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Abstract

The paper introduces a 2D depth averaged modethéor
analysis of river morphodynamics, based on a twasph
formulation. Mass and momentum conservation priesip
are separately imposed for both phases. The model
naturally accounts for unsteady non-equilibrium idsol
transport, since neither instantaneous adaptaffpothesis

nor any ad hoc differential equation is employed to
represent sediment dynamics. Results from numerical
simulations for a 2D test-case are compared wighaiure
experimental data and with available numerical tiohs.

I ntroduction

The analysis of unsteady river flows requires adégu
representation of several mutually interacting peses,
such as the motion of the fluid and the erosiorddéjon of

solid particles. The most extensively used fluiaddels

have been built upon traditional hydraulics prihesp(Cao

& Carling, 2002).

Indeed, Saint Venant - Exner equations are commuaseyl

to predict the fluvial morphodynamics in depth-aged
either 1D or 2D approach. A standard approach sigde
evaluate sediment transport through an algebraisucé
equation strictly valid for uniform flow conditionée.g.
Graf, 1998). The major drawback of this formulatammes
from the validity of the instantaneous adaptation
hypothesis, which is not satisfied whenever non-
equilibrium transport conditions occur (Wu, 2003)ch an
instance is often encountered in various fields of
geomorphology and engineering, whenever rapid enasi
transients are expected, such as valley formingdfo
(Brooks & Lawrence, 1999), sediment laden flows
(Iverson, 1997; Takahashi, 1991), wave generatedamy
break or overtop (Benoist, 1989), turbidity curee(itiu &
Cao, 2009) and morphological changes induced by
tsunamis (Simpson & Castelltort, 2006).

To overcome the above cited limitation, the Saieh@nt -
Exner formulation has been successively enriched by
including an additional differential equation, déising the

adaptation in time and in space of the actual valuthe
sediment discharge to the equilibrium value. T thim,
linear lag equations have been widely employedleith
proper expressions of the lag coefficient (e.g. anmi &
Di Silvio, 1988). Other dynamic equations, involgiboth
temporal and spatial derivatives of the sedimestltirge,
were deduced either accounting for local inertigexfiment
and shear induced by the flow in a simplified motnen
balance (Di Cristo et Al., 2002; Parker, 1975)describing
the ensemble-averaged concentration transport dimgu
advective and diffusive terms (Greimann et Al., 200rhe
application of some of the above dynamical models t
study flood propagation (Rahuel et Al., 1989), damak
flow (Cao et Al, 2004), and antidunes generati@i (
Cristo et Al., 2006) demonstrates the relevancenafi-
equilibrium transport for a thorough analysis oferi
morphodynamic processes.

Morphological models which naturally account foreth
dynamics of the solid phase can be derived based on
different approaches, commonly employed in varitelsls

of engineering and physics. The group of Université
Catholique de Louvain exploited the possibility of
predicting river dynamics in presence of rapid $rants
through a two-layer schematization, in which thepemp
layer contains clear water and the lower one a mwate
sediment mixture. Erosion and deposition resultnfrmass
exchange between the fixed bed and the transpget.la
Following this schematization and assuming equbdoiiy

in the two layers, Fraccarollo and Capart (2002nered
the sudden erosional flow caused by a dam brealk waer

a loose sediment bed with very promising resultaa A
improvement of the two-layer model was suggesttst an

by Capart and Young (2002), who considered differen
velocities in the two layers. The successful agpion of
the latter model to simulate the formation and pggiion

of a hydraulic jump over a mobile bed is shown av&y

& Zech (2007). The comparison of the computed tesul
with laboratory evidences witnesses the effectisertd the
two-layer approach, even though a hyperbolicityg losthe
model may occur (Greco et Al., 2008b; Savary & Zech
2007b).



Models built up on the two-phase theory have begtelyw
applied in chemical engineering, providing notaibkEghts
into the physics of fluidization (Anderson et AL995). In
the geophysical context, two-phase formulationsshagen
introduced to study the propagation of debris flows
avalanches and landslides (lverson, 1997; Pitmahe&
2005). In open channel hydraulics, this theory basn
fruitfully applied to predict the sediment concetion
profile in uniform flows, incorporating the effecdf
particle-particle interaction and particle iner{@reimann
& Holly, 2001)

In the present paper a depth averaged morphodyahmic
model based on a two-phase formulation is introduce
Mass and momentum conservation principle are segara
imposed for both phases, along with the Exner éguab
account for bed evolution. Similarly to the two-ésymodel

of Savary and Zech (2007), the present model neithe
postulates the instantaneous adaptation hypothesis
employs any ad hoc differential equation to mimic
sediment transport dynamics.

Model derivation

Sediment transport is herein analysed within taenwork

of a two-phase approach (Greimann & Holly, 2001;
Iverson, 1997; Pitman & Le, 2005). In what follows will
assume that the flow exhibits the distinctive feasuof
bed-load, i.e. particles move in a thin region eldés the
bed. Within this region, particle motion is intettant, but

at any point the average over a number of particle
movements allows to define a macroscopic volume
concentration,C, which, according to Greimann et Al
(2008), may be equivalently considered as the (itiha

to find a solid particle at a given point in a givéme.
While flowing, the two phases furthermore interaith the
mobile bed, in a local and time-dependent
erosion/deposition budget.

The following hypotheses are then introduced:
¢ Wide rectangular channel with small slope.

e Constant liquid £&) and solid f) densities are
assumed. Moreover, sediment is considered as
uniform and non-cohesive.

e Flow is gradually varied with hydrostatic pressure
distribution in the cross-section, which is assumed
to be vertical since the bottom slope is mild.

e Surface concentration is equal to volume
concentration, which is assumed constant both in
space and time.

e Standing bed is saturated.

Let us assume a control volume (CV) of the fluid —
sediments flow of baséx dy, x andy being the horizontal
coordinates, the bottom and the free surface (stsw
effects are neglected due to the wide channel hgs),
with unitary width. Neglecting higher order ternise CV
measure i dx dy with h = z;— 7, z, andz, being the free
surface and bottom elevation, respectively. Volume
deforms in time due to erosion/deposition budget fow
depth variation. Definingd as the ratio of solid phase
volume to the bed surface, the ratio of liquid ghaslume

to the bed surfacej, is given byd =h- &

In the absence of any inflow/outflow from sidewadlad
free-surface, the mass conservation requirementtter
liquid phase reads:
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whereU,gg represents the water mass dischatgieheing
the phase-averaged water velocity in the x dire¢hf the
same in they direction andp is the bed porosity. The last
term in the LHS accounts for the water entering\ieg)
the flow due to the erosion (deposition) of theusated
bed. In what follows subscripts and s will be used to
denote quantities pertaining to liquid and solidagds,
respectively.

Similarly, the mass conservation equation for tlodids
phase reads:
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in which pUsd is the solid mass dischargds beingthe
phase-averaged solid velocity in the x directiod sgthe
same in the direction.

Moreover, the temporal variation of bottom elevati@ms to
satisfy the following constraint:
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Whereg, denotes the bottom erosion/deposition rate.
The projection of momentum balance for the consider
CV onto thex andy directions for each phase reads:
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Once the closure relations fay,;, 7,,, D ande, are
specified, the system of equations (1) - (7), adote
compute spatial and temporal evolution of the seven
unknownsJ,, V,, U, Vs, 4, &, andz,.

Closureredations

The evaluation of the bed shear stresses actirilgeoliquid
and solid phasesr,; andt,;, should account for the
physical interaction between the two phases. Asried
by Seminara et Al. (2002), drag transfers momenfiom
the liquid to the solid phase, with a twofold effelquid
loses momentum in favors of solid, so that the skaass
exerted by the fluid at the bottom is smaller tharthe
absence of sediment transport; the solid phaseheiurt

one(t.s), based on the findings of Bagnold (1954), may
be assumed to scale with the square of the pagideage
velocity. Since the contribution of collisional ess is
expected to be significant only whenever sediment
transport occurs as sheet-flow (Gao, 2008), in ibl&aws

it has been neglected. Moreover, numerical sinutati
(results not shown) have confirmed that in the ddos
herein investigated, the collisional term is nelig
Therefore, the expressions of tangential stressehetwo
phases are:
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where d is the sediment diameter ang is the friction
coefficient in dynamic conditions. The dimensiosles
Chezy coefficient (i.e. the ratio of the traditibr@hezy
coefficient to the square of gravitational acceierg has
been denoted withy,.

Assuming that momentum exchanged by the drag ofdiq
over particles is uniformly distributed wherevetibphases
exist, theD term may be expressed as the drag acting on a
single particle times the mean number of partidcteshe
control volume:

)
D = piCp— (U, — UV, — U] (12)

transfers the received momentum through repeated The evaluation of drag coefficienp, can be pursued in

collisions with the bottom surface - giving rise dosolid
phase shear stress - and with other particles. rigemiet
Al. (2002) described this complex interplay through

uniform condition of flow and in the limit of negible
bottom slope. Indeed in these hypotheses, compikiag
solid average velocity through the Fernandez-Luguod

depth-averaged two-phase momentum balance of the van Beek (1976) relation, the following the exsien for

transport layer under uniform flow conditions inepence
of bed-load. In the limit of a nearly horizontalcband
neglecting the effect of interparticle collisionke bottom
fluid shear stress that would act in the absencesotifi
phase is found to be partitioned between the adtuil
shear stress and the stress due to the solid ph&se.
partition proposed by Seminara et al. (2002) iseimer
considered to evaluate the stress terms needddefanodel
closure. Indeedr, ; is computed as the difference between
the fluid shear stress that would prevail at thd bethe
absence of a transport layet,) and the solid shear stress
(tps). Following Seminara et al. (2002), the former is
evaluated by means of Chezy uniform flow formuléile
the latter should account for both frictional arallisional
stresses. The frictional contributiogz, ) may be
expressed through Mohr-Coulomb law while the cidlfial

Cp may be obtained:
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in whichk' and k" are two dimensionless coefficients
(k' =9.2 and k" = 0.7, seeFernandez-Lugue and van
Beek, 1976) andlt,,| represents the value {f,| in the
threshold condition for incipient particle motioBquation
(13) has been employed also in hon-uniform conastiand
it has been applied locally and instantaneouslgvaluate
the drag coefficient. In applying (13) the threshehlue
has been assumed &5, = 0.047p,9dA (Meyer-Peter
and Muller, 1948).
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The expression of the entrainment/deposition fama, is
required as a further closure for the present mdskeeral
different formulas, based on theoretical analysisi/ar
experiments carried out under steady equilibriusw$, can

be found in the literature for both entrainment and
deposition fluxes (see for instance: Van Rijn 1984;
Fraccarollo and Capart, 2002, Seminara et Al., 20@2ker

et Al., 2003). In the following, the net entrainmé&mom the
bed is computed as the difference between thearaesid
deposition flux predicted by the formulas provided
Parker et al. (2003), which have been demonstrabed
correctly reproduce the experimental findings ofmaadez
Luque and van Beek (1976):

7ol = 17l \* (1 80\
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It is worth of remark that, once the dynamical tfao
coefficient of the sediment is known, similarlytte clear-
water case (i.e. Saint Venant equations), the patgmeter
that need to be assigned for the application ofntbeel is
the dimensionless Chezy coefficient.

The equations describing the proposed model catestin
hyperbolic PDEs system, which may be solved with @in
the numerical schemes commonly employed for Saint-
Venant Equations. The Finite Volume solver FIVFLOOD
(Leopardi et Al., 2002) has been adapted to sdleePDEs

of the two-phase model.

Numerical Simulation

In order to demonstrate the effectiveness of thep@sed
model a 2DH test is presented. The applicationistmi a
dam-break flow over a movable bed with a sudden

indicated in Figure 1, will be considered hereinr fo
comparison with the model predictions.
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Figure 1: Experimental set-up.

A space grid with square elemefts= Ay = 0.0125 m was
employed in the simulations, along with a timeg si¢
=2.10%s. The value of the dimensionless coefficient i@ th
Chezy formula was set equal to the previous caassd
again on the similarity of the sediments employadrder
to guarantee a realistic simulation of the compéstgtying
of the flume, boundary conditions were assigned
correspondently to the experimental setting, namely
fixed-wall was considered at the upstream bounday a
subcritical/supercritical free-flow for both wateand
sediment flow at the channel outlet.

The simulated geomorphic transient develops with th
distinctive features observed by the experimentarse the
dam break wave has reached the downstream endeof th
narrow channel, flow curves left-wise and movesamis

the sidewall. Wall reflection induces the appeagaat an
oblique bore, which propagates downstream and lyinal

enlargement (Palumbo et Al, 2008). The tests were disappears as the flume empties.

performed in a 6 m long flume, with an asymmetrical
sudden increase on the channel width from 0.25 h3an
on the left side, 1 m downstream of the gate (FEdr The
breaking of the dam is simulated by the rapid (altol s)
downward movement of a thin gate at the middlehaf t
flume. The sediment used is uniform sand with aiared
diameterdsy of 1.72 mm, static friction anglg, = 30°,
relative density4=1.63, deposited with porosity = 0.61.
Initial conditions consist of a 0.1 m layer of fuaturated
and compacted sand over the whole flume, and dlini
layer of 0.25 m water upstream of the gate (Fidyre

Temporal evolution of the free surface elevationswa
recorded by ultrasonic gauges in 8 probes, whigefihal
bed topography was measured in 9 cross sectiorbkein
wider channel
Palumbo et Al. (2008) for details). From the abdaegaset,
three gauges (denoted as P1, P2 and P3) and tws cro
sections (named A and B, respectively), positiorsed

The evolution of the loose bed is characterisedtvay
morphological features which are closely relatedthe
above hydrodynamics. Streamlines curvature closth¢o
inner corner causes the appearance of a deep scbile,
the sudden rise of the water level downstream bitwe
causes an elongated deposit in the left portiothefwide
channel. Both features are reproduced in the stuoks
and are clearly noticeable in the snapshot of ¢iselts at

= 4 s depicted in Figure 2. The flow field is reggpted by
two families (bold and thin) of streamlines, regmting
water and sediment velocities, respectively. Bottom
configuration is represented by continuous and esh
contours for deposition and scouring zones, respyt

As it can be seen, in the zone close to the inoarer and

using a photographic technique (see in the adjacent flow separation zone, the directdrthe

solid transport differs significantly from that die liquid
phase, witnessing the different response of the ghases
to bottom topography, attrition and drag. Curvatwfe



velocity field is more evident for water than fardément,

as it could be expected due to their different timer
Moreover, the strong recirculation zone behind the
enlargement is not significantly affected by sedime
transport.

¥ (m)

4.5
x (m)
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Figure 2: Streamlines of liquid and solid phas@esposed
to bottom topography,= 4 s.

In order to provide a quantitative assessment & th
performance of the two-phase model, in Figures 3aec
comparison between measured and computed freecsurfa
elevation for the gauges P1, P2 and P3 is reprdent
Moreover, in Figure 4a-b the final bottom topognaph
shown. In both figures, the numerical results &f ttvo-
layer model of Soares-Frazdo and Zech (2010) are
superposed.

The measured water heights are reasonably reprddace
all the probes P1-P3 (see Figure 3). Average atesolu
deviation between predicted and observed free irfa
elevation is less than 10%, with a correlation ficeht
always above 0.85 between measured and computeesval

Numerical results exhibit a qualitative agreemeithwthe
measures, since the deposit location is predictdsktmore
downstream than observed. (Figures 4a-b). On therot
hand, the shape of the most scoured zone is well
reproduced (section A), along with the estimatecdimam
depth, which agrees with the observed one withifb13
accuracy, whereas a systematic underprediction of
deposition is observed in the considered crossiosect
Figures 3 and 4 show that the performance of tleepthase
and two-layer models is similar, with a common
underprediction of deposition near the side wall.

The latter discrepancy has been ascribed by Séaezsio
and Zech (2010) to the presence of three-dimeakion
effects occurring close to the wall, which canna& b
accounted for by shallow water models.
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Figure 3: Time history of free surface elevatiororh top
to bottom: probe P1, probe P2, probe P3.

Conclusions

In the paper a shallow water model for the analg$ifast
geomorphic transients occurring in the context ieenr
morphodynamics has been presented. The model &dbas
on a two-phase formulation and it has been derivenh
mass and momentum conservation principles appled t
sediment and water.

Comparison with literature experimental data shdies
capabilities of the two-phase approach in repradydast
morphodynamic transients. Furthermore, the presedel
has been shown to perform similarly to other welessed
morphodynamic models, without requiring any expliag
relation and preserving the hyperbolic charactartufe



developments will consider additional two-dimensibn
test cases to further validate the model.
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cross section B.
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