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Abstract

The Catchment Water Yield Estimation Toolset (CWYET
is a software toolset for estimating water yielceioup to
hundreds of catchments, featuring capabilities

calibration, catchment cross-verification, ensemblef
models and scenario modelling such as impact ofiatké

for

across Australia that allows them to undertake the
modelling in an objective, consistent and reprobleci
manner.

CWYET has been applied in research and decisiopastip
projects, some with a substantial requirement for
reproducibility and an audit trail. This can behaléenge in

a context where the toolset will still need rapidletion

change. These uses require building alternate model for the research purpose. The computational logdired

configurations by alternating measured or hypotadti
climate inputs, model parameterization, objectivections,
state initialization, etc. Figuratively, this is tndifferent
from the assembly of Lego™ blocks. This information
needs to be managed for the traceability and reibdity

of scientific experiments. We present in this paper
entity-relationship data model (ERM), i.e. a cortcap
representation of the data, in the broad senseciassd
with these catchment model “Lego” building blockghile
this ERM information modelling technique is widesad in
the business systems design, it seems to be uncoriimo
scientific  software design. CWYET has multiple
requirements, sometimes conflicting, for this ERMIne
central requirement is to build and execute catctime
simulation models from a software scientific wodkfl
system, the Hydrologists’ Workbench. To capture the
design of the data model, we use the Microsoft tgnti
Framework, using the so-called “model first” appoaln
order to maintain some capacity to evolve and adagpt
data model for future need, we use code generation
reduce the coding tedium to a minimum. We present a
assessment of the benefits and smaller inconvenarthis
approach, notably compared to the more ad hoc appro
the management of model configuration that exigtedr

to this endeavor.

I ntroduction

The Catchment Water Yield Estimation Tools (CWYES)
a modelling framework for estimating daily catchren
water yield and runoff characteristics in regulatadd
unregulated catchments (Vageal. 2011a and Vazet al.
2011b). One background motivation for this toolseta
need to develop a modelling framework which carused

by different water management and research agencies

by the tool, due to the combinatorial effect ofeatate
inputs, catchment models, calibration techniqués, adten
requires distributed computation on a computatichadter.
These contexts have some bearing on how the data an
model configurations are structured.

For a variety of logistical and historical reaso@SVYET
has tracked the definition of modelling tasks aesults in
practice by relying on storing information in XMilefs and
comma-separated value files (CSV). These formatsaar
compromise insofar as they are both machine-readaid

to an extent human-readable. Over the years, vgubds
have been served adequately, several shortcomirgs a
apparent. The reliance on a file system (and fodohet file
names as identifier) can be an issue dependinghen t
organizational context. Storage infrastructure ggraded,
and these changes gradually compromise the progenan
trail of the modelling results. People move on tioeo roles,
and are at best less available to answer queriepash
work. The XML based storage of model configuration
information proved cumbersome to evolve for new
modelling endeavours. Most importantly, it is abteasy

to overwrite these files, intentionally or not.

In this paper we step back from this existing isfracture
for the management of models and data associatéd wi
CWYET. We summarily document and analyze the
fundamental needs in this scope. Note that the ssibset
of CWYET needs, and in particular we are not comeer
with user interfaces in this paper. We propose fawaoe
solution in the form of a data layer using currentecent
technologies, and more in line with the state efdht in the
business world.

Terminology



The word 'model' in this paper can refer to twow
different things. One is a hydrologic model, thbestis ar
entity-relationship model, a term frothe field of softwar:
engineering. Where ambiguous, these will respdgtize
referred to as “catchment model” for the former] ddata
model” or ERM for the latter.

Needs

CWYET serves both the needs of research projeats
more applied modelling exgses feeding in th
management of water resources. It is used to estimater
yield over up to hundreds of catchments, featu
capabilities for calibration, catchment cr-verification,
ensembles of models, and scenario modelling suc
impact of climate changes.

For both research and decision support, but iriquéat for
the latter, reproducibility and transparency is easisl.
These are arguably obvious, paramount needs to
readers, but their adequate implementation is emtlin
difficult.

CWYET model runs often require computational clustex
run, and sometimes concurrent read access to dhk&
scientific data (distinguished from model configioa
data) is increasingly found in a netCDF format (Retwal
2006), although the exact daehemes can vary depend
on the modelling need (indeed CWYET can contritiot
their definition).

We also aim to construct and manage CWYET modaeads
data from the Hydrologists' Workbench (HWB) (Cuc&
Fitch, 2010). HWB is a modelling workbench bung on
the Trident scientific workflow software (Barget al.
2008). The work of Perraut al. (2010)on the appropriat
granularity of activities in a calibration workflomotivates
this desire to make CWYET modelling capabilit
available through HWB.

The majority of the code implementing CWYET is ba
on .NET, as is HWB. While we want a data model fh:
decoupled from this technology, we do want .NETsafe
to access this data layer easily. In particularehare
toolsets for object-relational mpipg and entit-
relationship modelling, such as Nhibernate, whicé &
use with .NET code.

Analysis

CWYET is used at regional to continental scales ain
conceptual modelling unit is a catchment, which tias or
more of “cells” for semi-distributednodelling of runofi
within it. There is no builtn assumption that these cells .
gridded, though this is usually the case. Each &=
modeled by a lumped conceptual rainfall runoff md).
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Figure 1:.CWYET with a gridded model structt
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It is important to note that the structureFigure 1 is but
one of the possible combination. Using a clichée can
think of the definition of a variety (catchment models as a
parallel to building constructs with Lego™ blockd
varying colors. A list of the main parts of the C\WY
model definitions, and examples for each of theatipWs:
The structure of the catchment model, e.g. lumpesem-
distribued, gridded; what model structure represent
water fluxes (Sacramento, GR4J,

The mapping ofinput climate time serieto the input
variables of the specific structure of the catchimandel.
The source of the data may consist of a netCDRwith a
3D schema lat-loime, or a series of CSV files with fi
name conventions derived from the series geolat:

The parameterisation to apply to the model. A $§ehadel
parameters may be applied identically to ald cells, or to
a subset thereofpr instance when transferring parame
sets from calibrated catchments to individual gedls

The initialization of the model state varial prior to the
first time step of the simulatiy, typically setting the 'water
buckets' of lumped conceptuainfall-runoff models.

The specification of the state variables of the ehdlat are
recorded as output time series, e.g. “record rurfiaiin
each individual grid cell, and the catchment basefand
runoff variables”

The specification of the statisticpplied to the output time
series, e.g. “get the mean annual runoff deptleéah gric
cell, and the NasButcliffe efficiency of the dail
streamflow for thavhole catchmen
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Figure 2Summary core data model for CWY

The list above coveronly the core definition of
catchment model, but CWYET comprises other asphat:
need a similar building block approach. Each cataii
model may be used for several simulations, cove
different time spans, producing different outpiatistics.

The definition of catchment model calibration neesifsilar

flexibility for the specification of the objectivegnd the
calibration strategy used (spigmpling, optimizing
algorithms).

From this analysis one can derive a set of entitigruing

each aspect of the modelling task definitioFigure 2
shows the maincore entities for CWYET, and the
relationship. A calibration definition references

simulation definition which in turn references the
components defition of the structure of the model. T
simulation definition is a composition @bstract entities
covering the aspects previously listed. Definingstedrt
entities permits the flexibility to compose wateielgt

modelling scenarios “Legstyle”. For insance, Figure 2
includes two concrete types of input definition.tBare
using netCDF files as a data sources, but one cgtoate
for a gridded cell based model, while the otheraets dat:
intended for the lumped modelling catchmen

The definitions above may appear sslfdent to man
readers, especially to those versed in environnh
modelling software framework. Despite this \-shared
conceptualization, software implementation is, imr

experience, often at bestery partially fulfilling these

needs, especially when it comes to allowing flditipito
defining each of these aspects and in particpersisting
them sustainably. This paper puts an equal emphasis
explaining the implementation process, object € next
section, as on the design and anal

I mplementation

The entities of the CWYET model definition must

accessible to components and services in both

“business” layer (i.e. the modelling engine) and thata
layer (i.e. the database systemring them). This is a
common situation for software applications (Meet al.,

2008). These two objectives often require differviews

on these entities, sometime leading to a mismatcthe
requirements for these entities. Ob-relational mapping
(ORM) techniques and toolsets have evolved to addnés
mismatch. This section summarizes the implemenmtatit
the CWYET model definition entities using Micros

Entity Framework (EFjLerman, 200¢, chosen chiefly for
its platform, .NET. Itenables deelopers to work with
relational data as domaspecific objects, eliminating tt
need for most of the data access plumbing code

developers usually need to ve.

There are three broad approaches to building tbesges:

data first (there is a predsting database), model fir
(design entity graphically and generate code atdbdae)

and code first (derive the database by analysiagtiue
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Figure 3:Graphical EMD builder in Visual Stuc

While CWYET has a legacy d: layer in its architecture,
we choose to rengineer it with the minimum of lega
constraints. We implement the CWYET entities wiltle
modelfirst approach. Of particular interest in EF is
availability of a graphical data modelling tocFigure 3)



which permits a view clearer than by starting teecily
code the entities, and without the explicit need ftioe
particulars of the database storage logic.

The process of implementation of the CWYET data eh
in a database is shown in Figure Fom the data mod
definition in the EMD, and for each entity defingdthat
model, two things are generated. First, the MicitasoIset
generates the SQL script that can subsequentlytecra
database complyin with this data model. C# code w
class definitions is also generated, one for eadctitye
defined as well. Two files are created: one witlyatata,
and overwritten every time, and the second creatdy
once, to host theébehavior of the class. The ehavior
consists of code defining what the objects cansuch as
constructing an executable catchment model fromdtite
in this (resp. these) entity (resp. entitids define(s) this
catchment model. Adding the behavior to the clagset
only be amanual process here. Lastly, coderepositories
is created.Basically, the Repository pattern just me
putting a facade over your persistence system &bytbu
can shield the rest of your application code framihg to
know how persistence works (Ndir, 2009). This alsi
promotesa consistent way to access, query and 1
entities of a certain typdNote that the only manual part
the process is the definition of the behavior @& éntities;
as much as possible the “plumbing” of the dataras
automatically generatedThe code for the entities
generated using smalled T4 templates (Text Temple
Transformation Toolkit, see Allen (2010) forstance),
available in Visual Studio 2010 yet unknown to
developers.

This workflow, partly stadard to the EF toolset, part
customized, stems from the desire to follow thecticas
presented in Meieget al. (2008) and Miller (2009). It i
important to note that the code generated for iestits
completely independent from the “persistence” |, i.e.
from an SQL Server database in this instance. Th
consistent with the best practice advocated as nb:
“persistenceagnostic business objects”. One advantag
this pattern is that should the type of databasangb,
having such a layering liits the risks of having to chan
the business logic.
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Figure 4:.workflow of the creation of the code and d
store.

Behavior

Database

Sample applications

We conclude this section by demonstrating two nlodg
applications using the CWYET dateyer. Figure 5 shows a
workflow in HWB constructing CWYET catchment mot
definitions. The first workflow activity retrieves
“SimulationDefinition” entity from the database, ing
keywordsor a unique identifier. Combined withe second
activity, we obtain a gridded model structure redady
execute to get outputime seriesor to pass to e.g. a
calibration workflow.

! Get Simulation Definition " Build Grid Model Runiner

SelectByld SimulationDefinitions (» @ EndDate GriddedSystemRunner

Model Name @ SimulationDefinitions

Simul Name @ StartDate

oo 0w

SimulationKeys

Figure 5: CWYET modébuilding activitie: in a scientific
workflow (HWB)

For modelers reding fuler access to the CWYET
configurations, another example using the CWYETa
layer is in Figure 6This shows sample code in tPython
language littp://ironpython.ne and http://python.org). This
code would be useful in case we needed, for the sé
illustration, to correct some of the input timeissy for




instance if the gauged input rainfall time series beer
further quality assured since.

# Update rainfall input time series for two catchments
catIds = ['701009",'704193"]

rh = RepositoryHelper ()

u = rh.GetUnitOfWork()

gimDefRepo = rh.GetSimulationDefinitionRepository (u)

$# Use a LINQ expression to find all entities to correct
simDefinitions = simDefRepo.Find (lambda x: x.Name in catIds)
for = in simDefinitions: updateRainfallInputDefinitions(s)
u.S5ave ()

rh.Dispose ()

Figure 6 Qerying and modifying model simulatic
definitions

Two things need to be emphasized. First, the c&
concise, and the technical complexities of the $@tabas:
storage are almost invisible (only the callu. Save() is
a need arising from this, and &ther intuitive). Second, w
demonstrate here the use of LINQ to find a subdge
CWYET entities. LINQ is powerful in this example psily
for reasons that unfortunately cannot be fully expd in ¢
paragraph. Suffice to say that a lot happens beltie
scene to enable a query in one short line of (

Discussion

While the process is “modéirst”, removing the constrain
arising from legacy, some choices are naturallydegdiby
previous experience. The product Source IMS (Wet al.,

2012) uses a gphisticated system for persistence base:
the NHibernate framework. Issues of performance

backward compatibility appear in a context where
application starts from a view centered on hydrim
modelling, as opposed to software and data ce
(personal communicationYhis is unfortunately rather ha
to avoid in the context of environmental model. Some
of the software constructs that are natural toremvhental
model software developers may not be straightfodwar
represent in a relational database.

Based on these observations, the mdidsti-approach wa
chosen here for CWYET as a compromise betweer
persistence mechanism and the conceptual entitighei
environmental modelling constructs. The data m
designer (Figure Mlets developers create relatively sim
types of properties for the entities, yet refletis software
concepts of type inheritance. EF can automatigiyerate
the database schema in SQL, but the correspol
software data entities ag appear crude to a cod
Conversely, class abstraction and inheritance adable as
expected from developers familiar with object otést
software, and EF is taking care of the represematf
inheritance in the database. This latter capah essential
to flexibly enable alternate model configurationise.|
alternate LegB" blocks, in our childhood analo

Importantly for the authors, rathdittle needed to b

learned about relational databases and associatatias:
management software tools.

The manipulation of CWYET catchment model defiriti
using EF is currently superseding the legacy useMif. It

is proving easier to evolve capabili and avoid
duplication of identical configuration items thrdwat
many XML files. The capabilits for loading, querying and
filtering entities built with EF are much supertorthat put
on top of a file system. In theory, the scriptFigure 6
could be achieved with a storage layer consistimXML
files and folder namesonventions. It is more practical
use state of art tools and practices with an SQhaldese
where these capabilities are available with mucks
additional effort.

The process of designing and implementing this tater
required thinkingof an envionmental modelling software
toolset in terms of itglata at leasas much as its runtime
behavior Many problems of sustainability ccatchment
modelling softwaretoolsetsarise arguably because of an
overly model-centric viewo the detriment of a de-centric
one. With this in mind, it is worth noting thatethearning
material of EF is often using business examples saas
customer order databases, and it is an interesarrise tc
translate this to the context of environmental niotg
While the lenefits so far of this new data layer
compelling, there are of course some difficultiest yo
overcome and questions about the scope of apiiga
There are two main issues to overcolFirst, the database
may require performanceptimization, tlough this is
probablypartly a question cacquiring know-how. Second,
database migration capabilities will be needed whvevthe
data model to address new features. Fortunately
aspects are also currently addressed by the EF

The scope of applability of this data layer is a mo
interesting question. Overusing , it can become all
encompassing, dogmatic and so restrictive thahdtseup
appearing obtuse. The definition of calibratiomgass is
an interesting case: should it be stored any other model
configuration data, or is this by nature more akflow to
persist? HWBseems obviouslynuch more adapted to
capture its definition and we should avoid building
separate system for CWYET specific  workfl
managementWe envisage that bsequent research and
developmentis necessary to couple the CWYET d
model withthat of HWB and Trident when warranted, ¢
notably leverage the provenance system of Tri

Conclusion

The reengineering of the CWYET data model, usingt§
Framework ad Entity Data Modelling approach with
model{irst technique, has brought it more in line witre
state of the art in software application design



implementation. The toolset is now in a better fpasifor
inclusion as modelling capabilities in HWB, withiime
scientific workflow tool Trident. Managing ensemblef
simulations and modelling scenarios is easier thigm the
previous data storage system, and the relation@beae
technology is a more sustainable solution. A céntra
motivation of this reengineering was to better addrthe
challenge of tracking provenance in modelling and
simulation with  CWYET. Further research and
development will examine how to couple the CWYETada
model with the HWB workflow definitions and provernz
tracking in Trident.
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