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Abstract 

This paper presents an experimental study of the interaction 

between a supercritical, uniform turbulent, open channel 

flow and a fixed, emerged rectangular obstacle. The two 

main structures located upstream from the obstacle in such 

flows are a detached hydraulic jump and a horseshoe 

vortex. Their positions are assessed using photographs and 

oil flow visualizations. A laser grid projection technique is 

developed to provide water depth maps around the obstacle.  

This obstacle can be on contact with the channel bed or 

slightly above. It allows studying the influences on the flow 

of both the obstacle width and the gap below the obstacle. 

Compared to existing literature, present work assesses the 

existence of a new flow type – the so-called “coincident” 

type – where the toes of the hydraulic jump and of the 

horseshoe vortex are located at the same distance from the 

obstacle. 

 

Introduction 

This paper goes on preceding works aiming to characterize 

the interaction of a uniform supercritical open channel flow 

with an emerged obstacle. 

The interaction of a subcritical open channel flow with an 

impervious emerging obstacle standing on a fixed bed has 

been deeply investigated in the literature. As the inflow 

approaches the obstacle, the adverse pressure gradient 

between the upstream flow and the flow at the upstream 

face of the obstacle leads to a boundary layer separation in 

the near-bottom region. This separation gives birth to a 

horseshoe vortex (HSV) on the upstream side of the 

obstacle (Dargahi (1989) or Sahin et al., 2007). Authors 

such as Graf and Yulistiyanto (1998), Ahmed and 

Rajaratnam (1998), Sadeque et al. (2008) or Roulund et al. 

(2005) observe that upstream from the horseshoe vortex, 

the near-bed streamwise velocity is directed towards the 

obstacle, with a negative shear stress and that reverse 

streamwise velocities with positive shear stress are 

measured within the horseshoe vortex near the bed. The 

location where the bed shear stress reaches a zero 

magnitude corresponds to the separation point of the 

boundary layer and thus to the upstream limit of the 

horseshoe vortex. 

Works related to the interaction between a supercritical 

open channel inflow and an obstacle are limited. Jiang and 

Smith (2000) report that a stationary shock wave takes 

place in front of the obstacle. The shape of the shock is a 

bow wave near the centerline and a V-wave further away. 

Near the centerline, the shock is perpendicular to the flow 

axis and past the jump the flow becomes subcritical and is 

deflected away from the centerline to pass on the sides of 

the obstacle. Further from the centerline, the supercritical 

inflow experiences an oblique jump at the trailing edge of 

the V-wave and the flow downstream from the jump 

remains supercritical with a deflected flow direction as 

predicted by Ippen (1951). Such flow pattern presents 

strong analogies with works performed on detached shock 

waves upstream bluff bodies which have been undertaken 

for decades, essentially for aerodynamic purposes (see 

Shapiro, 1953). More recently, Mignot and Rivière (2010) 

and Mignot et al. (2011) have investigated the interaction 

between a supercritical open channel inflow and a 

rectangular shaped obstacle focusing particularly on the 

detachment length of the hydraulic jump. These works 

reveal that depending on the Reynolds number of the 

inflow, two flow types can be observed, which are defined 

by the ratio labeled “Λ” (with Λ=J/H) between the 

detachment length of the hydraulic jump J and that of the 

horseshoe vortex H. For a turbulent inflow, the flow type is 

called “breaking”: the detachment length of the hydraulic 

jump exceeds the detachment length of the horseshoe 

vortex (Λ>1). The flow first reaches a detached, bow-like, 

hydraulic jump, passes to a subcritical regime and then 

reaches the horseshoe vortex which acts as a positive step, 

leading to a sudden increase of the water depth (see Figure 

1). Finally the flow passes around the obstacle. The aim of 

the present paper is to investigate the influence of a gap 

below the obstacle and the influence of upstream 

disturbances on the behavior of the two structures, 

hydraulic jump and horseshoe vortex in a breaking type 

flow. 
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Figure 1: Side view in the symmetry plane of the flow 

In a first step, we experimentally study the influence of the 

gap on the detachment lengths. In a second step, we 

investigate the effect of upstream flow disturbances that 

radically change the interaction between the horseshoe 

vortex and the jump.  

 

Experiments 

Experimental set-up 

 
Figure 2: Visualization of hydraulic jump and horseshoe 

vortex around the obstacle, viewed from below (from 

Mignot and Rivière, 2010). 

 

The experimental set up at LMFA in Lyon is described in 

Mignot and Rivière (2010). The experiments are performed 

in a smooth, transparent, L=118 cm long, and b=74.5 cm 

wide water table with adjustable slope S0. The water passes 

through an upstream stilling basin, perforated plates, a 

grillage buffer and reaches the water table through a 

vertical, rounded step. In absence of lateral constriction, no 

shock-wave develop at the free surface and the flow rapidly 

reaches the uniform flow depth h1 (see fig.1) defined by the 

combination of slope and discharge. Small residual surface 

waves, characteristic of supercritical flows, can be 

suppressed by modifying the surface tension with no effect 

on the results (Mignot and Rivière, 2010). h1 is measured 

manually using a digital limnimeter (uncertainty of 0.2 

mm). Discharge Q is measured by an electromagnetic 

flowmeter (uncertainty 0.01 L/s). The emerging obstacle is 

placed on the water table about 90 cm downstream from the 

stilling basin. The test section thus starts 50 cm downstream 

from the stilling basin, which is more than 100 times h1. 

This is more than the ratio required to obtain a fully 

developed flow according to observations with comparable 

Reynolds numbers (Ranga Raju et al., 2000; Kirkgoz and 

Ardiçhoglu, 1997). The obstacle is made of several 2 or 10 

mm thick individual squared plastic plates maintained 

together, enabling a rapid and precise modification of the 

obstacle width R. A 14 mm opening camera is fixed to the 

water table support, under the water-table plane, just below 

the obstacle. The horseshoe vortex is visualized from the 

bottom by releasing gouache paint upstream from the 

obstacle (oil flow visualization); the toe of the hydraulic 

jump is visualized by the white, bright line corresponding 

to the abrupt change of the water depth or free-surface 

gradient (fig.2).  

Laser grid technique for the water depth measurements  

In order to measure the water depth around the obstacle, a 

laser grid technique has been developed. We project points 

which allow easier image processing than fringe patterns. A 

laser is fitted with special optical lenses that split the beam 

into 11x11 narrow beams tilted up to 28° relatively to the 

main laser axis. The laser is placed perpendicularly to the 

water table above the flow and allows to project a grid of N 

= 11 x 11 regularly spaced points on a 200 mm x 200 mm 

wide zone on the water flow which has been made opaque 

by diluting small amount of white dye in the stilling tank. A 

camera is positioned side-looking relatively to the water 

table, with its axis perpendicular to the streamwise axis but 

inclined in regard to the horizontal (Fig 3). The image 

obtained with no water flow (h=0) is called the reference 

image (labeled “0”) and contains N points Mj
0
 (j=1…N) 

with coordinates in the camera image frame (labeled “i”)  

(xi(j,0), yi(j,0)). In presence of a water flow, the intersection 

Pj
h
 of each laser beam j with the water surface of local 

elevation h(x,y) has coordinates (x,y,h) in the water table 

frame. Each luminous point Pj
h
 is viewed on the camera 

image as a 30 pixels wide spot of center Mj
h
 with 

coordinates (xi(j,h), yi(j,h)) in the image frame (sensor plane 

on Fig 3). 

 

 

 

 

 

 

 

Figure 3: (left) Set-up (right) Illustration of the deviation of 

the image point for a water depth h, viewed in the plane 

containing the laser beam j of focal point Fj
L
 and the 

camera focal point F
C
. 

 

The principle of the method relies on two basic optical 

effects. Firstly, on the camera image any image point Mj
h
 

exhibits a deviation [xi(j,h)-xi(j,0)] (or [yi(j,h)-yi(j,0)]) 
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which is proportional to the local water depth h(x,y) (fig. 3) 

with a coefficient j that depends on the laser beam j 

attached to the point Pj
h
. Using this property, the N 

coefficients j are inferred from a calibration procedure 

performed by projecting the laser on calibration plates of 

controlled thickness. Secondly, due to the camera angle and 

the large depth in field used, length distortion has to be 

considered: for a regular laser grid, the further two points 

are from the camera focal point, the closer to each other 

they appear on the photo. This effect depends on the surface 

elevation. A second calibration procedure is thus needed 

(without laser) to establish the relationship between the 

(x,y) coordinates of the real intersection point of laser beam 

and free-surface and the image in-plane coordinates. We 

use a target (made of 19x27 points) drawn on four 

calibration plates, made of regularly spaced points of 

known actual coordinates (x,y,h). Image processing and 

linear interpolation are applied to determine a projection 

mapping (xi(h), yi (h), h) → (x,y,h). After calibration 

(determination of the j and of the projection mapping), for 

any image the measurement procedure is the following: i) 

the image coordinates (xi, yi) of the centers of the N image 

spots Mj
h
 are determined by image processing, ii) a laser 

beam j is attributed to each image point Mj
h
, which is done 

by a semi-automated image processing including particle 

tracking between the image and the reference image, iii) the 

water depth is calculated using h(xi(j),yi(j)) = [xi(j)-xi(j,0)] / 

j, iv ) knowing h for each Mj
h
, the real in-plane coordinates 

(x,y) of the water surface/laser intersections Pj
h
  are inferred 

from the projection mapping (xi(h), yi(h), h) →(x,y,h), v) the 

water depth map is deduced from linear interpolation of the 

actual coordinates (x,y,h) of the N measured points. 

Dimensional analysis  

The dimensional analysis, adapted from Mignot and Rivière 

(2010), defines the flow and obstacle parameters that affect 

the detachment length Jresp.H of the hydraulic jump 

(resp. of the horseshoe vortex). Considering additionally 

that the Morton number characterizing the interface 

between water and air is constant, the dimensional analysis 

can be rewritten:  

1

1 1 1

,Re, ,
R e

f Fr
h h h

  
  

 
 (1) 

with Fr1=U1/(gh1)
1/2

 the inflow Froude number, 

Re=4h1U1/  the inflow Reynolds number, U1 the inflow 

mean velocity (U1=Q/bh1), h1 the uniform inflow water 

depth, R the width of the obstacle and e the gap. Mignot 

and Rivière (2010) showed that – at least in the range of the 

present experiments – the Reynolds number has no 

influence on /h1 when the incoming flow is turbulent.  

 

  
Figure 4: Water depth upstream from the obstacle 

(Breaking type; R=100 mm; e=0)  

 

  
Figure 5: Standard deviation of water depth upstream from 

the obstacle (Breaking type; R=100 mm; e=0) 

 

Their work also assessed the influence of the Froude 

number, which increase tends to decrease the detachment 

length H of the horseshoe vortex, so as, but to a lesser 

extent, the detachment length J of the hydraulic jump. As 

we focus here on the effect of the gap, in the experiments, 

the only varying parameters are e but also R by sake of 

comparison.  

Experimental Results 

Experimental conditions are: water depth h1=5.15 mm, flow 

rate Q=2.05L/s, slope S0=2.4%, so Re=11000 and Fr1=2.38. 

Mapping of the water depth and its variations  

The water depth map (fig. 4) provides information on the 

behaviour of the whole free surface. It confirms the location 

of the toe of the jump measured from photographs (see 

Experimental set-up section) by Mignot and Rivière (2010).  

 

 

 

 

 

 

 

 

 

Figure 6: Influence of the obstacle length R on the 

detachment lengths (e=0) 
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It shows that the flow depth increases continuously from 

the toe of the jump to the stagnation point on the upstream 

face of the obstacle. The standard deviation map (fig.5) 

shows that strong free surface oscillations are located at the 

toe of the jump; they are far weaker near the stagnation 

point.  

 

Influence of the obstacle length R 

The influence of varying R with e=0 is sketched on figure 

6. It confirms Mignot and Rivière (2010) results: increasing 

R causes an increase of the hydraulic jump detachment J 

but has a weak influence on the horseshoe vortex HSV 

(H). This can be explained by considering the mass 

conservation from the supercritical flow entering the jump 

to the critical flow outing from the subcritical zone between 

the shock and the body (fig.7). Such a mass conservation 

was derived first by Moeckel (1949) for compressible, 

supersonic flows around bluff bodies. Adapted by using 

equations for free-surface flows, it provides an analytical 

model predicting the location of the hydraulic jump 

(Mignot et al., 2011). This model is accurate without 

horseshoe vortex (comparison with CFD results with slip 

condition on the bed) ; its predictions do not match with 

experiments as the vortex modifies both the location and 

shape of the effective critical section and the specific 

critical head, and thus affects the validity of the derivation 

involving Lc. Nevertheless, it is efficient in explaining how 

increasing R increases the discharge through the jump and 

thus causes an increase of Lc and thus of J. As for the 

horseshoe vortex detachment length H, it is driven by the 

balance between the adverse pressure gradient caused by 

the stagnation on the obstacle and the momentum of the 

incoming flow: this balance, so as H, is not affected by the 

obstacle width (fig.6). 

 
 Figure 7: Flow through the jump and around the obstacle 

(top view) 

 

Influence of the gap e 

The influence of varying the gap e for R=76 mm is 

sketched on figure 8. Its increase shortens the jump  

 

 

 

 

 

 

 

 

 

Figure 8: Influence of the gap e on the detachment lengths 

(R=76 mm) 

 

detachment length J. Indeed, part of the incoming 

discharge flows below the obstacle. For a given R, this 

shortens Lc and thus J. Increasing e also shortens the 

horseshoe vortex detachment H. Indeed, part of the flow 

reaccelerates to pass through the gap. It blows the boundary 

layer that reattaches below the obstacle; this was observed 

thanks to the oil (gouache) flow visualizations. When e and  

the flow discharge passing below the obstacle are high 

enough, the blowing of the boundary layer can even 

suppress the flow separation (e > 2mm i.e. e/h1>0.4 on 

fig.8) and the horseshoe vortex. The influence of e and R 

being assessed in turbulent, supercritical, uniform flows, 

the work is now extended to a new flow configuration.  

New flow type occurring in disturbed flows 

In previous works (Mignot and Rivière, 2010), two flow 

patterns were identified. The first one, the so-called 

“separation type”, occurs when the incoming supercritical 

flow is laminar; the toe of the horseshoe vortex is located 

upstream from the hydraulic jump (Λ<1). The second one, 

the so-called “breaking type” occurs when the incoming 

supercritical flow is turbulent; the toe of the hydraulic jump 

is then located upstream from the boundary layer separation 

(Λ>1). A third type can be obtained when an additional 

disturbance is applied to the incoming turbulent flow, 

upstream from the obstacle. Due to the respective locations 

of the toe of the horseshoe vortex and hydraulic jump (Λ=1, 

see next section), this kind of flow will be called 

“coincident type” in the sequel. In the present experiments, 

this disturbance was obtained thanks to Von Karmann 

streets produced by a point gauge (diameter 2 mm) stuck 

into the flow 40 cm upstream from the obstacle. 

Nevertheless, the same behavior was obtained when 

introducing other small bodies or when removing the 

stilling device (grillage buffer) at the water table inlet. 

Flow features corresponding to the “coincident type” 

The main characteristic of this flow type is indeed the 

coincident locations of the toe of the hydraulic jump and 

the horseshoe vortex i.e.  J  H or Λ=1. Oil (gouache) 

flow visualizations show that the horseshoe vortex is  
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Figure 9: Flow features in coincident (a) and in breaking (b) 

types 

 

always composed of one cell, plus the small secondary one 

at the obstacle/bed corner. Finally, the flow exhibits a 

characteristic shape of the free surface with a first raise 

corresponding to the hydraulic jump, a depression and then 

a second raise corresponding to the stagnation point (fig. 9-

a). Indeed, the subcritical flow downstream the jump 

experiences an adverse slope caused by the presence of the 

horseshoe vortex; the water depth thus decreases before it 

increases again due to the influence of the stagnation point. 

In the “breaking type” (fig. 9-b), the flow is already 

influenced by the obstacle when it reaches the adverse 

slope; the water depth increases thus continuously 

downstream the jump. 

 

Water depth field and its variations  

Experimental conditions are the same as before (water 

depth h1=5.15 mm, flow rate Q=2.05L/s, slope S0=2.4%, 

resulting in Re=11007 and Fr1=2.38). The water depth map 

(figure 10, which should be compared to figure 4) clearly 

shows the presence of two local maxima, the first one 

corresponding to the hydraulic jump, the second one to the 

stagnation point.  
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Figure 10: Water depths upstream from the obstacle 

(Coincident type; R=100 mm; e=0) 
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Figure 11: Standard deviation of water depths upstream 

from the obstacle (Coincident type; R=100 mm; e=0) 

 

The standard deviation map (fig. 11) is more surprising. 

Indeed, the maximum standard deviation is located neither 

at the toe of the hydraulic jump, as it was for the breaking 

type (see fig. 5), nor at the stagnation point. It is located at 

the local minimum of the water depth. 

 

Influence of the obstacle width R 

This influence of R with e=0 for the coincident type flow is 

depicted on fig. 11. The two detachment lengths are equal 

(H=J) on the whole experimental range of R (circle 

symbols on fig. 12). When compared to breaking type, both 

lengths are closer to the one obtained for the hydraulic 

jump than to the one obtained for the horseshoe vortex. The 

influence of R, which increase increases the detachment 

lengths, was already explained thanks to the analogy with 

compressible flows.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Effect of the obstacle width for the coincident 

mode (e=0) 

 

Influence of the gap e below the obstacle 

The influence of e for a coincident type flow (with R=76 

mm) is comparable to the one observed in “breaking” type, 

explained thanks to the analogy with compressible flows. 

Coincident type flow behavior also confirms what was  
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Figure 13: Effect of the gap e for the coincident mode 

(R=76mm) 

 

obtained when varying R. First, the two detachment lengths 

are equal (H=J) on the whole experimental range of e. 

Second, the detachment length is intermediate between the 

ones obtained in breaking type for the jump and for the 

horseshoe vortex. This shows that the two structures (jump 

and vortex) interact and modify each other.  

Discussion on the coincident mode 

The change of behavior of the horseshoe vortex from the 

“breaking” mode to the “coincident” mode seems 

surprising. Indeed, the increase of turbulence usually tends 

to limit the flow separation and delay the horseshoe vortex 

appearance. In the present case, imposing additional 

disturbances tends to increase the size of the horseshoe 

vortex, that is anticipates the boundary layer separation. 

The cause is obviously the interaction with the hydraulic 

jump but, with the present measuring techniques, the detail 

of this interaction could not be investigated.  

 

Conclusion 

An experimental study of turbulent, supercritical flows 

around an obstacle, on contact with the channel bed or 

slightly above, was performed on a water table. The flow is 

characterized by a detached hydraulic jump and a horseshoe 

vortex located upstream from the obstacle. These two flow 

structures were characterized thanks to oil flow 

visualizations, while a laser grid technique was developed 

to measure the water depth around the obstacle.  

These techniques were applied first on turbulent, 

supercritical, uniform flows. This is the so-called 

“breaking” type, as the hydraulic jump occurs upstream 

from the horseshoe vortex. Dimensional analysis shows 

that, apart from the Froude number, the two parameters that 

rule the flow are the dimensionless gap e/h1 below the 

obstacle and the dimensionless obstacle width R/h1. It was 

shown that these two parameters have opposite influences. 

Concerning the hydraulic jump, this was explained using 

the analogy with analytical modeling of detached shock 

waves. Concerning the horseshoe vortex, it can be reduced 

or even suppressed by the blowing of the boundary layer 

caused by the flow passing beneath the obstacle.  

A second flow type was identified when introducing a 

disturbance upstream from the obstacle. It is the so-called 

“coincident” type, where the jump and the vortex occur at 

the same location, showing a strong interaction between the 

two structures. Taking benefit of this interaction, the 

control of the location of the horseshoe vortex, with 

applications for scouring, could be achieved by controlling 

the hydraulic jump location. Nevertheless, additional work 

should be devoted to check possible scale effects on the 

occurrence of both flow types. Notably, it is worth seeing if 

the increase of the Reynolds number up to field values can 

by itself promote the transition to the coincident mode 

without upstream disturbance, or can influence the flow 

pattern by enhancing air entrainment. Unfortunately, high 

Reynolds number flows would require the use of channels 

wider than the ones available in the laboratory at this time; 

future work will be devoted on these questions.  
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