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Abstract 

This paper studies the integral conservation of linear and 

angular momentum in the steady hydraulic jump in a 

linearly converging channel, following the recent research 

line of the authors concerning the same phenomenon in a 

linearly diverging channel. 

The flow is considered divided into a mainstream, that 

conveys the total liquid discharge, and a roller, where no 

average mass transport occurs. No macroscopic rheological 

relationship is assumed, so mass, momentum and angular 

momentum integral balances are independent relationships. 

Normal stresses are assumed hydrostatically distributed on 

each vertical and viscous stresses are assumed negligible 

with respect to turbulent stresses. Horizontal velocity is 

considered uniform in the mainstream and horizontal 

momentum and angular momentum in the roller are 

neglected with respect to their mainstream counterparts.  

Using such simplified assumptions an analytical solution is 

obtained for the free surface profile of the flow, which is 

fundamental for finding the sequent depths and their 

positions. Such solution permits to compute the jump 

length, which is assumed equal to the roller length. 

Mainstream and roller thicknesses can also be derived. The 

model may also be used to theoretically derive the average 

shear stresses exerted by the roller on the mainstream and 

the power losses per unit weight. This final relationship, 

which returns the well-known classical expression for total 

power loss in the jump, demonstrates the internal 

consistency of the mechanical model. 

Introduction 

The work by Valiani & Caleffi (2011) analyzes the 

classical, integrated, hydraulic theory of the jump in the 

linearly diverging channel. The present work is the exact 

counterpart, when the channel is linearly diverging. As 

shown in two important experimental works of the sixties 

(Rubatta, 1963; Rubatta, 1964), the varying width channel 

increases the number of degrees of freedom of the 

theoretical problem with respect to the classical prismatic 

case from one to two. Assuming as prescribed the non-

dimensional discharge and the specific energy 

(downstream/upstream) ratio as independent parameters, 

we propose here a theoretical method to find the sequent 

depths, their positions, the free surface profile and 

mainstream profile, minimizing to one the semi-empirical 

relationship which must be used in the theory. Such a 

relation is just an expression giving the proper expansion 

rate of the mainstream at the beginning of the jump. 

In the following, the main hypothesis concerning the 

properties of the flow field are explained; integral 

mechanical balances are set up and solved to find the 

unknowns of the problem. Validation of theoretical results 

is performed comparing them with experimental results by 

Rubatta (1964). Finally, we give some conclusions and 

perspectives on this findings. 

Basic Assumptions on the Physics 

We address to Valiani (1997) and Castro-Orgaz & Hager 

(2009), for a review of the fundamental hypothesis, which 

are classically assumed in a direct jump. The idealized 

scheme is that of a shock, conserving mass and linear 

longitudinal momentum, whilst depth, average velocity and 

specific energy have abrupt discontinuities. At a refined 

scale, Valiani (1997) posed the problem of the finite length 

of the jump, which allows to consider a gradually varying 

depth and velocity inside; of the non-negligibility of 

vertical velocity, which stimulate the analysis of vertical 

momentum balance; of the integral unbalancing of angular 

momentum (moment of momentum), which can be 

explained considering the role of vertical momentum 

fluxes, including also Reynolds stresses. The same 

problems were faced and analyzed by Valiani & Caleffi 

(2010, 2011), considering the hydraulic jump in linearly 

diverging channels. 

The analysis is repeated for the linearly converging 

channel, following step by step the framework of the 

previous works (Valiani & Caleffi, 2010; 2011). The 

bottom friction is neglected, to obtain a direct comparison 

with classical, total force preserving, results on prismatic 

channels. Viscosity and surface tension effects are both 

neglected, having in mind a length scale of the problem 

which is appropriate for hydraulic engineering applications 

rather than small-scale analysis. 



 

Figure 1: sketch of the diverging channel, geometry and 

nomenclature. a) plan view, Q and q are generic integral 

and distributed quantities; b) vertical section; c) control 

volume of the roller; d) control volume of the mainstream. 

The scheme is 2D, axially symmetric, and all results are 

referred to the unit-angular amplitude channel. The 

upstream and downstream sections of the jump are 

considered to remain (on the average) in the same position 

and to be recognized, at the usual order of approximation 

typical of the hydraulics textbooks; stability analysis is not 

considered here. 

In a coordinate system (r, θ, z), the flow is radial, inward 

directed; x is the axis of symmetry of the flow, and is also 

the direction of the longitudinal integral forces (Fig. 1). The 

vertical direction is identified by z axis; z = 0 at the (flat) 

bottom of the channel, with positive direction against 

gravity; every physical quantity is assumed independent on 

θ; radial velocity vr is considered as positive if directed 

inward. 

The discharge Q is supposed to be constant, assuming an 

average steady state motion. The angular amplitude of the 

converging channel is 2α, as it is sketched in Fig. 1; the 

discharge for unit arc length is Q/2α. The current depth of 

the channel is Y; its upstream value (beginning of the jump) 

is Y1; its corresponding downstream value, that is the 

sequent depth, is Y2. 

Even neglecting shear stresses on the bottom, the sequent 

depths are not related each other by an established 

relationship, as in the prismatic case. In fact, the lateral 

walls exerts pressure forces on the flow, and the resultant is 

depending on the free surface profile. For converging 

channels, the total force decreases in the flow direction (the 

contrary for diverging channels). We intentionally avoid 

empirical estimates of such decreasing, just because the free 

surface profile is a result of the presented mechanical 

scheme, being evaluated using a proper closure of integral 

momentum and angular momentum balances. 

As discussed extensively by Valiani & Caleffi (2010, 

2011), a certain precaution must be used in writing 

complete (energy, momentum, angular momentum) 

mechanical balances in a shallow flow, in order to avoid ill-

posed schemes (Valiani & Caleffi, 2003). In the following, 

we write mechanical balances at the simplest order of 

approximation, being conscious, for example, that 

vertically hydrostatic pressure distribution is an highly 

simplified assumption. Notwithstanding this, our 

conclusions demonstrate – as it is extensively shown in 

Valiani (1997) and Valiani & Caleffi (2011) – the internal 

consistency of the adopted mechanical model. The main 

purpose of such model is not capturing the details, but the 

ability to preserve integral properties without an excessive 

sensitiveness to uncertain tuning parameters or particular 

experimental conditions. 

Only the direct jump (Fr1
2
≥3, where Fr1 is the upstream 

Froude number) is analyzed. The mean (turbulence effects 

are averaged over a proper time scale) velocity vector has 

(vr, vz) components, while vθ = 0. Outside the hydraulic 

jump vertical velocities are neglected, and inviscid, specific 

energy preserving flow is assumed. 

Some basic properties of the flow field outside the jump are 

summarized here. The radial velocity is vr = Q/(2αY); the 

specific energy is: E = Y+Q
2
/[2g(2αrY)

2
], where g is 

gravity; pressure vertical distribution is hydrostatic: p = 

γ(Y-z), where γ is the specific weight of the fluid. 

The total force of the stream on a whole cross section, 

directed along the x axis, is: 
t s d

F F= Π + =
2 2 2 2/ 2[2 sin ]{ [ (4 )]/ }r Y Q g r Yγ α α= + , where the static 

term and the dynamic one are put into evidence. If two 

cross sections are considered, whose distance is dr, the 

elementary force (on the control volume between them) 

exerted by lateral walls is directed along  x  axis, and may 

be evaluated from: 2d [2 sin ]( 2) dL Y rγ αΠ = . This force 

explains the decreasing of the total force in the flow 

direction if the flow is converging. In fact, if the flow is 
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directed inward, dr is negative and consequently d
L

Π  is 

also negative. 

Outside the jump, the non-dimensional significant 

parameter for non-viscous flow is: 1/22 (/ 2 )Q E gEαΓ  =   . 

Critical depth and critical radius (minimum of specific 

energy and total force) are defined by: (2 / 3)
c

Y E=  and 

[ ]
1/2

/ 2 ( )c c cr Q Y g Yα= . The longitudinal to vertical length 

scale ratio is: 5/2/ (3 / 2) 2.76c cr Y = Γ Γ≃ . Using such 

depth and such radius as vertical and horizontal reference 

scales, the non-dimensional free surface elevation outside 

the jump is: 
1

1/2
(3 2 )y yξ

−
 = −  , being 

c
r rξ =  and 

c
y Y Y=  the non-dimensional current radius and the non-

dimensional current depth. 

We address Valiani (1997) and Caleffi & Valiani (2010, 

2011) for an extensive support of the simplified hypothesis 

adopted here. The vertical hydrostaticity of normal pressure 

is also adopted by Engelund (1981), Fredsøe and Deigaard 

(1992), Adami (1983), Castro Orgaz & Hager (2009). The 

most important consequence of this assumption is the local 

balance between gravity forces and bottom reaction forces, 

so that their resultant over an infinitesimal control volume 

between two sections at a distance dr, is zero; the net 

angular momentum is zero, too. 

Even if viscosity remains responsible of the energy 

dissipation at small scales (Valiani, 1997), viscous stresses 

are neglected with respect to turbulent stresses. The 

macroscopic rheological behavior of the liquid, concerning 

such stresses, is considered as unknown, so that angular 

momentum balance is an independent tool in the present 

analysis. 

Such a balance can be satisfied only if vertical turbulent 

stresses and vertical momentum rising effects are properly 

taken into account. Interestingly, we can observe that these 

two effects can be considered as a whole unique term: this 

is physically correct, being the average turbulent stress 

related to the average of the product of velocity components 

fluctuations in (r, z) directions. 

Inside the mainstream, a formally uniform velocity 

distribution occurs (Engelund, 1981; Valiani, 1997; Castro-

Orgaz & Hager, 2009; Valiani & Caleffi, 2011). Moreover, 

any distinction between jump length and roller length is 

avoided, to circumvent uncertainties between the two 

definitions, also looking at experimental difficulties to 

identify the downstream end of the jump (Rubatta, 1963; 

Rubatta, 1964; Engelund, 1981; Fredsøe and Deigaard, 

1992; Valiani, 1997; Castro-Orgaz and Hager, 2009; 

Valiani & Caleffi, 2011). The length of the jump is here 

uniquely defined as the distance between the sequent depths 

that satisfy the longitudinal momentum conservation. 

Mechanical Balances 

The flow field is assumed to be divided in two distinct 

regions: the mainstream and the roller, according a scheme 

which is used both in coastal engineering and in fluid 

mechanics (Engelund,1981; Fredsøe and Deigaard, 1992; 

Valiani, 1997; Castro-Orgaz and Hager, 2009; Valiani & 

Caleffi, 2010, 2011). The roller is the part of the stream (of 

thickness δ) which does not contribute to the net transport 

of mass, due to the inversion of velocity profile inside it. 

The net mass transport in the mainstream is, on the 

opposite, equal to the total flow discharge, that is the 

mainstream thickness η satisfies the condition: Q=(2αrη) vr. 

The whole depth of the flow in the jump region is  Y = η+δ, 

while outside the jump region, where no inversion of the 

mean velocity profile occurs, the whole depth is Y = η. 

Valiani (1997) for the prismatic channel and Valiani & 

Caleffi (2010, 2011) for the diverging channel extended the 

work by Engelund (1981) assuming that the thickness of 

the mainstream in the jump varies from Y1 to Y2, with a 

certain growth rate, that is the consequence of balance laws 

and not imposed a priori; next, the longitudinal momentum 

crossing the mainstream can be estimated assuming a 

uniform velocity distribution of the mean horizontal 

velocity, as 2 2[2 sin ] { / [ (4 )]}SxM Q g rγ α α η= ; finally, 

the momentum crossing the roller, MRx , is negligible with 

respect to the momentum crossing the mainstream, that is 

Rx Sx
M M<< . 

The line η = η(r) in the mean vertical plane is a streamline; 

its elementary length is: 2 2 1/2d (d d )s r η= + . The mutual 

interactions between the mainstream and the roller are 

described by two components of the total stress (Valiani, 

1997; Valiani & Caleffi, 2010, 2011):  pRS  is the normal 

pressure,  τRS  is the total tangential stress, considered as 

positive if directed outward, so that the corresponding shear 

force exerted by the roller on the mainstream acts (as 

expected) from left to right, being the flow directed from 

right to the left. 

The hydrostatic distribution hypothesis on the vertical 

implies:  pRS = γδ  at the interface. We consider a control 

volume inside two cylindrical vertical surfaces, located at a 

distance respectively r and r+dr from the origin; its basis is 

a portion of circular crown, whose angular amplitude is  2α. 

The limiting upper surfaces are the free surface elevation 

and the mainstream-roller boundary. The arc of the 

corresponding streamline has a length ds; mechanical 

balances are written separately for the mainstream and the 

roller. All moments over the infinitesimal element in the 

following are evaluated using the point O, the origin of the 

reference system, as the pole. Counterclockwise torques are 

considered as positive. 

The pressure forces we are going to consider are: the static 

force (on the current cross section) related to mainstream 

flow, ПS; to the roller, ПR; the static forces exerted by 

lateral walls on the mainstream and on the roller, dПLS and 

dПLR, respectively. They are: 



2 2 2

2 2 2

2 sin ; 2 sin ;
2 2

d 2 sin d ; d 2 sin d
2 2

S R

LS LR

Y r
r

Y
r r

δ δ
γ α γ α

δ δ
γ α γ α

   −
Π = Π =   

   

   −
Π = Π =   

   

 (1) 

The first part of the mainstream pressure forces has an arm 

of ( )3Y ; the second part has an arm of ( )3η δ+ . The 

mainstream and the roller are supposed to exchange an 

horizontal force proportional to pRS dη = γδ dη and a 

vertical force proportional to pRS dr = γδ dr . The forces due 

to tangential stresses are proportional to τRS dr (horizontal) 

and to τRS dη (vertical). Vertical mass forces on the 

mainstream elementary control volume are proportional to  

γη dr, on the roller volume to  γδ dr, and on the whole depth 

control volume as γ(η+δ) dr. Vertical reaction force on the 

control volume dR is considered as due only to hydrostatic 

pressures, so that exactly counterbalances the weight being 

proportional to γ(η+δ) dr. On the vertical cylindrical cross 

sections related to the mainstream, to the roller and to the 

whole depth, vertical shear forces are TS, TR, T, 

respectively. Longitudinal momentum crossing the 

mainstream, the roller and the whole depth is denoted as 

MS, MR, M; corresponding vertical momenta are MSz, MRz, 

Mz . It is: 

[ ]
( )

2

2
2 sin ;

4
S R S

Q
dM d M M

g r
γ α

α η

    =  
    

≪  (2) 

The momentum crossing the mainstream has an arm of 

( )2η , while the second relationship implies that angular 

momentum crossing the roller is negligible with respect to 

the angular momentum crossing the mainstream. 

By considering the axial symmetry and integrating over the 

proper arc length, longitudinal integrated quantities are 

proportional to a factor [2sin(α) r], vertical integrated 

quantities are proportional to [2α r], and the arm of vertical 

forces is [2r sin(α)/(2α)]. Angular momenta of all the listed 

forces are described in Valiani & Caleffi (2011) and not 

repeated here.  

Linear and angular momentum balances 

Momentum balance - x component (mainstream – roller, 

respectively): 
2

2

d d d

d

1

d d4

d d

d d

RS

RS

Q

r r r rr

r r

η δ
τ γ η γ η ρ

ηα

η δ
τ γ δ γ δ

 
= + + +  

 

= − −

 (3) 

Momentum balance - x component on the whole stream (in 

the jump): 

( )

( ) ( )

2
2

2

2
2 2

2

d d

d d

d

d

1 1
0

2 4

1 1 1

2 24

Q

r r rr

Q
r

r r

γ η δ ρ
ηα

γ η δ ρ γ η δ
ηα

  
= + + ⇔  

   

  
⇔ + + = +  
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 (4) 

Momentum balance - z component (mainstream – roller, 

respectively): 

( )

( )

d d

d 2

2

d

d d

dr d

Sz S

RS

Rz R

RS

M T
r

r r

M T
r

r

η
τ

α

η
τ

α

−
=

−
= −

 (5a,b) 

Momentum balance - z component on the whole stream (in 

the jump): 

( ) ( )

( ) ( ) ( )
1 2

0 const
d

d
z z z z

z z z z z z

M T M T
r

M T M T M T

− = ⇔ − = ⇒

⇒ − = − = −

 (6) 

Angular momentum balance (mainstream - roller 

respectively): 

( )

( )

( )

( ) ( )

2
2

2

2

2

1 1

2

d d

d d

d d

d d

4 2

2

1

2

Sz S

RS

Rz R

RS

M T
r

Q
r

r r r

M T
r

r r
r r

τ η
α

γ η η δ ρ
α

τ η
α

γ η δ η δ γ δ η δ

−
= − +

 
+ + +  

 

−
= + +

+ + + +

 (7) 

Angular momentum balance (whole stream): 

( )
( )

( )

( )
( )

2
3

2

2
3

22

d d1 1

6 2 24

1 1 const

6 4

d d

d

d 4

z z
M TQ

r
r r r

Q

r r r

γ η δ ρ
αα

γ η δ ρ
α

  −    + + = ⇒        

  
 ⇒ + + = 
   

(8) 

Final closure system 

As extensively explained in Valiani & Caleffi (2011), the 

left hand sides in Eqs. 5(a,b) are candidate to be of the 

order of neglected terms. For this reason, these relations are 

not used directly, but just to find Eqs. (6) and (7) where the 

interaction term between the roller and the mainstream, in 

any case, disappears. The final solution is written in non-

dimensional form to obtain scale-independent results. The 

critical depth, Yc, is chosen as fundamental vertical length 

scale and the critical radius, rc, as fundamental horizontal 

length scale. The relation: 2 32 2/ (4 ) c cQ r Yγρ α =  is taken 

into account; non-dimensional coordinates are /
c

Yζ η= ;

/
c

Yσ δ= . The independent non-dimensional parameters 

governing the problem are two (Rubatta, 1963, 1964): the 

non-dimensional discharge, ( )2

1 12Q E gEαΓ = , and the 

(downstream/ upstream) energy ratio, 
2 1

E E=
R
E . 

Prescribed boundary conditions are: ( ) ( )1 2 0;σ ξ σ ξ= =  

( ) ( ) ( ) ( )1 1 1 2 2 2; ;y y y yζ ξ ξ ζ ξ ξ= = = = , together with: 

 



( ) ( )
1 1

1 1 1 2 2 23 2 ; 3 2 ;y y y yξ ξ
− −

= − = −
R
E  (9a,b) 

The linear and the angular momentum balances for the 

whole stream, written in non-dimensional, integral form 

are: 

2

1

2 2 2

2 2 1 1

2 2 1 1

1 1 1 1 1
    ;

2 2 2
y y y d

y y

ξ

ξ
ξ ξ ξ

ξ ξ

   
+ − + =   

   
∫  (10a,b) 

( ) ( )3 3

2 1 2 1 1 12 2

2 1

1 1 1 1

6 4 6 4
y C ln y C lnξ ξ

ξ ξ

      
+ − = + −      

         
 

being: 
1/3

3

1 12 2

11

3 1 1
6

2
y y C ln

ξ

ξξ ξ

    
= + − +    
    

 (11) 

Eq. (11) is the non-dimensional free surface profile. The 

corresponding expressions for the current non-dimensional 

mainstream thickness, ζ , and non-dimensional roller 

thickness, σ , are:  

[ ]

( )
1

1

2
2 2

1 1 1

1 1

1
and ; where:

1 1 1 1
  ; ;  

2 2 2

s

s

y
F F

F y t dt F y
ξ

ξ

ζ σ ζ
ξ

ξ η ξ
ξ η

= = −
+ −

 = + = = ∫

I

I

 (12) 

As discussed in Valiani (1997) and Valiani & Caleffi 

(2011), the scheme implies a discontinuity in the surface 

profile derivative; that is, a change in the scale at which the 

phenomenon is observed: from the macroscopic, shallow-

water like, scale (vertical lengths much more less than 

horizontal lengths) to the intermediate scale (vertical 

lengths less than horizontal lengths, but no more than one 

order of magnitude). The depth and velocity are gradually 

varying functions inside the jump, and discontinuity is 

shifted from the function values to the derivative of the 

profile: cusps are present both at the beginning and at the 

end of the jump. 

To obtain a well-posed problem, the system (9), (10) need 

the depth profile to be known: the proper expression is (11). 

An independent expression concerning the quantity C1 is 

needed. In Valiani & Caleffi (2011) the physical meaning 

of this quantity is discussed: it is strictly related to the 

expansion rate of the submerged jet to which the 

mainstream can be compared. In fact, from longitudinal 

momentum balance and angular momentum balance, by a 

simple derivation we can obtain: 

1 1

1 1 1 1 1 1 11

1 2.76 2.76
tan

2 2 2

d d
C

y d y dr y

ζ η
β

ξ ξ ξ ξ

Γ
= =

Γ
=  (13) 

β1 is the expansion rate of the submerged jet in the jump. 

The physics of turbulence is the dominant phenomenon 

which determines such a value (Hoyt and Sellin, 1989). We 

expect different expressions for prismatic jump (Valiani, 

1997), diverging jump (Valiani & Caleffi, 2011) and 

converging jump (present paper). Using experimental data 

by Rubatta (1964), and noting the strict physical 

relationship between the initial steepness of the jump, the 

average steepness of the jump and the (downstream/ 

upstream) energy ratio, we propose here the following 

expression for the constant  C1 (that is negative, just 

because the flow moves from larger to smaller values of r): 

.

1

0 790.11C −Γ= −
R
E  (14) 

The final problem we have obtained is the following. Given 

a prescribed non-dimensional discharge, Γ , and a 

prescribed specific energy ratio, 
R
E , the system to solve 

consists of the four Eqs. (9a,b) and (10a,b), in the four 

unknowns, y1, y2, 1
ξ  and

2
ξ . Eq. (14) gives the proper value 

for the constant C1 and Eq. (11) allows to compute the right 

hand side integral in Eq. (10a), providing the free surface 

profile for a couple of boundary conditions. 

Such a system can be solved using standard software, for 

example the MATLAB routine “fsolve”, starting from the 

following guess values of the non-dimensional sequent 

depths and positions:
 20

0.98(3 / 2)y =
R
E ; 

2 1/2

10 2 200.5((1 8Fr ) 1)y y= − − ; 1

10 1

1 2

0 1

/

0( 3 2( ))y yξ −= − and 
1

20 20

1/

20

2( 3 2 )( )y yξ −= −
R
E . Downstream depth guess 

value is obtained considering as small the kinetic energy 

with respect to the total specific energy of the subcritical 

flow. Upstream depth guess value is obtained by the 

classical expression of sequent depths in prismatic 

channels. Guess position of both depths are simply given by 

boundary conditions. 

This method is validated against a the selected experimental 

dataset by Rubatta (1964). It is chosen because there is a 

complete report of raw data, experiments are completely 

and exhaustively described, and the laboratory channel has 

a quite large size (this is particularly important, to be on 

line with theoretical assumptions). Fig. 2 reports the 

comparison between predictions and measurements, of 

upstream and downstream sequent depths and positions.  

Agreement is very good, particularly considering the 

extremely low rate of empirical relationships and tuning 

parameters. The phenomenological/mathematical model 

presented herein can give further results, omitted herein for 

space reasons; it is possible to obtain the estimation of 

turbulent stress interaction between the mainstream and the 

roller, τRS, to check the closure of mechanical balances over 

each part of the jump (mainstream, roller), to compute the 

power dissipation in the jump, which analytically satisfies 

the well-known requirement: ( )1 2P Q E Eγ −= . 

 



   

   
Figure 2: comparison between experimental and computed results: a) upstream jump position; b) downstream jump position; c) 

upstream sequent depth; d) downstream sequent depth. 

Conclusions 

A complete dynamical balance of the hydraulic jump in 

linearly converging channels is here proposed. Several 

simplified assumptions are accepted, to catch the 

substantial aspects of the phenomenon. 

Linear (horizontal and vertical) momentum balances and 

angular momentum balance (around an horizontal axis 

perpendicular to the channel axis) are written for the 

mainstream, the roller and the whole flow. 

The two independent parameters governing the flow are the 

non-dimensional discharge and the dissipation rate of the 

jump. Mechanical balances bring to a final conservation 

system, consisting of 4 equation in 4 unknowns, the 

upstream and downstream sequent depths and their 

positions in the channel. Just one empirical relationship is 

needed, an expression linking the expansion rate of the 

mainstream at the beginning of the jump with the 

(downstream/upstream) energy ratio. Application of this 

scheme to a selected laboratory channel data base allows a 

very good validation of the model, which gives results in 

the expected experimental error range. Free surface profile, 

roller thickness and mainstream thickness can also be 

obtained from the present scheme.  
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