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Abstract 

Straight compound-channel flows have been studied by 
many authors, mainly concerned with mean flow variables. 
Detailed information on the complex turbulent field of 
these flows is still scarce. In the present paper high data rate 
measurements were obtained for the streamwise and 
vertical velocity components, using a 2D Laser 
Velocimeter in a experimental compound flume. The 
filtered velocities time series allowed the computation of 
relevant turbulence statistics: autocorrelation functions, 
dissipation spectra, turbulence scales and 
The results are analyzed by comparison with universal laws 
drawn for isotropic turbulent 2D fully developed open
channel flow. The presence of strong secondary currents 
does not affect the universal law in the floodplain, as long 
as the constants are changed. In the main ch
behavior of the flow is more pronounced and the universal 
laws fail to reproduce accurately the experimental results.
  

Introduction 

Straight compound-channel flows have been studied by 
many authors due to their practical importance related to
floods in rivers. In terms of physical interpretation and 
numerical modeling they constitute a challenge, since they 
present a complex 3D structure that can include large scale 
horizontal vortices and helicoidal longitudinal vortices, also 
know as secondary currents (Shiono &
Despite the presence of these structures, most studies are 
focused only in the mean flow variables. 
Knight & Shiono (1990), Shiono & 
Tominaga & Nezu (1991), Nezu et al. (1999), Prooijen 
al. (2005), Stocchino & Brocchini (2010) and Stocchino 
al. (2011) are among the few studies where the turbulent 
field in straight compound-channel was
Nevertheless, the influence of the vortex structure in the 
turbulent scales and in the dissipation rate was
In the present study, high data rate measurements were 
obtained for the streamwise and vertical velocity 
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obtained for the streamwise and vertical velocity 

components, using a 2D Laser Doppler Velocimeter in a
experimental compound flume
secondary currents are dominant
analysis of the effect of secondary currents in the 
scales and in the dissipation rate
with universal laws drawn for isotropic turbulent 2D fully 
developed open-channel flow 
 

Experimental Setup

The experiments were conducted in a
compound flume built in cement
Interior. The flume is 11.60 m
main channel width is 0.205 m while the 
is 0.540 m. The width of the
channel and floodplain, called interface, 
bank full depth is 0.051 m, as shown 
 

Figure 1: Description of the asymmetric c

The average longitudinal bottom 
and floodplain is 0.986 and 0.911 mm/m, respectively
set the quasi-uniform flow it was necessary to measure the 
water depth in the middle of the main channel and also in 
the floodplain to verify that the value of the free
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components, using a 2D Laser Doppler Velocimeter in an 
experimental compound flume with a deep flow, where 

ts are dominant (cf. Nezu et al., 1999). The 
the effect of secondary currents in the turbulent 

scales and in the dissipation rate is made by comparison 
with universal laws drawn for isotropic turbulent 2D fully 

channel flow (Nezu & Nakagawa, 1993).   

Experimental Setup 

The experiments were conducted in an asymmetric 
built in cement at University of Beira 

11.60 m long and 0.790 m wide. The 
is 0.205 m while the floodplain width 

of the region between the main 
channel and floodplain, called interface, is 0.054 m and the 

0.051 m, as shown in Figure 1.  

 

the asymmetric compound flume. 

gitudinal bottom slope of the main channel 
0.911 mm/m, respectively. To 

uniform flow it was necessary to measure the 
water depth in the middle of the main channel and also in 

that the value of the free-surface 



slope, in both sub-regions, was between the value of the 
main channel and the floodplain longitudinal 
The measurements of the velocity field were made with a 
2D Laser Doppler Velocimeter (LDV) in a cross
located 9.0 m from the inlet of the channel, where the 
downstream gate does not influence the flow. 
Measurements in backscattering mode were performed 
through a glass window located on the main channel 
wall of the channel next to the main channel. 
number of points measured to characterize the cross
was 1,148. The measurement time was 210
aluminum oxide powder was used as seeding
The discharge used during the experiments was 
and the quasi-uniform flow water depth was 0.10
relative water depth, Hr, calculated through the equation 
was 0.50. In that equation Hfp and Hmc are the floodplain 
and main channel water depths, respectively. 

r fp mcH H H=  

Results and Discussion

The terms used to describe the velocity field are 
the instantaneous velocity; u’ and w’ for
fluctuations; U and W for the time-averaged
U’ and W’ for the root mean square or turbulence intensity 
in the longitudinal direction, X, and vertical direction, 
respectively (see Figure 1). 
Table 1 shows the experimental conditions 
measurements were made. The cross-section mean
Ucs, was calculated by the relation between the inlet 
discharge and the area of the cross section. 

method ( * 0hU gR S= , where 9.8g =

gravitational acceleration and
 hR  is the hydraulic 

was used to compute the friction velocity of the section
Further, the Reynolds number and Froude number were 
calculated by the expression 4 cs hRe U R= ν

m2/s is the kinematic viscosity of water at 30º C)

cs mcFr U gH= , respectively. 

Table 1: Experimental Conditions. 

Q  Hmc  
Hr 

Ucs  U* 

(l/s) (m) (m/s) (m/s) (x 10

23.16 0.1033 0.50 0.4301 0.0227 11.

 
Velocity Distribution 

Figure 2 shows the time-averaged velocity distribution 
and W measured in the cross section at 9.0 m from the inlet 
of the cannel, as well as turbulent intensity

regions, was between the value of the 
longitudinal bottom slope. 

were made with a 
in a cross-section 

from the inlet of the channel, where the 
influence the flow. 

Measurements in backscattering mode were performed 
main channel lateral 

the main channel. The total 
number of points measured to characterize the cross-section 

. The measurement time was 210 s per point and 
seeding. 

The discharge used during the experiments was 23.16 l/s 
water depth was 0.1033 m. The 

calculated through the equation (1) 
are the floodplain 

and main channel water depths, respectively.  

 (1) 

Results and Discussion 

The terms used to describe the velocity field are u and w for 
for the velocity 

averaged velocity; and 
or turbulence intensity 

vertical direction, Z, 

tal conditions where 
section mean velocity, 

ated by the relation between the inlet 
discharge and the area of the cross section. The geometrical 

9.8m/s2 is the 

s the hydraulic radius) 

e the friction velocity of the section. 
Further, the Reynolds number and Froude number were 

= ν  (ν = 7.96x10-7 

/s is the kinematic viscosity of water at 30º C) and 

Re  
Fr 

(x 104) 

11.78 0.425 

velocity distribution U 
measured in the cross section at 9.0 m from the inlet 

intensity distribution U’/ 

U* and W’/U*. The interaction
flow (with higher velocity and inertia)
(with lower velocity and inertia) generates a momentum 
transfer causing the formation of different types of 
turbulent structures as vertical axis vortex, due to the shear 
layer between the main channel and floodplain flows, or 
longitudinal axis vortex, called secondary currents,
the anisotropy of turbulence (Shiono 
et al., 1999). 
In Figure 2a, an ascendant flow in the interface region
the upper interface is evident, as well as the descendant 
flow in the floodplain region near the interface 
≤ 0.29 m) and in the main channel region near the 
interface. The generation of the ascendant/descendant flow 
(secondary currents) is caused by the 
between the floodplain and main channel
a vortex on the interface
“floodplain vortex”, and 
channel/interface region called “main channel vortex”
Tominaga & Nezu, 1991).  

Figure 2: (a) Isovels of mean velocity 
mean velocity W; (b) Isovels
Isovels of turbulent intensity W

The interaction between the main channel 
velocity and inertia) and floodplain flow 

d inertia) generates a momentum 
causing the formation of different types of 

vertical axis vortex, due to the shear 
layer between the main channel and floodplain flows, or 
longitudinal axis vortex, called secondary currents, due to 

(Shiono & Knight, 1991, Nezu 

flow in the interface region near 
is evident, as well as the descendant 

flow in the floodplain region near the interface (0.26 m ≤ Y 
the main channel region near the lower 

e generation of the ascendant/descendant flow 
is caused by the strong anisotropy 

between the floodplain and main channel flows, resulting in 
erface/floodplain region, called 

 a vortex in the main 
interface region called “main channel vortex” (cf. 

 

 

 

Figure 2: (a) Isovels of mean velocity U and vectors of 
(b) Isovels of turbulent intensity U’; (c) 

W’. 



The magnitude of W velocity in the main c
interface region is similar, around 30% 
floodplain region near the interface, the magnitude of the 
velocity decreases until approximately 10
strong descendant flow in the main channel region is due to 
the meeting of two vortexes, the “main channel vortex” and 
the “free-surface vortex”, that is caused by the anisotropy 
of lateral wall and free-surface turbulence (Nezu & 
Nakagawa, 1993). On the other hand, Figure 2a shows how 
the isovels are affected by the momentum transport of the 
secondary currents. Since there is an ascendant flow in the 
interface region, the U isovels are displaced 
influence of the W velocity. The same effect occurs with the 
descendant flows. Further, due to effects of the “free
surface vortex” the maximum U velocity is in the middle of 
the main channel at 65% of the water depth.
For the U’ turbulent intensity (Figure 2b) 
the isovels of U is observed. However, the bulging of the 
isovels U’ is more intense and corresponds with the 
ascendant/descendant flows of the cross section
other hand, the lower turbulent intensity U
the middle of the main channel below the free
to the dip-velocity phenomenon. In the case of the turbulent 
intensity W’ (Figure 2c), a bulging of the isovels in the 
upper interface is again observed. The 
between U’ and W’ is that, while the lower turbulent 
intensity U’ is below the free-surface, the 
intensity decreases towards the free-surface. Further, the 
magnitude of W’ is slightly smaller than the magnitude of 
U’. 
Figure 3 shows the vertical distribution of 
m, 0.205 m, 0.253 m and 0.380 m, with U
as: 

( )* YU U U+ =  

( )* YZ ZU+ = ν  

where the term U*(Y) is the local friction velocity. The local 
friction velocity was determined using the log
considering that the vertical location of the measured point 
could have some uncertainties. Therefore, a
∆Z was considered in the vertical location
adjusted so that the integral constant of the log
(equation 4, where κ = 0.41 is the von Kármán constant)
was equal to A = 5.3, valid for 2D open-channel flow
Nezu & Nakagawa, 1993). The log-law is 
Figure 3 by a line. 
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surface turbulence (Nezu & 
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velocity is in the middle of 
the main channel at 65% of the water depth. 
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. However, the bulging of the 
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dant flows of the cross section. On the 

U’ is observed in 
he middle of the main channel below the free-surface due 

velocity phenomenon. In the case of the turbulent 
, a bulging of the isovels in the 

is again observed. The main difference 
’ is that, while the lower turbulent 

surface, the W’ turbulent 
surface. Further, the 

smaller than the magnitude of 

of U+ for Y = 0.104 
U+ and Z+ defined 

(2) 

 
(3) 

is the local friction velocity. The local 
using the log-law, 

that the vertical location of the measured point 
, a displacement 

in the vertical location. The ∆Z was 
adjusted so that the integral constant of the log-law 

is the von Kármán constant) 
channel flow (e.g. 

law is presented in 

( ) (*1
ln

Z Z U
U A+

+ ∆ 
 = +

κ ν  

The velocity profiles in the upper interface and floodplain 
present a trend similar to 2D open
follow the log-law in the inner layer and as 
the free-surface they depart from the log
law (cf. Nezu & Nakagawa, 1993). In
lower interface the velocity profiles also follow the log
but they decrease abruptly near the free
due to the presence of strong secondary currents.
 

Figure 3: Vertical distribution of 

 
Figure 4 shows the distribution of 
against Z/H. In the figure is also included the universal 
equation (5) valid for the intermediate region (0.1< 
<0.6) of 2D fully developed flows
1993). 

Figure 4: Vertical distribution of 

( )* Y
U A

 
 = +
  

 (4) 

in the upper interface and floodplain 
present a trend similar to 2D open-channel flows, i.e. they 

law in the inner layer and as they approach 
they depart from the log-law to a log-wake 

1993). In the main channel and 
lower interface the velocity profiles also follow the log-law, 
but they decrease abruptly near the free-surface, which is 
due to the presence of strong secondary currents. 

 

istribution of time-averaged velocity U. 

shows the distribution of turbulent intensity U’ 
. In the figure is also included the universal 

valid for the intermediate region (0.1< Z/H 
<0.6) of 2D fully developed flows (e.g. Nezu & Nakagawa, 

 
istribution of turbulent intensity U’. 



( )*' 2.30expU U Z H= −  (5) 

The experimental results for the upper interface and 
floodplain seem to follow a similar trend to equation (5), 
although with higher turbulent intensities. This means that 
the flow at those two verticals behaves like a 2D flow but 
with higher turbulence intensity. In the main channel the 
experimental data follows the universal equation until Z/H 
around 0.6. As the flow approaches the free surface the 
turbulent intensity starts to increase, which is due to the 
presence of strong secondary currents. For the lower 
interface, until Z/H around 0.3, the turbulent intensity 
decreases and stays below the universal equation. For Z/H  
>0.3 the turbulent intensity reaches a plateau. The 
discrepancies between the experimental results and the 
universal equation (5) clearly highlight the 3D character of 
the flow. 

 
Turbulent longitudinal scales and dissipation 

The velocities time series can be transformed into an 
equally spaced temporal record by taking an averaged time 
step, τ : 

maxt nτ =  (6) 

being maxt  the maximum time in the record and n

 

the 

number of measurements in the record. The instantaneous 
velocity values for each time can be obtained from the 
original record through linear regression. Adopting 
Taylor’s frozen-field hypothesis the time record can be 
transformed into a space record, using a convection 

velocity, cU , with a space interval 

cr U= τ  (7) 

In the present study, for each record, cU  was considered 

constant and equal to the time-averaged velocity U. 
Although this criterion implies that the convection velocity 
is the same for all flow scales, which is not true for most 
cases, it holds for large and intermediate scales if turbulent 
intensity is less than 20% (e.g. Tropea et al., 2007). The 
space record allows the computation of the longitudinal 
autocorrelation function (e.g. Pope, 2000) 

( ) ( ) ( )
2

' '

'

u r u x r
r

u

+
ρ =  (8) 

One example of autocorrelation function is presented in 
Figure 5 for the point Z/H = 0.46 in the main channel 
vertical. In the figure, the integral length scale obtained by 
equation (9) (e.g. Pope, 2000) is also presented 

( )
0

dxL r r
∞

= ρ∫  (9) 

 
Figure 5: Longitudinal autocorrelation function. 

 
Figure 6 shows the vertical distribution of the longitudinal 
integral scales obtained from the autocorrelation function 
for all points. In the figure equation (10) is also plotted with 
B1 = 1.0, 1.5, 2.5 and 3.5. This equation was proposed by 
Nezu & Nakagawa (1993) for 2D fully developed open-
channel flow, with B1 approximately equal to 1.0.  
 

 
Figure 6: Vertical distribution of the longitudinal integral 
length scale, Lx. 



( )1 2
1

1

  for 0.6

0.77           for 0.6
xL B Z H Z H

H B Z H

 <= 
>

 (10) 

 

The upper interface and the floodplain results fairly follow 
equation (10), but with higher coefficient B1. Near the free 
surface, contrary to equation (10), the experimental data do 
not present a plateau, instead the integral length scale 
continue to increase towards the free-surface. For the main 
channel vertical the integral length scale is almost constant 
through the depth, with a value close to the flow depth. 
This indicates that the secondary current in the main 
channel dictates the characteristic size of the large turbulent 
structures. The lower interface present a similar pattern of 
the one observed for the main channel, but with smaller 
integral scale. 

In Figure 7 the longitudinal dissipation spectrum is 
presented for point Z/H = 0.8 in the lower interface. The 
spectrum was obtained using a Yule-Walker spectral 
estimator which is extremely smooth (e.g. Stoica & Moses, 
2005), but allows an easy identification of the inertial 
subrange. The dissipation spectrum can be computed from 
the velocity power spectrum, E11, using the Kolmogorov 

5 3−
 
law for the inertial subrange (e.g. Pope, 2000) 

( )( )3 2
5 3 2 3 5 3

11 1 11 1w wE C k E C k− −= ε ⇒ ε =  
(11) 

where ε is the turbulent dissipation rate, kw is the wave 
number and C1 is a universal constant equal to ≈0.53. In the 
figure the dissipation rate, ε, was taken from the plateau 
and the integral scale, Lx, and the microscale, λx, are also 
presented. 

 

Figure 7: Longitudinal dissipation spectrum for point Z/H = 
0.8 in the lower interface. 

 

The microscale was obtained from the dissipation rate by 
assuming isotropic turbulence (e.g. Tropea et al., 2007) 

230 '
x

Uνλ =
ε

 
(12) 

Figure 8 shows the vertical distribution of the longitudinal 
microscale for all points. In the figure is also plotted the 
semi-theoretical relation proposed by Nezu & Nakagawa 
(1993) for 2D fully developed open-channel flow 

1 4
1

*

15
exp

2.3 2
x B Z Z

H KRe H H

λ    =    
   

 (13) 

where 

* *Re U H= ν  (14) 

0.691 3.98 LK Re= +  
(15) 

'L xRe U L= ν  (16) 

In equations (13) to (16) Lx is computed using equation (10) 
and U’ using equation (5). 

 
Figure 8: Vertical distribution of the longitudinal 
microscale, λx. 

 

The results of the microscale for the floodplain and the 
upper interface are almost coincident and present a similar 
trend to the theoretical curves. The experimental values are 
higher than the theoretical ones, which can be attributed to 
the underestimation of U’ values given by equation (5) (see 
Figure 6). For the main channel and lower interface the 



experimental results depart from the theoretical curves, 
mostly due to the wrong estimation of U’ caused by the 
influence of strong secondary currents.  
Figure 9 shows the vertical distribution of the dissipation 
rate for all points, computed through the dissipation spectra 
as mentioned before (see Figure 7). In the figure the 
equation proposed by Nezu & Nakagawa (1993) for 2D 
fully developed open-channel flows is included 
 

1 2

3
1*

12.2 3
exp

H K Z Z

B H HU

−ε    = −   
   

 
(17) 

 
The experimental results show good agreement with the 
theoretical curves, except for the lower interface where the 
dissipation is substantially higher for the free-surface 
region. The extra dissipation must be linked to the strong 
secondary currents observed. 

 
Figure 9: Vertical distribution of the dissipation rate, ε. 

 

Conclusions 

For deep water flow in straight compound channel the 
results presented above allow to extract the following 
conclusions: 

• The universal laws for 2D fully developed open-
channel flows are valid in the upper interface and 
floodplain, although the coefficients have to be 
increase, mostly due to the increase of turbulent 
intensity. This should be a consequence of the 
shallowness of the flow which contributes to 
maintain boundary turbulence as the dominant 
process. 

• For the lower interface and main channel, the 
presence of strong secondary currents contributes 
to the non validity of the universal laws, even if 
their coefficients are changed. This means that the 
3D character of the flow is “printed” in the 
turbulent field and boundary turbulence should not 
be dominant. 
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