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Abstract 

A prerequisite for the construction of gas-steam power 

plants is the evaluation of the threats caused by heated 

water discharged into a river and it obviously should be a 

part of Environmental Impact Assessment. The present 

study draws from the case studies’ computations aimed at 

building scenarios of spread of heated water discharged 

from designed gas-steam power plants in actual rivers. 

Authors aim to share their experience in the use of an up to 

date model on spread of warm water jet in a river in the 

light of the scarcity of proper data. In this study the heat 

transfer has been considered in two-dimensional domain. In 

general case heat transport may be represented by depth-

averaged advection-diffusion equation with relevant source 

(sink) terms. Then the dispersion coefficients form a non-

diagonal dispersion tensor with four dispersion coefficients 

and particular attention will be paid to the role of all 

components of that tensor. Other sources of uncertainty will 

be briefly discussed as well. 

Introduction 

Solving practical problems concerning environmental 

impact assessments, usually we deal with limited data and 

information insufficient to prepare a forecast with a proper 

accuracy. Since in most cases it is impossible to collect 

desired amount of measuring data, we have to draw the best 

possible conclusions on the basis of limited data. At the 

same time we must remember that the experimental data is 

not perfect and may be biased. Lack of data, as well as 

measurement errors are only some of sources of uncertainty 

affecting problem solutions. Insufficient knowledge of the 

described phenomena is another reason for uncertainty for 

the obtained results. In addition we have to consider the 

errors introduced by the models used in the calculation, 

which always more or less simplify the described 

phenomena. For various reasons these models cannot take 

into account all the variables controlling the phenomena, 

also they have to usually simplify the problem to make it 

practically solvable. A discussion about the admissible and 

inadmissible simplification of pollution transport equation 

(here we deal with the so-called thermal pollution) authors 

present in their earlier studies: Rowiński & Kalinowska 

(2006) and Kalinowska & Rowiński (2008). Any 

calculation and possible numerical errors caused by 

selected numerical algorithms used (if necessary) while 

solving the problem as well must be added (see Kalinowska 

& Rowiński, 2007). We have to estimate the resulting 

errors, and examine possible extreme scenarios, which will 

allow us to predict potential impact on the environment. 

Analysis of extreme cases appears to be crucial, since even 

small changes in river ecosystem can significantly disturb 

the environment.  

In this article we will describe some of practical 

problems that occur and are potential sources of errors 

while predicting two-dimensional temperature field in case 

of the discharge of cooling water into river, being a side 

effect of operation of power plants and other hydraulic 

engineering facilities using water for cooling purpose. To 

illustrate those problems an example of a real case study 

performed in Vistula River in Poland has been used herein. 

The aim of the study was to predict the spread of heated 

water discharged from a designed gas-steam power plant 

located in the lower Vistula River below Włocławek town 

in Poland. Four different variants of warm water release 

with constant intensity of 14 m
3
/s have been analyzed. The 

temperature of discharge water was 7°C higher than the 

temperature of ambient river water. Since we are interested 

in the extreme conditions, the computations have been done 

for the mean low-flows of the river Q = 334 m
3
/s.  

The detailed description of the considered case and 

predicted scenarios of the spread of warm water for 

different variants may be found in (Kalinowska at al., 

2012). All results (also those presented below) have been 

prepared using a RivMix  (temperature filed) and CCHE2D 

(velocity field) models. The RivMix (River Mixing Model), 

developed in Institute of Geophysics Polish Academy of 

Sciences is the two-dimensional numerical model of the 

spread of passive pollutants in flowing surface water, 

solving the two-dimensional advection-diffusion equation 

with the included off-diagonal dispersion coefficients 

(Kalinowska & Rowiński, 2008). The CCHE2D, developed 

by NCCHE – National Center for Computational 

Hydroscience and Engineering is the two-dimensional 



depth-averaged, unsteady turbulent open channel flow 

model (Altinakar et al., 2005; Ye & McCorquodale, 1997; 

Jia & Wang, 2001; Zhang, 2005). The model is based on 

the depth-averaged Navier–Stokes equations.   

Heat transport equation 

Although complete vertical mixing occurs relatively 

quickly, mixing along the width may take a very long time 

(Kalinowska and Rowiński, 2008). In large rivers, in an 

extreme case it may be a distance of hundreds of 

kilometers. Therefore the attempts to describe the process 

by using one-dimensional approach are very often not 

sufficient. Variation of the water temperature, in cases 

similar to those considered here, should be described then 

by two-dimensional depth-averaged partial differential 

equation (Rodi et al,. 1981; Seo et al., 2010; Szymkiewicz, 

2010): 
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where:  t – time, x = (x, y) – position vector, T(x, t) – 

depth-averaged water temperature, h(x) – local river depth, 

v(x) – depth-averaged velocity vector, D(x) – heat 

dispersion tensor, q – source function describing additional 

heating or cooling processes.  

To solve the heat transport equation (1) we need to 

know: the two-dimensional velocity field, the geometry of 

the river, the full dispersion tensor, the boundary and initial 

conditions and if we want to include any additional sources 

(e.g. temperature exchange with the atmosphere) additional 

information (like meteorological data). While collecting 

and processing all this data we may encounter several 

problems requiring assumptions and simplifications which 

affect the final solution to some extent. For the scientific 

purpose we usually try to gather all necessary data and 

consider all the possible processes which affect the 

solution. In real situation when dealing with Environmental 

Impact Assessments (EIA) such precise approach is 

practically impossible. Measurements of potentially 

necessary data are usually limited due to the time, costs and 

many technical restrictions. We have to use than advanced 

computational technics and computational models to 

interpolate, approximate or calculate necessary missing 

data. Unfortunately, the use of wide available 

computational recourses and models without proper 

understanding of their specification and purpose are very 

common especially when applied to EIA. Also models 

working perfectly in one case may be not sufficient for 

another one.  

 

Determination of dispersion coefficients 

In the considered case many possible problems have to be 

taken into consideration. Here we would like to underline 

problems affecting the final solution, usually not considered 

by usurers of different available computational models, 

concern with the determination of dispersion coefficients.  

In general case in Cartesian coordinates the dispersion 

coefficients form a non-diagonal dispersion tensor with 

four dispersion coefficients: 
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In some cases when the flow direction is parallel to the 

x-axis the off-diagonal elements of the tensor could be 

omitted, but it is not a case in real situations, when the 

channel geometry could be very complex. Then it is crucial 

to compute the dispersion tensor D in the proper way, 

otherwise unrealistic results may easily be obtained.  

Generally in practical applications terms with mixed 

derivatives in equation (1) tend to be ignored. In such cases 

the off-diagonal elements of dispersion tensor are omitted 

by using various kinds of simplifications. Different 

erroneous ways of simplifications in the treatment of 

dispersion tensor often met in literature and applied in 

computational models have been described by authors in 

(Rowiński & Kalinowska 2006 and Kalinowska & 

Rowiński, 2008). The proper way to obtain the full tenor D 

is rotation of a diagonal tensor DD containing the so-called 

longitudinal DL and transverse DT dispersion coefficients:  
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and  is the angle between the flow direction and x-axis. 

Results obtained with the proper way of tensor computation 

in considered case for the variant with continuous point 

discharge in the middle of the channel (point Z1 = (1850m, 

800m)) have been presented in Figure 1 (the whole 

computational domain) and Figure 2 (the enlargement of 

the discharge area). In case when we simply omit the off-

diagonal elements of dispersion tensor (2) the resultant 

temperature distribution has been presented in Figure 3 and 

Figure 4.   Figure 5  and  Figure 6  present  the results when  



 

Figure 1. Predicted distribution of the temperature increase 

(ΔT) for continuous discharge in the middle of the channel 

at point Z1 with the proper way of dispersion tensor 

computation.  

 

 

Figure 2. Predicted distribution of the temperature increase 

(ΔT) for continuous discharge in the middle of the channel 

at point Z1 with the proper way of dispersion tensor 

computation – the enlargement of discharge area. The 

diagonal black lines denote the cross-sections located 250 

and 500 m from the source. 

 

Figure 3. Predicted distribution of the temperature increase 

(ΔT) for continuous discharge in the middle of the channel 

at point Z1 while the off-diagonal elements of dispersion 

tensor are omitted. 

 

 

Figure 4. Predicted distribution of the temperature increase 

(ΔT) for continuous discharge in the middle of the channel 

at point Z1 while the off-diagonal elements of dispersion 

tensor are omitted – the enlargement of discharge area. The 

diagonal black lines denote the cross-sections located 250 

and 500 m from the source. 



 

Figure 5. Predicted distribution of the temperature increase 

(ΔT) for continuous discharge in the middle of the channel 

at point Z1 while the dispersion coefficients DL and DT are 

treated as a vector. 

 

 

Figure 6. Predicted distribution of the temperature increase 

(ΔT) for continuous discharge in the middle of the channel 

at point Z1 while the dispersion coefficients DL and DT are 

treated as a vector – the enlargement of discharge area. The 

diagonal black lines denote the cross-sections located 250 

and 500 m from the source. 

the dispersion coefficients DL and DT are treated as a vector 

(for detailed definition see Rowiński & Kalinowska 2006). 

All simulation have been performed for the proper selected 

grid spacing Δx = Δy = 10 m and time step Δt = 1 s. We can 

easily observe the difference between the results with the 

full dispersion tensor and with the simplified variants, both 

in temperature distribution shapes and in the values of 

temperature increase. While using the full dispersion 

tensor, the so-called mid-field zone is much longer than in 

cases with omitted off-diagonal tensor elements and the 

increase of the temperature in the middle of the channel is 

much bigger which could be very important in case of EIA 

(see Figure 7, and Figure 8). Figure 9 and Figure 10 present  

 

 

 
Figure 7. Temperature change distribution in case of 

continuous discharge in the middle of the channel at point 

Z1 = (1850m, 800m) across the cross-section located at 250 

m from the discharge point: I – with the proper way of 

dispersion tensor computation, II – while the off-diagonal 

elements of dispersion tensor are omitted, III – while the 

dispersion coefficients DL and DT are treated as a vector.  

 

 

Figure 8. Temperature change distribution in case of 

continuous discharge in the middle of the channel at point 

Z1 = (1850m, 800m) across the cross-section located at 500 

m from the discharge point: I – with the proper way of 

dispersion tensor computation, II – while the off-diagonal 

elements of dispersion tensor are omitted, III – while the 

dispersion coefficients DL and DT are treated as a vector.  



 

Figure 9. Difference between the results with the proper 

way of dispersion tensor computation (Figure 1) and the 

results in which the off-diagonal elements of dispersion 

tensor are omitted (Figure 3) for the whole computational 

area.  

 

 

Figure 10. Difference between the results with the proper 

way of dispersion tensor computation (Figure 1) and the 

results in which the dispersion coefficients DL and DT are 

treated as a vector (Figure 5) for the whole computational 

area. 

the difference between the correct and the simplified 

solution for the whole computational area while the off-

diagonal elements of dispersion  tensor  are  omitted  and  

while the dispersion coefficients DL and DT are treated as a 

vector respectively. In both cases the difference is of the 

order of 1°C. In the considered case, the longitudinal and 

transverse dispersion coefficients values were:  DL = 34.425 

m
2
/s, DT = 0.04  m

2
/s (see Kalinowska et al., 2012 for 

details about theirs computation). But the determination of 

those coefficients could be very difficult (Czernuszenko, 

1990) and then it became another source of uncertainty in 

the solution obtained. The best source of information about 

them could be a tracer test performed for the actual river.  

Since usually it is not possible to perform such experiment, 

there are many formulae in literature to compute those 

coefficients. But choosing the proper one could be 

extremely difficult. As an example the value of the 

transverse dispersion coefficient calculated for considered 

case using different relationships (collected e.g. in the 

articles: Jeon et al., 2007; Seo and Baek, 2008; Deng et. al, 

2001) are presented in Figure 11.  

 

 

Figure 11. Transverse dispersion coefficient DT for the 

considered reach of the Vistula River calculated using 

several formulae (taking into account different hydraulic 

parameters including: H – averaged river depth, B – 

averaged river width, U – averaged velocity, U* – averaged 

shear velocity). 

 

Conclusions 

Solving practical problems concerning the threats caused 

by heated water discharged into a river usually we deal with 

the limited data, time and finance, therefore the 

simplifications of the problem are often inevitable. Some of 



those simplifications are admissible under certain 

conditions, but some cause unacceptable errors. This study 

is based upon a case investigation of the spread of warm 

water discharged in to a river. The paper presents the 

analysis how the simplifications of dispersion coefficients 

may influence the obtained results. It has been shown that 

the resulting error appears both in temperature distribution 

shapes and in the values of temperature increase when the 

dispersion tensor is not compute in the proper way. Also it 

has been noted that the determination of longitudinal and 

transverse dispersion coefficients may be difficult in 

particular case. 
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