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Abstract 

According to the definitions proposed by Takahashi, debris 

flows are extraordinary mass transport phenomena driven 

by gravity. To investigate the basic physics of debris flows, 

it is very useful to analyze the flow of a mixture of 

identical, spherical particles saturated by water down a 

steep channel in steady flow condition. 

Across the depth we can observed: an external layer, near to 

the free surface, dominated by nearly instantaneous 

contacts among the particles (collisional regime), an 

internal region dominated by prolonged contacts among the 

particles (frictional regime) and a static bed in which the 

particles are immobile. Armanini et al. (2009) analyzed 

different rheological mechanisms inside the flow, focusing 

on the coexistence of frictional and collisional regimes, on 

the stress transmission inside the flow and on particles 

kinematics. In particular, it was observed that granular 

flows may show locally a typical intermittence of the flow 

regime, switching alternatively from frictional to 

collisional. In general, the tensor of the granular phase can 

be assumed to be the composition of two tensors: collg

ijT   

represents the stresses exchanged with a collisional 

mechanism and fricg

ijT   represents the stresses expressed by 

a frictional mechanism. While the rheology of the 

collisional regimes is well described by the dense gas 

analogy (kinetic theory), a persuasive theoretical 

description of the frictional regime does not yet exist. A 

Coulombian scheme is often assumed, but this hypothesis is 

rather limitative because it requires a constant concentration 

or a distribution of particles concentration known a priori. 

An interesting scheme of this kind was recently proposed 

by GDR-MiDi (2004), but this model does not contain a 

suitable formulation for the granular pressure (equation of 

state of the mixture). Following Armanini (2010), we 

propose a reinterpretation of the model, as weighted 

average of a pure Coulombian stress (dependent on the 

static friction angle at the static bed level) and of a dynamic 

stress, represented by a dynamic friction angle. Besides, a 

state relation is introduced for the granular pressure and the 

dynamic friction angle is derived from the kinetic theory. 

The proposed relations are finally compared with the 

experimental data. 

Rheology of the granular flows 

A proper and realistic approach to the problem of the debris 

flows consists of treated debris flows as a two-phase fluids. 

One is the interstitial fluid, that follows the fluid mechanic 

laws with an appropriate rheology, and the other one is the 

solid phase, which consists of a granular fluid provided also 

with a specific rheology. If we do not consider the presence 

of cohesive (clayish) particles in the flow, the solid phase is 

composed by particles with size bigger than fine sand and 

can be treated as a granular fluid. Under the hypothesis that 

the particles dimensions are much smaller than the control 

volume and that this volume is infinitesimal, the particles 

could be liken to a fluid with an own rheological law, 

which describes the interaction mechanism among the 

grains.  

The mechanic of these gravitational granular flows is 

represented by the equations of the conservation of the 

mass and the momentum, that are [25],[18]: 
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With gfm ,= where: f  represents the fluid phase and g  

the granular phase. In these equations 
m  is the density of 

the phases, so: for the fluid phase 
wf c  )1(  , where c  

is the particle concentration and 
w  is the density of the 

interstitial liquid, and for the granular phase 
sg c  , 

where 
s  is the material density of the particle; m

iu  
are the 

components of the velocity of both phases; m

iF are the 

components of the force per unit volume that represents the 

interaction between solid and liquid phase; m

ijT  
are the 

components of the stress tensor of phases; m

ig are the 

components of the force of mass per unit volume that acts 

on each phase. Because the flow is governed by gravity, 

this force coincides with the gravity acceleration and so
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 , where z  represents the vertical 

upward direction. 

2D uniform flow of liquid-granular mixture 

In the following, we will consider a uniform flow in the 

longitudinal direction
ix . By summing term by term the 

momentum equations of the two phases, the interaction 

forces, m

iF , will be eliminated. Moreover, if the particles 

concentration is high enough, it is possible to neglect the 

term relative to the stresses internal to the fluid phase, f

i , 

and in the end to write:  
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 where 
wws  )/(=   is the submerged relative density of 

the particles. 

Rheology of the granular phase 

The rheology of the granular phase can be outlined by two 

modalities of interaction between particles: almost 

instantaneous contacts and long lasting contacts. Two 

regimes correspond to this two interactions, which are 

termed respectively collisional regime, represented by the 

stresses tensor collg

ijT  , and frictional regime, represented by 

fricg

ijT   [16], [7], [13], [10]. It is generally assumed [16], 

[17], [21] that the two regimes are stratified and so 

physically separated: the collisional regime in the upper 

layer of the flow and the frictional regime in the lower 

layer, where the particle concentration is bigger. On the 

contrary, recent experimental investigations [3] show that 

the two regimes are alternated in space and time through a 

intermittent mechanism, similar to the one that exists 

between the viscous sub-layer and the turbulent sub-layer in 

a wall boundary layer. Generally under both hypotheses, it 

is possible to assume that:  

fricg

ij

collg

ij

g

ij TTT  =                                             (3) 

The collisional part of the granular tensor is well described 

by the kinetic theory of granular flows [16], [14], [19], [15], 

[20], derived by analogy with the kinetic theory of gases, 

according to which the flow of the particles is similar to the 

flow of the molecules of an ideal gas. The temperature is 

replaced by the granular temperature: /3=  p

i

p

i uu , in 

which the symbol   represents the average done on all the 

particles that are in a control volume, small enough 

compared to the dimensions of the boundary and large 

enough compared to the particle size. According to this 

theory, the rheological law represents the collisional regime 

is expressed as [8]:  
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where 
collgT 

 is the collisional component of the stresses 

tensor of the granular phase ; 
ij Kronecker's delta. The 

granular temperature represents the kinetic energy of the 

collisional flow of the particles, and its behavior is 

represented by particle kinetic energy balance:  
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The expressions of the coefficients are reported in the 

following table 1: 

 

Table 1: Expression of the coefficients of the kinetic theory.  
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The system of equations (4) - (5) describes the behavior of 

the collisional scheme through a fairly convincing 

theoretical approach, which gave good results in many 

experimental situations.  

On the contrary, the problem of the rheology of the 

frictional regime is still open, and validated general 

formulations do not exist yet. In this condition the 

collisions among particles are not instantaneous, but they 

become long lasting and they could involve more particles 

at the same time. In granular flows of heavy materials 

governed by gravity, under the material that is moving, if 

the boundary conditions allow it, it is possible to find an 

immobile layer, because the frictional forces among grains 

are so high that do not permit any flow. In uniform flow, 



this condition is identified as an equilibrium condition 

between the granular flow and the immobile bed [4], 

because there is no net exchange of material between the 

flow and the bed. Also experiments have shown that the 

system becomes increasingly frictional [3] while 

approaching the immobile bed, and on this frontier a 

Coulombian condition is established. Recently the GDR-

MiDi group [9], [10], [11] proposed a rheological model 

that combines the Coulombian, rate independent scheme 

with a rate dependent model. This approach was originally 

formulated for granular dry 2D flows. It is based on the 

observation, derived by molecular dynamics simulations, 

that the ratio between the shear stress and the pressure is a 

function of a single dimensionless parameter I , termed 

inertial number by Da Cruz et al. [9], defined as:  

s

g

p pdI  //                                         (16) 

 where   is the strain rate of the granular flow. The inertial 

number represents the rate between two temporal scales [9]: 

a micro scale 
s

g

p pd //  that is the time in which a particle 

falls in an empty space with dimension of the particle pd

by the action of a pressure
gp ; and a macro scale 

proportional to the local strain rate  . The GDR-MiDi 

rheological model can be written as:  

0
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0I  is an experimental constant less then 1. One of the 

main limit of the MiDi formulation is that the state equation 

was originally not provided. Later a linear relationship 

between particle concentration c  and inertial parameter 

was suggested [11]. 

In this paper we have tried to overcome these limits. The 

first suggestion [2] consists in the introduction of the 

kinetic theory formulation in the rheological relationship 

(17). It is possible to observe in fact that eq (17), 

considering the granular shear stress 
g

ij  as a linear 

combination of a Coulombian stress p
g
 tan φ

fric
, with 

constant friction angle typical of the frictional regime, and a 

analogous Coulombian stress, in which the friction angle is 

depending on the shear rate trough the inertial number that 

in this case is used as weighting factor:  

IpIpII collgfricgg

ij  tantan=)( 0'0   (18) 

The above equation divided by )( IIo   corresponds to 

equation (17). The last term collg IIIp tan)( 0   can be 

replaced by the corrisponding expression derived by the 

kinetic theory:  
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In addition to the rheologial relationship (19) it is necessary 

to specify also the equation of state, that is the relationship 

between pressur and granular temperature. A suitable 

relationship of this type was proposed in [2], in analogy 

with equation (19). This formulation was sligtly modified 

in [1] and numerically checked. Becouse the results of the 

system did not reproduce in a satisfory way the 

experimental data, in this paper we have develop the 

following new formulation : 




1

0

0= f
II

I
pp s

gg                                 (20) 

The mean difference between this relation and the relation 

proposed in [1] is that here the frictional component in the 

equation of state depends directly on the local value of the 

granular pressure. 

It should be noted that in the equations (19) and (20), when 

the MiDi inertial number I  tends to infinite (pure 

collisional regime), the granular pressure and the shear 

stress tend to the kinetic one. On the contrary if the inertial 

number tends to 0, the shear stress will tend to become 

purely Coulombian and the kinetic component of the 

pressure vanish.  

The system formed by eqs. (1), (2), (5), (19), (20) is well 

posed and can be numerically integrated provided that the 

proper boundary conditions are assigned. 

 

 Numerical Method 

The governing equations of the proposed model can be 

written under the general form of a nonlinear system of 

differential algebraic equations (DAE) as follows:  

,=(0)),),((=))(( 0QQQfQE ttt
dt

d

  

 (21) 

 

where n

n tqtqtqt R))(),...(),((=)(= 21QQ  is the 

unknown state vector, and 
nR)(QE  and 

nt R),(Qf  

are two nonlinear functions of the state vector Q  and the 

independent variable t . 
0Q  is the known initial condition 

of the initial value problem (21). For its numerical solution 

we use a Galerkin method, based on the following 

expression for the unknown solution vector:  
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 where )(tl  represent piecewise polynomial basis 

functions of maximum degree N  and 
lQ̂  are the unknown 



coefficients of the numerical solution. In the above relation 

we have used classical tensor notation with the Einstein 

summation convention over two equal indices. Equation 

(22) is valid for one timestep nn ttt  1= , where nt  is the 

current solution time. To obtain the unknown coefficients 

lQ̂ , the DAE is multiplied with test functions )(tk  that 

are identical with the basis functions (classical Galerkin 

approach), and is subsequently integrated over a time step 

to obtain the following weak formulation of the DAE:  
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 For the test and basis functions )(tk  we choose the 

Lagrange interpolation polynomials that pass through the 

1N  equidistant Newton-Cotes quadrature points, 

tNltt nn

l  1)1)/((= , hence we use a nodal basis. 

Therefore, the numerical approximations of the nonlinear 

functions E  and f  are simply given by  
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 due to the choice of the nodal basis. The weak formulation 

(23) for the unknowns 
lQ̂  therefore becomes  
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 or, in a more compact matrix-vector notation:  
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 (27) 

 with )(=ˆ
0

ntQQ , and the mass matrix 
klM  and the 

stiffness matrix 
klK , which can both be precomputed once 

and for all. The resulting nonlinear algebraic equation 

system (27) of dimension 1)( Nn  is solved by a standard 

Newton method for systems with a line-search-type 

globalization strategy. The initial guess is provided using a 

second order Crank-Nicholson-type scheme for the DAE 

(21) to initialize the nodal values 
lQ̂  at all time levels n

lt :  
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 Equation (28) is again a nonlinear algebraic equation 

system, however, of smaller dimension n , which is again 

solved by a globally convergent Newton method. The 

proposed Galerkin-type method (27) is theoretically of 

arbitrary order of accuracy in the independent variable t  

and can be used inside a classical shooting method for 

solving DAE boundary value problems of the type 

,=)(,=)(),),((=))(( 1100 QQQQ ttttt
dt

d
QfQE (29) 

 where 
0Q  and 1Q  are the known boundary values of the 

boundary value problem (BVP) (29). 

 

 Numerical Results  

In the next figures, we have reported a comparison between 

the prediction of the model and some experimental results 

obtained by Armanini et al. [2]. The figures represent the 

profiles in direction normal to bed of the most important 

physical variables. 

It should be stressed, however, that the only parameter of 

the model that needs to be calibrated is
oI . We have 

assumed 0.345=oI .  This model catchs better than the 

model of the system [1] the experimental data, but in the 

present case the parameter 
oI  much greater than the one 

assumed in [1]. 

All the variable are made properly dimensionless, and in 

particular the distance from the static bed is expressed by 

hx /= 2 , where h  is the flow depth. The system is solved 

according the following boundary conditions assigned at 

the boundary of the static bed 0= : 

Table  2: The boundary conditions assigned at the static 

bed.  

gu  1E-07 

c  
*0.999c  

  1E-06 

ddu g /  0.07 

dd /  1E-08 

 

Figures 1, 2 and 3 show the distributions of the 

dimensionless granular velocity, granular concentration and 

temperature respectively. 

The model captures the tendency of the experimental data, 

and the results are reasonably comparable to them just in 

the proximity of the static bed, that is where the frictional 

contact are dominant. Near the free surface the results of 

the model tend to deviate systematically respect to 

experimental data.  

Similar arguments can be made regarding the distributions 

of the shear stress and of the pressure (Figures 4 and 5). For 

these parameters the model seems to catch better the 

experiments, but this is just an apparent agreement, because 

the relative error on the contrary is definitely bigger. 



Figure  1: Velocity profile, comparison between results of 

the numerical simulation and experimental data. 

   

Figure2: Particle concentration profile, comparison between 

results of the numerical simulation and experimental data 

 

   
Figure3: Granular temperature profile, comparison between 

results of the numerical simulation and experimental data. 

 

Figure 4: Granular shear stress profile ,comparison between 

results of the numerical simulation and experimental data.   

Figure 5: Granular pressure profile, comparison between 

results of the numerical simulation and experimental data.   

   

 
Figure  6: Distributions of the collisional and frictional 

components of the granular shear stress. Comparison 

between results of the numerical simulation and 

experimental data. 

 

 
   

Figure  7: Distributions of the collisional and frictional 

components of the granular pressure. Comparison between 

results of the numerical simulation and experimental data. 

   

  

It must be stressed, however, than we cannot conclude that 

the frictional model is correct while the collisional one is 

not. The collisional model in fact is strongly non linear and 

it is very sensitive to boundary conditions, which are 

instead determined by the frictional regime. Some 

preliminary results suggest that we have to reconsider the 
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frictional model, as it is possible to argue also from the 

Figures 6 and 7 in which we have reported the distribution 

of the frictional and collisional components of the shear 

stress and of the pressure. The maximum deviations are in 

the area next to the static bed, where the frictional regime is 

dominant, specially for the shear stresses. A similar 

behavior, but less pronounced, is evident in the distribution 

of the components of the granular pressure. 

Conclusion 

In the paper we have presented a rheological model relative 

to a granular, submerged flow driven by gravity. Respect to 

the previous schemes, the model considers the simultaneous 

presence in the flow of the frictional and of the collisional 

regimes. The model can be considered as an evolution of 

the GDR-MiDi [11] model and the one proposed in [1].  

The results of the model catch in a reasonable way the trend 

of the experimental data, even if the quantitative 

comparison cannot be considered satisfactory. 

 A reconsideration of the GDR-MiDi for the collisional 

regime will be the next step to do.  
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