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Abstract 

The paper introduces a 2D depth averaged model for the 
analysis of river morphodynamics, based on a two-phase 
formulation. Mass and momentum conservation principles 
are separately imposed for both phases. The model 
naturally accounts for unsteady non-equilibrium solid 
transport, since neither instantaneous adaptation hypothesis 
nor any ad hoc differential equation is employed to 
represent sediment dynamics. Results from numerical 
simulations for a 2D test-case are compared with literature 
experimental data and with available numerical solutions. 

Introduction 

The analysis of unsteady river flows requires adequate 
representation of several mutually interacting processes, 
such as the motion of the fluid and the erosion/deposition of 
solid particles. The most extensively used fluvial models 
have been built upon traditional hydraulics principles (Cao 
& Carling, 2002). 

Indeed, Saint Venant - Exner equations are commonly used 
to predict the fluvial morphodynamics in depth-averaged 
either 1D or 2D approach. A standard approach suggests to 
evaluate sediment transport through an algebraic closure 
equation strictly valid for uniform flow conditions (e.g. 
Graf, 1998). The major drawback of this formulation comes 
from the validity of the instantaneous adaptation 
hypothesis, which is not satisfied whenever non-
equilibrium transport conditions occur (Wu, 2007). Such an 
instance is often encountered in various fields of 
geomorphology and engineering, whenever rapid erosional 
transients are expected, such as valley forming floods 
(Brooks & Lawrence, 1999), sediment laden flows 
(Iverson, 1997; Takahashi, 1991), wave generated by dam 
break or overtop (Benoist, 1989), turbidity currents (Hu & 
Cao, 2009) and morphological changes induced by 
tsunamis (Simpson & Castelltort, 2006). 

To overcome the above cited limitation, the Saint Venant - 
Exner formulation has been successively enriched by 
including an additional differential equation, describing the 

adaptation in time and in space of the actual value of the 
sediment discharge to the equilibrium value. To this aim, 
linear lag equations have been widely employed, along with 
proper expressions of the lag coefficient (e.g. Armanini & 
Di Silvio, 1988). Other dynamic equations, involving both 
temporal and spatial derivatives of the sediment discharge, 
were deduced either accounting for local inertia of sediment 
and shear induced by the flow in a simplified momentum 
balance (Di Cristo et Al., 2002; Parker, 1975), or describing 
the ensemble-averaged concentration transport including 
advective and diffusive terms (Greimann et Al., 2008). The 
application of some of the above dynamical models to 
study flood propagation (Rahuel et Al., 1989), dam-break 
flow (Cao et Al., 2004), and antidunes generation (Di 
Cristo et Al., 2006) demonstrates the relevance of non-
equilibrium transport for a thorough analysis of river 
morphodynamic processes. 

Morphological models which naturally account for the 
dynamics of the solid phase can be derived based on 
different approaches, commonly employed in various fields 
of engineering and physics. The group of Université 
Catholique de Louvain exploited the possibility of 
predicting river dynamics in presence of rapid transients 
through a two-layer schematization, in which the upper 
layer contains clear water and the lower one a water-
sediment mixture. Erosion and deposition result from mass 
exchange between the fixed bed and the transport layer. 
Following this schematization and assuming equal velocity 
in the two layers, Fraccarollo and Capart (2002) examined 
the sudden erosional flow caused by a dam break wave over 
a loose sediment bed with very promising results. An 
improvement of the two-layer model was suggested later on 
by Capart and Young (2002), who considered different 
velocities in the two layers. The successful application of 
the latter model to simulate the formation and propagation 
of a hydraulic jump over a mobile bed is shown in Savary 
& Zech (2007). The comparison of the computed results 
with laboratory evidences witnesses the effectiveness of the 
two-layer approach, even though a hyperbolicity loss of the 
model may occur (Greco et Al., 2008b; Savary & Zech, 
2007b). 



Models built up on the two-phase theory have been widely 
applied in chemical engineering, providing notable insights 
into the physics of fluidization (Anderson et Al., 1995). In 
the geophysical context, two-phase formulations have been 
introduced to study the propagation of debris flows, 
avalanches and landslides (Iverson, 1997; Pitman & Le, 
2005). In open channel hydraulics, this theory has been 
fruitfully applied to predict the sediment concentration 
profile in uniform flows, incorporating the effect of 
particle-particle interaction and particle inertia (Greimann 
& Holly, 2001) 

In the present paper a depth averaged morphodynamical 
model based on a two-phase formulation is introduced. 
Mass and momentum conservation principle are separately 
imposed for both phases, along with the Exner equation to 
account for bed evolution. Similarly to the two-layer model 
of Savary and Zech (2007), the present model neither 
postulates the instantaneous adaptation hypothesis nor 
employs any ad hoc differential equation to mimic 
sediment transport dynamics. 

Model derivation 

Sediment transport is herein analysed within the framework 
of a two-phase approach (Greimann & Holly, 2001; 
Iverson, 1997; Pitman & Le, 2005). In what follows we will 
assume that the flow exhibits the distinctive features of 
bed-load, i.e. particles move in a thin region close to the 
bed. Within this region, particle motion is intermittent, but 
at any point the average over a number of particle 
movements allows to define a macroscopic volume 
concentration, C, which, according to Greimann et Al. 
(2008), may be equivalently considered as the probability 
to find a solid particle at a given point in a given time. 
While flowing, the two phases furthermore interact with the 
mobile bed, in a local and time-dependent 
erosion/deposition budget. 

The following hypotheses are then introduced: 

• Wide rectangular channel with small slope.  

• Constant liquid (ρl) and solid (ρs) densities are 
assumed. Moreover, sediment is considered as 
uniform and non-cohesive. 

• Flow is gradually varied with hydrostatic pressure 
distribution in the cross-section, which is assumed 
to be vertical since the bottom slope is mild. 

• Surface concentration is equal to volume 
concentration, which is assumed constant both in 
space and time. 

• Standing bed is saturated. 

Let us assume a control volume (CV) of the fluid – 
sediments flow of base dx dy, x and y being the horizontal 
coordinates, the bottom and the free surface (sidewalls 
effects are neglected due to the wide channel hypothesis), 
with unitary width. Neglecting higher order terms, the CV 
measure is h dx dy, with h = zfs – zb, zfs and zb being the free 
surface and bottom elevation, respectively. Volume 
deforms in time due to erosion/deposition budget and flow 

depth variation. Defining δs as the ratio of solid phase 
volume to the bed surface, the ratio of liquid phase volume 

to the bed surface, δl, is given by δl = h – δs.  

In the absence of any inflow/outflow from sidewalls and 
free-surface, the mass conservation requirement for the 
liquid phase reads: 
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������� +

������� + � �	��� = 0 (1) 

where Ulδlρl represents the water mass discharge, Ul being 
the phase-averaged water velocity in the x direction, Vl the 
same in the y direction and p is the bed porosity. The last 
term in the LHS accounts for the water entering (leaving) 
the flow due to the erosion (deposition) of the saturated 
bed. In what follows subscripts l and s will be used to 
denote quantities pertaining to liquid and solid phases, 
respectively. 

Similarly, the mass conservation equation for the solid 
phase reads: 
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in which ρsUsδs is the solid mass discharge, Us being the 
phase-averaged solid velocity in the x direction and Vs the 
same in the y direction. 

Moreover, the temporal variation of bottom elevation has to 
satisfy the following constraint: 

�	��� = −�� (3) 

Where eb denotes the bottom erosion/deposition rate. 

The projection of momentum balance for the considered 
CV onto the x and y directions for each phase reads: 
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Once the closure relations for 
�,� , 
�,� , D and ��  are 

specified, the system of equations (1) - (7), allows to 
compute spatial and temporal evolution of the seven 

unknowns Ul, Vl, Us, Vs, δl, δs, and zb. 

Closure relations 

The evaluation of the bed shear stresses acting on the liquid 
and solid phases, 	
�,�  and 
�,� , should account for the 

physical interaction between the two phases. As described 
by Seminara et Al. (2002), drag transfers momentum from 
the liquid to the solid phase, with a twofold effect: liquid 
loses momentum in favors of solid, so that the shear stress 
exerted by the fluid at the bottom is smaller than in the 
absence of sediment transport; the solid phase further 
transfers the received momentum through repeated 
collisions with the bottom surface - giving rise to a solid 
phase shear stress - and with other particles. Seminara et 
Al. (2002) described this complex interplay through a 
depth-averaged two-phase momentum balance of the 
transport layer under uniform flow conditions in presence 
of bed-load. In the limit of a nearly horizontal bed and 
neglecting the effect of interparticle collisions, the  bottom 
fluid shear stress that would act in the absence of solid 
phase is found to be partitioned between the actual fluid 
shear stress and the stress due to the solid phase. The 
partition proposed by Seminara et al. (2002) is herein 
considered to evaluate the stress terms needed for the model 
closure. Indeed, 	
�,� is computed as the difference between 

the fluid shear stress that would prevail at the bed in the 
absence of a transport layer  (
�)	and the solid shear stress 
(
�,�) .  Following Seminara et al. (2002), the former is 

evaluated by means of Chezy uniform flow formula, while 
the latter should account for both frictional and collisional 
stresses. The frictional contribution (
�,�)		 may be 

expressed through Mohr-Coulomb law while the collisional 

one (
�,�),  based on the findings of Bagnold (1954), may 

be assumed to scale with the square of the particle average 
velocity. Since the contribution of collisional stress is 
expected to be significant only whenever sediment 
transport occurs as sheet-flow (Gao, 2008), in what follows 
it has been neglected. Moreover, numerical simulations 
(results not shown) have confirmed that in the conditions 
herein investigated, the collisional term is negligible. 
Therefore, the expressions of tangential stresses on the two 
phases are: 
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where d is the sediment diameter and µd is the friction 
coefficient in dynamic conditions. The dimensionless 
Chezy coefficient (i.e. the ratio of the traditional Chezy 
coefficient to the square of gravitational acceleration) has 
been denoted with ��.  

Assuming that momentum exchanged by the drag of liquid 
over particles is uniformly distributed wherever both phases 
exist, the D term may be expressed as the drag acting on a 
single particle times the mean number of particles in the 
control volume: 

� = ���
 ��� 
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The evaluation of drag coefficient, CD, can be pursued in 
uniform condition of flow and in the limit of negligible 
bottom slope. Indeed in these hypotheses, computing the 
solid average velocity through the Fernandez-Luque and 
van Beek (1976) relation,  the following the expression for 
CD may be obtained: 
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in which ��  and 	�′′   are two dimensionless coefficients  
(�� = 9.2	 and ��� = 0.7 , see Fernandez-Luque and van 
Beek, 1976) and |
��|	 represents the value of |
�| in the 
threshold condition for incipient particle motion. Equation 
(13) has been employed also in non-uniform conditions and 
it has been applied locally and instantaneously to evaluate 
the drag coefficient. In applying (13) the threshold value 
has been assumed as |
��| = 0.047����∆  (Meyer-Peter 
and Muller, 1948). 



The expression of the entrainment/deposition function eb is 
required as a further closure for the present model. Several 
different formulas, based on theoretical analysis and/or 
experiments carried out under steady equilibrium flows, can 
be found in the literature for both entrainment and 
deposition fluxes (see for instance: Van Rijn 1984; 
Fraccarollo and Capart, 2002, Seminara et Al., 2002; Parker 
et Al., 2003). In the following, the net entrainment from the 
bed is computed as the difference between the erosion and 
deposition flux predicted by the formulas provided in 
Parker et al. (2003), which have been demonstrated to 
correctly reproduce the experimental findings of Fernandez 
Luque and van Beek (1976): 
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It is worth of remark that, once the dynamical friction 
coefficient of the sediment is known, similarly to the clear-
water case (i.e. Saint Venant equations), the only parameter 
that need to be assigned for the application of the model is 
the dimensionless Chezy coefficient. 

The equations describing the proposed model constitute an 
hyperbolic PDEs system, which may be solved with any of 
the numerical schemes commonly employed for Saint-
Venant Equations. The Finite Volume solver FIVFLOOD 
(Leopardi et Al., 2002) has been adapted to solve the PDEs 
of the two-phase model. 

Numerical Simulation 

In order to demonstrate the effectiveness of the proposed 
model a 2DH test is presented. The application consists in a 
dam-break flow over a movable bed with a sudden 
enlargement (Palumbo et Al., 2008). The tests were 
performed in a 6 m long flume, with an asymmetrical 
sudden increase on the channel width from 0.25 m to 0.5 m 
on the left side, 1 m downstream of the gate (Figure 1). The 
breaking of the dam is simulated by the rapid (about 0.1 s) 
downward movement of a thin gate at the middle of the 
flume. The sediment used is uniform sand with a median 

diameter d50 of 1.72  mm, static friction angle µ0 = 30°, 

relative density ∆=1.63, deposited with porosity p = 0.61. 
Initial conditions consist of a 0.1 m layer of fully saturated 
and compacted sand over the whole flume, and an initial 
layer of 0.25 m water upstream of the gate (Figure 1). 

Temporal evolution of the free surface elevation was 
recorded by ultrasonic gauges in 8 probes, while the final 
bed topography was measured in 9 cross sections in the 
wider channel using a photographic technique (see 
Palumbo et Al. (2008)  for details). From the above dataset, 
three gauges (denoted as P1, P2 and P3) and two cross 
sections (named A and B, respectively), positioned as 

indicated in Figure 1, will be considered herein for 
comparison with the model predictions. 

 

Figure 1: Experimental set-up. 

A space grid with square elements ∆x = ∆y = 0.0125 m was 

employed in the simulations, along with a times step ∆t 
=2·10-4 s. The value of the dimensionless coefficient in the 
Chezy formula was set equal to the previous cases based 
again on the similarity of the sediments employed. In order 
to guarantee a realistic simulation of the complete emptying 
of the flume, boundary conditions were assigned 
correspondently to the experimental setting, namely a 
fixed-wall was considered at the upstream boundary and a 
subcritical/supercritical free-flow for both water and 
sediment flow at the channel outlet. 

The simulated geomorphic transient develops with the 
distinctive features observed by the experimenters: once the 
dam break wave has reached the downstream end of the 
narrow channel, flow curves left-wise and moves towards 
the sidewall. Wall reflection induces the appearance of an 
oblique bore, which propagates downstream and finally 
disappears as the flume empties. 

The evolution of the loose bed is characterised by two 
morphological features which are closely related to the 
above hydrodynamics. Streamlines curvature close to the 
inner corner causes the appearance of a deep scour, while 
the  sudden rise of the water level downstream the bore 
causes an elongated deposit in the left portion of the wide 
channel. Both features are reproduced in the simulations, 
and are clearly noticeable in the snapshot of the results at t 
= 4 s depicted in Figure 2. The flow field is represented by 
two families (bold and thin) of streamlines, representing 
water and sediment velocities, respectively. Bottom 
configuration is represented by continuous and dashed 
contours for deposition and scouring zones, respectively. 

As it can be seen, in the zone close to the inner corner and 
in the adjacent flow separation zone, the direction of the 
solid transport differs significantly from that of the liquid 
phase, witnessing the different response of the two phases 
to bottom topography, attrition and drag. Curvature of 



velocity field is more evident for water than for sediment, 
as it could be expected due to their different inertia. 
Moreover, the strong recirculation zone behind the 
enlargement is not significantly affected by sediment 
transport. 

 

Figure 2: Streamlines of liquid and solid phase, superposed 
to bottom topography, t = 4 s. 

In order to provide a quantitative assessment of the 
performance of the two-phase model, in Figures 3a-c the 
comparison between measured and computed free surface 
elevation for the gauges P1, P2 and P3 is represented. 
Moreover, in Figure 4a-b the final bottom topography is 
shown. In both figures, the numerical results of the two-
layer model of Soares-Frazão and Zech (2010) are 
superposed. 

The measured water heights are reasonably reproduced for 
all the probes P1-P3 (see Figure 3). Average absolute 
deviation between predicted and observed free surface 
elevation is less than 10%, with a correlation coefficient 
always above 0.85 between measured and computed values. 

Numerical results exhibit a qualitative agreement with the 
measures, since the deposit location is predicted to be more 
downstream than observed. (Figures 4a-b). On the other 
hand, the shape of the most scoured zone is well 
reproduced (section A), along with the estimated maximum 
depth, which agrees with the observed one within 13% 
accuracy, whereas a systematic underprediction of 
deposition is observed in the considered cross sections. 
Figures 3 and 4 show that the performance of the two-phase 
and two-layer models is similar, with a common 
underprediction of deposition near the side wall. 

The latter discrepancy has been ascribed by Soares-Frazão 
and Zech (2010) to  the presence of three-dimensional 
effects occurring close to the wall, which cannot be 
accounted for by shallow water models. 

 

Figure 3: Time history of free surface elevation. From top 
to bottom: probe P1, probe P2, probe P3. 

Conclusions 

In the paper a shallow water model for the analysis of fast 
geomorphic transients occurring in the context of river 
morphodynamics has been presented. The model is based 
on a two-phase formulation and it has been derived from 
mass and momentum conservation principles applied to 
sediment and water. 

Comparison with literature experimental data shows the 
capabilities of the two-phase approach in reproducing fast 
morphodynamic transients. Furthermore, the present model 
has been shown to perform similarly to other well assessed 
morphodynamic models, without requiring any explicit lag 
relation and preserving the hyperbolic character. Future 
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developments will consider additional two-dimensional  
test cases to further validate the model. 

 

Figure 4: Final bottom topography. a) cross section A; b) 

cross section B. 
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