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Abstract

The onset of a perched water table in a slopiniy dofing
rainfall events, is one of the most important |dicds
triggering mechanisms. As perched water tablesrargtly
induced by the decreasing of the hydraulic conditgtiat
soil saturation with depth, in this paper we willepent
some results on the effect of gradually decreasing
conductivity on the flow due to a steady infiltaatiprocess
in a sloping and a priori anisotropic soil, layirgn a
capillary barrier. On the basis of an applicatiéthe Darcy
law, the flow field within the perched water is bngally
solved and the corresponding Lagrange stream famasi
determined. The flow patterns are calculated aedegnted
for the particular case of exponentially decreasiydraulic
conductivity at saturation with depth.

I ntroduction

The formation of perched water tables in the upgat
layers, during an infiltration process at low itrition rate,
is an important shallow—Ilandslide triggering medkam

In fact, when the soil approaches the saturatiagregein
the upper soil layers, the apparent cohesion rexdacel,
when it reaches the saturation, also the effectvengths
reduce. Soil failures can therefore be triggereth by a
positive pore pressure and by the presence oflapérs
close to saturation (e.g. van Asch et al., 200@xcled
water tables are typically induced by the layehghe soil
water constitutive laws and mostly by the decregpsihthe
hydraulic conductivity at soil saturation with deptAn
accurate description of the subsurface soil—walew,f
which accounts also for the effect of the unhomegas
of the soil hydraulic properties, therefore leamlgntportant
information on the properties of the perched wasdres
and on the soil safety.

As a consequence of the genetic layering, the adiny

at saturation tends to decrease across the upger so
horizons, being higher in the A horizon and lowette B
one (Kirkby, 1969). On mountains, where strong s
processes act and mass movement is a key soil rfgrmi
factor, the soil horizonation cannot fully develepd a
smooth decrease of the conductivity at saturatypically
occurs in the upper soil layers. During our field

measurement campaigns in two Alpine catchments, a
gradual decrease, on average, was observed feettieal
conductivity at saturation through the upper saiers
(Barontini et al., 2005). Consistent with literadata (e.g.
Beven, 1984), the pattern was found to be reasgnabl
approximated by an exponential decay.

Below the upper soil layers, two limit cases cascdibe

the soil characteristics: one can find either apdmngious
bedrock, or a highly permeable layer of regolith or
fractured and fissured rock. In the first case, endase of
formation of a perched water table, the maximunsguee
head is expected to be observed at the interfageeba the
soil and the bedrock. If the slope is moderate, fthe
description can be performed by means of a cldssica
Dupuit—Forchheimer approach, leading in the satdrat
layer to a Boussinesq equation (e.g. Steenhuik, €t9%99).

In the second case, instead, the soil behavesaligerous
layer on a capillary barrier, and the maximum puess
head, if any exists, will be found within the soilthe
transverse flow across the soil layer can be aripriot
negligible and one of the major Dupuit—Forchheimer
hypotheses may fail. An approach based on the Risha
equation, and on its simplifications for the satiedaflow, is
therefore needed in these cases. According to Vssta
and Sinai (1981) the problem can be simplified, gdong
slope, with a uniform flow, in which the flow fieldas both

a lateral component, parallel to the slope, andhastierse
one. Following this approach the infiltration thnekls for

the perched water table to onset and to lead thetso
waterlogging were determined for a sloping, antgutr
and gradually non homogeneous soil, together wikttiero
characteristic properties of the perched water etabl
(Barontini et al., 2011). Here, after a recall dfet
underlying hypotheses and of previous results,
Lagrange stream function of the flow field is prasel and
its patterns discussed in relation with their pbabi
meaning.

the

Theoreticals

Problem statement

Let us consider a finite thickness soil layer layian a
hillslope, tilted of an anglef with the horizontal as
represented in Fig. 1. Let* be the intrinsic transverse



coordinate, such that* = 0 at the soil surface arx* is
positive as entering within the soil. Say the position of
the soil bottom. Let the sdile seat of Darcian flux:

q = —K(@,x")Vo, @

whereq = (0x, 0,+) is the apparerftow field within the soil
layer, K(n, x*) is the soil hydraulic conductivi tensor,
depending on the tensiometepressure potentie7 and on
the depthx*, and® = 7 - zis the total soi—water potential
(zas represented in Fig.1). We recall thas defined as the
matric potential, if it is non—positivegr asthe pressure
potential, otherwise With the hypotheses that the s
unhomogeneitiesre fully represented by a decreasing
the soil conductivity at saturation with depth, ahdt the
soil intrinsic coordinates* andy*, as represented in Fig.
are principal direction for the conductivity tensK (7, xX*)
is therefore defined as:

K, x) = k) [p 9] K, @

beingk(#) the relative conductivity; the anisotropy fact
and K¢(x*) the hydraulic conductivity at soil saturat in
the transverse directiott. If the soil is saturated, i./7 > 0,
k(n) is equal to 1Due to the soil genetic processehe
ratio r between the lateral and transverse conductivil
saturation is usually higher than ILet KgXx*) be
monotonically decreasingand be described bythe
following equation:

Ks(x™) = Ksof (x7), ©)

in which Ks, is the conductivity at saturation at the ¢
surfacex* = 0 andf (x*) is a monotonically decreasi
function such that (0) = 1.

seepage condition

Figure 1: Sketch of &oil domain with details orthe
boundary conditions

Let the soil lay on a capillary barrier, i.et the underlying
soil layer becharacterized by higheconductivity than
Ks(X*) and let it benot able to exercise any retention. |
the sake of continuity of the total hydraulic he®, the
tensiometer—pressure potentii (x*) should be null.

Now let i be the rainfall component normal to the ¢
surface. With theaforementioned condition fcthe lower
boundary of the domain, i.@.(x*) = 0, a perched water is
considered to onset if:

My, @)
dx* x}

Consistent conditions at the lateral bouncof the domain
are a no flux entering the domain at the upstreaumbary,
as for the presence of a watershed, and a seepadgion
at the downstream bounda@s represented in Fit.

In one of their 1981'papers, Zaslavsky and Si (1981)
describedhe effect of an infiltration process a soil layer
of undefinite length H4aying on asloping capillary barrier
and eventuallyanisotropic ancsharply layered — as a flow
with uniform properties in thy* direction, with deflected
patterns from théransverse directic due to the soil slope,
to theKs profile andeventuallyto the soil anisotropy. The
uniform flow condition takes the fori

9 \_ (5)

for all the flow properties unless than for theigational
potential-z

Flow fields

As steady conditions are investigated, the conrtr
equation takes the form:

V-q=0. )

For the sake of continuity, accounting for the dtad (5)
applied tog,~ , onegets from(6):

()

qx*z i’

for eachx*. Then, by the Darcy la\(1) with the condition
(5) applied ta7, one gets:



qy = Ko k() r f(x™) sin . 8)

It can be observed that the flow field is uncoupiedhe
two directions, i.e. the two flow components can be
separately solved. In faay. depends on the boundary
conditioni only as a function of the tensiometer—pressure
potential profilen (x*) which is a solution of the Darcy law
with the condition (7).

Properties of a perched water table

Accounting for the hypothesis (5), Barontini et @011)
showed and numerically verified that the infiltoati
threshold; (f) for the perched water to onset is given by:

ir(B) = Ks(x;) cos 3, ©)

i.e. it is equal to the conductivity at the bottafthe soil
layer, scaled with the cosine of the slope. Thfgtiation
rate is less than the expected one in the casertfomtal
soil, due to the fact that the gravitational gradie
sustaining the flux transversely to the soil layisr,less
effective as the slope increases. The maximuntriatibn,
which can be sustained without gaining any negative
pressure gradient at the lower soil interface, béllreduced
accordingly. The infiltration rate leading to watgyging is
related to the value of the equivalent hydraulinductivity
at saturation over the interval [*], i.e.:

*

. 0,x% Xf
l (.B) = K.S[,eqf] COSﬁ = KS,o WCOS[; (10)
o f(x"

and, again, it is scaled with the cosine of thealoThe
authors proved also that the profile gfx*) within the
perched water is not monotonic and it has a maxinm
in a positionx* . The positionk* 4 is given by:

i = Ky (pan) » ir(B) < i < i (B), (11)

thus not depending on the soil slofeThe corresponding
Nmax IS found by a straight integration of the Darcy law
within the saturated layer:

hmax (ﬁ ) =

[/ ot =G eoss.
= x' — (xf — x}q, )| cOSB .
x;naxKS(x’) 4

It is here remarked that all the properties giverguations
(9—12) are not dependent on the soil anisotropyaas
consequence of the flow components uncoupling. Sdie
anisotropy acts in fact on the lateral flow, whileese
properties pertains the transverse flow.

L agrange stream function

As a consequence of the continuity equation (6)flin
field g admits a vector potentiap(x*, y*) i.e. it can be
written as:

q=Vxy. (13)

By defining z* as the orthogonal coordinate to the plane
identified by x* andy*, positive if coming out from the
sheet, it can be proven that, in the case of algtptanar
flow, the vector potential has only a componeniapel to

z*. It can therefore be written as:

W=,k (14)

beingk the unitary vector of the*-axis andys,- (x*, y*) the
Lagrange stream function. It can be also provenhghacan
be determined as a line integral of the flow figlélong a
pathl:

P, (', y") = f “Qndl 9, (550, (15)

o

wherex = (x*, y*) andx, = (%*, Yo*) are the coordinates of
two points andn is the unitary vector orthogonal to the
integration path.

Let us assume now, = X; = (x*, 0). As the components of
g are expressed by equations (7, 8), the general fior the
Lagrange stream function is given by the following
equation:

Yo (7 y") =

= Ksorsing [ k@fGdx” iy’ (16)

+ l/)z*(x;, O).

As the iso—lines of/- are locally parallel to the flow field
g by definition, the first term of equation (16) acats for
the flow path divergence from the vertical direntidue to
the slope and to the soil anisotropy.



Case of exponentially decreasing conductivity

Equations (9—12) and (16) are of general validitg anly
require the shape 6{x*) to be given, in order to determine
the properties of the perched water table. If tlhodl s
conductivity at saturation exponentially decreaseith
depth with a constant of exponential detayequation (3)
takes the form:

*

Ks(x*) = Ksoe L (17)

Equation (17) allows to determine the numericalugal
given by equations (9—12), as in Barontini et 201(1).

If we consider a waterlogging condition, in all themain

the soil is saturated and it ks(;7) = 1. Equation (16) can
therefore be explicitly solved, thus obtaining:

x* x}
Y, (x*,y") = —=Ks,,rLsin B (e_T - e_T>

—iy*+ wz*(x;, 0)

(18)
Assuming:

x5
wz*(xf*, 0) = —KgorLsinfe T (19)

one finally gets the Lagrange stream function fbe t
investigated problem:

Y, (x",y") = —Ksolrsinfe T —iy". (20)

As the drop will follow an iso—line of., the distance
along the slope between the point at which a draere the
saturated layer and the point at which it leaks aan be
directly determined from (20).

Results

Some typical flow patterns within a perched wasdrle at
waterlogging, derived by means of equation (20k ar
presented in Fig. 2 for different valuesr andS. In order

to plot the iso—lines of, the following dimensionless
variables were defined:

X
=2 y=X
Xf Xf
_ L 0= i
- f*’ : KS,O’ (21)
g, :lpz**
Xf

By means of the definitions (21), the infiltratioate at
waterlogging i* (#), given by equation (10) with the

constitutive law (17), can be rewritten in the doling
form, according to Barontini et al. (2012):

1
Hi*(ﬂ) = —COS,B .
m, (eﬂ_lL - 1) (22)
Equation (20) is therefore rewritten as:
X
Y,«(X*,Y*) = —I;r sinfe T —IIY" (23)

The flow patterns were presented both for weakly
unhomogeneous soil§1( = 0.5, upper four diagrams) and
for strongly unhomogeneous onds3, (= 0.2, lower four
diagrams), in case of moderafe< 5°, first and third lines)
and steep slopeB(=30°, second and forth lines), and for
isotropic soils (left side diagrams) and strongtysatropic
ones ( = 10, right side diagrams).

In the case of isotropic and moderately slopindss(f =

5°) the water infiltrating at the upper surfacetted perched
water table rapidly leaks toward the underlyingl.soi
Accounting for the tilting of the slope the pathre almost
vertical for moderately unhomogeneous sbil] £ 0.5). As
soon as the soil is more unhomogenedus £ 0.2) the
paths diverge downstream of a stretch of the sanher @f
magnitude of the soil thickness. As the slope bexom
steeper (30°) this pattern is emphasized and, tfongly
decreasing conductivity with depthl( = 0.2), the lateral
bias is between three and four times the soil tiesk.

The same behavior characterizes anisotropic sails i
moderately steep slopes. In fact the paths diverges
downstream as the anisotropy factor increases.stfong
anisotropy ( = 10) and moderately steep slope (5°) the
lateral bias ranges from one to five times the sodkness,
for weakly and strongly unhomogeneous soil respelsti
Finally if the soils are both steep sloping andsattopic
the effects superimpose and the paths stronglyrgiage
downstream. The lateral bias is about eight times t
thickness iff1, = 0.5 and becomes about thirty time$1if

= 0.2 but it remains in any case finite.

Natural slopes are often thin if compared with ithength.
This is why in the diagrams in order to representatral
branch of natural slopes, the slope length is tyéimies
the thickness. As in most of the cases the watabie to
reach the bottom layer with a lateral bias of few
thicknesses, it can be hypothesized that the unifffow
approach is a physically meaningful framework fealr
cases of flow across a perched water laying onpdlagy
barrier. On the contrary, as the transverse flowalsiable

in the whole domain in most of the cases, it isficored
that a classical Dupuit—Forchheimer approach cannot

apply.
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Figure 2: Iso—lines ofhe normalized Lagrange stre:
functionW,. as described by equatior3) for different
soils ¢ =1, 10;4=5°, 30°M,_=0.2,0.5)



Conclusions

Aiming at better characterizing the physical aspexdtthe
flow within a perched water table, in view of aggliion to
soil stability analyses, the case of a gradually
unhomogeneus and a priori anisotropic sloping $aying

on a capillary barrier, was theoretically investeggh The
soil unhomogeneity was assumed to be describechdy t
decreasing of the hydraulic conductivity at saioratvith
depth. By means of a uniform flux approach, thevffgeld
and the stream function within the perched wateletavere
theoretically determined for any soil with monotaily
decreasing conductivity with depth.

The particular case of a soil at waterlogging with
exponentially decreasing conductivity with depth swa
afterwards investigated and the flow patterns presk It
was observed that for weakly unhomogeneous anjsot
soil laying on a moderately steep slope, the wiafdtrated
at the soil surface rapidly reaches the soil bot&liong
almost vertical paths. As the slope steepness,

diverge downstream with a bias ranging from fewesnto

some tenths the soil thickness.

The paths remain in any case finite and a drop atew
infiltrated at the soil surface is able to leak datvnstream.
The estimates of the lateral bias suggested tleatitiform

flow approach can be a physically meaningful frarmekw
to describe the water content flow in natural skziisng on

a sloping capillary barrier, but the importance tbe

transverse flow component confirmed that a classica

Dupuit—Forchheimer approach does not apply in¢hse.
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