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Abstract 

One-dimensional (1-D) numerical models of solute 
transport in open channels rely on the advection-dispersion 
equation, in which the longitudinal dispersion coefficient is 
an unknown parameter to be calibrated. In this work, we 
investigate the extent to which some of existing dispersion 
formulas can be used in 1-D numerical modeling of solute 
transport. The 1-D numerical modeling used here is the 
open source MASCARET numerical tool. The water 
quality component of this tool simulates solute transport 
processes, consisting of advection, diffusion and mass 
reduction/generation by physical, chemical and biological 
mechanisms. Dispersion coefficient formulas proposed by 
Elder (1959), Fisher (1975), McQuivey and Keefer (1974), 
Magazine et al. (1988), Koussis and Rodriguez-Mirasol 
(1998), Seo and Cheong (1998), Deng et al. (2001) and 
Kashefipur and Falconer (2002) are tested by simulating 
laboratory experimental cases under uniform flow and the 
transport of tritium in the Loire River over the period July 
1st 1999 to December 31th 1999. Comparisons between 
computed and measured concentrations show that formulas 
proposed by Elder and Fisher rank as the best predictors for 
the entire range of laboratory experiments, while better 
predictions are provided by the formula of Seo and Cheong 
for the field case under unsteady flow. 

Introduction 

Solute transport in open channels is an important topic in 
many industrial and environmental projects. Because solute 
transport is multi-physical processes (e.g. advection, 
mixing, exchange with dead zones, physical, chemical and 
biological processes), resolution of the equations that 
govern the problem is a very complex task. Analytical 
solutions have been proposed for hypothetical cases under 
simplified geometry, flow and solute transport conditions 
(e.g. prismatic shape, steady and uniform flow, 
instantaneous injection) (De Smedt, 2006). The application 
of these solutions to field cases with complex 
characteristics is questionable. Generally, 1-D models are 
widely employed in engineering studies, because they 

require the least amount of data, and the numerical scheme 
used for solving the water and solute transport equations 
are more stable and offer gains in computational efficiency 
over 2- and 3-D models. 

Regarding the computation of solute transport, 1-D models 
rely on the classical advection-dispersion equation, which 
brings the longitudinal diffusion coefficient, DL, as 
unknown parameter to be determined. In most models, DL 
is assumed time and space invariant and calibrated using 
field tracer studies. This can be expensive and time-
consuming, especially for large rivers, and the diffusion 
coefficient estimate is valid only for the particular stream 
reach and the flow conditions for which the tracer 
experiment was conducted. To cater so such shortcomings, 
various empirical formulas have been proposed, derived 
from different assumptions and tested with laboratory and 
field data sets. And when applied to one study case, the 
estimated dispersion coefficients for the different formulas 
may vary over several orders of magnitude (Kashefipour 
and Falconer, 2002).  

Performance of some empirical formulas was investigated 
by many authors, e.g. Seo and Cheong (1998), Kashefipour 
and Falconer (2002), Wallis and Manson (2004), Tayfur 
and Signh (2005), and Riahi-Madvar et al. (2009), by 
comparing calculated and measured tracer concentration 
distributions. In most cases the advection-dispersion 
equation was solved assuming averaged flow variables in 
river reaches, which requires the flow to be steady and 
uniform in the river reach, and the channel bed geometry to 
be prismatic. In this work we make a step forward and 
investigate the suitability of existing dispersion coefficient 
formulas in 1-D modeling of solute transport under both 
uniform and non-uniform flow conditions. We restrict our 
attention to nonreactive solute transport without transient 
storage or exchange with hyporheic zones. We use the 1-D, 
open source MASCARET modeling tool, developed at 
EDF-R&D (Electricité De France-Recherche & 
Développement), for simulating flow and solute transport in 
open channel networks. The water quality component of 
this tool incorporates dispersion coefficient formulas 



proposed by Elder (1959), Fisher (1975), McQuivey and 
Keefer (1974), Magazine et al. (1988), Koussis and 
Rodriguez-Mirasol (1998), Seo and Cheong (1998), Deng 
et al. (2001) and Kashefipur and Falconer (2002). These 
formulas are used within the modeling tool to simulate 
solute transport in three laboratory experimental cases 
under uniform flow, and the transport of tritium along the 
Loire River (France) within the period July 1st 1999 to 
December 31th 1999. 

Formulation of the problem 

MASCARET has been extensively applied for simulating 
flow propagation in open channels through the framework 
of the EU-project CADAM (Goutal, 1999) and solute 
transport through the framework of the IAEA-project 
EMRAS (Goutal et al., 2008). 

Governing equations 

Assuming a hydrostatic pressure distribution and 
incompressible flow, the flow hydrodyamics is represented 
by the shallow water equations. Defining a Cartesian 
coordinate system (x,y,z), with the x-axis longitudinal, y-
axis transversal and the z-axis vertical upward, the system 
of equations is expressed and vector form as 
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where t = time, U = [A, Q]T = conserved variables, F(U) = 
[Q, Q2/A+gI1]

T = flux, S(x, U) = [ql, gA(S0-Se)+gI2]
T = 

source terms, A = wetted area, Q = flow discharge, ql = 
lateral flow rate per unit length, g = gravitational 
acceleration, S0 = longitudinal bed slope, Se = energy slop 
computed using Manning-Strickler’s equation, I1 = 
hydrostatic pres-sure force term (Eq. 2b) and I2 = a pressure 
force term that accounts for the forces exerted by the 
channel walls contractions and expansions (Eq.2c). 
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where Rh = hydraulic radius, h = flow depth, B = channel 
width, and h = vertical distance above the channel bottom.  

The advection-dispersion equation for solute transport reads 
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where C =solute concentration in the flow, and S = Clql = a 
source term of the solute with Cl denoting distributed lateral 
inlet solute concentration per unit length of channel. The 

dispersion coefficient DL is prescribed by one out of a range 
of formulas. Considerable uncertainty exists about its 
prescription, because DL is closely related to the hydraulics 
variables, characteristics of the fluid (e.g. viscosity), the 
sediment transport (e.g. suspension) as well as channel 
geometry (e.g. cross-sectional shape, planform curvature). 

Numerical scheme 

Equations 1 and 3 are solved sequentially at each time step. 
First the flow module is called to provide the time-
dependent hydraulic parameters, and then these variables 
are passed to the water quality module for the solute 
transport simulation. For a steady flow regime, Eq. (1) is 
solved using a finite difference scheme. For unsteady 
subcritical flows, the finite difference Preissmann scheme is 
employed. For a transient mixed flow regime, a first-order 
Godunov-type explicit scheme is used. 

The advection and dispersion terms are computed 
independently at each time step. The pure advection 
equation is solved by a first order finite volume scheme 
(FV1), which is of higher accuracy compared to finite 
difference and finite element methods that induce numerical 
diffusion and oscillatory behavior if advection becomes the 
dominant transport process. In the second step, an implicit 
scheme is applied to the pure dispersion equation. Because 
the numerical scheme is explicit, the time step should be 
limited by stability conditions. The usual Courant-
Friedrichs-Levy (CFL) condition is used, with the Courant 
number being limited to 0.5. For the solute concentration, 
the Dirichlet condition is used at the upstream boundary 
and Neumann condition (i.e. zero-gradient) is imposed at 
the downstream end. 

In this paper, we assess the performance of eight dispersion 
coefficient formulas proposed by Elder (1959) (noted hereafter 
E), Fisher (1975) (F), McQuivey and Keefer (1974) (1974) 
(M&K), Magazine et al. (1988) (M), Koussis and 
Rodriguez-Mirasol (1998) (K&R-M), Seo and Cheong 
(1998) (S&C), Deng et al. (2001) (D), and Kashefipur and 
Falconer (2002) (K&F) (Table 1). All formulas are a function 
of the cross-sectional mean parameters, which are readily 
obtained from the flow module of MASCARET. 

Solute transport in laboratory flumes 

Herein, we simulate three experimental laboratory cases 
undertaken by Zulfaquar (1997) at the Civil Engineering 
Department of Roorkee University, India (Table 2). The 
experiments covered a laboratory program wherein 
longitudinal dispersion of a conservative pollutant was 
investigated under uniform flow conditions. The flume was 
rectangular, 0.20 m width and 30 m length. The flow was 
maintained uniform by adjusting a tailgate downstream of 
the flume. Rhodamine WT was used as a tracer and injected  



Table 1: Review of selected longitudinal dispersion formulas 

Reference Formula Comments/conditions for calibration and 
verification 

Elder (1959) (E) DL = 5.93hV* 

Uniform flow in an infinitely wide channel 

Logarithmic vertical-velocity distributions 

Mixing coefficients for momentum and mass 
transfer are assumed identical 

Fisher (1975) (F) DL = 0.011(V/V*)
2(B/h)2hV* 

Validated using measurements in straight 
prismatic channels of various regular cross-
sectional shapes 

McQuivey and 
Keefer (1974) 

(M&K) 
DL = 0.058hV/Se 

Developed using the similarity between 1-D 
solute dispersion equation and flow propagation 
equation 

Calibrated using field data 

Flow regime with Froude number lower than 0.5 

Magazine et al. 
(1988) (M) 

DL = 75.86(0.4V/V*)
-1.632RhV 

Developed using dimensional analysis 

Calibrated on the basis of laboratory data sets 

Koussis and 
Rodriguez-Mirasol 
(1998) (K&R-M) 

DL = 0.6(B/h)2hV* 

Based on the theory and equation proposed by 
Fischer and von Karman’s defect law 

The value of 0.6 was found by applying a 
regression analysis on 16 field data. 

Seo and Cheong 
(1998) (S&C) 

DL = 5.92(V/V*)
1.43(B/h)0.62hV* 

Developed using dimensional analysis and the 
one-step Huber method 

Calibrated and validated using 59 data sets from 
26 streams in USA 

Deng et al. (2001) 
(D) 

DL = 0.15(V/V*)
2(B/h)1.67hV*/(8εt) 

with εt = 0.145+(V/V*)(B/h)1.38/3520 

This formula is a revised version of Fisher’s 
equation, integrating a new expression of the 

transverse mixing coefficient εt 

Valid for B/h>10 

Kashefipur and 
Falconer (2002) 

(K&F) 

DL = 10.612(V/V*)hV for B/h>50 

DL = [7.428+1.775(V/V*)
0.572(B/h)0.62](V/V*)hV 

for B/h<50 

Developed using dimensional analysis coupled 
with regression analysis 

Calibrated and validated using 81 data sets from 
30 streams in USA 

 

near the upstream end of the flume. Concentration curves 
were monitored at four locations.  

The Strickler coefficient for each run is calibrated using the 
flow depth, discharge and bed slope (Table 2). Zulfequar 
(1997) showed that mixing took place over the cross-
section at the first location where the concentration was 
monitored. Therefore, the measured concentration curve at 
this station is used as Dirichlet condition in the simulations; 

model-data are compared at the remaining locations. In the 
numerical runs, the time step is 0.05 s and the space step 
0.25 m. For the sake of brevity, we show the results 
obtained using the two formulas that give the best and 
worst predictions, respectively. 

Figure 1 depicts the measured and calculated concentrations 
at different stations. The performance of one formula 
depends on the conditions of the experiment. The E formula 



Table 2: Flow parameters in Zulfequar’s experiments 

Exp. Bed slope Discharge 
(m3/s) 

Flow depth 
(m) 

Velocity 
(m) 

Zul1 0.004546 0.01053 0.0700 0.7521 

Zul2 0.002470 0.01558 0.1243 0.6267 

Zul3 0.001480 0.01442 0.1388 0.5195 

 

yields the best model-data fit for Zul1 and Zul3 

experiments with a relative error of peak concentration ∆Cp 

smaller than 11% and a relative error of phase ∆Tp smaller 
than 7.5%(T denotes the arrival time of the peak). The F 
formula provides much better predictions for Zul2 

experiment with ∆Cp = 1.7% and ∆Tp = 7.2% (∆Cp = 4.8% 

and ∆Tp = 7.2% for the E formula). In general, E and F 
formulas rank as the best predictors for the entire range of 
experimental conditions, followed by K&R-M and M 
formulas. These four formulas produce the same trend as 
the observed data, but the peak concentration arrives 
systematically late compared to measurements (with a 

relative error of phase ∆Tp that does not exceed 8%).  

Equations providing the less satisfactory predictions at least 
for one experiment are M&K, S&C, D and K&F formulas 

with ∆Cp > 40%, systematically underpredicting 
concentrations. The arrival time of the peak obtained by 

M&K formula (∆Tp < 8.5%) and D formula (∆Tp < 3.6%) 
is, however, in good agreement with measurements; less 

satisfactory predictions are provided by S&C (∆Tp < 

16.3%) and K&F (∆Tp < 29%) formulas. 

 

 

 

Figure 1. Comparison between computed and measured 
concentrations at three locations. Symbols= measurements, 
lines= numerical predictions. (a) Zul1t; (b) Zul2; (b) Zul3 

Transport of tritium in the Middle Loire River 

Herein, we assess the performance of the formulas by 
simulating the transport of tritium in the Middle Loire 
River (France) under unsteady flow conditions during the 
period July 1st 1999 to December 31th 1999. 

The Loire River is the longest river in France with a length 
of 1012 km. Its drainage area represents 117,000 km2, that 
is one fifth of France’s area. The reach studied is the 
Middle Loire River, which extends from Belleville sur 
Loire to MontJean sur Loire, a linear of 350 km (Fig. 2). 
This reach has an average width and slope of about 800 m 
and 0.0004, respectively. The Middle Loire River is 
characterized by highly variable hydrologic regime: very 
low discharge during the summer and high magnitude flows 
in winter and spring. Four main tributary streams feed the 
river: Vienne, Indre and Cher on the left side and Maine on 
the right side. Four Nuclear Power Plants (NPP), Belleville, 
Saint Laurent, Dampierre and Chinon, are located along the 
Middle Loire River and one NPP, Civaux, is located along 
the Vienne River. These NPP generate low-activity 
radioactive liquid waste, including tritium, which is 
released into the river in a controlled way. 

# 

Nuclear Power Plants 

Main cities 

 

Figure 2. Location map showing the study reach 



The Middle Loire River is modeled as one reach with the 
tributaries Vienne, Indre, Cher and Maine as lateral 
inflows. The upstream flow rate hydrograph covers the 
period of July 1st December 31th 1999 with a time step of 
one hour. The downstream boundary condition is a water 
stage-flow rate curve. For the solute transport module, the 
tritium discharge recorded at Belleville NPP during the 
simulated period with a time step of one hour is specified as 
the upstream boundary. The tritium releases from 
Dampierre, Saint Laurent and Chinon NPP on the same 
period are introduced as lateral injections. The tritium 
discharge due to release from Civaux NPP is estimated by 
applying MASCARET to the Vienne River between Civaux 
NPP and Vienne-Loire junction. 

Calibration of the hydraulic module is carried out using 
measured water level measurements collected along the 
Middle Loire River at low, medium and high flow 
discharges. The Strickler coefficient, Ks, is set at 30 m-1/3/s. 
Monitoring of tritium concentration was performed during 
1999 at Angers city and used herein for model-data 
comparison. Finally, the time step in all the numerical runs 
is 10 s and the space step is 200 m on average.  

Figure 3 shows the comparison between the numerical 
result and measurements at Angers city. The most reliable 
predictions are provided by S&J formula, which reproduces 
the magnitude and time-evolution of the concentrations 
reasonably well; the average relative deviation between the 
computed and measured values is approximately 43%. This 
formula is followed by D, K&F formulas with relative 
errors of 54% and 78%, respectively. The E, M&k and M 
formulas yield similar predictions, but with much higher 
relative error (116%) The F and K&R-M formulas display a 
poor performance; the relative error is particularly high 
(176%). It should be noted that the performance of the 
formulas in this case is different from that for the 
experimental cases of Zulfakar (1997). 

 
Figure 3: Comparison of model predicted and field 
observed tritium concentrations at Angers City 

Discussion 

Previous results showed that for each configuration, better 
predictions were obtained using a particular formula. 
However, some discrepancies between measurements and 
predictions still remain; the best formula does not capture 
the whole spatial and time variability in concentrations. 
Apart from the measurements uncertainty, other plausible 
sources that may impact the numerical predictions include 
the Strickler coefficient, the space step, and the numerical 
scheme used for resolving the solute transport equation. To 
get an insight on the effect of these parameters, additional 
numerical runs were performed using the Middle Loire case 
with the S&C formula as baseline run. Performing runs 
with as pace step of respectively 100 m and 400 m instead 
of 200 m shows that the predictions are not influenced by 
he space step; the use of 100 m does not lead to an 
improvement of the predictions. Regarding the computation 
of the energy dissipation, we further test a Strickler 
coefficient Ks of 25 m-1/3/s. The overall model-data fit is 
slightly affected (Fig 4a); Ks= 30 m-1/3/s provides the best 
model-data fit. Finally, The numerical treatment of the 
advection term of the solute transport equation represents 
the most challenging step of the solution of the advection–
diffusion equation. Hence, the sensitivity of the numerical 
predictions to numerical scheme is evaluated using two 
additional methods: 2nd order finite volume scheme (FV2) 
with a superbee limiter function, and method of 
characteristics (Char.) applied to the conservative form of 
the advection term. As shown in Fig 4b, the first order 
finite scheme (FV1) and characteristics method yield 
similar predictions, slightly different from those given by 
the 2nd order finite volume scheme (FV2). 

 



 
Figure 4: Sensitivity of predictions to changes in (a) 
Strickler’s coefficient, and (b) numerical scheme 

Conclusions 

The performance of dispersion coefficient formulas was 
assessed using a 1-D numerical model of flow and solute 
transport in open channels. The numerical modeling tool, 
called MASCARET (open source package, 
http://innovation.edf.com/recherche-et-communaute-
scientifique/logiciels/code-mascaret-41197.html), relies on 
the 1-D shallow water equations and the convection-
dispersion equation for the solute transport. We tested eight 
formulas proposed by Elder (1959), Fisher (1975), 
McQuivey and Keefer (1974), Magazine et al. (1988), 
Koussis and Rodriguez-Mirasol (1998), Seo and Cheong 
(1998), Deng et al. (2001) and Kashefipur and Falconer 
(2002). Results indicate that the model can predict solute 
transport in open channels satisfactorily, provided the 
dispersion coefficient formula is well selected. 

Simulating experimental cases of solute transport under 
steady flow, results show that for each case, better 
predictions are obtained using a particular formula. Elder 
(1959) and Fisher (1975) formulas rank as the best 
predictors for the entire range of conditions of the 
experiments. In contrast, simulating the transport of tritium 
in the Middle Loire River over the period of July 1st to 
December 31th 1999 with highly variable flows, the formula 
proposed by Seo and Cheong (1998) yields the best 
predictions. Fisher (1975) and Koussis and Rodriguez-
Mirasol (1998) formulas provide the less reliable results.  

This work is a first step toward a consistent validation of 
existing longitudinal dispersion formulas used in 1-D 
numerical models. Validation of the formulas should be 
extended to other cases with complex flow regime, cross-
sectional geometry (including floodplains, transient storage, 
hyporheic zones) and reactive pollutants. Nevertheless, the 
present results highlight how the numerical predictions 
depend on the formula selected for computing the 
dispersion coefficient, and more importantly that no 

“universal” formula can be retained, which have 
implications for river engineering practice. 
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