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turbulent boundary layer, the flumes were covered with bed 
material, similar to the one in the Danube East of Vienna. 
The objectives of these tests were the static calibration, the 
test of the streamlined shape, a comparison of directly 
measured with estimated and modeled bed shear stress and 
a resonance frequency analysis. 
The 3-dimensional flow velocities were measured in several 
verticals using a Nortek Lab-ADV at the maximum 
sampling rate of 25 Hz and with a Nortek Field-ADV at the 
maximum sampling rate of 64 Hz. Velocity samples with a 
signal correlation < 80 % and a signal to noise ratio < 30 dB 
were disregarded. Existing despiking routines (Goring and 
Nikora, 2002; Cea et al., 2007) were adapted to detect and 
remove spikes, as well as to replace the eliminated spikes in 
the flow velocity measurements. The velocity and 
turbulence data were used to estimate bed shear stress, to 
test the streamlined shape of the device and to calibrate and 
validate the 3D numerical simulation model RSim-3D. 

Bed shear stress estimation 
For the comparison with the directly measured bed shear 
stress three different indirect methods were used to estimate 
bed shear stress from velocity and turbulence data. 
In the overlap between the inner and outer region of a 
turbulent boundary layer the vertical velocity distribution 
can be related to the logarithm of height. One expression of 
the 'law of the wall' is given by 

uሺzሻ
u*

=
1
κ

 ln ൬ 
z+d
ks

 ൰+B (1) 

where u is the mean velocity at height z above the bed, u∗ 
the shear velocity (u∗= (τ /ρ )0.5 ); ks is the equivalent sand 
grain roughness (represented here by d90), B the constant of 
integration (8.5 for fully rough turbulent boundary layers), 
d the zero plane displacement and κ denotes the von 
Kármán constant (0.41). Provided that the data is linearly 
distributed in the semilog domain, a regression of u against 
ln((z+d)/ks) then allows a calculation of u∗. The maximum 
correlation coefficient was found through incrementing or 
decrementing d, thus resulting in the origin of the 
logarithmic velocity profile. 
By means of turbulence measurements bed shear stress was 
determined from Reynolds stress. As the value of bed shear 
stress can be assumed to be close to that of near-bed 
Reynolds stress (Kim et al., 2000) 

 τ = -ϱ	 ቀ	u'w'	ቁ (2) 

where u’ and w’ are the fluctuations of the streamwise and 
vertical velocity component. 

Assuming a linear relation between bed shear stress and the 
turbulent kinetic energy (Kim et al., 2000), bed shear stress 
can be estimated through 

τ = C1 ቂ 0.5 ϱ ቀ u'2+v'2+w'2	ቁ	ቃ (3) 

where u’, v’, and w’ are the fluctuations of the three 
velocity components and C1 the proportionality constant 
with a value of 0.19. 

Hydrodynamic numerical modeling 
Additional bed shear stresses were obtained from the 3D 
numerical simulation model RSim-3D, to obtain bed shear 
stress values beside the ones estimated from velocity data. 
RSim-3D applies the Finite Volume Method to solve the 
three-dimensional Reynolds averaged Navier Stokes 
equations. Turbulence is modeled by means of the standard 
two equation k-ε turbulence closure. (Tritthart et al., 2009) 
 

Results 

Static Calibration 
Though the strain stress transducers are calibrated it is 
necessary to perform a static calibration for the whole 
measurement system, due to inherent frictional losses. The 
static calibration procedure was executed using a spring 
balance to apply known forces. The relationship between 
the applied and the measured forces is linear (Fig. 4) and 
the inherent frictional losses are at the order of 
approximately 20 %. 
 

 
Figure 4: Static calibration – relationship between applied 
and measured forces 

Test of the streamlined shape 
Two experimental setups were employed to test the 
streamlined shape: In a first test the device was protruding 
to meet the measurement situation in the Danube, in a 
second test it was buried behind a long flat ramp. Vertical 
velocity profiles, the turbulent kinetic energy, flow 
visualization with KMnO4 (potassium permanganate) and 
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directly measured bed shear stresses served as parameters 
for comparison. 

 
Figure 5: Comparison of flow velocity and turbulent kinetic 
energy in two measurement positions VI and IX– dashed 
line: device protruding; solid line: device behind the ramp 
 
The analysis of the vertical velocity profiles and the 
turbulent kinetic energy distribution over the flow depth, 
exhibits no significant differences between the two 
experimental configurations (Fig. 5). Equal results are 
received for the comparison of directly measured bed shear 
stresses (Fig. 6) and the visualization with KMnO4. 
 

 
Figure 6: Comparison of directly measured bed shear stress 
– dashed line: device protruding; solid line: device behind a 
ramp 

Comparison of directly measured with estimated and 
modeled bed shear stress 
The directly measured bed shear stresses were compared 
with shear stress estimated from the law of wall, Reynold’s 
stress and the turbulent kinetic energy, as well as with 
numerically modeled bed shear stress. For the comparison 
shear stress estimates at the front side and in the middle of 
the shear plate were used. When the depth Reynolds 
number is the same over the shear plate as in the remaining 
part of the flume, the comparison of directly measured bed 
shear stresses fit well with calculated and modeled datasets 
(Fig. 7 - rhombi) across the length of the shear plate. Else 
only calculated respectively modeled bed shear stresses at 
the front side of the shear plate are consistent with the 
directly measured bed shear stresses. 

 
Figure 7: Comparison directly measured with estimated bed 
shear stress  
 
This deviation is due to the low water depth (less than 
0.30 m) over the measurement device, resulting in a strong 
acceleration and a substantially higher velocity head 
attacking at the front side, leading to an overestimation of 
bed shear stress for those flow situations (Fig. 7 - circles). 
However, by reason of much higher water depths at the 
Danube, flow situations with water depths smaller 0.50 m 
are not expected to occur during field measurements. 

Resonance frequency analysis 
In order to perform shear stress measurements in turbulent 
flows, it is necessary to characterize the frequency response 
respectively the natural frequency of the assembly. The 
excitation frequency should be lower than the natural 
frequency to conduct accurate correlation and spectral 
analysis, for an excitation frequency that is much higher 
than the natural frequency of the assembly leads to an 
amplitude reduction and a phase shift. 
To identify the frequency response, time series of enforced 
vibrations were measured, and transformed into the 
frequency domain using fast Fourier transform (FFT). As 
shown in Fig. 8, there is a sharp peak at ~37.5 Hz, 
corresponding to the natural frequency of the assembly, 
which should be sufficient for the turbulent flow in a river. 
Nevertheless a slight improvement of the natural frequency, 
shifting it to a somewhat higher frequency appears to be 
worthwhile. 
 

 
Figure 8: Frequency response of the assembly 
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Conclusions 

After design, construction and the first successful 
measurements in the laboratory, a significant step towards 
availability of a device for direct bed shear stress 
measurement was made. In these tests the functionality of 
the streamlined shape was confirmed and the calculated and 
modeled independent data sets were in good agreement 
with the directly measured bed shear stresses, for flow 
situations with similar depth Reynolds numbers over the 
shear plate and in the remaining part of the flume. Beyond 
that with a value of 0.50 m a lower limit of application of 
the device of use regarding water depth was found. Beside a 
slight improvement of the resonance frequency, future work 
aims at testing the functional capability of the device for 
field measurements. 
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