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Abstract 

The Catchment Water Yield Estimation Toolset (CWYET) 
is a software toolset for estimating water yield over up to 
hundreds of catchments, featuring capabilities for 
calibration, catchment cross-verification, ensembles of 
models and scenario modelling such as impact of climate 
change. These uses require building alternate model 
configurations by alternating measured or hypothetical 
climate inputs, model parameterization, objective functions, 
state initialization, etc. Figuratively, this is not different 
from the assembly of Lego™ blocks. This information 
needs to be managed for the traceability and reproducibility 
of scientific experiments. We present in this paper an 
entity-relationship data model (ERM), i.e. a conceptual 
representation of the data, in the broad sense, associated 
with these catchment model “Lego” building blocks. While 
this ERM information modelling technique is widespread in 
the business systems design, it seems to be uncommon in 
scientific software design. CWYET has multiple 
requirements, sometimes conflicting, for this ERM. One 
central requirement is to build and execute catchment 
simulation models from a software scientific workflow 
system, the Hydrologists’ Workbench. To capture the 
design of the data model, we use the Microsoft Entity 
Framework, using the so-called “model first” approach. In 
order to maintain some capacity to evolve and adapt the 
data model for future need, we use code generation to 
reduce the coding tedium to a minimum. We present an 
assessment of the benefits and smaller inconvenients of this 
approach, notably compared to the more ad hoc approach to 
the management of model configuration that existed prior 
to this endeavor. 

Introduction 

The Catchment Water Yield Estimation Tools (CWYET) is 
a modelling framework for estimating daily catchment 
water yield and runoff characteristics in regulated and 
unregulated catchments (Vaze et al. 2011a and Vaze et al. 
2011b). One background motivation for this toolset is a 
need to develop a modelling framework which can be used 
by different water management and research agencies 

across Australia that allows them to undertake the 
modelling in an objective, consistent and reproducible 
manner. 
CWYET has been applied in research and decision support 
projects, some with a substantial requirement for 
reproducibility and an audit trail. This can be a challenge in 
a context where the toolset will still need rapid evolution 
for the research purpose. The computational load required 
by the tool, due to the combinatorial effect of alternate 
inputs, catchment models, calibration techniques, etc. often 
requires distributed computation on a computational cluster. 
These contexts have some bearing on how the data and 
model configurations are structured. 
For a variety of logistical and historical reasons, CWYET 
has tracked the definition of modelling tasks and results in 
practice by relying on storing information in XML files and 
comma-separated value files (CSV). These formats are a 
compromise insofar as they are both machine-readable and 
to an extent human-readable. Over the years, while goals 
have been served adequately, several shortcomings are 
apparent. The reliance on a file system (and folder and file 
names as identifier) can be an issue depending on the 
organizational context. Storage infrastructure is upgraded, 
and these changes gradually compromise the provenance 
trail of the modelling results. People move on to other roles, 
and are at best less available to answer queries on past 
work. The XML based storage of model configuration 
information proved cumbersome to evolve for new 
modelling endeavours. Most importantly, it is all too easy 
to overwrite these files, intentionally or not. 
In this paper we step back from this existing infrastructure 
for the management of models and data associated with 
CWYET. We summarily document and analyze the 
fundamental needs in this scope. Note that this is a subset 
of CWYET needs, and in particular we are not concerned 
with user interfaces in this paper. We propose a software 
solution in the form of a data layer using current or recent 
technologies, and more in line with the state of the art in the 
business world. 

Terminology 



The word 'model' in this paper can refer to two very 
different things. One is a hydrologic model, the other is an 
entity-relationship model, a term from the field of software 
engineering. Where ambiguous, these will respectively be 
referred to as “catchment model” for the former, and “data 
model” or ERM for the latter. 

Needs 

CWYET serves both the needs of research projects and 
more applied modelling exercises feeding in the 
management of water resources. It is used to estimate water 
yield over up to hundreds of catchments, featuring 
capabilities for calibration, catchment cross
ensembles of models, and scenario modelling such as 
impact of climate changes. 
For both research and decision support, but in particular for 
the latter, reproducibility and transparency is essential. 
These are arguably obvious, paramount needs to most 
readers, but their adequate implementation is eminently 
difficult. 
CWYET model runs often require computational clusters to 
run, and sometimes concurrent read access to data. The 
scientific data (distinguished from model configuration 
data) is increasingly found in a netCDF format (Rew et. al 
2006), although the exact data schemes can vary depending 
on the modelling need (indeed CWYET can contribute to 
their definition). 
We also aim to construct and manage CWYET models and 
data from the Hydrologists' Workbench (HWB) (Cuddy 
Fitch, 2010). HWB is a modelling workbench buildi
the Trident scientific workflow software (Barga 
2008). The work of Perraud et al. (2010) on the appropriate 
granularity of activities in a calibration workflow motivates 
this desire to make CWYET modelling capabilities 
available through HWB. 
The majority of the code implementing CWYET is based 
on .NET, as is HWB. While we want a data model that is 
decoupled from this technology, we do want .NET software 
to access this data layer easily. In particular there are 
toolsets for object-relational mapping and entity
relationship modelling, such as Nhibernate, which are in 
use with .NET code. 

Analysis 

CWYET is used at regional to continental scales. The main 
conceptual modelling unit is a catchment, which has one or 
more of “cells” for semi-distributed modelling of runoff 
within it. There is no built-in assumption that these cells are 
gridded, though this is usually the case. Each cell is 
modeled by a lumped conceptual rainfall runoff model (
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Figure 1: CWYET with a gridded model structure

It is important to note that the structure in 
one of the possible combination. Using a cliché, one can 
think of the definition of a variety of
parallel to building constructs with Lego™ blocks of 
varying colors. A list of the main parts of the CWYET 
model definitions, and examples for each of them, follows: 
The structure of the catchment model, e.g. lumped or semi
distributed, gridded; what model structure represent the 
water fluxes (Sacramento, GR4J, ...) 
The mapping of input climate time series 
variables of the specific structure of the catchment model. 
The source of the data may consist of a netCDF file wit
3D schema lat-lon-time, or a series of CSV files with file 
name conventions derived from the series geolocation.
The parameterisation to apply to the model. A set of model 
parameters may be applied identically to all gri
a subset thereof, for instance when transferring parameter 
sets from calibrated catchments to individual grid cells.
The initialization of the model state variables
first time step of the simulation
buckets' of lumped conceptual r
The specification of the state variables of the model that are 
recorded as output time series, e.g. “record runoff from 
each individual grid cell, and the catchment baseflow and 
runoff variables” 
The specification of the statistics a
series, e.g. “get the mean annual runoff depth for each grid 
cell, and the Nash-Sutcliffe efficiency of the daily 
streamflow for the whole catchment”
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Figure 2 Summary core data model for CWYET

The list above covers only the core definition of a 
catchment model, but CWYET comprises other aspects that 
need a similar building block approach. Each catchment 
model may be used for several simulations, covering 
different time spans, producing different output st
The definition of catchment model calibration needs similar 
flexibility for the specification of the objectives, and the 
calibration strategy used (split-sampling, optimizing 
algorithms). 
From this analysis one can derive a set of entities captur
each aspect of the modelling task definitions. 
shows the main core entities for CWYET, and their 
relationship. A calibration definition references a 
simulation definition which in turn 
components definition of the structure of the model. The 
simulation definition is a composition of 
covering the aspects previously listed. Defining abstract 
entities permits the flexibility to compose water yield 
modelling scenarios “Lego-style”. For inst
includes two concrete types of input definition. Both are 
using netCDF files as a data sources, but one extracts data 
for a gridded cell based model, while the other extracts data 
intended for the lumped modelling of catchment.
The definitions above may appear self-evident to many 
readers, especially to those versed in environmental 
modelling software framework. Despite this well
conceptualization, software implementation is, in our 
experience, often at best very partially fulfilling these 
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needs, especially when it comes to allowing flexibility to 
defining each of these aspects and in particular 
them sustainably. This paper puts an equal emphasis on 
explaining the implementation process, object of th
section, as on the design and analysis.

Implementation

The entities of the CWYET model definition must be 
accessible to components and services in both the 
“business” layer (i.e. the modelling engine) and the data 
layer (i.e. the database system sto
common situation for software applications (Meier 
2008). These two objectives often require differing 
on these entities, sometime leading to a mismatch in the 
requirements for these entities. Object
(ORM) techniques and toolsets have evolved to address this 
mismatch. This section summarizes the implementation of 
the CWYET model definition entities using Microsoft 
Entity Framework (EF) (Lerman, 2009)
its platform, .NET. It enables dev
relational data as domain-specific objects, eliminating the 
need for most of the data access plumbing code that 
developers usually need to writ
There are three broad approaches to building these entities: 
data first (there is a pre-existing database), model first 
(design entity graphically and generate code and database), 
and code first (derive the database by analysing the code).

Figure 3: Graphical EMD builder in Visual Studio
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constraints. We implement the CWYET entities with the 
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which permits a view clearer than by starting to directly 
code the entities, and without the explicit need for the 
particulars of the database storage logic. 
The process of implementation of the CWYET data model 
in a database is shown in Figure 4. From the data model 
definition in the EMD, and for each entity defined in that 
model, two things are generated. First, the Microsoft toolset 
generates the SQL script that can subsequently create a 
database complying with this data model. C# code with 
class definitions is also generated, one for each entity 
defined as well. Two files are created: one with only data, 
and overwritten every time, and the second created only 
once, to host the behavior of the class. The b
consists of code defining what the objects can do, 
constructing an executable catchment model from the data 
in this (resp. these) entity (resp. entities) that
catchment model. Adding the behavior to the classes can 
only be a manual process here. Lastly, code for 
is created. Basically, the Repository pattern just means 
putting a façade over your persistence system so that you 
can shield the rest of your application code from having to 
know how persistence works (Miller, 2009). This also 
promotes a consistent way to access, query and filter 
entities of a certain type. Note that the only manual part of 
the process is the definition of the behavior of the entities; 
as much as possible the “plumbing” of the data layer i
automatically generated. The code for the entities is 
generated using so-called T4 templates (Text Template 
Transformation Toolkit, see Allen (2010) for in
available in Visual Studio 2010 yet unknown to most 
developers. 
This workflow, partly standard to the EF toolset, partly 
customized, stems from the desire to follow the practices 
presented in Meier et al. (2008) and Miller (2009). It is 
important to note that the code generated for entities is 
completely independent from the “persistence” layer
from an SQL Server database in this instance. This is 
consistent with the best practice advocated as having 
“persistence-agnostic business objects”. One advantage of 
this pattern is that should the type of database change, 
having such a layering limits the risks of having to change 
the business logic. 
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Figure 4: workflow of the creation of the code and data 
store. 

Sample applications

We conclude this section by demonstrating two modelling 
applications using the CWYET data la
workflow in HWB constructing CWYET catchment model 
definitions. The first workflow activity retrieves a 
“SimulationDefinition” entity from the database, using 
keywords or a unique identifier. Combined with th
activity, we obtain a gridded model structure ready to 
execute to get output time series 
calibration workflow. 

Figure 5: CWYET model building activities
workflow (HWB) 

For modelers needing full
configurations, another example using the CWYET data 
layer is in Figure 6. This shows sample code in the 
language (http://ironpython.net
code would be useful in case we needed, for the sake of 
illustration, to correct some of the input time series, for 
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instance if the gauged input rainfall time series had been 
further quality assured since. 

Figure 6 Querying and modifying model simulation 
definitions 

Two things need to be emphasized. First, the code is 
concise, and the technical complexities of the SQL database 
storage are almost invisible (only the call to 
a need arising from this, and is rather intuitive). Second, we 
demonstrate here the use of LINQ to find a subset of 
CWYET entities. LINQ is powerful in this example, mostly 
for reasons that unfortunately cannot be fully explained in a 
paragraph. Suffice to say that a lot happens behind the
scene to enable a query in one short line of code.

Discussion 

While the process is “model-first”, removing the constraints 
arising from legacy, some choices are naturally guided by 
previous experience. The product Source IMS (Welsh 
2012) uses a sophisticated system for persistence based on 
the NHibernate framework. Issues of performance and 
backward compatibility appear in a context where an 
application starts from a view centered on hydrologic 
modelling, as opposed to software and data centric 
(personal communication). This is unfortunately rather hard 
to avoid in the context of environmental modelling
of the software constructs that are natural to environmental 
model software developers may not be straightforward to 
represent in a relational database. 
Based on these observations, the model-first approach was 
chosen here for CWYET as a compromise between the 
persistence mechanism and the conceptual entities in the 
environmental modelling constructs. The data model 
designer (Figure 4) lets developers create relatively simple 
types of properties for the entities, yet reflects the software 
concepts of type inheritance. EF can automatically generate 
the database schema in SQL, but the corresponding 
software data entities may appear crude to a coder. 
Conversely, class abstraction and inheritance is available as 
expected from developers familiar with object oriented 
software, and EF is taking care of the representation of 
inheritance in the database. This latter capability is
to flexibly enable alternate model configurations (i.e. 
alternate LegoTM blocks, in our childhood analog).
Importantly for the authors, rather little needed to be 

instance if the gauged input rainfall time series had been 
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Conversely, class abstraction and inheritance is available as 
expected from developers familiar with object oriented 
software, and EF is taking care of the representation of 
inheritance in the database. This latter capability is essential 
to flexibly enable alternate model configurations (i.e. 
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little needed to be 

learned about relational databases and associated database 
management software tools. 
The manipulation of CWYET catchment model definitions 
using EF is currently superseding the legacy use of XML. It 
is proving easier to evolve capabilities
duplication of identical configuration items throughout 
many XML files. The capabilitie
filtering entities built with EF are much superior to that put 
on top of a file system. In theory, the script in 
could be achieved with a storage layer consisting on 
files and folder names conventions. It is more practical to 
use state of art tools and practices with an SQL database, 
where these capabilities are available with much less 
additional effort. 
The process of designing and implementing this data layer 
required thinking of an envir
toolset in terms of its data at least 
behavior. Many problems of sustainability of 
modelling software toolsets 
overly model-centric view to the detriment of a data
one.  With this in mind, it is worth noting that the learning 
material of EF is often using business examples such as 
customer order databases, and it is an interesting exercise to 
translate this to the context of environmental modelling.
While the benefits so far of this new data layer are 
compelling, there are of course some difficulties yet to 
overcome and questions about the scope of applicability.
There are two main issues to overcome. 
may require performance optimization, th
probably partly a question of 
database migration capabilities will be needed to evolve the 
data model to address new features. Fortunately both 
aspects are also currently addressed by the EF team.
The scope of applicability of this data layer is a more 
interesting question. Overusing EF
encompassing, dogmatic and so restrictive that it ends up 
appearing obtuse.  The definition of calibration process is 
an interesting case: should it be stored like 
configuration data, or is this by nature more a workflow to 
persist? HWB seems obviously 
capture its definition, and we should avoid building a 
separate system for CWYET specific workflow 
management. We envisage that su
development is necessary to couple the CWYET data 
model with that of HWB and Trident when warranted, and 
notably leverage the provenance system of Trident.

Conclusion

The reengineering of the CWYET data model, using Entity 
Framework and Entity Data Modelling approach with a 
model-first technique, has brought it more in line with the 
state of the art in software application design and 

learned about relational databases and associated database 
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implementation. The toolset is now in a better position for 
inclusion as modelling capabilities in HWB, within the 
scientific workflow tool Trident. Managing ensembles of 
simulations and modelling scenarios is easier than with the 
previous data storage system, and the relational database 
technology is a more sustainable solution. A central 
motivation of this reengineering was to better address the 
challenge of tracking provenance in modelling and 
simulation with CWYET. Further research and 
development will examine how to couple the CWYET data 
model with the HWB workflow definitions and provenance 
tracking in Trident. 
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