
ADAPTIVE LOCAL TIME STEPPING WITH RKDG2 WATER WAVE MODEL ON NON-
UNIFORM GRIDS

Georges Kesserwani1 & Qiuhua Liang2

1Department of Civil & Structural Engineering, University of Sheffield, UK, Sheffield S1 3JD
2School of Civil Engineering & Geosciences, Newcastle University.UK, Newcastle upon Tyne NE1 7RU

E-mail: g.kesserwani@shef.ac.uk; qiuhua.Liang@ncl.ac.uk

Abstract

We investigate explicit local RKDG2 (second-order Runge-
Kutta Discontinuous Galerkin) solutions with the
inhomogeneous SWEs (Shallow Water Equations) on non-
uniform meshes with local time steps. The incorporated
LTS (Local Time Step) algorithm was recently designed
and tested for homogenous hyperbolic PDE(s) and was
featured by its locality and second-order accuracy Two
LTS-RKDG2 schemes that adapt three and four levels of
LTSs are configured based on two adaptive meshes that,
respectively, adapt two and three levels of refinement.
Hydraulic tests are used to verify the LTS-RKDG2 schemes
by comparing their performance with their conventional
Global Time Step RKDG2 alternatives (GTS-RKDG2).
Our results show that the LTS-RKDG2 models produce
similar predictions as the GTS-RKDG2 models but with
less computational effort reduced by a factor of 1.3 to 2.3
times depending on the test case.

Introduction

Explicit finite volume (FV) Godunov-type numerical
methods that solve hyperbolic conservation laws of the
unsteady SWEs (Toro, 2001; Guinot, 2003) are widely
relevant to water flow simulations and have been receiving
numerous developments (Delis & Kampanis, 2009). To
summarize, a ‘robust’ Godunov-type SWEs numerical
solver should be able to maintain its stability and
consistency when a flow discontinuity develops, steep
topographic gradients are present, a wet/dry front occurs,
and high roughness values are combined with very small
water depths. However all these advances, it is still
imperative to enhance the runtime of these explicit FV
models, which may be done by using a non-uniform
adapted mesh and increasing the time step.
From this perspective, it is expected that the efficiency of
an explicit numerical scheme may suffer as the size of their
time steps is restricted by the CFL stability condition. This
criterion provides the maximum allowable Global Time
Step (GTS) permitted, which actually reduces as a result of
a local increase in the velocity magnitude or a local

decrease in the cell size, or both; see Eq. (5). Particularly
when using non-uniform grids, few smallest cells may
impose a restrictive time step on the whole mesh and
therefore improvements in accuracy, gained by local mesh
refinement, are compensated by longer runtimes. In such a
circumstance, a local time step method (LTS) whereby the
solution within different cells is advanced by different time
steps seems complementary to increase the computational
efficiency of an explicit numerical model that uses non-
uniform meshes.
Very few published papers dealt with the design and
implementation of LTS algorithms with Godunov-type
water wave models. Crossley & Wright (2005) first
transplanted the concept of LTS into the field of 1D
hydrodynamic modelling showing a merit not only in
reducing runtimes but also in augmenting the quality of the
numerical solution. Sanders (2008) later investigated this
topic with a robust 2D Godunov-type SWEs solver based
on applications involving frictional flows over irregular
topographies with wetting and drying. Moreover, the
implicit friction term discretization (IFTD), which is a
commonly used practice to stabilize water flow simulations
with wetting and drying, was reported conflicting when it is
activated with a LTS algorithm. In both investigations, LTS
algorithms were integrated with first-order FV water
models and the use of five, or more, levels of LTS was
discouraged.
This work extends a LTS algorithm into RKDG2 Godunov-
type SWEs solutions (LTS-RKDG2) on non-uniform
meshes. The considered LTS algorithm was recently
established, by Krivodonova (2010), and found to be well-
fit with the RKDG2 scheme (Kesserwani & Liang, 2012). It
preserves second-order accuracy, conserves locality, applies
straightforwardly to the coefficients of the local finite
element solution and adapts the time step on each cell
according to the cell size (i.e., it takes a LTS of Δt on cells
of size Δx, Δt/2 on cells of size Δx/2, etc). In Krivodonova
(2010) the LTS algorithm was verified theoretically in
combination with an RKDG2 scheme (LTS-RKDG2).
However, simulation results were only presented for
homogenous conservation laws, excluding the SWEs.

Further, no information was provided on the relative gain in
terms of efficiency. Herein, the Krivodonova LTS
algorithm is reformulated and improved in the framework
of the 1D RKDG2 scheme solving the SWEs with complex
source terms and involving wetting and drying (Kesserwani
& Liang, 2012). Using steady and transient tests, the
implementation of two LTS-RKDG2 shallow water solvers,
that respectively employ three and four LTSs, is verified
and the potential improvement in efficiency relative to the
associated conventional GTS-RKDG2 is quantified.

Shallow Water Equations (SWEs)

The mathematical model of the SWEs can be written in a
conservative matrix form

∂௧܃ ൅ ∂௧۴ሺ܃ሻ ൌ ሻ (1)܃ሺ܁
In which, x is the longitudinal coordinate and t is the time.
܃ ൌ ሾߟ, ௫ሿ୘; ۴ݍ ൌ ሾݍ௫, ௫ଶ݄ିଵݍ ൅ 0.5ሺߟଶ െ is ܁ ሻሿ୘ andݖߟ2
transposed vector containing the source terms. The source
term vector ܁ can be further partitioned into ܁ ൌ ܊܁	 ൅ ܎܁
where ܊܁ ൌ ሾ0, െ߲݃ߟ௫ݖሿ୘ and ܎܁ ൌ ሾ0, െܥ୤ݑ|ݑ|ሿ୘ are,
respectively, the topography and friction source terms (g is
the acceleration due to gravity, ݖ is the topography,
݄ ൌ ߟ െ ݑ ,is the water depth ݖ ൌ ௫/݄ the mean velocityݍ
and ܥ୤ ൌ ݃݊ெ

ଶ ݄ିଵ/ଷ; ݊ெ being the Manning coefficient).

Non-uniform structured mesh

Firstly, a problem domain [xmin; xmax] is discretized using a
coarse uniform mesh consisting of N cells of size Δx. This
is called “background mesh”, on which a cell is termed
“background cell” and is assigned the minimum level of
subdivision, i.e., equal to ‘0’. Secondly, background cells in
those user-selected local zone(s) where mesh refinement is
desired are further refined by specifying higher levels of
subdivisions up to a user-specified maximum subdivision
level ‘levmax’ (݈݁ݒ௠௔௫ ∈ Գ). The refinement is performed in
a fractal manner, i.e. the cell size reduces by a factor of two
whenever the refinement level increases ‘1’. Finally, the
mesh is regularized so that it does not contain adjacent cells
with sizes differing by more than a factor of two.
Overall, mesh will consist of cells with levels varying
between ‘0’ and ‘levmax’. Cells with level ‘0’ are the largest
whereas cells with level ‘levmax’ are the smallest. An
arbitrary cell Iic can be classified through an assigned level
denoted by ‘lev(ic)’ (where 0 ≤ lev(ic) ≤ levmax) and thereby
has a size length of ∆ݔ௜௖ ൌ 2௟௘௩೘ೌೣ/ݔ∆ 2௟௘௩ሺ௜௖ሻ (with/ݔ∆ ൑

௜௖ݔ∆ ൑ Cell Iic is centered at xic with the boundary .(ݔ∆
points ݔ௜௖േଵ/ଶ ൌ ௜௖ݔ ൅ ௜௖ܫ .௜௖/2, i.eݔ∆ ൌ ௜௖ିଵݔൣ ଶ⁄ ; ௜௖ାଵݔ ଶ⁄ ൧.

Review of the GTS-RKDG2 scheme

Over a cell ‘Iic ’, the RKDG2 method solves for a local
approximate (piecewise linear) solution to (1), denoted by
Uh = [ηh, (qx)h]

T. The solution is locally spanned by the

average and slope coefficients (see within Kesserwani &
Liang (2012) for explicit details), i.e. ࢎ܃ሺݔ, ሻ|ூ೔೎ݐ ൌ

ሼ܃௜௖
଴ ሺݐሻ, ௜௖܃

ଵ ሺݐሻሽ

,ݔሺࢎ܃ ሻ|ூ೔೎ݐ ൌ ௜௖܃
଴ ሺݐሻ ൅ ௜௖܃

ଵ ሺݐሻ ቀ
௫ି௫೔೎
∆௫೔೎ ଶ⁄

ቁ		,				ሺ∀ݔ ∈ (2)	௜௖ሻܫ

Given the initial conditions U(x,0), the local coefficients,
௜௖܃
଴ ሺ0ሻ and ܃௜௖

ଵ ሺ0ሻ, can be initialized. The topography
function is approximated similarly, and therefore becomes
z௛ሺݔሻ|ூ೔೎, which is spanned by local topography-associated

coefficient, z௜௖
଴ and z௜௖

ଵ . The bed gradient thus writes
߲௫ൣ	z௛ሺݔሻ|ூ೔೎൧ ൌ 2	z௜௖

ଵ .௜௖ݔ∆/

Two stages Runge-Kutta Time-stepping

The time updating from ‘t’ to ‘t + Δt’ is performed by
employing a two-stage RK time stepping method (Shu &

Osher, 1988). Denoting by ൫܃௜௖
଴,ଵ൯

௡
 and ൫܃௜௖

଴,ଵ൯
௡ାଵ

 to be the
solution coefficients at time ‘t’, and ‘t + Δt’, respectively,
the two-stage RK time integration process can be written as

൫܃௜௖
଴,ଵ൯

௡ାଵ/ଶ
ൌ ൫܃௜௖

଴,ଵ൯
௡
൅ ௜௖ۺ൫ݐ∆

଴,ଵ൯
௡ (3)

൫܃௜௖
଴,ଵ൯

௡ାଵ
ൌ

ଵ

ଶ
ቂ൫܃௜௖

଴,ଵ൯
௡
൅ ൫܃௜௖

଴,ଵ൯
௡ାଵ/ଶ

൅ ௜௖ۺ൫ݐ∆
଴,ଵ൯

௡ାଵ/ଶ
ቃ (4)

At the first RK stage (3), referred to as RK1, the local
solution ൫܃௜௖

଴,ଵ൯
௡ is advanced to an intermediate state

൫܃௜௖
଴,ଵ൯

௡ାଵ/ଶ relative to ‘ݐ∗ ൌ ݐ ൅ Then at the second RK .’2/ݐ∆
stage (4), denoted as RK2, the solution is marched from the
intermediate state at ‘t*’ to the next time level ‘t + Δt’. The

DG2 space operators ൫ۺ௜௖
଴,ଵ൯

௡ and ൫ۺ௜௖
଴,ଵ൯

௡ାଵ/ଶ are evaluated
from the solution coefficients at t and t*, respectively, as we
describe in the following. The global time step (GTS) Δt is
restricted by the CFL condition with a Courant number of
0.3 (Cockburn & Shu, 2001).

ݐ∆ ൌ ݉݅݊ ൥
∆௫೔೎

ቚ൫௨೔೎
బ,భ൯

೙
ቚାට௚൫௛೔೎

బ,భ൯
೙
൩ (5)

It is obvious from (5) that ∆ݐ → 0 when ݈݁ݒ௠௔௫ → ∞).

Local DG2 space operators

The update of the approximate solution ࢎ܃ሺݔ, ሻ|ூ೔೎ݐ ൌ

ሼ܃௜௖
଴ ሺݐሻ, ௜௖܃

ଵ ሺݐሻሽ performs via a detached set of ODEs:
∂௧܃௜௖

଴ ሺݐሻ ൌ ௜௖ۺ
଴ ൫܃௜௖

଴,ଵ, ௜௡܃
଴,ଵ൯ (6)

∂௧܃௜௖
଴ ሺݐሻ ൌ ௜௖ۺ

ଵ ൫܃௜௖
଴,ଵ, ௜௡܃

଴,ଵ൯ (6)
in which, ۺ௜௖

଴ and ۺ௜௖
ଵ are nonlinear vectors of space-

functions. The approximating coefficients with subscripts
‘in’ refers to data relative to the neighbor cells Iin
surrounding cell Iic. These operators can be manipulated to

௜௖ۺ
଴ ൌ െ

۴෨೔೎శభ మ⁄ ି۴෨೔೎షభ మ⁄

∆௫೔೎
൅ ௜௖܃ሺ܁

଴ , z௜௖
଴ , z௜௖

ଵ ሻ (7)

௜௖ۺ
ଵ ൌ െ

ଷ

∆௫೔೎
ቄ۴෨௜௖ାଵ ଶ⁄ ൅ ۴෨௜௖ିଵ ଶ⁄ െ ۴ ቀ܃௜௖

଴ ൅
෡೔೎܃
భ

√ଷ
, ௜௖ݖ

଴ , ௜௖ݖ
ଵ ቁ െ ۴ ቀ܃௜௖

଴ െ

෡೔೎܃
భ

√ଷ
, ௜௖ݖ

଴ , ௜௖ݖ
ଵ ቁ െ ௜௖ݔ∆

√ଷ

଺
ቂ܁ ቀ܃௜௖

଴ ൅
෡೔೎܃
భ

√ଷ
, ௜௖ݖ

଴ , ௜௖ݖ
ଵ ቁ െ ܁ ቀ܃௜௖

଴ െ
෡೔೎܃
భ

√ଷ
, ௜௖ݖ

଴ , ௜௖ݖ
ଵ ቁቃቅ (8)

When evaluating (7)-(8), a number of essential spatial
ingredients should be implemented to maintain the stability
of the numerical method and grant its practicability to
shallow flow modelling. Firstly, local slope coefficients
that likely cause numerical instability should be detected

and locally limited by the minmod function. The “hat”
symbol above ܃௜௖

ଵ refers to the controlled slope coefficient

(i.e., ܃෡௜௖
ଵ). Secondly, the flux ۴෨௜௖ାଵ ଶ⁄ across an interface

xic+1/2 (shared by adjacent cells Iic and Iin with in = ic+1) is
obtained via the HLL Riemann problem solution of the two
states Thirdly, before the final evaluation of (7) and (8), it
is important to further implement a conservative “wetting
and drying condition” to ensure the positivity of the water
height with time evolution. Lastly, the friction source term
 should be separately discretized (i.e. not within (7) and 	܎܁
(8)) by implicit discretization technique to avoid numerical
instabilities that may arise when modelling water flow over
dry zone with high roughness Details on how these spatial
ingredients are implemented can be found in Kesserwani &
Liang (2012). To ease presentation in what follows, the
approximating coefficients with subscripts ‘in’ will refer to
the data relative to the eastern neighbor (i.e., cell Iin) of cell
Iic and so {xic+1/2} = Iic ∩ Iin represents the edge separating
cells Iic and Iin.

New LTS-RKDG2 flow model

The second-order LTS approach of Krivodonova (2010) is
integrated with the (GTS-)RKDG2 flow model (Kesserwani
& Liang 2012) to from the so-called LTS-RKDG2 water
wave model. Further to this, special treatments are
implemented to retain conservation and the applicability of
the LTS-RKDG2 model to shallow flow simulations over
frictional topographies with wetting and drying.

Fig. 1: LTS-RKDG2 calculation of the solution coefficients from ‘t’ to ‘t +
Δt’ on a mesh with multiple levels of refinement ‘0’,, ‘levmax’, where a
‘thick arrow’ = one iteration of LTS-RKDG2 calculation.

Basic concept

To simplify presentation, it is assumed that the maximum
wave speed does not significantly influence the local CFL
number and therefore the LTS relative to each cell ‘Iic’ is
solely dependent on its level of refinement lev(ic) (or cell
size ∆ݔ௜௖ ൌ

∆௫

ଶ೗೐ೡሺ೔೎ሻ
) so that ∆ݐ௜௖ ൌ

∆௧

ଶ೗೐ೡሺ೔೎ሻ
. Δt is the GTS relative to

the coarse “background mesh” and can be simply defined as

ݐ∆ ൌ ݉݅݊ ൥
ଶ೗೐ೡሺ೔೎ሻ∆௫೔೎

ቚ൫௨೔೎
బ,భ൯

೙
ቚାට௚൫௛೔೎

బ,భ൯
೙
൩ (9)

As illustrates in Fig. 1, the RKDG2 calculation is locally
performed with the LTS Δt, Δt/2, Δt/22, ..., Δt/2௟௘௩೘ೌೣ for

cells with level ‘0’, ‘1’, ‘2’, ..., ‘levmax’ to recursively
advance their solution coefficients 1 LTS, 2 LTSs, 4
LTSs,…, 2௟௘௩೘ೌೣ LTSs. Herein, this iterative calculation
process is referred to as “LTS-RKDG2 calculation”. In the
first iteration, the LTS-RKDG2 calculation achieves at cells
with level ‘0’ to allow the corresponding solution
coefficients to reach time level ‘t + Δt’. In the second
iteration, the LTS-RKDG2 calculation is undertaken at cells
with level ‘1’, and so on, until the finest cells with level
‘levmax’ are fully updated after 2௟௘௩೘ೌೣ iterations of LTS-
RKDG2 calculation. During a simulation, computational
cells are grouped according to their level of refinements and
the associated mesh may be classified as “inner cells” and
“interface cells”. Cells neighbored by cells ‘Iin’ with similar
level of refinement are called Inner cells ‘Iic’; otherwise,
they are termed as Interface cells.
At an inner cell ‘Iic’, an LTS-RKDG2 calculation is
straightforward. Since ‘Iic’ and ‘Iin’ have the same level of
refinement, they thus have the same LTS, i.e. ∆ݐ௜௡ ൌ .௜௖ݐ∆
One step of LTS-RKDG2 (i.e., (3) and (4) with ∆ݐ௜௖)
calculation performs in a regular manner as for the GTS-
RKDG2 scheme and no special treatment is needed.
An interface cell ‘Iic’ has at least one of its adjacent
neighbors of different size e.g., ∆ݔ௜௡ ് ௜௖, and thusݔ∆
௜௡ݐ∆ ് ௜௖. This indicates that the LTS-RKDG2 calculationݐ∆
at ‘Iic’ is different from the one at ‘Iin’. For that reason, it is
essential for LTS-RKDG2 algorithm to impose
synchronized ‘ghost’ solution coefficients across the cells
with different time step(s), or stage(s), to enable Riemann
flux calculation within the DG2 operators and allow the
RKDG2 calculation to proceed in a classical way as
described in the following Subsection.

LTS-RKDG2 calculation at interface cells

Since the mesh is regularized and the LTS-RKDG2
calculation simply applies recurrently, as shown Fig. 1, it
suffices to explain one elementary LTS-RKDG2 calculation
at interface cells relative to a mesh configuration that
involves two levels of refinement denoted by ‘lev0’ and
‘lev0+1’ (lev0 is a fixed integer between 0 and levmax – 1).
Without loss of generality, we assume cell ‘Iic’ has a ‘lev0’
and is defined as a “large interface cell” (LIC). Similarly,
cell ‘Iin’ has a level of ‘lev0+1’ and is referred to as a
“small interface cell” (SIC). Therefore the solution
coefficients at ‘Iic’ are indicated by a subscript ‘L’ and those
at ‘Iin’ by ‘S’.
Firstly, LTS-RKDG2 calculation handles the coefficients at
the LIC ‘Iic’ (i.e., the ‘actual’ coefficients) facilitated by
artificially reconstructed synchronized coefficients (i.e.,
‘ghost’ coefficients) at the SIC ‘Iin’. Then, it is necessary to
apply the LTS-RKDG2 calculation to deal with the case
where the ‘actual’ coefficients are at the SIC ‘Iin’ and the
‘ghost’ coefficients are at the LIC ‘Iic’.

Coefficients update at the LIC ‘Iic’

First, the LTS-RKDG2 calculation starts at the LIC cell ‘Iic’
where the LTS is ∆ݐ௅ ൌ ∆t 2௟௘௩଴⁄ and the initial coefficients at
time ‘t’ are ൫܃௜௖

଴,ଵ൯
௅

௡. At its SIC neighbour ‘Iin’, the initial

coefficients ൫܃௜௡
଴,ଵ൯

ௌ

௡ are also available. Therefore, the DG2

space operators ൫ۺ௜௖
଴,ଵ൯

௅

௡
 can be evaluated directly and then

plugged into (3) to complete the RK1 stage and produce the

‘actual’ coefficients ൫܃௜௖
଴,ଵ൯

௅

௡ାଵ/ଶ relative to the intermediate

time state ‘t*’. Similarly, time-matching ‘ghost’ coefficients

൫܃௜௡
଴,ଵ൯

ௌ,௚௛௢௦௧

௡ାଵ/ଶ relative to t* are constructed at Iin by advancing

its coefficients using (3) with LTS ΔtL, i.e.

൫܃௜௡
଴,ଵ൯

ௌ,௚௛௢௦௧

௡ାଵ/ଶ
ൌ ൫܃௜௡

଴,ଵ൯
ௌ

௡
൅ ௜௡ۺ௅൫ݐ∆

଴,ଵ൯
ௌ

௡ (10)

After (10), the coefficients are synchronized at ‘t*’. The

space operators ൫ۺ௜௖
଴,ଵ൯

௅

௡ାଵ/ଶ can then be evaluated and used to

achieve the RK2 stage in (4) to finally produce the

coefficients ൫܃௜௖
଴,ଵ൯

௅

௡ାଵ associated to ‘ݐ ൅ .’௅ݐ∆

Coefficients update at the SIC ‘Iin’

After obtaining the ‘actual’ coefficients at ‘ݐ ൅ ௅’ over cellݐ∆
‘Iic’, the SIC ‘Iin’ is now reconsidered to obtain its ‘actual’
coefficients at ‘ݐ ൅ ௅’. However, since the LTS over a SICݐ∆
is halved (i.e., ∆ݐௌ ൌ ௅/2), LTS-RKDG2 calculation overݐ∆
‘Iin’ has to be carried out in two consecutive iterations,
starting from the available initial coefficients, ൫܃௜௡

଴,ଵ൯
ௌ

௡ and

൫܃௜௖
଴,ଵ൯

௅

௡, at time ‘t’ at both SIC ‘Iin’ and its neighbor LIC ‘Iic’.

It should be noted that the ‘ghost’ coefficients at SIC ‘Iin’
produced (previously—refer to the previous subsection)
using (10) are here inappropriate for the current step and
will therefore be ignored. In contrast, at the LIC ‘Iic’,
certain preceding information created by the previous LTS-
RKDG2 update for the ‘actual’ coefficients over ‘Iic’ may
be saved and reused. In particular, the previously calculated

DG2 space operators ൫ۺ௜௖
଴,ଵ൯

௅

௡ and ൫ۺ௜௖
଴,ଵ൯

௅

௡ାଵ/ଶ at time ‘t’ and

time ‘t*’ are used to define the following quadratic function

∅௜௖
଴,ଵሺ߬ሻ ൌ ൫܃௜௖

଴,ଵ൯
௅

௡
൅ ൫ۺ௜௖

଴,ଵ൯
௅

௡
ሺ߬ െ ሻݐ ൅

൫ۺ೔೎
బ,భ൯

ಽ

೙శభ మ⁄
ି	൫ۺ೔೎

బ,భ൯
ಽ

೙

ଶ∆௧ಽ
ሺ߬ െ ሻଶ (11)ݐ

which will serve to reconstruct ‘ghost’ coefficients over the
neighbor LIC ‘Iic’ at an inner fractional-time-step ‘߬’ and its
associated time-stage ‘߬∗’, namely:

௜௖܃ൣ
଴,ଵሺ߬ሻ൧

௅,௚௛௢௦௧

௡
ൌ ∅௜௖

଴,ଵሺ߬ሻ; 		߬ ∈ ሾݐ; ݐ ൅ ௅ሾ (12)ݐ∆

௜௖܃ൣ
଴,ଵሺ߬∗ሻ൧

௅,௚௛௢௦௧

௡ାଵ/ଶ
ൌ ௜௖܃ൣ

଴,ଵሺ߬ሻ൧
௅,௚௛௢௦௧

௡
൅

ௗ

ௗఛ
∅௜௖
଴,ଵሺ߬ሻ; ߬∗ ∈ ሾ߬; ݐ ൅ ௅ሾ (13)ݐ∆

Eqs. (11)-(13) give a second-order accurate data
interpolation as confirmed by the theoretical work in [13].
At the first iteration, the coefficients over ‘Iin’ are advanced
one LTS from time ‘t’ to time ‘ݐଶ ൌ ݐ ൅ ௌ’. Initially at timeݐ∆
‘t’, using ൫܃௜௡

଴,ଵ൯
ௌ

௡ and ൫܃௜௖
଴,ଵ൯

௅

௡, the space operators ൫ۺ௜௡
଴,ଵ൯

ௌ

௡ can

be evaluated and then inserted into (3) to achieve the
calculation at the RK1 stage and produce ൫܃௜௡

଴,ଵ൯
ௌ

௡, which are

the ‘actual’ coefficients at the intermediate time stage
ଵݐ
∗ ൌ ݐ ൅ ௌ/2. Meanwhile, over ‘Iic’, the ‘ghost’ coefficientsݐ∆

relative to ݐଵ∗, i.e. ൫܃௜௖
଴,ଵ൯

௅,௚௛௢௦௧

௡ାଵ/ଶ , should be constructed at

߬ ൌ .ଵ∗ by means of (11)-(13)ݐ

After this, the DG2 space operators ൫ۺ௜௡
଴,ଵ൯

ௌ

௡ାଵ/ଶ at time ݐଵ∗ can

be evaluated and put in (4) to finalize the RK2 stage and

produce ൫܃௜௡
଴,ଵ൯

ௌ

௡ାଵ, which are the ‘actual’ coefficients over Iin

at time ݐଶ. Meanwhile, the time-matching ‘ghost’

coefficients over ‘Iic’ at ݐଶ, i.e. ൫܃௜௖
଴,ଵ൯

௅,௚௛௢௦௧

௡ାଵ , should be

constructed using (11) and (12) evaluated at ߬ ൌ .ଶݐ
At the second iteration, the coefficients are reinitialized at
 ௌݐ∆ ଶ’ and another RKDG2 calculation step with the LTSݐ‘
is performed to further elevate the coefficients over Iin to
time level ‘ݐ ൅ ’௅’. That is, both ‘actual’ and ‘ghostݐ∆
coefficients at Iic and Iin, respectively, are reinitialized at

௜௡܃ଶ’ (i.e. ൫ݐ‘
଴,ଵ൯

ௌ

௡
← ൫܃௜௡

଴,ଵ൯
ௌ

௡ାଵ and ൫܃௜௖
଴,ଵ൯

௅

௡
← ൫܃௜௖

଴,ଵ൯
௅,௚௛௢௦௧

௡ାଵ). The

previously employed ‘actual’ and ‘ghost’ coefficients and
their associated DG2 space operators at the inner time
stages can be reused (i.e., herein overwritten). Initially at
time level ‘t2’, ൫܃௜௖

଴,ଵ൯
௅

௡ and ൫܃௜௡
଴,ଵ൯

ௌ

௡ are synchronized and so

the operators ൫ۺ௜௡
଴,ଵ൯

ௌ

௡ can be evaluated and then put into (3)

to achieve the RK1 stage and produce ‘actual’ coefficients

൫܃௜௡
଴,ଵ൯

ௌ

௡ାଵ/ଶ, which now represent the coefficients at the time

stage ݐଶ∗ ൌ ଶݐ ൅ ௌ/2. Meanwhile, over ‘Iic’, time-matchingݐ∆
(i.e., relative to ݐଶ∗) ‘ghost’ coefficients are reconstructed

using (11)-(13) evaluated at ߬ ൌ ଶݐ
∗ to produce ൫܃௜௖

଴,ଵ൯
௅,௚௛௢௦௧

௡ାଵ/ଶ .

Now, ൫܃௜௖
଴,ଵ൯

௅,௚௛௢௦௧

௡ାଵ/ଶ and ൫܃௜௡
଴,ଵ൯

ௌ

௡ାଵ/ଶ
 are synchronized and can be

used to calculate the DG2 operators ൫ۺ௜௡
଴,ଵ൯

ௌ

௡ାଵ/ଶ and then

inserted into the RK2 stage (4) to finally produce ൫܃௜௡
଴,ଵ൯

ௌ

௡ାଵ
,

which now represent the coefficients over ‘Iin’ at time
ݐ‘ ൅ .’௅ݐ∆

Fig. 2: History of the actual stages of LTS-RKDG2 calculations at a LIC
Iic adjacent to a SIC Iin and the associated Riemann fluxes. Particular case
(when ΔtL = Δt).

Friction term issue and conservation enforcement

Due to the LTS dependence within the IFTD, its expected
side effect on well-balanced property (Murillo et al., 2009),
may increasingly magnify at those inner cells. Further, this
aspect complicates the integration of the IFTD with the
LTS-RKDG2 calculation at interface cells because extra
phases of ‘ghost’ friction advancement, and removal, need

to be entailed in line with the ‘ghost’ coefficients
advancement. Therefore, herein, the usability of the IFTD is
restricted to those cells where the water height may
potentially become infinitesimal. At the other (flood) cells,
the friction source term is discretized explicitly in the DG2
space operators, in a straightforward manner, as it is now
free from any LTS dependence.
After the LTS-RKDG2 calculations at the LIC ‘Iic’ and the
SIC ‘Iin’, the sum of Riemann flux quantities cumulated
between time ‘t’ and time ‘t + ΔtL’ at the edge ‘xic+1/2’ may
not be equal. For instance, following the notations in Fig. 2,
it may happen that the sum of Riemann flux evaluations at
‘xic+1/2’ accumulated from the LTS-RKDG2 calculation at
the LIC ‘Iic’ (i.e., Fig. 2, sum of fluxes with superscript
‘1/1’) is different than the sum of Riemann flux evaluations
at ‘xic+1/2’ accumulated during the LTS-RKDG2
calculations at the SIC ‘Iin’ (i.e., Fig. 2, sum of fluxes with
superscript ‘1/2’ and ‘2/2’).
To overcome this effect, flux conservation (in time) is
artificially enforced at the SIC ‘Iin’ during the final iteration
of LTS-RKDG2 calculation and, more particularly, at its
final time stage–namely when the coefficients are awaiting
one last step prior to reaching ‘t + Δt’. For example, we
assume that the mesh only involves two cell’s sizes: large
cells with the level ‘0’ and small cells with the level ‘1’
(i.e., lev0 = 0). In this case, ΔtL = Δt and ΔtS = Δt/2 and flux
conservation (in time) is imposed at the SIC ‘Iin’ during the
RK2 stage and at the second round (i.e., Fig. 2—right
highlighted portion of the thick arrow). This can be done by

exceptionally choosing the flux ൫۴෨௜௖ାଵ/ଶ
௡ାଵ/ଶ൯

ௌ

ଶ/ଶ
 as:

൫۴෨௜௖ାଵ/ଶ
௡ାଵ/ଶ൯

ௌ

ଶ/ଶ
ൌ ቂ൫۴෨௜௖ାଵ/ଶ

௡ ൅ ۴෨௜௖ାଵ/ଶ
௡ାଵ/ଶ൯

௅

ଵ/ଵ
െ ൫۴෨௜௖ାଵ/ଶ

௡ ൅ ۴෨௜௖ାଵ/ଶ
௡ାଵ/ଶ൯

ௌ

ଵ/ଶ
െ

൫۴෨௜௖ାଵ/ଶ
௡ ൯

ௌ

ଶ/ଶ
ቃ (14)

instead of estimating it from the Riemann problem solution.

LTS-RKDG2 model’s verification

LTS-RKDG2 and GTS-RKDG2 schemes simulations are
run on two non-uniform meshes, referred to as ‘mesh 2’ and
‘mesh 3’, which have been configured to allow up to ‘2’
and ‘3’ levels of refinement, respectively, while retaining
the same total number of computational cell for both
meshes. Over these meshes, LTS-RKDG2 local solutions
coordinates LTSs of {Δt, Δt/2, Δt/4} and {Δt, Δt/2, Δt/4,
Δt/8}, respectively. The level of refinement relative to each
cell will be indicated by a gray ‘diamond’ marker within
the sub-figures that illustrate the free-surface elevations.
Two tests are considered to investigate the performance of
LTS-RKDG2 scheme with respect to the GTS-RKDG2
scheme, while quantifying the relative runtime saving.

Steady flow over a hump with shock

The academic test case involving moving steady
transcritical flow over topography, with a shock, is

investigated. This test is to simultaneously demonstrate the
capability of a numerical method to: converge towards a
steady state, accurately balance the flux gradient with the
topography gradient, and inherently capture flow transitions
and discontinuities. The channel is 1000m length with a
hump-shape topography located between x = 125m and x =
875m. An upstream subcritical inflow is imposed through a
unit discharge of 20m2/s and the outflow depth is fixed to
7m. A simulation starts from an initial water height of 9.7m
and is desired to stop after a relatively long time evolution
(i.e. t = 2000s). Each simulation is performed on a ‘mesh 2’
and a ‘mesh 3’ type that both consisted of 100 cells.
At first, the channel’s bed is assumed frictionless and the
GTS-RKDG2 and LTS-RKDG2 schemes are run on the
two non-uniform meshes. Fig. 3 present the corresponding
profiles acquired by the RKDG2 solvers, respectively. It
can be seen that the numerical water depths produced by
both solvers match well the analytical solutions and no
visual difference is detected among the schemes. On the
other hand, both numerical models reached the expected
conservative state for the steady discharge solution; this
indicates that the current LTS algorithm do not affect the
well-balanced property. On ‘mesh 2’ and ‘mesh 3’,
respectively, the runtime saving is about 1.9 and 2.3 times
with respect to the GTS-RKDG2 scheme. This shows that
the usefulness of the transient LTS-RKDG2 shallow water
solver in accelerating the convergence of steady-state
problems.

Fig. 3: Steady flow (t = 2000s). Lower: ‘mesh 2’and Upper: ‘mesh 3’.

Secondly, we use this test case to further point up the
inconvenience of the IFTD when implemented in
conjunction with the LTS-RKDG2 scheme. Therefore, the
LTS-RKDG2 method is reconsidered with nM = 0.033
s/m1/3; the simulations are remade on the same meshes but
with a focus on comparing the IFTD discretization (i.e.,
time-dependent) vs. the explicit friction term discretization
(i.e., independent of the time-step). The solution to the

momentum equation, in terms of steady discharge
numerical result, is appended within the discharge plots in
Fig. 3. As expected, the use of the IFTD with the LTS-
RKDG2 is found to magnify the side effect of the IFTD.
This justifies our motivation in using the aforementioned
hybrid implicit-explicit friction discretization.

Dam-break wave interacting with a triangular obstacle

The length of the domain is 38m; the initial condition is a
still water state (i.e. 0.75 m) held by a dam and the
downstream floodplain is dry. For this problem, measured
time histories of the water depth are available at point G11
and G13 that are respectively located 11 m, and 13 m
downstream of the dam. nM = 0.0125 and the upstream
boundary is a solid wall. A total of 100 cells is used to form
meshes of type ‘mesh 2’ and ‘mesh 3’ and the simulation
time is t = 35s. Snapshots of the longitudinal profiles of the
free-surface elevations at t = 10s are available in Fig. 4.

Fig. 4: Transient flow (t = 10s). Left: ‘mesh 2’ and Right: ‘mesh 3’.

Fig. 5: Transient flow. Depth histories; Lower: ‘mesh 2’; Upper: ‘mesh 3’.

Fig. 5 contains the predicted time histories that are seen to
favorably agree with the measured data. Both RKDG2
schemes survived this challenging benchmark for the two
considered meshes. In contrast to the previous test,
difference between the LTS-RKDG2 and GTS-RKDG2
predictions is detected; this may be attributed to
dependence of the IFTD on the LTS and the involvement of
relatively high local velocities in this test. However, these
differences are little and have inconsequential effects on the

usability of the LTS-RKDG2 model. For this case, the use
of the non-uniform mesh LTS-RKDG2 scheme with three-
and four- levels of LTSs enhanced, respectively, the time
efficiency by 1.32 times and 1.36 times over the GTS-
RKDG2 scheme.

Conclusions

A second-order LTS algorithm has been integrated with a
robust RKDG2 water model on structured non-uniform
meshes (LTS-RKDG2). Stabilizing features that enable the
practical utility of shallow water numerical models were
genuinely retained. Further considerations were given to
maintain the flux conservation across cells of different
sizes, and to also diminish the adverse effects of the IFTD
(i.e. due to the involvement of the LTS within). Two LTS-
RKDG2 models, which adapts LTSs of {Δt, Δt/2, Δt/4} and
{Δt, Δt/2, Δt/4, Δt/8}, were set, tested and compared with
the associated GTS-RKDG2 with a particular focus on the
relative runtime saving. Our numerical experiments show
that the use of LTS algorithm in an RKDG2 SWEs
numerical solver is able to generically produce similar
prediction as the GTS-RKDG2 counterparts. For the
considered tests, the use of an LTS-RKDG2 scheme
boosted the computational efficiency, referring to the GTS-
RKDG2, by 1.32-to-1.99 times when adapting three LTSs;
and by 1.36-to-2.3 times with a ‘four’ levels LTS-RKDG2
model. Research is currently underway to extend the LTS-
RKDG2 model to 2D on dynamically adaptive meshes.

References

Cockburn, B. & Shu, C.-W. (2001). Runge-Kutta discontinuous Galerkin
methods for convection-dominated problems. Journal of Scientific
Computing, 16(3): 173-261.
Crossley, A.J. & Wright, N.G.. (2005). Time accurate local time stepping
for the unsteady shallow water equations. International Journal for
Numerical Methods in Fluids, 48:775-799.
Delis, A.I. and Kampanis, N.A., Numerical flood simulation by depth
averaged free surface flow models, in Environmental Systems, in
Encyclopedia of Life Support Systems (EOLSS), A. Sydow, Editor. 2009.
Guinot, V. (2003). Godunov-type schemes: an introduction for engineers.,
Elsevier: Amsterdam.
Krivodonova, L. (2010). An efficient local time-stepping scheme for
solution of nonlinear conservation laws. Journal of Computational Physics,
229:8537-8551.
Kesserwani, G. & Liang, Q. (2012). Locally limited and fully conserved
RKDG2 shallow water solutions with wetting and drying. Journal of
Scientific Computing, 50:120-144.
Murillo, J., García-Navarro, P., and Burguete, J. (2009). Time step
restrictions for well-balanced shallow water solutions in non-zero velocity
steady states. International Journal for Numerical Methods in Fluids,
60:1351-1377.
Sanders, B.F. (2008). Integration of a shallow water model with a local
time step. Journal of Hydraulic Research, 46:466-475.
Toro, E.F. (2001). Shock-capturing methods for free-surface shallow
flows, John Wiley & Sons.
Shu, C.-W. & Osher, S. (1988). Efficient implementation of essentially
non-oscillatory shock-capturing schemes. Journal of Computational
Physics, 77:439-471.

