
BUILDING A DATA MODEL FOR A WATER YIELD ESTIMATION SOFTWARE TOOLSET

Jean-Michel Perraud1, Biao Wang1 & Jai Vaze1

1Water for a Healthy Country Flagship, CSIRO Land and Water, Canberra ACT 2601, AUSTRALIA

E-mail: jean-michel.perraud@csiro.au

Abstract

The Catchment Water Yield Estimation Toolset (CWYET)
is a software toolset for estimating water yield over up to
hundreds of catchments, featuring capabilities for
calibration, catchment cross-verification, ensembles of
models and scenario modelling such as impact of climate
change. These uses require building alternate model
configurations by alternating measured or hypothetical
climate inputs, model parameterization, objective functions,
state initialization, etc. Figuratively, this is not different
from the assembly of Lego™ blocks. This information
needs to be managed for the traceability and reproducibility
of scientific experiments. We present in this paper an
entity-relationship data model (ERM), i.e. a conceptual
representation of the data, in the broad sense, associated
with these catchment model “Lego” building blocks. While
this ERM information modelling technique is widespread in
the business systems design, it seems to be uncommon in
scientific software design. CWYET has multiple
requirements, sometimes conflicting, for this ERM. One
central requirement is to build and execute catchment
simulation models from a software scientific workflow
system, the Hydrologists’ Workbench. To capture the
design of the data model, we use the Microsoft Entity
Framework, using the so-called “model first” approach. In
order to maintain some capacity to evolve and adapt the
data model for future need, we use code generation to
reduce the coding tedium to a minimum. We present an
assessment of the benefits and smaller inconvenients of this
approach, notably compared to the more ad hoc approach to
the management of model configuration that existed prior
to this endeavor.

Introduction

The Catchment Water Yield Estimation Tools (CWYET) is
a modelling framework for estimating daily catchment
water yield and runoff characteristics in regulated and
unregulated catchments (Vaze et al. 2011a and Vaze et al.
2011b). One background motivation for this toolset is a
need to develop a modelling framework which can be used
by different water management and research agencies

across Australia that allows them to undertake the
modelling in an objective, consistent and reproducible
manner.
CWYET has been applied in research and decision support
projects, some with a substantial requirement for
reproducibility and an audit trail. This can be a challenge in
a context where the toolset will still need rapid evolution
for the research purpose. The computational load required
by the tool, due to the combinatorial effect of alternate
inputs, catchment models, calibration techniques, etc. often
requires distributed computation on a computational cluster.
These contexts have some bearing on how the data and
model configurations are structured.
For a variety of logistical and historical reasons, CWYET
has tracked the definition of modelling tasks and results in
practice by relying on storing information in XML files and
comma-separated value files (CSV). These formats are a
compromise insofar as they are both machine-readable and
to an extent human-readable. Over the years, while goals
have been served adequately, several shortcomings are
apparent. The reliance on a file system (and folder and file
names as identifier) can be an issue depending on the
organizational context. Storage infrastructure is upgraded,
and these changes gradually compromise the provenance
trail of the modelling results. People move on to other roles,
and are at best less available to answer queries on past
work. The XML based storage of model configuration
information proved cumbersome to evolve for new
modelling endeavours. Most importantly, it is all too easy
to overwrite these files, intentionally or not.
In this paper we step back from this existing infrastructure
for the management of models and data associated with
CWYET. We summarily document and analyze the
fundamental needs in this scope. Note that this is a subset
of CWYET needs, and in particular we are not concerned
with user interfaces in this paper. We propose a software
solution in the form of a data layer using current or recent
technologies, and more in line with the state of the art in the
business world.

Terminology

The word 'model' in this paper can refer to two very
different things. One is a hydrologic model, the other is an
entity-relationship model, a term from the field of software
engineering. Where ambiguous, these will respectively be
referred to as “catchment model” for the former, and “data
model” or ERM for the latter.

Needs

CWYET serves both the needs of research projects and
more applied modelling exercises feeding in the
management of water resources. It is used to estimate water
yield over up to hundreds of catchments, featuring
capabilities for calibration, catchment cross
ensembles of models, and scenario modelling such as
impact of climate changes.
For both research and decision support, but in particular for
the latter, reproducibility and transparency is essential.
These are arguably obvious, paramount needs to most
readers, but their adequate implementation is eminently
difficult.
CWYET model runs often require computational clusters to
run, and sometimes concurrent read access to data. The
scientific data (distinguished from model configuration
data) is increasingly found in a netCDF format (Rew et. al
2006), although the exact data schemes can vary depending
on the modelling need (indeed CWYET can contribute to
their definition).
We also aim to construct and manage CWYET models and
data from the Hydrologists' Workbench (HWB) (Cuddy
Fitch, 2010). HWB is a modelling workbench buildi
the Trident scientific workflow software (Barga
2008). The work of Perraud et al. (2010) on the appropriate
granularity of activities in a calibration workflow motivates
this desire to make CWYET modelling capabilities
available through HWB.
The majority of the code implementing CWYET is based
on .NET, as is HWB. While we want a data model that is
decoupled from this technology, we do want .NET software
to access this data layer easily. In particular there are
toolsets for object-relational mapping and entity
relationship modelling, such as Nhibernate, which are in
use with .NET code.

Analysis

CWYET is used at regional to continental scales. The main
conceptual modelling unit is a catchment, which has one or
more of “cells” for semi-distributed modelling of runoff
within it. There is no built-in assumption that these cells are
gridded, though this is usually the case. Each cell is
modeled by a lumped conceptual rainfall runoff model (

The word 'model' in this paper can refer to two very
different things. One is a hydrologic model, the other is an

m the field of software
engineering. Where ambiguous, these will respectively be
referred to as “catchment model” for the former, and “data

CWYET serves both the needs of research projects and
cises feeding in the

management of water resources. It is used to estimate water
yield over up to hundreds of catchments, featuring
capabilities for calibration, catchment cross-verification,
ensembles of models, and scenario modelling such as

For both research and decision support, but in particular for
the latter, reproducibility and transparency is essential.
These are arguably obvious, paramount needs to most
readers, but their adequate implementation is eminently

WYET model runs often require computational clusters to
run, and sometimes concurrent read access to data. The
scientific data (distinguished from model configuration
data) is increasingly found in a netCDF format (Rew et. al

schemes can vary depending
on the modelling need (indeed CWYET can contribute to

We also aim to construct and manage CWYET models and
data from the Hydrologists' Workbench (HWB) (Cuddy &
Fitch, 2010). HWB is a modelling workbench building on
the Trident scientific workflow software (Barga et al.

on the appropriate
granularity of activities in a calibration workflow motivates
this desire to make CWYET modelling capabilities

he majority of the code implementing CWYET is based
on .NET, as is HWB. While we want a data model that is
decoupled from this technology, we do want .NET software
to access this data layer easily. In particular there are

ping and entity-
relationship modelling, such as Nhibernate, which are in

CWYET is used at regional to continental scales. The main
conceptual modelling unit is a catchment, which has one or

modelling of runoff
in assumption that these cells are

gridded, though this is usually the case. Each cell is
modeled by a lumped conceptual rainfall runoff model ().

Figure 1: CWYET with a gridded model structure

It is important to note that the structure in
one of the possible combination. Using a cliché, one can
think of the definition of a variety of
parallel to building constructs with Lego™ blocks of
varying colors. A list of the main parts of the CWYET
model definitions, and examples for each of them, follows:
The structure of the catchment model, e.g. lumped or semi
distributed, gridded; what model structure represent the
water fluxes (Sacramento, GR4J, ...)
The mapping of input climate time series
variables of the specific structure of the catchment model.
The source of the data may consist of a netCDF file wit
3D schema lat-lon-time, or a series of CSV files with file
name conventions derived from the series geolocation.
The parameterisation to apply to the model. A set of model
parameters may be applied identically to all gri
a subset thereof, for instance when transferring parameter
sets from calibrated catchments to individual grid cells.
The initialization of the model state variables
first time step of the simulation
buckets' of lumped conceptual r
The specification of the state variables of the model that are
recorded as output time series, e.g. “record runoff from
each individual grid cell, and the catchment baseflow and
runoff variables”
The specification of the statistics a
series, e.g. “get the mean annual runoff depth for each grid
cell, and the Nash-Sutcliffe efficiency of the daily
streamflow for the whole catchment”

CWYET with a gridded model structure

It is important to note that the structure in Figure 1 is but
one of the possible combination. Using a cliché, one can
think of the definition of a variety of catchment models as a
parallel to building constructs with Lego™ blocks of
varying colors. A list of the main parts of the CWYET
model definitions, and examples for each of them, follows:
The structure of the catchment model, e.g. lumped or semi-

ted, gridded; what model structure represent the
water fluxes (Sacramento, GR4J, ...)

input climate time series to the input
variables of the specific structure of the catchment model.
The source of the data may consist of a netCDF file with a

time, or a series of CSV files with file
name conventions derived from the series geolocation.
The parameterisation to apply to the model. A set of model
parameters may be applied identically to all grid cells, or to

for instance when transferring parameter
sets from calibrated catchments to individual grid cells.
The initialization of the model state variables prior to the
first time step of the simulation, typically setting the 'water
buckets' of lumped conceptual rainfall-runoff models.
The specification of the state variables of the model that are
recorded as output time series, e.g. “record runoff from
each individual grid cell, and the catchment baseflow and

The specification of the statistics applied to the output time
series, e.g. “get the mean annual runoff depth for each grid

Sutcliffe efficiency of the daily
whole catchment”

Figure 2 Summary core data model for CWYET

The list above covers only the core definition of a
catchment model, but CWYET comprises other aspects that
need a similar building block approach. Each catchment
model may be used for several simulations, covering
different time spans, producing different output st
The definition of catchment model calibration needs similar
flexibility for the specification of the objectives, and the
calibration strategy used (split-sampling, optimizing
algorithms).
From this analysis one can derive a set of entities captur
each aspect of the modelling task definitions.
shows the main core entities for CWYET, and their
relationship. A calibration definition references a
simulation definition which in turn
components definition of the structure of the model. The
simulation definition is a composition of
covering the aspects previously listed. Defining abstract
entities permits the flexibility to compose water yield
modelling scenarios “Lego-style”. For inst
includes two concrete types of input definition. Both are
using netCDF files as a data sources, but one extracts data
for a gridded cell based model, while the other extracts data
intended for the lumped modelling of catchment.
The definitions above may appear self-evident to many
readers, especially to those versed in environmental
modelling software framework. Despite this well
conceptualization, software implementation is, in our
experience, often at best very partially fulfilling these

 class Domain Objects

ISimulationStateInitialization

StateInitialization

SimulationDefinition

ISimulationOutputsDefinition

OutputRecordingDefinition

NetcdfCellInputDefinition

ISimulationParameterization

ModelParameterization

CalibrationDefinition

NetcdfCatchmentInputsDefinition

GriddedModelDefinition

ISimulationInputsDefinition

InputDefinition

Summary core data model for CWYET

the core definition of a
catchment model, but CWYET comprises other aspects that
need a similar building block approach. Each catchment
model may be used for several simulations, covering
different time spans, producing different output statistics.
The definition of catchment model calibration needs similar
flexibility for the specification of the objectives, and the

sampling, optimizing

From this analysis one can derive a set of entities capturing
each aspect of the modelling task definitions. Figure 2

core entities for CWYET, and their
relationship. A calibration definition references a

which in turn references the
tion of the structure of the model. The

simulation definition is a composition of abstract entities
covering the aspects previously listed. Defining abstract
entities permits the flexibility to compose water yield

style”. For instance, Figure 2
includes two concrete types of input definition. Both are
using netCDF files as a data sources, but one extracts data
for a gridded cell based model, while the other extracts data

f catchment.
evident to many

readers, especially to those versed in environmental
modelling software framework. Despite this well-shared
conceptualization, software implementation is, in our

ery partially fulfilling these

needs, especially when it comes to allowing flexibility to
defining each of these aspects and in particular
them sustainably. This paper puts an equal emphasis on
explaining the implementation process, object of th
section, as on the design and analysis.

Implementation

The entities of the CWYET model definition must be
accessible to components and services in both the
“business” layer (i.e. the modelling engine) and the data
layer (i.e. the database system sto
common situation for software applications (Meier
2008). These two objectives often require differing
on these entities, sometime leading to a mismatch in the
requirements for these entities. Object
(ORM) techniques and toolsets have evolved to address this
mismatch. This section summarizes the implementation of
the CWYET model definition entities using Microsoft
Entity Framework (EF) (Lerman, 2009)
its platform, .NET. It enables dev
relational data as domain-specific objects, eliminating the
need for most of the data access plumbing code that
developers usually need to writ
There are three broad approaches to building these entities:
data first (there is a pre-existing database), model first
(design entity graphically and generate code and database),
and code first (derive the database by analysing the code).

Figure 3: Graphical EMD builder in Visual Studio

While CWYET has a legacy data
we choose to re-engineer it with the minimum of legacy
constraints. We implement the CWYET entities with the
model-first approach. Of particular interest in EF is the
availability of a graphical data modelling tool (

ISimulationStateInitialization

StateInitialization

ISimulationOutputsDefinition

OutputRecordingDefinition

ISimulationParameterization

ModelParameterization

NetcdfCatchmentInputsDefinition

ISimulationInputsDefinition

InputDefinition

needs, especially when it comes to allowing flexibility to
defining each of these aspects and in particular persisting

. This paper puts an equal emphasis on
explaining the implementation process, object of the next
section, as on the design and analysis.

Implementation

The entities of the CWYET model definition must be
accessible to components and services in both the
“business” layer (i.e. the modelling engine) and the data
layer (i.e. the database system storing them). This is a
common situation for software applications (Meier et al.,
2008). These two objectives often require differing views
on these entities, sometime leading to a mismatch in the
requirements for these entities. Object-relational mapping

) techniques and toolsets have evolved to address this
mismatch. This section summarizes the implementation of
the CWYET model definition entities using Microsoft

(Lerman, 2009), chosen chiefly for
enables developers to work with

specific objects, eliminating the
need for most of the data access plumbing code that
developers usually need to write.
There are three broad approaches to building these entities:

xisting database), model first
(design entity graphically and generate code and database),
and code first (derive the database by analysing the code).

Graphical EMD builder in Visual Studio

While CWYET has a legacy data layer in its architecture,
engineer it with the minimum of legacy

constraints. We implement the CWYET entities with the
first approach. Of particular interest in EF is the

availability of a graphical data modelling tool (Figure 3)

which permits a view clearer than by starting to directly
code the entities, and without the explicit need for the
particulars of the database storage logic.
The process of implementation of the CWYET data model
in a database is shown in Figure 4. From the data model
definition in the EMD, and for each entity defined in that
model, two things are generated. First, the Microsoft toolset
generates the SQL script that can subsequently create a
database complying with this data model. C# code with
class definitions is also generated, one for each entity
defined as well. Two files are created: one with only data,
and overwritten every time, and the second created only
once, to host the behavior of the class. The b
consists of code defining what the objects can do,
constructing an executable catchment model from the data
in this (resp. these) entity (resp. entities) that
catchment model. Adding the behavior to the classes can
only be a manual process here. Lastly, code for
is created. Basically, the Repository pattern just means
putting a façade over your persistence system so that you
can shield the rest of your application code from having to
know how persistence works (Miller, 2009). This also
promotes a consistent way to access, query and filter
entities of a certain type. Note that the only manual part of
the process is the definition of the behavior of the entities;
as much as possible the “plumbing” of the data layer i
automatically generated. The code for the entities is
generated using so-called T4 templates (Text Template
Transformation Toolkit, see Allen (2010) for in
available in Visual Studio 2010 yet unknown to most
developers.
This workflow, partly standard to the EF toolset, partly
customized, stems from the desire to follow the practices
presented in Meier et al. (2008) and Miller (2009). It is
important to note that the code generated for entities is
completely independent from the “persistence” layer
from an SQL Server database in this instance. This is
consistent with the best practice advocated as having
“persistence-agnostic business objects”. One advantage of
this pattern is that should the type of database change,
having such a layering limits the risks of having to change
the business logic.

which permits a view clearer than by starting to directly
code the entities, and without the explicit need for the

The process of implementation of the CWYET data model
. From the data model

definition in the EMD, and for each entity defined in that
model, two things are generated. First, the Microsoft toolset
generates the SQL script that can subsequently create a

g with this data model. C# code with
class definitions is also generated, one for each entity
defined as well. Two files are created: one with only data,
and overwritten every time, and the second created only

of the class. The behavior
consists of code defining what the objects can do, such as
constructing an executable catchment model from the data

that define(s) this
catchment model. Adding the behavior to the classes can

manual process here. Lastly, code for repositories
Basically, the Repository pattern just means

putting a façade over your persistence system so that you
can shield the rest of your application code from having to

ller, 2009). This also
a consistent way to access, query and filter

. Note that the only manual part of
the process is the definition of the behavior of the entities;
as much as possible the “plumbing” of the data layer is

The code for the entities is
called T4 templates (Text Template

Transformation Toolkit, see Allen (2010) for instance),
available in Visual Studio 2010 yet unknown to most

dard to the EF toolset, partly
customized, stems from the desire to follow the practices

. (2008) and Miller (2009). It is
important to note that the code generated for entities is
completely independent from the “persistence” layer, i.e.

an SQL Server database in this instance. This is
consistent with the best practice advocated as having

agnostic business objects”. One advantage of
this pattern is that should the type of database change,

its the risks of having to change

Figure 4: workflow of the creation of the code and data
store.

Sample applications

We conclude this section by demonstrating two modelling
applications using the CWYET data la
workflow in HWB constructing CWYET catchment model
definitions. The first workflow activity retrieves a
“SimulationDefinition” entity from the database, using
keywords or a unique identifier. Combined with th
activity, we obtain a gridded model structure ready to
execute to get output time series
calibration workflow.

Figure 5: CWYET model building activities
workflow (HWB)

For modelers needing full
configurations, another example using the CWYET data
layer is in Figure 6. This shows sample code in the
language (http://ironpython.net
code would be useful in case we needed, for the sake of
illustration, to correct some of the input time series, for

 analysis CVWYET Entities creation

EDM diagram

SQL

Generate DB

DBContext

Generate

Repositories

Repositories

Create DB

workflow of the creation of the code and data

Sample applications

We conclude this section by demonstrating two modelling
applications using the CWYET data layer. Figure 5 shows a
workflow in HWB constructing CWYET catchment model

The first workflow activity retrieves a
“SimulationDefinition” entity from the database, using

or a unique identifier. Combined with the second
activity, we obtain a gridded model structure ready to

time series or to pass to e.g. a

building activities in a scientific

eding fuller access to the CWYET
configurations, another example using the CWYET data

. This shows sample code in the Python
http://ironpython.net and http://python.org). This

code would be useful in case we needed, for the sake of
illustration, to correct some of the input time series, for

Generate Code

Classes

Behavior

Code Template

Add

Behavior

DBContext

Database

instance if the gauged input rainfall time series had been
further quality assured since.

Figure 6 Querying and modifying model simulation
definitions

Two things need to be emphasized. First, the code is
concise, and the technical complexities of the SQL database
storage are almost invisible (only the call to
a need arising from this, and is rather intuitive). Second, we
demonstrate here the use of LINQ to find a subset of
CWYET entities. LINQ is powerful in this example, mostly
for reasons that unfortunately cannot be fully explained in a
paragraph. Suffice to say that a lot happens behind the
scene to enable a query in one short line of code.

Discussion

While the process is “model-first”, removing the constraints
arising from legacy, some choices are naturally guided by
previous experience. The product Source IMS (Welsh
2012) uses a sophisticated system for persistence based on
the NHibernate framework. Issues of performance and
backward compatibility appear in a context where an
application starts from a view centered on hydrologic
modelling, as opposed to software and data centric
(personal communication). This is unfortunately rather hard
to avoid in the context of environmental modelling
of the software constructs that are natural to environmental
model software developers may not be straightforward to
represent in a relational database.
Based on these observations, the model-first approach was
chosen here for CWYET as a compromise between the
persistence mechanism and the conceptual entities in the
environmental modelling constructs. The data model
designer (Figure 4) lets developers create relatively simple
types of properties for the entities, yet reflects the software
concepts of type inheritance. EF can automatically generate
the database schema in SQL, but the corresponding
software data entities may appear crude to a coder.
Conversely, class abstraction and inheritance is available as
expected from developers familiar with object oriented
software, and EF is taking care of the representation of
inheritance in the database. This latter capability is
to flexibly enable alternate model configurations (i.e.
alternate LegoTM blocks, in our childhood analog).
Importantly for the authors, rather little needed to be

instance if the gauged input rainfall time series had been

erying and modifying model simulation

Two things need to be emphasized. First, the code is
concise, and the technical complexities of the SQL database
storage are almost invisible (only the call to u.Save() is

ather intuitive). Second, we
demonstrate here the use of LINQ to find a subset of
CWYET entities. LINQ is powerful in this example, mostly
for reasons that unfortunately cannot be fully explained in a
paragraph. Suffice to say that a lot happens behind the
scene to enable a query in one short line of code.

first”, removing the constraints
arising from legacy, some choices are naturally guided by
previous experience. The product Source IMS (Welsh et al.,

phisticated system for persistence based on
the NHibernate framework. Issues of performance and
backward compatibility appear in a context where an
application starts from a view centered on hydrologic
modelling, as opposed to software and data centric

. This is unfortunately rather hard
to avoid in the context of environmental modelling. Some
of the software constructs that are natural to environmental
model software developers may not be straightforward to

first approach was
chosen here for CWYET as a compromise between the
persistence mechanism and the conceptual entities in the
environmental modelling constructs. The data model

) lets developers create relatively simple
types of properties for the entities, yet reflects the software
concepts of type inheritance. EF can automatically generate
the database schema in SQL, but the corresponding

ay appear crude to a coder.
Conversely, class abstraction and inheritance is available as
expected from developers familiar with object oriented
software, and EF is taking care of the representation of
inheritance in the database. This latter capability is essential
to flexibly enable alternate model configurations (i.e.

blocks, in our childhood analog).
little needed to be

learned about relational databases and associated database
management software tools.
The manipulation of CWYET catchment model definitions
using EF is currently superseding the legacy use of XML. It
is proving easier to evolve capabilities
duplication of identical configuration items throughout
many XML files. The capabilitie
filtering entities built with EF are much superior to that put
on top of a file system. In theory, the script in
could be achieved with a storage layer consisting on
files and folder names conventions. It is more practical to
use state of art tools and practices with an SQL database,
where these capabilities are available with much less
additional effort.
The process of designing and implementing this data layer
required thinking of an envir
toolset in terms of its data at least
behavior. Many problems of sustainability of
modelling software toolsets
overly model-centric view to the detriment of a data
one. With this in mind, it is worth noting that the learning
material of EF is often using business examples such as
customer order databases, and it is an interesting exercise to
translate this to the context of environmental modelling.
While the benefits so far of this new data layer are
compelling, there are of course some difficulties yet to
overcome and questions about the scope of applicability.
There are two main issues to overcome.
may require performance optimization, th
probably partly a question of
database migration capabilities will be needed to evolve the
data model to address new features. Fortunately both
aspects are also currently addressed by the EF team.
The scope of applicability of this data layer is a more
interesting question. Overusing EF
encompassing, dogmatic and so restrictive that it ends up
appearing obtuse. The definition of calibration process is
an interesting case: should it be stored like
configuration data, or is this by nature more a workflow to
persist? HWB seems obviously
capture its definition, and we should avoid building a
separate system for CWYET specific workflow
management. We envisage that su
development is necessary to couple the CWYET data
model with that of HWB and Trident when warranted, and
notably leverage the provenance system of Trident.

Conclusion

The reengineering of the CWYET data model, using Entity
Framework and Entity Data Modelling approach with a
model-first technique, has brought it more in line with the
state of the art in software application design and

learned about relational databases and associated database

The manipulation of CWYET catchment model definitions
using EF is currently superseding the legacy use of XML. It
is proving easier to evolve capabilities and avoid
duplication of identical configuration items throughout
many XML files. The capabilities for loading, querying and
filtering entities built with EF are much superior to that put
on top of a file system. In theory, the script in Figure 6
could be achieved with a storage layer consisting on XML

conventions. It is more practical to
use state of art tools and practices with an SQL database,
where these capabilities are available with much less

The process of designing and implementing this data layer
of an environmental modelling software

data at least as much as its runtime
. Many problems of sustainability of catchment

toolsets arise arguably because of an
to the detriment of a data-centric

one. With this in mind, it is worth noting that the learning
material of EF is often using business examples such as
customer order databases, and it is an interesting exercise to
translate this to the context of environmental modelling.

enefits so far of this new data layer are
compelling, there are of course some difficulties yet to
overcome and questions about the scope of applicability.
There are two main issues to overcome. First, the database

optimization, though this is
partly a question of acquiring know-how. Second,

atabase migration capabilities will be needed to evolve the
data model to address new features. Fortunately both
aspects are also currently addressed by the EF team.

cability of this data layer is a more
interesting question. Overusing EF, it can become all
encompassing, dogmatic and so restrictive that it ends up
appearing obtuse. The definition of calibration process is
an interesting case: should it be stored like any other model
configuration data, or is this by nature more a workflow to

seems obviously much more adapted to
, and we should avoid building a

separate system for CWYET specific workflow
We envisage that subsequent research and
is necessary to couple the CWYET data

that of HWB and Trident when warranted, and
notably leverage the provenance system of Trident.

Conclusion

The reengineering of the CWYET data model, using Entity
nd Entity Data Modelling approach with a

first technique, has brought it more in line with the
state of the art in software application design and

implementation. The toolset is now in a better position for
inclusion as modelling capabilities in HWB, within the
scientific workflow tool Trident. Managing ensembles of
simulations and modelling scenarios is easier than with the
previous data storage system, and the relational database
technology is a more sustainable solution. A central
motivation of this reengineering was to better address the
challenge of tracking provenance in modelling and
simulation with CWYET. Further research and
development will examine how to couple the CWYET data
model with the HWB workflow definitions and provenance
tracking in Trident.

Acknowledgement

The Catchment Water Yield Estimation Tool (CWYET)
framework is developed as part of eWater CRC’s Source
Rivers and Source Catchments projects. This work was
carried out in the CSIRO Water for Healthy Country
National Research Flagship with support from National
Water Commission and Commonwealth Department of the
Environment, Water, Heritage and the Arts (DEWHA).

References

Allen, K.S., (2010). Text Template Transformation Toolkit and ASP.NET
MVC, MSDN Magazine 2010 January, http://msdn.microsoft.com/en-
us/magazine/ee291528.aspx
Barga, R., Jackson, J., Araujo, N., Guo, D., Gautam, N., Simmhan, Y.
(2008), The Trident Scientific Workflow Workbench, IEEE Fourth
International Conference on eScience, pp.317-318, 7-12 Dec. 2008, doi:
10.1109/eScience.2008.126

Cuddy, S. & Fitch, P. “Hydrologists Workbench–a hydrological domain
workflow toolkit”, International Congress on Environmental Modelling
and Software, July 5 - 8 2010, Ottawa, Ontario, Canada
Lerman J., (2009), Programming Entity Framework, Second Edition,
O'Reilly Media, p. 918, ISBN-13: 978-0-596-80726-9
Meier J., Homer A., Hill D., Taylor J., Bansode P., Wall L., Boucher R. &
Bogawata A., Application architecture guide 2.0: designing applications
on the .NET platform, Microsoft Corporation, 2008.
Miller, J., (2009), Design Patterns for Data Persistence, MSDN Magazine,
April 2009, http://msdn.microsoft.com/en-
us/magazine/dd569757.aspx#id0400058
Perraud, J.-M., Bai, Q., & Hehir, D. (2010), On the appropriate granularity
of activities in a scientific workflow applied to an optimization problem,
International Congress on Environmental Modelling and Software, July 5
- 8 2010, Ottawa, Ontario, Canada,
http://www.iemss.org/iemss2010/proceedings.html
Rew, R. K., Hartnett E. J. & Caron J. (2006), NetCDF-4: Software
Implementing an Enhanced Data Model for the Geosciences, 22nd
International Conference on Interactive Information Processing Systems
for Meteorology, Oceanography, and Hydrology, AMS 2006.
Vaze, J., Chiew, F. H. S., Perraud, JM., Viney, N., Post, D. A., Teng, J.,
Wang, B., Lerat, J., Goswami, M., (2011a). Rainfall-runoff modelling
across southeast Australia: datasets, models and results. Australian Journal
of Water Resources, Vol 14, No 2, pp. 101-116
Vaze J, Perraud J, Teng J, Chiew F, Wang B, Yang Z. (2011b). Catchment
Water Yield Estimation Tools framework (CWYET). 34th IAHR World
Congress 2011 - Balance and Uncertainty Water in a Changing World.
Brisbane, Australia.
Welsh, W., Vaze J., Dutta D., Rassam D., Rahman J.M., Jolly I.,
Wallbrink P.J., Podger G., Bethune M., Hardy M.J., Teng J. & Lerat J.
(2012), An integrated modelling framework for regulated river systems,
Environmental Modelling & Software. in press.

