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Abstract 

The onset of a perched water table in a sloping soil, during 
rainfall events, is one of the most important landslides 
triggering mechanisms. As perched water tables are mostly 
induced by the decreasing of the hydraulic conductivity at 
soil saturation with depth, in this paper we will present 
some results on the effect of gradually decreasing 
conductivity on the flow due to a steady infiltration process 
in a sloping and a priori anisotropic soil, laying on a 
capillary barrier. On the basis of an application of the Darcy 
law, the flow field within the perched water is analytically 
solved and the corresponding Lagrange stream function is 
determined. The flow patterns are calculated and presented 
for the particular case of exponentially decreasing hydraulic 
conductivity at saturation with depth. 

Introduction 

The formation of perched water tables in the upper soil 
layers, during an infiltration process at low infiltration rate, 
is an important shallow—landslide triggering mechanism. 
In fact, when the soil approaches the saturation degree in 
the upper soil layers, the apparent cohesion reduces and, 
when it reaches the saturation, also the effective strengths 
reduce. Soil failures can therefore be triggered both by a 
positive pore pressure and by the presence of soil layers 
close to saturation (e.g. van Asch et al., 2009). Perched 
water tables are typically induced by the layering of the soil 
water constitutive laws and mostly by the decreasing of the 
hydraulic conductivity at soil saturation with depth. An 
accurate description of the subsurface soil—water flow, 
which accounts also for the effect of the unhomogeneities 
of the soil hydraulic properties, therefore leads to important 
information on the properties of the perched water tables 
and on the soil safety. 
As a consequence of the genetic layering, the conductivity 
at saturation tends to decrease across the upper soil 
horizons, being higher in the A horizon and lower in the B 
one (Kirkby, 1969). On mountains, where strong erosive 
processes act and mass movement is a key soil forming 
factor, the soil horizonation cannot fully develop and a 
smooth decrease of the conductivity at saturation typically 
occurs in the upper soil layers. During our field 

measurement campaigns in two Alpine catchments, a 
gradual decrease, on average, was observed for the vertical 
conductivity at saturation through the upper soil layers 
(Barontini et al., 2005). Consistent with literature data (e.g. 
Beven, 1984), the pattern was found to be reasonably 
approximated by an exponential decay. 
Below the upper soil layers, two limit cases can describe 
the soil characteristics: one can find either an impervious 
bedrock, or a highly permeable layer of regolith or 
fractured and fissured rock. In the first case, and in case of 
formation of a perched water table, the maximum pressure 
head is expected to be observed at the interface between the 
soil and the bedrock. If the slope is moderate, the flow 
description can be performed by means of a classical 
Dupuit—Forchheimer approach, leading in the saturated 
layer to a Boussinesq equation (e.g. Steenhuis et al., 1999). 
In the second case, instead, the soil behaves like a porous 
layer on a capillary barrier, and the maximum pressure 
head, if any exists, will be found within the soil. The 
transverse flow across the soil layer can be a priori not 
negligible and one of the major Dupuit—Forchheimer 
hypotheses may fail. An approach based on the Richards 
equation, and on its simplifications for the saturated flow, is 
therefore needed in these cases. According to Zaslavsky 
and Sinai (1981) the problem can be simplified, for a long 
slope, with a uniform flow, in which the flow field has both 
a lateral component, parallel to the slope, and a transverse 
one. Following this approach the infiltration thresholds for 
the perched water table to onset and to lead the soil to 
waterlogging were determined for a sloping, anisotropic 
and gradually non homogeneous soil, together with other 
characteristic properties of the perched water table 
(Barontini et al., 2011). Here, after a recall of the 
underlying hypotheses and of previous results, the 
Lagrange stream function of the flow field is presented and 
its patterns discussed in relation with their physical 
meaning. 

Theoreticals 

Problem statement 

Let us consider a finite thickness soil layer laying on a 

hillslope, tilted of an angle β with the horizontal as 
represented in Fig. 1. Let x* be the intrinsic transverse 



coordinate, such that x* = 0 at the soil surface and 
positive as entering within the soil. Say xf

the soil bottom. Let the soil be seat of Darcian fluxes
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where q = (qx*, qy*) is the apparent flow field within the soil 

layer, K(η, x*) is the soil hydraulic conductivity

depending on the tensiometer—pressure potential 

the depth x*, and Φ = η - z is the total soil—

(z as represented in Fig.1). We recall that η
matric potential, if it is non—positive, or as 
potential, otherwise. With the hypotheses that the soil 
unhomogeneities are fully represented by a decreasing of 
the soil conductivity at saturation with depth, and that the 
soil intrinsic coordinates x* and y*, as represented in Fig. 1, 

are principal direction for the conductivity tensor, 
is therefore defined as: 
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being k(η) the relative conductivity, r the anisotropy factor
and KS(x*) the hydraulic conductivity at soil saturation

the transverse direction x*. If the soil is saturated, i.e. 

k(η) is equal to 1. Due to the soil genetic processes, t
ratio r between the lateral and transverse conductivity at 
saturation is usually higher than 1. 
monotonically decreasing and be described by 
following equation: 
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in which KS,o is the conductivity at saturation at the soil 
surface x* = 0 and f (x*) is a monotonically decreasing 
function such that f (0) = 1. 
 

Figure 1: Sketch of a soil domain with details on 
boundary conditions 

= 0 at the soil surface and x* is 

f*  the position of 
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flow field within the soil 

) is the soil hydraulic conductivity tensor, 

pressure potential η and on 

—water potential 

η is defined as the 
or as the pressure 

With the hypotheses that the soil 
are fully represented by a decreasing of 

the soil conductivity at saturation with depth, and that the 
, as represented in Fig. 1, 

are principal direction for the conductivity tensor, K(η, x*) 

(2) 

the anisotropy factor 
the hydraulic conductivity at soil saturation in 

If the soil is saturated, i.e. η > 0, 

Due to the soil genetic processes, the 
between the lateral and transverse conductivity at 

saturation is usually higher than 1. Let KS(x*) be 
and be described by the 

(3) 

is the conductivity at saturation at the soil 
is a monotonically decreasing 

soil domain with details on the 

 
Let the soil lay on a capillary barrier, i.e. l
soil layer be characterized by higher 
KS(xf* ) and let it be not able to exercise any retention. For 

the sake of continuity of the total hydraulic head 

tensiometer—pressure potential 
Now let i be the rainfall component normal to the soil 
surface. With the aforementioned condition for 

boundary of the domain, i.e. η
considered to onset if: 

� ��
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Consistent conditions at the lateral boundary 
are a no flux entering the domain at the upstream boundary, 
as for the presence of a watershed, and a seepage condit
at the downstream boundary, as represented in Fig.1
In one of their 1981’s papers, Zaslavsky and Sinai
described the effect of an infiltration process in 
of undefinite length – laying on a 
and eventually anisotropic and 
with uniform properties in the 
patterns from the transverse direction
to the KS profile and eventually 
uniform flow condition takes the form:

�
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 � 0 

for all the flow properties unless than for the gravitational 
potential -z. 

Flow fields 

As steady conditions are investigated, the continuity 
equation takes the form: 

� ⋅ � � 0. 

For the sake of continuity, accounting for the condition 
applied to qy* , one gets from (6)

"�∗ �  # , 

for each x*. Then, by the Darcy law 

(5) applied to η , one gets: 

Let the soil lay on a capillary barrier, i.e. let the underlying 
characterized by higher conductivity than 

not able to exercise any retention. For 

the sake of continuity of the total hydraulic head Φ, the 

pressure potential η (xf* ) should be null. 
be the rainfall component normal to the soil 

aforementioned condition for the lower 

η (xf* ) = 0, a perched water is 

 (4) 

Consistent conditions at the lateral boundary of the domain 
are a no flux entering the domain at the upstream boundary, 
as for the presence of a watershed, and a seepage condition 

, as represented in Fig.1. 
papers, Zaslavsky and Sinai (1981) 

the effect of an infiltration process in a soil layer 
laying on a sloping capillary barrier 

anisotropic and sharply layered – as a flow 
with uniform properties in the y* direction, with deflected 

transverse direction due to the soil slope, 
eventually to the soil anisotropy. The 

uniform flow condition takes the form: 

(5) 

for all the flow properties unless than for the gravitational 

As steady conditions are investigated, the continuity 

(6) 

For the sake of continuity, accounting for the condition (5) 
(6): 

(7) 

. Then, by the Darcy law (1) with the condition 
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It can be observed that the flow field is uncoupled in the 
two directions, i.e. the two flow components can be 
separately solved. In fact qy* depends on the boundary 
condition i only as a function of the tensiometer—pressure 

potential profile η (x*) which is a solution of the Darcy law 
with the condition (7). 

Properties of a perched water table 

Accounting for the hypothesis (5), Barontini et al. (2011) 
showed and numerically verified that the infiltration 

threshold i f (β) for the perched water to onset is given by: 

#*�)
 = ��+�*∗, cos ), (9) 

i.e. it is equal to the conductivity at the bottom of the soil 
layer, scaled with the cosine of the slope. This infiltration 
rate is less than the expected one in the case of horizontal 
soil, due to the fact that the gravitational gradient, 
sustaining the flux transversely to the soil layer, is less 
effective as the slope increases. The maximum infiltration, 
which can be sustained without gaining any negative 
pressure gradient at the lower soil interface, will be reduced 
accordingly. The infiltration rate leading to waterlogging is 
related to the value of the equivalent hydraulic conductivity 
at saturation over the interval [0, xf* ], i.e.: 

#∗�)
 = ��,/0
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and, again, it is scaled with the cosine of the slope. The 

authors proved also that the profile of η(x*) within the 

perched water is not monotonic and it has a maximum ηmax 
in a position x*max. The position x*max is given by: 

# = ����56�∗ 
 , #*�)
 < # ≤ #∗�)
, (11) 

thus not depending on the soil slope β. The corresponding 

ηmax is found by a straight integration of the Darcy law 
within the saturated layer: 

ℎ56��)
 =
= 9: #
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It is here remarked that all the properties given by equations 
(9—12) are not dependent on the soil anisotropy as a 
consequence of the flow components uncoupling. The soil 
anisotropy acts in fact on the lateral flow, while these 
properties pertains the transverse flow. 

Lagrange stream function 

As a consequence of the continuity equation (6) the flow 

field q admits a vector potential ψψψψ(x*, y*) i.e. it can be 
written as:    

� = ∇ × B. (13) 

By defining z* as the orthogonal coordinate to the plane 
identified by x* and y*, positive if coming out from the 
sheet, it can be proven that, in the case of a steady planar 
flow, the vector potential has only a component parallel to 
z*. It can therefore be written as: 

B = CD∗E, (14) 

being k the unitary vector of the z*-axis and ψz* (x*, y*) the 

Lagrange stream function. It can be also proven that ψz* can 
be determined as a line integral of the flow field q along a 
path l: 

CD∗��∗, �∗
 = : � ∙ FG
GH

>I + CD∗���∗ , ��∗
, (15) 

where x = (x*, y*) and xo = (xo* , yo* ) are the coordinates of 
two points and n is the unitary vector orthogonal to the 
integration path. 
Let us assume now xo = xf = (xf* , 0). As the components of 
q are expressed by equations (7, 8), the general form for the 
Lagrange stream function is given by the following 
equation: 

CD∗��∗, �∗
 =
= ��,�� sin ) : ��C
���∗3
>�∗3�∗

��∗
− #�∗

+ CD∗+�*∗, 0,. 
(16) 

As the iso—lines of ψz* are locally parallel to the flow field 
q by definition, the first term of equation (16) accounts for 
the flow path divergence from the vertical direction due to 
the slope and to the soil anisotropy. 
 
 



Case of exponentially decreasing conductivity 

Equations (9—12) and (16) are of general validity and only 
require the shape of f (x*) to be given, in order to determine 
the properties of the perched water table. If the soil 
conductivity at saturation exponentially decreases with 
depth with a constant of exponential decay L, equation (3) 
takes the form: 

����∗
 = ��,�KL =∗
M  (17) 

Equation (17) allows to determine the numerical values 
given by equations (9—12), as in Barontini et al. (2011). 
If we consider a waterlogging condition, in all the domain 

the soil is saturated and it is k (η) = 1. Equation (16) can 
therefore be explicitly solved, thus obtaining: 

CD∗��∗, �∗
 = −��,��N sin ) OKL=∗
M − KL=�∗M P

− #�∗ + CD∗+�*∗, 0,  (18) 

Assuming: 

CD∗+�*∗, 0, = −��,��N sin ) KL=�∗M  (19) 

one finally gets the Lagrange stream function for the 
investigated problem: 

CD∗��∗, �∗
 = −��,�N� sin ) KL=∗
M − #�∗. (20) 

As the drop will follow an iso—line of ψz*, the distance 
along the slope between the point at which a drop enters the 
saturated layer and the point at which it leaks out can be 
directly determined from (20). 

Results 

Some typical flow patterns within a perched water table at 
waterlogging, derived by means of equation (20), are 

presented in Fig. 2 for different values L, r and β. In order 

to plot the iso—lines of ψz*, the following dimensionless 
variables were defined: 

Q∗ = �∗
�*∗

 , R∗ = �∗
�*∗

 ,  
ΠT = N

�*∗
 , ΠU =  #

��,�,  
ΨD∗ = CD∗

�*∗
 .  

(21) 

By means of the definitions (21), the infiltration rate at 

waterlogging i* (β), given by equation (10) with the 

constitutive law (17), can be rewritten in the following 
form, according to Barontini et al. (2012): 

ΠU∗�)
 = 1
ΠT WK X

YM − 1Z
cos ) . 

(22) 

Equation (20) is therefore rewritten as: 

ΨD∗�Q∗, R∗
 = −ΠT� sin ) KL[∗
YM − ΠUR∗. (23) 

The flow patterns were presented both for weakly 

unhomogeneous soils (ΠL = 0.5, upper four diagrams) and 

for strongly unhomogeneous ones (ΠL = 0.2, lower four 

diagrams), in case of moderate (β = 5°, first and third lines) 

and steep slope (β =30°, second and forth lines), and for 
isotropic soils (left side diagrams) and strongly anisotropic 
ones (r = 10, right side diagrams). 
In the case of isotropic and moderately sloping soils (β = 
5°) the water infiltrating at the upper surface of the perched 
water table rapidly leaks toward the underlying soil. 
Accounting for the tilting of the slope the paths are almost 

vertical for moderately unhomogeneous soil (ΠL = 0.5). As 

soon as the soil is more unhomogeneous (ΠL = 0.2) the 
paths diverge downstream of a stretch of the same order of 
magnitude of the soil thickness. As the slope becomes 
steeper (30°) this pattern is emphasized and, for strongly 

decreasing conductivity with depth (ΠL = 0.2), the lateral 
bias is between three and four times the soil thickness. 
The same behavior characterizes anisotropic soils in 
moderately steep slopes. In fact the paths diverges 
downstream as the anisotropy factor increases. For strong 
anisotropy (r = 10) and moderately steep slope (5°) the 
lateral bias ranges from one to five times the soil thickness, 
for weakly and strongly unhomogeneous soil respectively. 
Finally if the soils are both steep sloping and anisotropic 
the effects superimpose and the paths strongly diverges 
downstream. The lateral bias is about eight times the 

thickness if ΠL = 0.5 and becomes about thirty times if ΠL 
= 0.2 but it remains in any case finite. 
Natural slopes are often thin if compared with their length. 
This is why in the diagrams in order to represent a central 
branch of natural slopes, the slope length is twenty times 
the thickness. As in most of the cases the water is able to 
reach the bottom layer with a lateral bias of few 
thicknesses, it can be hypothesized that the uniform flow 
approach is a physically meaningful framework for real 
cases of flow across a perched water laying on a capillary 
barrier. On the contrary, as the transverse flow is valuable 
in the whole domain in most of the cases, it is confirmed 
that a classical Dupuit—Forchheimer approach cannot 
apply. 



 
 

 
Figure 2: Iso—lines of the normalized Lagrange stream 
function Ψz* as described by equation (2
soils (r = 1, 10; β = 5°, 30°; Π
 

 

 

the normalized Lagrange stream 
as described by equation (23) for different 

ΠL = 0.2, 0.5) 



Conclusions 

Aiming at better characterizing the physical aspects of the 
flow within a perched water table, in view of application to 
soil stability analyses, the case of a gradually 
unhomogeneus and a priori anisotropic sloping soil, laying 
on a capillary barrier, was theoretically investigated. The 
soil unhomogeneity was assumed to be described by the 
decreasing of the hydraulic conductivity at saturation with 
depth. By means of a uniform flux approach, the flow field 
and the stream function within the perched water table were 
theoretically determined for any soil with monotonically 
decreasing conductivity with depth. 
The particular case of a soil at waterlogging with 
exponentially decreasing conductivity with depth was 
afterwards investigated and the flow patterns presented. It 
was observed that for weakly unhomogeneous and isotropic 
soil laying on a moderately steep slope, the water infiltrated 
at the soil surface rapidly reaches the soil bottom along 
almost vertical paths. As the slope steepness, the 
unhomogeneity and the anisotropy increase, the paths 
diverge downstream with a bias ranging from few times to 
some tenths the soil thickness. 
The paths remain in any case finite and a drop of water 
infiltrated at the soil surface is able to leak out downstream. 
The estimates of the lateral bias suggested that the uniform 
flow approach can be a physically meaningful framework 
to describe the water content flow in natural soils laying on 
a sloping capillary barrier, but the importance of the 
transverse flow component confirmed that a classical 
Dupuit—Forchheimer approach does not apply in this case. 
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