices�A and �B  are derived from 
the matrices U and F  where the concentration is expressed 
as a generic function of (u,h). Therefore, SCRS the 
linearization is performed before plugging in the closure, 
while in GCRS it is performed after. As a consequence, 
�A and �B  are in general slightly different from �A and �B . 

However, as a fundamental constraint of the Roe scheme, 
when  UR → UL , the two matrices must tend to converge to 
the same value, and the differences between the two 
approaches tend to vanish.  
In this section we compare the two approaches described 
above (SCRS and GCRS) in terms of the components of A 
and B, of the system eigenvalues, and of the results of 



simulations performed using a numerical model similar to 
the one described by Rosatti (2008) where SCRS and 
GCRS are implemented. 

Jacobians A and B 

Given the left and right states UL and UR, we consider the 

averageshɶ =(hL+hR)/2 and uɶ =(uL+uR)/2. We introduce now 
the quantities εh and εu defined as:  
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We can now express the differences:  
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in terms of the averaged variables defined above and of the 
deviations εh , εu. We obtain:  
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Note that the non zero components become singular when:  

(SC 2) 2 0h uε ε− →  (37) 

 
Eigenvalues 

Recalling Eqs.(6)-(7), and in consistency with the notation 
used so far, the eigenvalues corresponding to two 
approaches are:  
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where k=1,2,3, with the eigenvalues in ascending order. We 
consider a set of left and right states UL , UR such as 1h =ɶ , 

1u =ɶ  and the deviations εh and εu range in  the interval 
[−0.25;+0.25]. As for the height of the bed step at the 

interface, we assume zR−zL=0.1m (but the results show very 
little variations using different values of the bed step 
height). The differences between the values of 1λɶ computed 
with SCRS and GCRS normalized by the exact value are 
shown in Figure 1.  

 
Figure 1: Differences between the values of1λɶ with SCRS 
and GCRS, normalized by the exact value of 1λɶ .  

Singular Terms 

We have seen that the terms ĥ , q̂  and Φ̂ become singular 
under the condition (30), while �AR and �BR become 
singular under the condition (37). Using Eqs. (22), (26) and 
(32) we obtain that the two conditions are equivalent:  

� � (Eqs. 22,26,32)
0 2 0h u

h u
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(38) 

Moreover considering the variable c(u,h) and the 
differential dc = du(∂c/∂u) + dh(∂c/∂h), a discretization 
gives the expression that appears in Eq.(30), so the SC 
becomes: ∆c

→0. Using the closure (10) we obtain, 
neglecting the terms of order O(ε3): 

(SC 3) 2 0c
L R u hc c ε ε∆ = − = − →  (39) 

As a conclusion, we have that the Roe matrices become 
singular when cL=cR. In order to avoid instabilities when 
singular conditions are approached, we use the following 
fix: for |cL−cR|<10−6, we substitute the averages that become 
singular with arithmetic averages. Since left and right 
conditions are almost coincident, the error is nearly zero.  
 

Application to a dam break problem 

Lastly, to compare the two approaches, we consider a dry-
bed dam break problem over movable bed. We run the 
model for different cell-sizes and using the two approaches 
(SCRS and GCRS), always adopting the closure (10). The 
channel is 100m long, and the initial position of the dam is 
x=50m . Initial conditions are: h0=5m , u0=0m /s  upstream 
of the dam and dry bed downstream. With regard to the 
other parameters, we have g=9.806ms−2, ∆s=1.65 and 



β=0.9806m²s−1. The computational grid is composed by 
1600 cells. Numerical results are shown in Figure 2. along 
with the analytical solution. As it can be seen, the 
numerical solutions corresponding to the two solvers are 

nearly undistinguishable. The non dimensional error of h 
and c are reported in Figure 3., where h is scaled by h0 and c 
by the maximum concentration cb. 

 

 
Figure 2: Dry-bed dam break test: numerical results using SCRS and GCRS, along with exact solution. 

 
Figure 3: Dry-bed dam break test: non-dimensional deviations of the values of h and c between SCRS and GCRS. 

 

Conclusions 

A new general formulation of the Generalized Roe scheme 
for hyper-concentrated 1D shallow flows over a mobile bed 
has been shown. The proposed approach allows to use any 
possible closure relationships without the need of finding 
proper Roe matrices (being such a task prohibitive when 
the closure is not particularly simple). It is shown to be 
completely general, easy to implement, and as accurate as 
the standard Roe approach. Due to these characteristics, the 
method is suitable for application in a wide range of models 
for sediment transport and debris flow. 
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